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19 Abstract

20

21 A tropicalisation phenomenon of the ichthyofauna has been described in the last decades in 

22 Galicia (north-eastern Atlantic), with increasing reports of tropical and subtropical fishes 

23 appearing northward of this distribution range. A search for parasites was carried out in the 

24 digestive tract of two specimens first captured in Galician waters: the Prickly puffer 

25 Ephippion guttifer (Tetraodontidae) and the African stripped grunt Parapristipoma 

26 octolineatum (Haemulidae). The parasitological examination of E. guttifer showed a high 

27 intensity of nematodes, belonging to three different genera: Cucullanus (Cucullanidae), 

28 Hysterothylacium (Raphidascaridae) and Anisakis (Anisakidae), the last one with 

29 demonstrated pathogenicity to humans. Molecular identification allowed the identification 

30 of Anisakis pegreffii and the first report for European waters of Cucullanus dodsworthi, 

31 Hysterothylacium reliquens and a new Hysterothylacium sp. P. octolineatum showed far 

32 lower level of parasitation, with only two Hysterothylacium larvae, genetically identified as 

33 Hysterothylacium deardorffoverstreetorum, being thus also a first report of this species for 

34 the Eastern Atlantic. The possible ecological impact of the occurrence of non-native fish 

35 species in a new area reach a different point if we consider that only two individual fish can 

36 harbor more of one hundred nematoda belonging to five different species.

37

Page 1 of 24

Journal of Fish Diseases

Journal of Fish Diseases



Review
 Copy

2

38 Keywords: tropicalization, non-native fish, Anisakis pegreffii, Hysterothylacium spp., 
39 Cucullanus dodsworthi

40

41 1. INTRODUCTION

42 There are multiple evidences that the climate of the planet is changing, and one of the most 

43 patent consequences is the increasing of the average surface temperature in the seas. 

44 Galicia is an autonomous region of Spain located in the north-western corner of the Iberian 

45 Peninsula (41°–43°N), in the northern boundary of the Iberian upwelling system. In this 

46 upwelling system, an increase in the SST of 0.68ºC between 1982 and 2006 was observed, 

47 but the prediction for the period 1960/1990–2070/2100 is between 1.4 and 2.4ºC (Philippart 

48 et al., 2011). Studies from Galicia region also show similar results: a rise of 0.24°C per 

49 decade has been observed in the Galician sea waters since 1974 (Gómez-Gesteira et al., 

50 2011).

51 Oceanic changes in temperature due to global climate change are causing poleward shifts in 

52 the latitudinal abundance and distribution ranges of fish species, which may cause dramatic 

53 changes in assemblages and trophic webs and have been shown to affect ecosystems and 

54 fisheries (Horta e Costa et al., 2014). As consequence, a tropicalization of coastal fish 

55 communities has indeed been occurring in the NE Atlantic, including the Macaronesian 

56 archipelagos, the Mediterranean Sea, and the European continental shelves, from the 

57 Iberian Peninsula up to the North Sea (Afonso et al., 2013). 

58 In Galician waters, this tropicalization phenomenon is also very apparent. In a revision of 

59 the marine fish fauna, a total of 17 African fish species have been found in Galicia, most of 

60 them recorded for the first time during the last decades (Bañón, Villegas-Ríos, Serrano, 

61 Mucientes, & Arronte, 2010) and this migration persists to the present day. Among them, 

62 there are several species whose finding represents the current northern distribution 

63 boundary in the Eastern Atlantic, such as Seriola fasciata (Bloch, 1793) (Bañón & 

64 Mucientes, 2009), Fistularia petimba (Lacepède, 1803) (Bañón & Sande, 2008) or 

65 Lagocephalus laevigatus (Linnaeus, 1766) (Bañón & Santás, 2011).

66 The Prickly puffer Ephippion guttifer (Bennett, 1831) is a western African tetraodontid 

67 species, ranging from Morocco to Angola, with sporadic intrusions in the western 

68 Mediterranean (Bañón, Alonso-Fernández, Barros-García, Rios, & De Carlos, 2018). It is a 
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69 demersal fish species inhabiting shallow coastal and estuarine environments to depths of 

70 approximately 50 m. The African striped grunt Parapristipoma octolineatum 

71 (Valenciennes, 1833) is a haemulid demersal species that is found over sandy and rocky 

72 areas from two to 180 m depth, ranging from Portugal to Angola and the western 

73 Mediterranean (Carpenter & Johnson, 2016). 

74 In spite of the continuous new arrivals of southern fishes, there is a lack of information on 

75 those species that could be introduced hidden and simultaneously: their parasites. In 

76 Galicia, and for extension in the Atlantic European, most studies of parasites are focused on 

77 commercially exploited shellfish, mainly bivalves, due to their economic importance and 

78 the mortalities they cause (Villalba et al., 2014). Studies of parasites in fish are less 

79 numerous and focused in fishery species (Sanmartin-Duran, Quinteiro, & Ubeira, 1989), 

80 including Anisakis infestation (Abollo, Gestal, & Pascual, 2001; Rodríguez, Abollo, 

81 González, & Pascual, 2018), but also in farmed fishes (Iglesias et al., 2001). The public 

82 concern about fish parasites increases when considering those which affect commercial 

83 species, devaluating their market price, or those which are responsible for seafood-

84 associated infections.

85 This paper aims to describe the parasite fauna in non-native fishes detected in Galician 

86 waters, emphasizing the increased impact of the occurrence of some southern fish out of 

87 their habitual distribution range when we put the focus on their hidden companion.

88

89 2. MATERIAL AND METHODS

90

91 2.1.  Host 

92 species

93 Two tropical fish species were caught alive for the first time in Galician waters, NW Spain. 

94 A male specimen of E. guttifer of 570 mm TL was caught on 10 January 2017 with 

95 trammel nets in the mouth of the Ría de Vigo, at 40° 42' 46.021'' N, 8° 51' 24.998'' W and at 

96 a depth of approximately five metres (Bañón et al., 2018). The second specimen was a 

97 female of P. octolineatum of 293 mm TL, caught by a spear fisherman in Punta Faxilda, in 

98 the mouth of Ría de Pontevedra, on 21 July 2018, at 42º24.907N, 8º53.208W and 7 m 
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99 depth. Both specimens were deposited in the Museo de Historia Natural da Universidade de 

100 Santiago de Compostela (MHNUSC, Santiago de Compostela, Spain) with the collection 

101 number MHNUSC25103 for E. guttifer and MHNUSC 25124 for P. octolineatum.

102

103 2.2.  Parasite detection and morphological characterization

104 Guts were dissected and examined under a dissecting microscope, and all the detected 

105 parasites were recovered and morphologically classified. Then, viscera were processed by 

106 peptic digestion for specific recovery of any remaining nematodes, following Llarena-

107 Reino et al. (2013). Again, different morphological types of nematodes were collected 

108 separately. Data and samples were collected and coded in a BioBank platform, a certified 

109 service (ISO9001) that hosts a collection of biological samples and organized as a technical 

110 unit with defined quality criteria, order and destination, to ensure full traceability of 

111 samples and data. 

112 A scanning electron microscope (SEM) study of an adult female of Hysterothylacium was 

113 also carried out. Adult female nematode identified as Hysterothylacium sp. isolated from 

114 the digestive tract, were washed in PBS. Ova and the central part of the body were used for 

115 molecular identification. The anterior and posterior ends of one of the worms were 

116 processed at the CACTI Electron Microscopy Service (University of Vigo) for SEM. The 

117 selected specimens were fixed in 1% glutaraldehyde in 0.01M PBS, pH 7.4, postfixed in 

118 OsO4 1% in cacodylate buffer 0.01M pH 7.4, dehydrated using an acetone series and then 

119 critical point dried. The specimens were coated with gold and examined using a FEI Quanta 

120 200 scanning electron microscope in rough vacuum conditions at an accelerating voltage of 

121 12.5 kV.

122

123 2.3.  

124 Molecular identification of nematode parasites

125 Twenty four samples of those nematodes (23 from E. guttifer and one from P. 

126 octolineatum), including all different morphological types were then selected and processed 

127 for molecular identification. Genomic DNA purification of the nematode parasites was 

128 performed employing NucleoSpin Tissue Kit (Macherey-Nagel, Easton, PA), according to 

129 the manufacturers protocol for isolating genomic DNA from human or animal tissue and 

Page 4 of 24

Journal of Fish Diseases

Journal of Fish Diseases



Review
 Copy

5

130 cultured cells. DNA quality and quantity was checked in a spectrophotometer Nanodrop® 

131 ND-2000 (Thermo Scientific). To identify the nematodes species, ITS rDNA region was 

132 amplified using the primers NC5/NC2 described by Zhu et al. (2000), as well as a SSU 

133 rDNA fragment using the primer 18SU467F/18SL1310R (Suzuki, Hoshino, Murakami, 

134 Takeyama & Cho, 2008) in one case.  Reactions were performed in a total volume of 25 ml 

135 containing 1 µl of genomic DNA (10 ng), PCR buffer at 1x concentration, 0.3 µM primers, 

136 0.2 mM nucleotides and 0.025 U. µl -1 KAPA Taq DNA polymerase 

137 (KAPABIOSYSTEMS). The PCR products were separated on a 2% agarose gel in Tris 

138 acetate EDTA buffer, stained with Red Safe and scanned in a GelDoc XR documentation 

139 system (Bio-Rad Laboratories). PCR products were cleaned for sequencing using 

140 ExoProStarTM 1 Step (GE Healthcare, NJ, USA) for 15 min at 37 ◦C, followed by 

141 inactivation for 15 min at 80 ºC. Sequencing was performed in a specialised service 

142 (StabVida, Portugal) and the chromatograms were analysed using ChromasPro v.1.41 

143 Technelysium Pty Ltd. All generated sequences were searched for identity using BLAST 

144 (Basic Local Alignment Search Tool) through web servers of the National Center for 

145 Biotechnology Information (USA). Phylogenetic analysis was performed with ITS 

146 sequences obtained in this study and with sequences of the genus Hysterothylacium and 

147 Anisakis availables in GenBank (Table 1). Ascaridia columbae (KF147909) was used as 

148 outgroup. Aligments was performed using Clustal W (Thompson, Higgins, & Gibson, 

149 1994) included in MEGA 7 (Kumar, Stecher, & Tamura, 2016). Maximum-likelihood 

150 analysis (ML) implemented in MEGA 7 software was used to generate phylogenetic tree. 

151 Kimura 2-parameter model was found the most appropriate evolutionary model for the 

152 analysis. The ML tree was assessed by bootstrap analysis with 500 replicates.

153

154 3. RESULTS

155

156 3.1.  Morphological features

157 Examination under a dissecting microscope and after artificial peptic digestion for 

158 parasitological analysis showed the presence of 116 nematoda in the visceral tract of E. 

159 guttifer. Two of them were female adults belonging to the genus Hysterothylacium, 111 

160 were Hysterothylacium larvae, 1 was a Cucullanus sp. and 2 were L3 larvae of the genus 
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161 Anisakis. Different morphological features leading to this generic identification could be 

162 seen in Figure 1. Figure 1a shows the anterior extremity of a Hysterothylacium adult female 

163 with 3 lips, approximately equal in size, and with prominent lateral flanges. Figure 1b 

164 shows the tail tip, with numbers of small nodular protuberances. Figure 1c provides an 

165 image of the general aspect of a specimen of one of the Hysterothylacium larvae. Figure 1 

166 also shows the characteristics boring tootht (bt, Figure 1d) and tail mucrom (m, Figure 1e) 

167 of a L3 larvae of the genus Anisakis and Figures 1f and 1g showed the characteristic 

168 muscular esophagus, expanded in width at both ends (Figure 1f) and the cephalic end 

169 (Figure 1g) of a Cucullanus nematode.

170 In P. octolineatum, only two nematode larvae were detected, and morphologically 

171 identified as belonging to the genus Hysterothylacium (Figures 1h, 1i and 1j), with some 

172 very distinctive features, such as tail mucron presence (m, Figures 1h and 1i).

173

174 3.2.  Molecular identification

175 Blast search of ITS1-5.8S-ITS2 sequences obtained of the nematode parasites from E. 

176 guttifer showed the following results: 3 sequences (from ova and adults of 

177 Hysterothylacium sp.) were 99-100% similar to Hysterothylacium reliquens sequences 

178 deposited in GenBank; 18 sequences from the larval stages of the genus Hysterothylacium 

179 were 91-92% similar to those of Hysterothylacium rigidum and one of the samples 

180 morphologically identified as Anisakis sp. shared 100% nucleotide identity with Anisakis 

181 pegreffii sequences deposited in GenBank. The Cucullanus sp. nematode could not be 

182 identified with NC5/NC2 primers and then 18S sequence was obtained. Its sequence was 

183 100% similar to that of Cucullanus dodsworthi from a checkered puffer Sphoeroides 

184 testudineus from Mexico (HQ241923).

185 Hysterothylacium larvae sequence from P. octolineatum was 100% similar to a 

186 Hysterothylacium sp. sequence from Zenopsis conchifer from Brazil (KU594488) and to 

187 Hysterothylacium deardorffoverstreetorum sequences from Paralichthys isosceles, also 

188 from Brazilian coast (JF730200). 

189 The sequences reported in this study have been deposited in GenBank under accession 

190 numbers: KY781734-KY781736 (H. reliquens), KY781737 (A. pegreffii), MK039143-
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191 MK039160 (Hysterothylacium sp. from E. guttifer), MK039161 (H. 

192 deardorffoverstreetorum) and MK045808 (C. dodsworthi).

193 An ITS tree constructed with a total of 423 sites and 43 sequences showed two clearly 

194 differentiate clades (Figure 2): one of them belonging to Anisakis sequences with bootstrap 

195 value of 99%, which included the A. pegreffii sequence obtained in this study grouped with 

196 other A. pegreffii sequences deposited in GenBank; and the other clade including 

197 Hysterothylacium sequences with bootstrap value of 92%. Within this clade, H. reliquens 

198 sequences from E. gutiffer were placed in a subclade with other H. reliquens sequences 

199 with bootstrap value of 99% whereas the 18 Hysterothylacium sequences similar to H. 

200 rigidum (91% similarity in BLAST) formed an only subclade with strong bootstrap value of 

201 99%. The Hysterothylacium sequence obtained from P. octolineatum was grouped in the 

202 clade of H. deardorffoverstreetorum sequences with bootstrap value of 100%.

203

204 4. DISCUSSION

205 This study provides information about the parasitological condition of two non-native 

206 fishes reported recently for the first time in Galician waters (NW Spain) in order to give an 

207 insight of the potential risk of these occurrences as a vehicle for alien parasites in a new 

208 area.

209 Both the two host species are tropical species caught northward of its habitual distribution 

210 range in the eastern Atlantic, which supposes a new northern limit for E. guttifer (Bañón et 

211 al., 2018) and the second northernmost record for P. octolineatum, only further south than a 

212 specimen recently observed, but not examined, in the South of Bay of Biscay (Casamajor, 

213 2016).

214 Ephippion guttifer showed a high parasitization by different nematodes in the digestive 

215 tract. Molecular identification allowed first reports of A. pegreffii, C. dodsworthi H. 

216 reliquens and a new Hysterothylacium sp. in this species. Previously, only copepod 

217 ectoparasites (Walter, 2015a, b), trematodes (Fischthal & Thomas, 1970) and mixosporidia 

218 (Kpatcha, 1994) were reported. Regarding other tetraodontid species, the presence of 

219 Anisakidae (Anisakis sp.) and Raphidascaridae, Hysterothylacium aduncum (Rudolphi, 

220 1802) have been described in Lagocephalus sceleratus (Bakopoulos, Karoubali, & Diakou, 

221 2017). 
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222 Parapristipoma octolineatum showed a very lower level of parasitation, with only two 

223 Hysterothylacium larvae, genetically identified as H. deardorffoverstreetorum. There are 

224 also scarce parasitological studies available about the parasitic fauna of P. octolineatus. To 

225 our knowledge, only protozoa belonging to microsporidia (Kpatcha, Diebakate, Faye, & 

226 Toguebaye, 1995) and coccidia (Diouf, 1993) have been found, together with metazoan 

227 trematodes (Aleshkina & Gaevskaya, 1985; Diagne et al., 2015, 2016). There are no 

228 records of nematode parasites in this species, although a high diversity of parasitic 

229 nematode have been described in other haemulids, including larvae of Contracaecum sp., 

230 Pseudoterranova sp., Rhapidascaris sp. and Hysterothylacium sp. (Chero et al., 2014; 

231 Moravec & Justine, 2017; Paschoal, Cezar, & Luque, 2015). 

232 Nematodes belonging to the families Anisakidae and Raphidascaridae are widespread in 

233 fish population worldwide (Mattiucci & Nascetii, 2008; Mattiucci et al., 2018; Nadler et al., 

234 2005). Only E. guttifer presented Anisakis larvae, but in a low number, molecularly 

235 identified as A. pegreffii. In European waters, that is the most prevalent species of the genus 

236 in the Mediterranean Sea, whereas Anisakis simplex is the most common one in North 

237 Atlantic waters with a sympatric area between both species from the Alborán Sea 

238 (Mediterranean Gibraltar area) to the Spanish Galician coast (Mattiucci et al., 2018). 

239 With regards to H. reliquens, this species has been described in 25 fish species belonging to 

240 eight different orders, from Indian, western Atlantic and eastern Atlantic, off Morocco 

241 (Zhao et al., 2017). Therefore, this represents the first record of this parasite species from 

242 European waters and a northward extension of its geographic distribution range in the 

243 eastern Atlantic, through a translocation of its host species. The two individuals were live 

244 mature females and they were ovopositing when detected, and this constitutes an increased 

245 risk for parasite dissemination in the ecosystem. Moreover, a high number of 

246 Hysterothylacium larvae were detected in the digestive tract of E. guttifer and the molecular 

247 identification did not allow to find correspondence to sequences of any described species of 

248 the genus. Specific diagnosis was not possible as all the individuals were third stage larvae 

249 (as the lips were poorly or not developed).

250 Another species from the genus Hysterothylacium, H. deardorffoverstreetorum, was the 

251 only parasite detected in P. octolineatum. This species was first described parasitizing the 

252 flounder Paralychthys isosceles (Jordan, 1891) from Brazilian coast (Knoff et al., 2012) 
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253 and it has also been found afterwards in many other Brazilian fishes (Di Azevedo & 

254 Iñiguez, 2018; Kuraiem et al., 2017; Silva et al., 2017). Therefore, this also represents a 

255 first record for this nematode species in the eastern Atlantic, from European waters. 

256 Although our L3 larvae fits morphologically and molecularly with H. 

257 deardorffoverstreetorum, described by Knoff et al. (2012) as a new species, this species has 

258 recently been considered species inquirenda due to its problematic description and 

259 diagnosis which are based only on larvae (Pantoja, Pereira, Santos, & Luque, 2016).

260 Among anisakids, A. simplex, A. pegreffii and Pseudoterranova decipiens are the main 

261 species responsible for anisakidosis and gastroallergic reactions in humans (Arizono, 

262 Yamada, Tegoshi, & Yoshikawa, 2012; Mattiucci et al., 2013). The Raphidascaridae genus 

263 Hysterothylacium has been commonly considered not pathogenic to humans, although 

264 recent data pointed to a case of invasive gastroallergic infection caused by the third stage 

265 larvae of H. aduncum (González-Amores, Clavijo-Frutos, Salas-Casanova, & Alcain-

266 Martínez, 2015). Thus, in the case of E. guttifer, apart from its own toxicity derived from 

267 the presence of tetrodotoxin, the presence of zoonotic parasites could be an additional risk 

268 for human health. Although it has not been possible the examination of the edible part of 

269 the fish to detect nematode parasites, the presence of zoonotic nematodes in viscera and the 

270 demonstrated migration capacity from viscera to flesh of A. pegreffii (Cipriani et al., 2016) 

271 might pose a threat of human infection.

272 In the case of Cucullanidae, nematodes of genus Cucullanus comprise a large number of 

273 species that parasitize a variety of fresh, brackish, and marine fishes (Lanfranchi, Timi, & 

274 Sardella, 2004; Moravec & Justine, 2017; Moravec, Levron, & de Buron, 2011; Moravec & 

275 Scholz, 2017). Up to now, C. dodsworthi is the only species of this genus infecting 

276 tetraodontiforms, specifically the checkered puffer Sphoeroides testudineus (type host) 

277 from Bahia de Guanabara, Brazil (Barreto, 1922) and from Mexican waters off the Yucatán 

278 Peninsula (Mejía-Madrid & Aguirre-Macedo, 2011) as well as parasitizing Lagocephalus 

279 laevigatus from the eastern Atlantic coast of Africa (Campana-Rouget, 1957). It has also 

280 been reported from Mugil cephalus from Biscayne Bay (Florida) (Boucher, 1974; Skinner, 

281 1975), although it was considered an accidental host (Mejía-Madrid & Aguirre-Macedo, 

282 2011). So, the detection of C. dodsworthi in E. guttifer widens the host range of this 

283 parasite and represents the first record in European waters.
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284 Climate change affects parasite species directly, enhancing transmission rates and the 

285 virulence, but also through changes in the distribution and abundance of their hosts (Palm, 

286 2011). These changes could be even enhanced if we consider that introduction of only one 

287 fish individual in a new ecosystem can imply the introduction of a far higher number and 

288 species diversity (more than one hundred individuals and four different species in E. 

289 guttifer) when we consider the parasite fauna. Even, in the case of the prickly puffer, two of 

290 the parasites were completely mature females of H. reliquens, which started laying a huge 

291 amount of ova during parasitological examination. All the parasitic species and genus 

292 described in this paper has been found as parasites of different fish species, so we cannot 

293 discard that these species could find a suitable host between the local fish species.

294 The effect of these changes in parasite distribution through host species translocation has a 

295 good example looking at migrations through the Suez Canal, so-called Lessepsian 

296 migrations. Thus, the cornetfish Fistularia commersonii has spread right across the 

297 Mediterranean Sea along with its parasite Allolepidapedon fistulariae (and other worms) 

298 (Pais, Merella, Follesa, & Garipa, 2007). It is not yet known if these Lessepsian migrant 

299 parasites have spread into the open Atlantic Ocean (Bray, Diaz, & Cribb, 2016). With the 

300 opening in August 2015 of a new channel parallel to the old one, the exchange of fauna 

301 between the Red and Mediterranean Seas is bound to increase (Galil et al., 2015). Also, this 

302 migration has affected species of nematoda such as Anisakis typica, which have reached the 

303 Mediterranean Sea as a result of the migration of its intermediate/paratenic hosts from the 

304 Indian Ocean (Mattiucci et al., 2018). Lessepsian migrant may affect native fish hosts by 

305 potentially altering the dynamics of native and invasive parasite-host interactions via 

306 parasite release, parasite co-introduction and parasite acquisition (Boussellaa, Neifar, 

307 Goedknegt, & Thielges, 2018).

308 According a recent terminology, the parasites which have entered in a new area outside of 

309 their native range with an alien host species are defined as co-introduced parasites 

310 (Lymbery et al., 2014). This is in agreement with the new findings of C. dodsworthi, H. 

311 reliquens, H. deardorffoverstreetorum and a Hysterothylacium sp., although it is not always 

312 straightforward to determine whether a newly discovered parasite is alien or native to a 

313 region.

Page 10 of 24

Journal of Fish Diseases

Journal of Fish Diseases



Review
 Copy

11

314 The combination of the oceanographic and topographic features makes Galician waters be 

315 very productive, able to support extensive costal fisheries and shellfish harvesting (Surís-

316 Regueiro & Santiago, 2014). On the other hand, the introduction of parasite species in a 

317 new marine environment could affect negatively to native fauna but also can seriously 

318 endanger marine production in the area, causing important mortalities and economic losses, 

319 as have been probed in shellfishes (Cigarría & Elston, 1997; Ramilo et al., 2014; Villalba et 

320 al., 2014). Although this is the first attempt to investigate parasitic fauna introduced into 

321 European Atlantic waters by exotic fish species, more attention needs to be paid to how this 

322 parasitic fauna affects both the host species and the new ecosystem into which it is 

323 introduced.

324
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573 FIGURE 1. Nematode parasites from the digestive tract of E. guttifer and P. octolineatus: 
574 scanning electron micrographs of an adult female of H. reliquens from E. guttifer, showing 
575 the cephalic extremity (a) and the tail tip (b); general aspect of the Hysterothylacium sp. 
576 larvae isolated from prickly puffer stomach (c); L3 larvae of the genus Anisakis isolated 
577 from E. guttifer stomach wall and identified by molecular analysis as A. pegreffii, showing 
578 the genus characteristics anterior boring tooth (d), and tail mucrom (e); Cucullanus 
579 nematode also from prickly puffer (genetically identified as C. dodsworthi), with their 
580 characteristic muscular esophagus, expanded in width at both ends (f) and an image of the 
581 cephalic end (g); Hysterothylacium larvae from P. octolineatum digestive tract (H. 

582 deardorffoverstreetorum) showing the tail mucron (h, i) and the cephalic end (j)
583 bt= boring tooth, m= tail mucrom.
584
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588 FIGURE 2. Maximum-likelihood analysis showing the taxonomic position of the 
589 Hysterothylacium and Anisakis sequences obtained in this study. Numbers at branch nodes 
590 indicate bootstrap confidence values in percent. (*) Sequences obtained in this study.
591
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593 TABLE 1. GenBank accession numbers of the sequences of rRNA ITS genes of the genus 
594 Hysterothylacium and Anisakis used in phylogenetic analysis
595

596

Species GenBank 
accession

Host Location

H. rigidum HF680323
HF680324

Lophius piscatorius Ireland

H. 

deardorffoverstreetorum

JF730200,
JF730201

Paralichthys isosceles Brazil

H. aduncum JX845135 Zoarces viviparus Denmark

KP979761 Engraulis encrasicolus Adriatic Sea

H. reliquens KX786287, 
KX786292

Brachirus orientalis Iraq

H. amoyense KT749421 Platycephalus indicus Iran

H. zhoushanense KP326549 Lepidotrigla japonica China

H. liparis KF601897 Liparis tanakae China

H. sinense KX817294 Conger myriaster China

A. physeteris JQ912693 Physeter macrocephalus Mediterranean 
Sea

JN005754 Pagellus bogaraveo Azores

A. pegreffii JX535520                 Stenella coeruleoalba Mediterranean 
Sea

JF683735 Gadus macrocephalus South Korea

A. simplex JX535521 Balaenoptera 

acutorostrata

Norwegian coast

KF512906 Merluccius merluccius Ireland

JX237373 Clupea harengus Denmark

597
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FIGURE 1. Nematode parasites from the digestive tract of E. guttifer and P. octolineatus: scanning electron 

micrographs of an adult female of H. reliquens from E. guttifer, showing the cephalic extremity (a) and the 

tail tip (b); general aspect of the Hysterothylacium sp. larvae isolated from prickly puffer stomach (c); L3 

larvae of the genus Anisakis isolated from E. guttifer stomach wall and identified by molecular analysis as A. 

pegreffii, showing the genus characteristics anterior boring tooth (d), and tail mucrom (e); Cucullanus 

nematode also from prickly puffer (genetically identified as C. dodsworthi), with their characteristic muscular 

esophagus, expanded in width at both ends (f) and an image of the cephalic end (g); Hysterothylacium 

larvae from P. octolineatum digestive tract (H. deardorffoverstreetorum) showing the tail mucron (h, i) and 

the cephalic end (j) 

bt= boring tooth, m= tail mucrom. 
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FIGURE 2. Maximum-likelihood analysis showing the taxonomic position of the Hysterothylacium and 

Anisakis sequences obtained in this study. Numbers at branch nodes indicate bootstrap confidence values in 

percent. (*) Sequences obtained in this study. 
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1

1 TABLE 1. GenBank accession numbers of the sequences of rRNA ITS genes of the genus 

2 Hysterothylacium and Anisakis used in phylogenetic analysis

3

4

Species GenBank 

accession

Host Location

H. rigidum HF680323

HF680324

Lophius piscatorius Ireland

H. 

deardorffoverstreetorum

JF730200,

JF730201

Paralichthys isosceles Brazil

H. aduncum JX845135 Zoarces viviparus Denmark

KP979761 Engraulis encrasicolus Adriatic Sea

H. reliquens KX786287, 

KX786292

Brachirus orientalis Iraq

H. amoyense KT749421 Platycephalus indicus Iran

H. zhoushanense KP326549 Lepidotrigla japonica China

H. liparis KF601897 Liparis tanakae China

H. sinense KX817294 Conger myriaster China

A. physeteris JQ912693 Physeter macrocephalus Mediterranean 

Sea

JN005754 Pagellus bogaraveo Azores

A. pegreffii JX535520                 Stenella coeruleoalba Mediterranean 

Sea

JF683735 Gadus macrocephalus South Korea

A. simplex JX535521 Balaenoptera 

acutorostrata

Norwegian coast

KF512906 Merluccius merluccius Ireland

JX237373 Clupea harengus Denmark

5
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