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Abstract In the past, applying formal analysis, such as
model checking, to industrial problems required a team of
formal methods experts and a great deal of effort. Model
checking has become popular, because model checkers have
evolved to allow domain-experts, who lack model check-
ing expertise, to analyze their systems. What made this shift
possible and what roles did models play in this? That is
the main question we consider here. We survey approaches
that transform domain-specific input models into alternative
forms that are invisible to the user and which are amenable
to model checking using existing techniques—we refer to
these as hidden models. We observe that keeping these mod-
els hidden from the user is in fact paramount to the success
of the domain-specific model checker. We illustrate the value
of hidden models by surveying successful examples of their
use in different areas of model checking (hardware and soft-
ware) and how a lack of suitable models hamper a new area
(biological systems).
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1 Introduction

Model checking, since its introduction in the late 1970s, has
become hugely popular, so much so that Clarke, Emerson
and Sifakis received the 2007 Turing award for their pio-
neering work in the field. Although much of the early work
on model checking focused on manual creation of models
in the notation of the model checker’s input, as the field
matured there was a shift to model checkers that directly
take domain-specific notations as input. We believe this shift
is what made model checking such a successful technique,
since it not only allowed domain experts that do not know
how a model checker works to use one, but also allowed
the model checkers to exploit domain knowledge to become
more efficient. We argue that the key to making domain-
specific model checking possible is the use of hidden models
that are used during the transformation of domain notations
to model checking input to support efficient analysis and to
allow domain-specific output to reach the user.

The contribution of this work is to take a fresh look at
model checking by surveying the roles that models play in
different domains. Mostly, one considers just the input mod-
els when thinking of model checking, but here we consider
the models you do not see, i.e. the hidden models, and high-
light the significant role they play. We contend that it is when
hidden models are exposed to users that model checking fails
to be useful in practice. An example of a hidden model being
exposed is when the translation to the model checker’s input
is not completely automatic. In such a scenario, a domain
expert not only has to understand how to model the system
they are interested in studying and the properties of that sys-
tem that they would like to check, but they must then become
expert in the input languages that a particular model check-
ing tool accepts. Moreover, in all likelihood, they will need
to understand how the model checker operates to produce
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an encoding of their system for which the model checker is
efficient.

The main message of this paper is that model checking
becomes effective in a domain (a) when the natural notations
in that domain are supported, and (b) when the models that
are used to efficiently perform model checking are hidden
from end users in the domain. It is not to advocate for specific
domain-level notations, but rather to describe how these mod-
els can be transformed to effectively apply model checking
techniques. As model checking is applied in new domains,
these lessons and the techniques developed for model check-
ing in existing domains should be leveraged to maximize the
utility of model checking.

In the rest of the paper, we will give a brief introduction
to model checking and the typical architecture of a domain-
specific model checker (including the role of hidden models).
We will then take two mature fields, namely model checking
applied to hardware and software, to show how hidden mod-
els are used to allow efficient model checking. Model check-
ing of biological processes in contrast is a new field, and we
will discuss emerging approaches to model checking in this
domain and the need for broader application of the lessons
learned from software and hardware model checking.

2 Model checking

Model checking is an algorithmic verification technique
that is particularly effective for finite-state systems. It was
co-invented by Clarke and Emerson [22] and Queille and
Sifakis [86] over three decades ago. Since that time, there
have been dramatic advances in both model checking algo-
rithms and the development of tools that implement those
algorithms efficiently. Since the mid-1990s, such tools have
been readily available and have been widely applied to reason
about correctness properties of computer systems.

Model checking involves two inputs: a state transition sys-
tem (S) that encodes a set of behaviors to be reasoned about
and a temporal logic formula (φ) that encodes a set of desir-
able behaviors. The model checking problem asks whether S
is a logical model 1 of φ, i.e., whether the behaviors encoded
by S satisfy φ. Algorithms for model checking are able to
answer this question and when the answer is negative they
produce a counterexample, i.e., a behavior encoded by S that

1 When discussing applications of model checking the use of the word
“model” has lead to some confusion. Typically the transition system that
is provided to a model checker represents an abstract model that cap-
tures, e.g., a hardware design description or a software implementation.
In this context it makes sense to “check” the “model” to detect errors
and this is precisely what that application of model checking does. The
word “model” in model checking refers, however, to the fact that model
checking determines whether the system is a “logical model” of the
property specification, i.e., whether the system satisfies the property.

falsifies φ. Counterexamples provide valuable information
for locating errors in the transition system model or in the
temporal logic formula.

Often times one wishes to reason about a system that inter-
acts with its environment, e.g., a software or hardware com-
ponent. To apply model checking, the behavior of both the
system and the environment must be incorporated into the
transition system that is fed as input to the model checker.
This is sometimes referred to as closing the system.

Model checking has been an active area of research for
almost 30 years, and several different analysis approaches
have been created. These approaches can be characterized
in several dimensions, of which we consider three: (1) the
language features of the models S, (2) the logics that can be
used for describing properties over the models (φ), and (3) the
algorithms used to perform the analysis. For language fea-
tures, dimensions include whether the model is finite-state
or infinite-state, describes system evolution using discrete
time [24] or real time [53], and whether the behavior of the
model is described using probabilities [63]. For logics for
φ, some approaches allow only specification of invariants,
which are formulae that must always be true in every state
of the model. More complex logics such as linear tempo-
ral logic (LTL) [83] and computation tree logic (CTL) [24]
allow specification of liveness properties that describe situ-
ations that must be eventually true in a model. Probabilistic
temporal logics [63] allow one to reason about probabilistic
models in terms of the likelihood that a formula is true. For
algorithms, it is possible to broadly classify them into explicit
state and symbolic algorithms [24]. With explicit state algo-
rithms, the states of the system are generated on-the-fly as
the algorithm proceeds, and tools are often distinguished by
the brevity of the encoding. With symbolic algorithms, the
model and set of explored states are represented symbolically
as Boolean formulae. For symbolic approaches, there are two
main “engines” that are used to solve the generated Boolean
formulae: SAT/SMT solvers [38] and Binary-Decision Dia-
gram solvers [12]. The choice of solver leads to different
classes of algorithms for model checking.

There are many model checkers available, but two of the
most popular are Spin2 [54] and NuSMV3 [20]. Figure 1
presents excerpts of inputs and outputs for the Spin model
checker. On the left is the encoding of a transition system
in Spin’s PROMELA language. Since this particular sys-
tem takes no input, except for the decisions about schedul-
ing the order of execution of statements from the two user
processes, there is no need for an encoding of the system’s
environment. Researchers have collected a variety of mod-
els for Spin [67] and NUSMV [66] to promote comparative

2 http://spinroot.com.
3 http://nusmv.fbk.eu.
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Fig. 1 SPIN PROMELA model, Counterexample, and LTL formula

evaluation—these also illustrate the diversity of systems that
have been targetted with model checking.

On the upper right in Fig. 1 is a formula written in Spin’s
syntax for LTL. This specification assumes that boolean vari-
ables are present in the system indicating when the system
is initialized, when a resource is open and when it has been
closed. The LTL formula states that after initialization a call
to open will eventually be followed by a call to close. The
open, close, and init must be defined in terms of the
transition system model; they could capture the calls to a file
open method, a file close method, and the creation of a file
instance for a file API. Researchers have collected a variety
of models from the literature [30,31] that illustrate the diver-
sity of specification languages and properties targetted with
model checking.

On the lower right in Fig. 1 is an excerpt of a counterexam-
ple which is composed of a sequence of 54 statements, indi-
cated by the line number in a file (f:10) and the bracketed
statement ([z = me]), that end in a violation of a property
specified as an assertion.

3 Domain-specific model checking

Model checkers have proven their worth in performing cer-
tain forms of automated reasoning. For example, Microsoft’s
Static Driver Verifier is a toolset that model checks device
driver implementations for correct usage of Kernel APIs and
is a part of the regular device driver development process
[77], IBM has applied their RuleBase model checker to
numerous systems including their 1.3Ghz Power4 micro-
processor design [8], and Rockwell Collins has integrated

multiple model checking algorithms into a framework that
has been applied to components of avionics software [73].

While researchers continue to improve the scalability and
generality of the core model checking algorithms, there is a
significant body of work focused on applying model checking
to reason about problems in a variety of domains. Effective
application of model checking requires that the input (output)
models that are consumed (produced) by a model checker be
hidden from domain engineers.

Figure 2 shows the architecture of a domain-specific
model checker. The important thing to notice is that although
the model checker itself is central to the process, there are
a number of intermediate models flowing into, out of, and
within the actual model checker. These models within the
inner box of Fig. 2 (Automation boundary) are the hidden
models of the model checking process. In the following sec-
tions, we will argue that the ultimate success of a model
checker is heavily dependent on the efficiency of the analysis
of these hidden models. Here, we will assume all translations
between models are correct, but it should be acknowledged
that proving such translations correct are non-trivial.

Let us first consider the three visible models that form the
input:

Domain model This is the artifact that requires analysis.
This model is related to but distinguished from the Log-
ical Model that the model checker ultimately analyzes.
Environment model As stated in Sect. 2, model check-
ers analyze a closed system, i.e. a system composed
with its execution environment. The so-called Environ-
ment Model is often an abstraction (both under- or over-
approximation) of the actual environment.
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Fig. 2 The architecture of a domain-specific model checker

Domain properties The properties that the model checker
must check of the composition of the Domain and Envi-
ronment model. These can be given explicitly as logical
properties, for example in temporal logic, or as implicit
properties, e.g., the system should never deadlock, or the
code never generates uncaught runtime exceptions.

The output of a model checker is typically an artifact that
can be interpreted with respect to the input Domain Model.
In the simple case if the property being checked holds, this
might just state “Correct”. The more common scenario, how-
ever, is for the model checker to produce a counterexample
that illustrates why a property is being violated. This coun-
terexample is another visible model of the model checking
process. The remainder of this section discusses these differ-
ent classes of models.

3.1 Domain model

When using an analysis technique such as model checking
there is a system whose behaviors are the subject of the analy-
sis. While a system might be expressed in any number of
notations, typically, when working in a particular problem
domain there are notations that are both familiar and conve-
nient. For example, tele-communication protocols are often
specified in SDL [60], software is expressed in its source lan-
guage, such as Java, or C, and hardware components might
be expressed as VHDL [56]. These notations have primitives
that are designed to make descriptions concise and familiar
to the engineers creating and consuming them.

The inputs and outputs of a mature domain-specific model
checking system are typically quite different than the inputs
and outputs of a specific model checking tool. In Fig. 2,
this semantic gap is addressed by “(2) Intermediate Mod-

els” that transform the domain model to the input of the
model checker. A successful domain specific model checker,
bridges this semantic gap in a fully automated fashion.
Requiring user assistance to construct this model means that
only model checking specialists can use the system. Equally
important, this effort must be repeated every time the system
changes and is to be re-analyzed, significantly increasing the
cost of analysis.

3.2 Hiding semantic model mismatches

Historically, model checkers have been designed with prob-
lems in a specific domain of application in mind. For
example, Spin was developed to reason about network
protocols and, consequently, PROMELA is well-suited for
expressing such problems. When applying model checkers
beyond their originally intended domain of application, one
often encounters significant semantic mismatches between
domain-specific notations and model checker notations.

One common approach to bridging the semantics from
domain languages to model checker input notations is
to develop appropriate intermediate representations (IR)—
these are analogs of the IRs used in compilers. A number of
succesful model checking projects have used this approach,
e.g., SLAM’s boolean programs [5], Bandera’s BIR [59], and
the TOPCASED project’s FIACRE language [10].

Even with a well-designed IR numerous challenges must
be addressed in achieving an efficient and effective transla-
tion. Initial efforts to model check Java programs using Spin
[26,51] had to address the lack of heap allocated data, ref-
erences, garbage collection, inheritance, and exception han-
dling. It is widely accepted that automated techniques were
needed to bridge the gap between domain models, e.g., Java
programs, and model checker inputs, e.g., PROMELA, since
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relying on human users to express their problems in model
checker notations is costly and error prone. Moreover, when
counterexamples are produced they describe property viola-
tions in terms of the model checker’s input not the original
domain-specific model. Thus, a kind of reverse translation
must be performed and not just once, but for every coun-
terexample generated.

Different model checking algorithms have different
strengths. For example, for sequential software with recur-
sion push-down model checking algorithms [34] have proven
effective, whereas with multi-threaded software reduced
explicit-state model checking [54,95] is more effective. Since
programming languages, such as Java, can be used to express
different types of software systems it makes sense to sup-
port the translation to multiple model checking algorithms
[26,87]. Support for multiple model checking techniques
only exacerbates the problem of mapping domain models
to model checker inputs.

Finally, model checking tools are built to support the
semantics of their input language. When expressing a domain
model in such a language the semantics of the domain model
are lost. For instance, when translating Java to PROMELA
the semantics of the JVM memory model cannot be encoded
in a form that can be exploited by Spin’s partial order reduc-
tion algorithms [41]. This leads to suboptimal performance
since memory model semantics, e.g., thread local heap data,
can be exploited for significant state space reduction [32].
In our view, the hidden models should carry relevant seman-
tics to the model checking algorithms, so that they can be
exploited for good performance, but this only serves to fur-
ther complicate those models, thus making them more diffi-
cult for domain experts to create and understand.

In summary, model checker notations should be hidden
from domain engineers to relieve them of the burden of trans-
lating to and from model checker specific notations.

3.3 Environment model

No useful system stands alone—they interact with other sys-
tems and/or with the physical world. A system has an inter-
face which defines how it receives and transmits values to
entities outside the system, which we refer to as the sys-
tem’s environment. The environment performs complemen-
tary actions with respect to the system, i.e., when the system
receives a value the environment has to have previously trans-
mitted it, and one models the behavior of the environment at
the system’s interface as an environment model.

Unlike with domain modeling, standards for defining envi-
ronment models have not been widely adopted. For software
environments often one uses a mixture of source code with
special primitives that allow for any value from a set of pos-
sibilities to be chosen—these simulate the lack of detailed
knowledge about what the environment will do next.

Creating the environment model is one of the most dif-
ficult parts of model checking [92], and we argue this is
because there are no hidden models readily available to
simplify the process for a domain expert. For example, a
domain expert might create a model that allows any interac-
tion accepted by the domain model, this is referred to as the
universal environment model, but this model can cause the
model checker to fail due to a state-explosion. Conversely,
the expert might provide too restricted an environment that
allows a tool to “prove” a property that may not hold in the
system’s actual environment. The former is an example of an
over-approximation and the latter an under-approximation
abstraction of the environment; however, producing just the
correct level of abstraction is very hard and the essence of
the assume-guarantee model checking field [39,79].

In areas where there have been significant industrial suc-
cess with software model checking systems, it is often the
case that the domain has been limited to the extent that envi-
ronment models can be created and packaged with the model
checking system. An example of this is the SLAM Driver Ver-
ifier which comes with its own model of the Windows Kernel
functions [4] and thus allows device driver developers to run
the tool on their new drivers. A similar approach is taken in
JPF4 [95] and Pex & Moles5 [28] where mechanisms were
added to override any existing method call with a model of
the call; this allows one to replace complex Java and .NET
library calls with simplified versions. For hardware analysis,
it is often the case that the systems must perform correctly
in a universal or nearly universal environment; while these
environments can be expensive to analyze, they are simple
to construct.

3.4 Property model

Unlike domain or environment modeling, the process of
describing a desirable system property is much more focused.
Rather than describing all desirable system behaviors in one
property, typically one describes how a certain part of the sys-
tem should behave in a specific circumstance. For example,
one might specify that when a component is given a positive
value, then it should compute the square of that value— such
a description leaves out the behavior of the component for
non-positive inputs.

In certain domains, notations for property modeling are
widely accepted. For example, after several decades during
which competing temporal logics were used for specifying
hardware properties in 2005 IEEE standardized the property
specification language (PSL) [33]. For software, the use of
contracts, e.g., [65], has gained considerable momentum as

4 http://babelfish.arc.nasa.gov/trac/jpf/.
5 http://research.microsoft.com/en-us/projects/pex/.
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a means of specifying the input/output behavior of software
modules.

3.5 Analysis results model

When a model checker detects a violation of a property it
generates a representation of the ways in which the system’s
behavior violates the specified property—a counterexample.
The nature of the counterexample depends on the type of
specification. For example, the violation of a property stating
that variable x is always positive would be described as a
sequence of steps in the system execution, starting at the
initial state and interacting with the environment model as
appropriate that ends in a state in which x ≤ 0.

Most existing software model checking tools that we are
aware of provide support for interpreting the counterexam-
ple as an execution of the system model, i.e., the program
source code [4,26,95]. In hardware, counterexamples are
generally provided as input/output traces for the circuit to be
analyzed that can be replayed as test cases through simulation
tools [57,68].

Note that although most emphasis in model checking is
placed on the result where a counterexample is produced
there are two other options: the property holds or the model
checker ran out of resources before producing a result. When
a property is true of a domain model and its environment,
there is the option that the wrong property was specified (or
the property was specified incorrectly). In this case, the ideal
results model should contain a justification of why the prop-
erty holds, which would in turn allow the domain expert to
determine if the property was specified correctly. Vacuity
checking of the property [9] and coverage data of the domain
model [47] are additional sources of information used to val-
idate whether the property checked was the right property.
When resource limits are exceeded, coverage data can also
give an indication of the extent to which the model check-
ing was able to explore the set of system behaviors. More
research is needed to explore how best to leverage the results
of such partial model checks in future model checking runs.

3.6 Hiding transient models

Model checking can be costly—it can consume time and
space that is exponential in size of the input transition system.
Consequently, most of the research on model checking algo-
rithms over the past several decades has focused on devel-
oping state space reduction techniques to improve time and
space performance. During the application of these reduc-
tions, models are created that preserve relevant behavior of
the original model, but simplify the model checking. Since
those models only exist during the model checking run they
are referred to as transient.

Many reduction techniques can be viewed as construct-
ing a transition system model that preserves the ability to
answer the model checking question (or at least to answer
it in the affirmative). For example, property directed model
slicing [50] eliminates portions of the transition system that
are provably unrelated to the temporal logic formula under
analysis. Partial order reductions (POR), e.g., [41] and sym-
metry reductions [58] effectively ignore behaviors of the
input transition system that are provably equivalent relative to
the temporal logic formula under analysis. Essentially, they
construct a reduced model on-the-fly during analysis. Predi-
cate abstraction [44] techniques transform the transition sys-
tem model by selectively replacing non-deterministic choice
with abstracted branch predicates to sharpen the precision of
analysis results while minimizing the cost of analysis.

In all of these cases, the preservation properties of the
reduction techniques mean that the answer to the model
checking question is the same as it would have been on the
original transition system, it is just computed more quickly—
in some cases orders of magnitude more quickly [32].

In addition to the translation performed from domain mod-
els into the source notation of a model checking tool, there is
often a significant amount of translation from the source nota-
tion of the model checking tool to its underlying representa-
tion. Model checkers operate by creating transient models of
(portions of) the state space being analyzed. For example, in
automata-theoretic model checking, both the model and the
formula to be analyzed are translated on-the-fly into Büchi
Automata [90], and these representations are intersected to
create a product automata [94].

Similarly, there are several different transient models cre-
ated during symbolic model checking depending on the algo-
rithm used. For transition relation based approaches, e.g.,
[20], a Boolean formula is created that describes a single
computational step (transition) of the system. This encoding
requires flattening the structure of the model and encoding
the computations as operations over Boolean formulae. The
encodings are usually very large and not easily readable or
traceable (by humans) to the source language.

Symbolic approaches work by manipulating formulae that
describe the computation of the model. In the case of fixpoint
approaches such as interpolation [72] and McMillan’s initial
symbolic algorithm [71], the transition relation is conjoined
with a formula that represent the set of states that have been
explored. Other approaches (such as bounded model check-
ing [25] and k-induction [49]) create models through suc-
cessive unrollings of the transition relation to describe the
behavior of the system over several computational steps.

In addition, as the formulae are being solved, it is often
the case that the solver changes the formula encoding to
make it more efficient to solve. For example, a Binary Deci-
sion Diagram (BDD) is a directed acyclic graph represen-
tation of a Boolean formula that is ordered by the Boolean
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variables in the formula. Changing the order of variables,
called dynamic variable reordering [12], often significantly
shrinks the size of the representation and commensurately
speeds up the analysis.

In summary, state space reduction techniques produce new
transition systems for mitigating the cost of model checking,
but since they guarantee property preservation the details of
those reduced systems can be hidden from users.

4 Domains for model checking

In the following sections, we discuss two domains in which
the model checking architecture of Fig. 2 has been instanti-
ated with significant success: for hardware designs and for
software implementations. We discuss the domain models
and the hidden models that have allowed those instantiations
to scale to real-world systems.

We also discuss an emerging domain, the analysis of bio-
logical systems, that has yet to see widespread use of effec-
tive domain-specific model checking techniques. We identify
succesful efforts in applying model checking to biological
systems that have been developed and that can be built on to
target other biological systems.

4.1 Software implementations

Model checking has been applied at every level of the soft-
ware development process, from requirements, design to
implementation. Early approaches mostly focused on hand-
translations of software models into model checkers’ input
notations and were one time activities. The modern trend is
to use the architecture from Fig. 2 and automate the creation
of the hidden models to allow domain experts to do the analy-
sis. In this section, we will focus on model checking applied
directly to source code to show an instantiation of the archi-
tecture from Sect. 3; however, numerous examples exist of
model checking applied to requirements and design models,
e.g., [17–19].

4.1.1 Domain model

Although there were attempts to apply model checkers for
other domains to the problem of source code analysis [26,51],
it became quickly apparent that the semantic gap could not be
easily bridged and custom model checkers were developed
instead [4,40,87,95]. These custom checkers took the origi-
nal source code as input and were able to exploit the domain
knowledge captured within the models to improve the model
checking.

An interesting case is the SPIN model checker [54] that
in its early form only allowed PROMELA models, i.e. cus-
tom notation for modeling protocols, but now supports also

the analysis of C code. The C code must be analyzed within
the context of an environment that is specified in PROMELA,
since it allows for example non-determinism that is very use-
ful for succinct environment specifications [55].

4.1.2 Hiding semantic model mismatches

The Verisoft model checker [40] was one of the first to target
source code and used an underlying logical model based on
interleavings of concurrent statements. The C library code
for threading was instrumented to allow all possible enabled
actions to be executed. Furthermore, it was the so-called
state-less model checking since no states were stored and
executions were replayed from the start rather than use a
backtracking based search. The logical model was thus a
tree of concurrent transitions (or code segments) rather than
the more common graph of states. Verisoft used, therefore,
a very simple hidden model to allow the model checking to
proceed and could be used on every C program for which the
threading library can be instrumented.

JPF [95] and BOGOR6 [87] also support concurrent pro-
grams, but in this case Java programs. The logical model used
in both cases is a graph of reachable states that allow one to
check both safety and liveness properties. Also, unlike the
Verisoft case, state-space searches can be pruned, since pre-
viously visited states are stored. However, the hidden mod-
els used here are more complex and based on executing Java
bytecode. Since not all bytecode-based program features can
be handled (since they can call native methods, use reflection,
dynamic class loading etc.), the user sometimes is confronted
with a hidden model restriction; these lead to much frustra-
tion as can be seen on, e.g., the JPF mailing list.7

SLAM [4] and CBMC8 [21] only focus on sequential pro-
grams, but use very different logical models: SLAM uses
boolean programs derived from abstractions of C code and
CBMC encodes the reachability problem for C/C++ pro-
grams as a satisfiability problem and uses a technique called
bounded model checking to do the analysis.

A new trend in software model checking is to analyze
the code symbolically [14,15,29,42,43,62,85,91]. There are
two approaches commonly followed: classic symbolic execu-
tion [29,85] and dynamic symbolic execution [14,42,43,91].
In classic symbolic execution, the interpretation of the execu-
tion is changed to operate symbolically and involves check-
ing feasibility of paths, by invoking a decision procedure. In
dynamic symbolic execution, the code is executed in a stan-
dard fashion, but via instrumentation, a symbolic constraint
on the input for that path is constructed on the side; this sym-
bolic constraint is then used to guide the execution of a next

6 http://sireum.org.
7 http://groups.google.com/group/java-pathfinder?pli=1.
8 http://www.cprover.org/cbmc/.
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concrete path. The important thing to notice is that dynamic
symbolic execution has a much simpler hidden model and
is, therefore, commonly considered the more applicable to
industrial software.

4.1.3 Environment model

There are two types of environment models required to do
software model checking: models to represent underlying
aspects of the execution environment of the domain and
models that represent the environment of the system under
analysis. The former is a set of environment models that are
distributed with the model checking framework and repre-
sent, e.g., libraries that are abstracted to allow analysis. A
classic example of this might be input–output libraries that
read and write to a file. Both JPF and PEX (via Moles) allow
one to override the behavior of any method with a custom
version and as such makes it easy to develop these kinds of
environment models.

The second type of environment model is much more
complicated to construct and, as pointed out in Sect. 3.3,
is often times not hidden at all. In fact environment gen-
eration is mostly manual. An example where automated
environment generation has been quite successful is in the
analysis of graphical user interface code [92]: GUI code
cannot be analyzed directly since it requires human input
which is outside the closed system required for model check-
ing. Another field where automated environment generation
is used is in compositional (or assume-guarantee) reason-
ing where the environment is “learned” that will ensure
a property is true of a composition of the system and its
environment [80].

Note that all software model checkers augment the clas-
sic programming languages they analyze with the capabil-
ity of expressing non-deterministic choice. This capability
allows one to specify (among other things) the range of pos-
sible inputs to be used when analyzing the program. Without
a non-deterministic choice operation, useful environments
cannot be generated and in some sense model checking
degenerates to testing (in the sequential case at least; for con-
current programs the scheduler is still non-deterministic in
general). For example, JPF has a highly user-customizable
ChoiceGenerator framework that allows all forms of non-
determinism, including custom data choices, scheduling
choices, etc.

The symbolic execution-based model checkers use a
slightly different notion of an environment, since part of the
benefit of using these techniques is that they produce the input
values for which a certain behavior will be exhibited, i.e. they
generate part of the environment by themselves. However,
which method will be called in which order is typically still
part of the environment that must be provided and only the
input parameters are left symbolic.

4.1.4 Property model

Although model checking is historically focused on using
temporal logic properties for analysis, software model check-
ing tends to use only safety properties and not liveness prop-
erties. State-less model checkers cannot handle liveness by
definition since they cannot detect cycles, but even model
checkers like JPF and BOGOR do not support liveness; SPIN
does support liveness but when using C code in the models,
one must specify which part of the state must be tracked
during model checking (exposing the hidden model).

The most common types of properties are simply local
safety properties in the form of assertion violations (including
contracts) or uncaught runtime exceptions (for example null-
pointer dereferences). Another class of property is finite-state
machine properties, such as every open should be followed
by a close operation. These can be used to check type-state
properties (i.e. API contracts) and are used in SLAM [4] and
KLEE9 [14].

4.1.5 Analysis results model

In software model checking, the results model is quite stan-
dard and involves an ability to review/replay the counterex-
ample if a property is violated. There has, however, been
work on trying to minimize the counterexample, by trying to
explain why the error occurred [45,46]. In addition, cover-
age data are calculated during the model checking to allow
both the system to proceed to behavior it has not analyzed,
and reported at the end of a run to allow a user to check
the adequacy of the model checking run if no error was
found [47,97].

4.1.6 Hiding transient models

The internal optimizations used in software model check-
ing are numerous, but essentially two techniques stand out:
partial-order reductions [41] and predicate abstraction [44].

Partial-order reductions reduce the number of interleav-
ings that need to be analyzed during model checking of
concurrent programs, by not considering interleavings of
independent transitions. The dependency information was
traditionally determined by a static analysis before model
checking, but due to the dynamic nature of software, dynamic
partial-order reduction [37] is more popular in software
model checking. During dynamic partial-order reduction, the
dependencies between transitions are calculated during the
execution by considering whether variables can be accessed
by other threads. The more precise dynamic analysis typi-
cally leads to massive state-space reductions [32]. The cal-
culation of the hidden dependency model during partial-order

9 http://klee.llvm.org/.
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reductions are completely hidden from the user. Another
approach for reducing the number of interleavings to ana-
lyze is used by the CHESS [76] model checker that limits the
number of context switches between threads. Where partial-
order reduction is a precise abstraction of the original pro-
gram (i.e. no behaviors are added or removed) the bounded
context switching approach is an under-approximation that
could miss errors. However, empirical evidence suggests that
many concurrency errors are revealed with very few context
switches (often times only 3). All of these reduced systems
are calculated during model checking and are thus transient
models.

Predicate abstraction allows one to reason about an over-
approximation of the system behaviors and is often used
within the so-called Counter-Example Guided Abstraction
Refinement (CEGAR) framework [23]. CEGAR refers to the
process where one starts with a gross over-approximation
of the system behaviors (typically the control flow of the
program) and with each counterexample this abstraction is
refined (i.e. refinement guided by the counterexample) and
the process is repeated until either a concrete counterexam-
ple is found (one with no abstractions that can thus happen
in the real un-abstracted program) or the property is proved.
Each of these abstracted models is hidden and the user only
sees the final output.

The underlying technology required for predicate abstrac-
tion (as well as symbolic execution) is decision procedures
for satisfiability that can reason over the domain of the
program instructions, e.g. linear integer arithmetic, strings,
arrays, bitvectors, etc. However, not all language features in
programs can be represented using current decision proce-
dures (e.g., nonlinear arithmetic). This is again an undesirable
case where the hidden model is exposed to the user. Dynamic
symbolic execution tries to alleviate this problem by using
concrete values to solve constraints outside of their deci-
sion procedure domains. This is another reason why they are
considered more robust for industrial use. Recent advances
in classic symbolic execution also address this problem by
solving the part of the constraint that the decision procedure
can handle and using that as concrete values to solve the
rest [81].

4.2 Hardware designs

In the 1990s, symbolic model checking matured to the point
where it became industrially viable and applied at scale.
Commercial interest increased significantly after the Pen-
tium floating point division bug [84], which cost Intel almost
half a billion dollars. It is now a mature technology that is a
standard part of commercial design flows, and is applied reg-
ularly and repeatably by IBM, Intel, AMD, and Motorola. A
good deal of the success of of model checking in this domain
is due to the seamless integration of this technology into the

tools that are used by hardware designers and to the close rela-
tionship between verification and hardware synthesis, which
uses many of the same technologies.

4.2.1 Domain model

Hardware designers use hardware description languages
(HDLs) to describe the design of electronic circuits. The two
most popular languages are Verilog [89] (and its superset Sys-
temVerilog [88]) and VHDL [56], though there are a wide
range of notations that are used. HDLs differ from software
languages in their treatment of time and concurrency. Since
hardware is inherently concurrent, the languages are struc-
tured to allow straightforward expression of parallel evalua-
tion. In addition, time is represented explicitly to support the
analysis of time durations necessary for signals to stabilize
within the circuit.

4.2.2 Hiding semantic model mismatches

The process of translating from HDLs to analysis models is
primarily one of throwing information away; usually, model
checking is performed only considering the Boolean logic
portion of the model (netlist) and throwing away the timing
information. The advent of symbolic methods in the early
1990s [71] led to a watershed in the application of model
checking to HDLs, in large part because the netlist descrip-
tion is quite similar to the symbolic transition relation that
is implemented by the Logical Model. That said, aspects of
the translation of Verilog and VHDL can be difficult due to
the semantics of binary signals: they can not only take on the
values true and false, but also other indeterminate values. For
example, in Verilog, there are two additional values X and
Z , standing for ‘unknown’ and ‘tri-stated’ respectively. X
in particular can be difficult, because it is interpreted differ-
ently by different tools: it can mean ‘don’t-care’ or ‘wildcard’
depending on context [93]. VHDL has nine such additional
values for signals [56].

4.2.3 Environment model

Environmental models in hardware describe expectations on
the inputs to the circuit being constructed. Often, hardware is
expected to work in relatively unconstrained environments,
leading to simple environmental models. These assumptions
are by definition system dependent and must be manually
constructed. On the other hand, it is often the case that
assume-guarantee reasoning is necessary to analyze large
systems; in this case, it is necessary to manage the assump-
tions that different subsystems impose upon each other to
ensure that the analysis results are sound. Several techniques
have been developed to support this kind of circular rea-
soning between components [3,69], and many of the tool

123



550 W. Visser et al.

suites ensure that mutual assumptions between components
are kept consistent [57,70].

4.2.4 Property model

Unlike software, much of the work in hardware is focused on
equivalence checking, where a reference model of a circuit
is compared against an optimized model. This can be done at
the level of combinatorial equivalence checking which does
not consider the state of the two designs and sequential equiv-
alence checking, which does consider state.

Verification of reference models is often performed using
temporal formulae. Unlike software, most of the property lan-
guages support both safety and liveness formulae, and it is not
uncommon to see liveness specifications for hardware mod-
els. Properties are often expressed through temporal logic
such as LTL and CTL, extended regular expressions [88], and
combinations of the two formats, as in PSL [33]. Recent work
in hardware verification has focused on creating verification
units that are stored along with the hardware designs being
created. Notations such as PSL and SystemVerilog allow
a designer to specify complex contracts within a hardware
design. These contracts can contain local definitions in the
host language, assumptions about the external environment,
and assertions about expected behavior. The goal is to sup-
port both simulation-based verification and formal analysis
using a single set of specifications.

4.2.5 Analysis results model

Counterexamples have been traditionally expressed as graph-
ical waveforms, showing the behavior of output signals with
respect to a set of inputs over time. However, with the intro-
duction of richer datatypes, it can be more difficult to visu-
alize the waveforms, and textual results are displayed. Many
of the commercial design automation tools (e.g., [1,2]) sup-
port sophisticated step simulators of the hardware that allow
forward and backward stepping through counterexamples,
which helps in the diagnosis and correction of errors.

4.2.6 Hiding transient models

There are a number of transient models that are created to
support hardware model checking and in fact the analysis
process often translates between several representations to
analyze large systems effectively. An interesting aspect is that
synthesis and analysis are often intertwined. The synthesis
process is concerned with minimizing circuits with respect
to the number of gates involved (minarea retiming [96]) and
minimizing timing (mintime retiming). Minarea retiming can
also significantly improve analysis time, as it usually simpli-
fies the description of the circuit. The synthesis process can

involve equivalence checks on the model, so it may involve
a level of symbolic analysis.

To perform minimization, models are often translated
into And-Inverter-Graphs (AIGs) [27] which support tech-
niques such as structural hashing [27], a graph algorithm to
simplify the boolean representation of the circuit by iden-
tifying syntactically identical subtrees. The process iter-
ates between removing syntactically identical subtrees using
AIGs and structural hashing and performing model check-
ing over heuristically-chosen subtrees thought to be equal
but not structurally identical (fraiging) [74]. Alternate repre-
sentations, such as reduced Boolean circuits [11], have also
been shown to be very effective at reducing models.

For equivalence checking, the two circuits to be checked
for equivalence are turned into a hidden model of a single cir-
cuit called a miter [13] derived by combining pairs of inputs
that have the same names and feeding pairs of outputs into
EXOR gates which are then fed into an OR gate. If the out-
put of the OR gate is a constant 0, then the two circuits are
equivalent.

For functional verification, the same techniques used for
software analysis, such as POR and predicate abstraction
refinement loops that abstract portions of the model, are
widely used. In addition, some of the analysis techniques
rely on adding additional information to the model. Inductive
techniques rely on addition of additional level of lemma gen-
eration [61,82] to be practically useful. These lemmas define
additional information about the model that is not exposed
to the user.

4.3 Biological systems

Languages for describing aspects of biological systems have
enabled dramatic advances in biology. For example, the
encoding of DNA as a string over symbols A, T, C, G
effectively abstracts from biochemical properties and per-
mits the application of algorithmic techniques for identify-
ing and manipulating DNA. Inspired by such advances, in
recent years researchers have begun to explore how algorith-
mic verification techniques, such as model checking, can be
applied to supplement existing theoretical and experimental
study of a broad range of biological systems.

Like hardware and software systems, biological systems
are enormously complex and span multiple levels of abstrac-
tion. Biological systems range over an extremely diverse
set of abstraction levels from low-level biochemical proper-
ties, up through genetic, cellular, tissue, organ, organ system,
organism, community, population, and even ecosystem lev-
els. This breadth of system description has not yet been tar-
geted by model checking, but there has been promising work
on two classes of biological systems, cellular signalling path-
ways and genetic regulatory networks, which we describe
below.
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Unlike with hardware and software systems, biological
models should be viewed as hypotheses that are subject to
corroboration by experimental data obtained from the actual
biological system [36]. As such, these models are imper-
fect descriptions of biological structures and mechanisms. In
these systems, the lack of knowledge about the exact behav-
ior of a biological system is often abstracted by incorporating
stochastic behavior.

The use of stochastic modeling requires appropriate
model checking algorithms. Model checking frameworks
that provide such support, e.g., PRISM10 [64], in addition
to more traditional symbolic model checking frameworks,
e.g., NuSMV [20], have been put to use in reasoning about
biological systems.

4.3.1 Domain model

For biological systems, the models are not like the hardware
and software models discussed in earlier sections. Rather
these models are theories put forth by researchers that seek
to explain the biological mechanisms that give rise to exper-
imental observations.

One domain where probabilistic model checking has been
applied is the analysis of cellular signalling pathways. Path-
ways are made up of a complex set of biochemical and molec-
ular processes, typically involving the interaction of proteins,
that are specific to the function of the pathway.

In [78], the signaling of T Cell’s in immune system
responses is studied in an attempt to understand discrepan-
cies between existing theoretical models and observations of
immune responses. This study is carried out by identifying a
set of mappings from chemical reactions to fragments of code
in PRISM’s input language, then applying those mappings,
by hand, to translate an existing model of T Cell pathway
signaling. A similar pattern-based translation has been used
in other applications of model checking to pathway signal-
ing [16,52]. In principle, this type of pattern-based transla-
tion resembles the earliest version of the JPF software model
checker [51] and could be automated using similar methods.

The RoVerGene project11 [6] focuses on genetic regula-
tory networks which are small systems comprised of genes,
proteins and small molecules whose joint behavior is key to
many cellular processes. In RoVerGene, these networks are
modeled as a system of piecewise-affine equations which are
translated to a form that is amenable to model checking.

4.3.2 Hiding semantic model mismatches

The approach of RoVerGene adapts a well-established strat-
egy from hardware and software model checking to bridge

10 http://www.prismmodelchecker.org/.
11 http://iasi.bu.edu/~batt/rovergene/rovergene.htm.

the gap between domain models and model checker inputs.
It calculates an abstract transition system that captures the
networks behavior in much the same way as predicate
abstraction-based software model checking tools such as
SLAM [4]—although the nature of the abstraction is much
different. The resulting abstracted system is then checked
using the NuSMV [20] symbolic model checker.

Another approach is to enrich the model checker inputs to
better match the domain primitives. For example, the primi-
tives for coordinating between components that are present in
existing model checker input languages are unable to express
the fact that components of biological systems, e.g., pairs of
cells involved in signaling, operate asynchronously, but do
not drift too far apart in performing local actions. Researchers
have observed this in experiments and have captured this as
the bounded asynchrony coordination mechanism [35]. This
can be exploited to achieve state space reductions akin to
partial order reductions when model checking biological sys-
tems. This strategy is an instance of the more general insight
behind modern software model checkers [87,95] which pro-
vide the ability to customize the primitives of the modeling
language, e.g., in the case of JPF to handle JVM bytecodes
directly.

4.3.3 Property model

Rather than check a specific property, in the work on T Cell
receptors PRISM was used to explore the responsiveness,
selectivity, and speed of the response of cells under varying
environmental factors. In this respect, the model checker is
used more for “experimentation” with the model rather than
property assurance.

In other work on pathway signaling [52], specifications are
written in Continuous Stochastic Logic (CSL) that express,
e.g., the number of times two proteins bind another during
a time interval. RoVerGene also uses a temporal logic for
property specification.

Using such logics directly is a challenge even for trained
experts. To address this, researchers working on model
checking cellular interactions have identified a number of
recurring patterns that reflect common queries that domain
scientists seek to answer [75]. This work is a domain-specific
version of the more general property specification patterns
[30] that have been used in many software model checking
efforts.

4.3.4 Environment model

In the work on T Cell receptors, the process of constructing
the PRISM input model produced a closed system, i.e., there
were no unconstrained inputs. When models are constructed
manually it is possible to blur the line between the system
and the environment and to construct such a closed system,
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but this is more difficult to achieve when using automated
techniques for generating models suitable for model check-
ing.

As mentioned, the RoVerGene project [6,7] models the
network as a system of piecewise-affine equations, and for-
mulates properties using temporal logic. It expresses the envi-
ronment as a set of input parameters that are varied across a
range of analyses. For certain problems, RoVerGene is asked
to calculate the set of input parameters for which the system
is guaranteed to satisfy the property. This is the strategy that
has recently been explored in work on learning minimal envi-
ronment specifications in software model checking [39].

4.3.5 Analysis results model

The way that model checking has been most commonly
applied in reasoning about biological systems avoids many
of the challenges faced in mapping counterexamples back
to software and hardware models. Instead, the results gen-
erally are presented in the form of sets of parameter values,
described symbolically [7], which makes them easy to under-
stand by domain specialists.

4.3.6 Hiding transient models

Manual attempts to leverage model checking tools to analyze
biological systems have the disadvantage of having to pro-
duce transient intermediate models that may be unfamiliar
to domain experts. In the case of the T Cell work, an addi-
tional encoding of the system in the stochastic π -calculus was
produced—though it was exploited for simulation purposes.
Generally, it is better to hide such models and RoVerGene
does exactly that.

In fact, the generality of the piecewise-affine system model
used in RoVerGene permits translations from other biolog-
ical models. Recently, researchers have developed a map-
ping from cardiac cell models to RoVerGene which enables
the exploration of questions related to tachycardia and other
cardiac disorders [48]. In this work, the genetic regulatory
networks are themselves a transient representation of the
original domain models, not to mention the abstracted transi-
tion system models that are ultimately submitted to NuSMV.
As RoVerGene-like tools begin to spread to other areas of
biological systems one expects to see similar layered solu-
tions, where a model in one domain is hidden when reasoning
in another.

While there remains much more work to be done to real-
ize a broad range of usable domain-specific model check-
ing approaches for biological systems, we believe that this
recent work represents an important step. Further improve-
ment will come by continuing to build on the techniques and
lessons learned in providing model checking support in other
domains and developing new techniques as needed.

5 Conclusions

In many fields, modeling is an inherently human activity.
Models are built by humans to capture their understanding
or intent. Models are built for humans to abstract complex
information sources and facilitate the communication of key
details. In model checking, these human-oriented models
play a crucial role. Users must capture the behavior of the sys-
tem they wish to reason about and pose questions about that
behavior in the form of property specifications. They must
also be able to interpret counterexamples that demonstrate
why a system violates a property specification.

Not all models are fit for human consumption, however. In
modern optimizing compilers, a variety of different internal
representations that model the structure and computation of
the source program are created. These models are for intra-
compiler communication. They serve to bridge the semantic
gap from source language semantics to architecture specific
object code and to expose key factors that can be exploited by
optimization phases. Users of compilers gain no value from
viewing such models.

When model checking is effectively tailored to an appli-
cation domain, it operates much like a compiler. It hides
internal transient models that exist to bridge the gap from
domain-specific models to model checker notations and to
make for more efficient processing. Developers of hardware
and software systems benefit from the abstraction afforded by
domain-specific model checking. As other domains begin to
embrace the power of model checking as an analytic engine,
they should follow the same pattern by hiding models when-
ever appropriate.
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79. Pǎsǎreanu, C., Dwyer, M., Huth, M.: Assume-guarantee model
checking of software: a comparative case study. In: Theoretical and
Practical Aspects of SPIN Model Checking, pp. 168–183. Springer,
Berlin (1999)
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