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Abstract

A convolutional factor-analysis model is de-
veloped, with the number of filters (factors)
inferred via the beta process (BP) and hi-
erarchical BP, for single-task and multi-task
learning, respectively. The computation of
the model parameters is implemented within
a Bayesian setting, employing Gibbs sam-
pling; we explicitly exploit the convolutional
nature of the expansion to accelerate compu-
tations. The model is used in a multi-level
(“deep”) analysis of general data, with spe-
cific results presented for image-processing
data sets, e.g., classification.

1. Introduction

There has been significant recent interest in multi-
layered or “deep” models for representation of general
data, with a particular focus on imagery and audio
signals. These models are typically implemented in
a hierarchical manner, by first learning a data repre-
sentation at one scale, and using the model weights
or parameters learned at that scale as inputs for the
next level in the hierarchy. Methods that have been
considered include deconvolutional networks (Zeiler
et al., 2010), convolutional networks (LeCun et al.),
deep belief networks (DBNs) (Hinton et al.), hierar-
chies of sparse auto-encoders (Jarrett et al., 2009; Ran-
zato et al., 2006; Vincent et al., 2008; Erhan et al.,
2010), and convolutional restricted Boltzmann ma-
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chines (RBMs) (Lee et al., 2009a;b; Norouzi et al.,
2009). A key aspect of many of these algorithms is
the exploitation of the convolution operator, which
plays an important role in addressing large-scale prob-
lems, as one must typically consider all possible shifts
of canonical filters. In such analysis one must learn the
form of the filter, as well as the associated coefficients.
Concerning the latter, it has been recognized that a
preference for sparse coefficients is desirable (Zeiler
et al., 2010; Lee et al., 2009b; Norouzi et al., 2009;
Lee et al., 2008).

Some of the multi-layered models have close con-
nections to over-complete dictionary learning (Mairal
et al., 2009), in which image patches are expanded
in terms of a sparse set of dictionary elements. The
deconvolutional and convolutional networks in (Zeiler
et al., 2010; Lee et al., 2009a; Norouzi et al., 2009) sim-
ilarly represent each level of the hierarchical model in
terms of a sparse set of dictionary elements; however,
rather than separately considering distinct patches as
in (Mairal et al., 2009), the work in (Zeiler et al.,
2010; Lee et al., 2009a) allows all possible shifts of dic-
tionary elements for representation of the entire im-
age at once (not separate patches). In the context
of over-complete dictionary learning, researchers have
also considered multi-layered or hierarchical models,
but again in terms of image patches (Jenatton et al.,
2010).

All of the methods discussed above, for “deep” models
and for sparse dictionary learning for image patches,
require one to specify a priori the number of filters or
dictionary elements employed within each layer of the
model. In many applications it may be desirable to in-
fer the number of filters based on the data itself. This
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corresponds to a problem of inferring the proper num-
ber of features for the data of interest, while allowing
for all possible shifts of the filters, as in the various con-
volutional models discussed above. The idea of learn-
ing an appropriate number and composition of features
has motivated the Indian buffet process (IBP) (Grif-
fiths & Ghahramani, 2005), as well as the beta process
(BP) to which it is closely connected (Thibaux & Jor-
dan, 2007; Paisley & Carin, 2009). Such methods have
been applied recently to (single-layer) dictionary learn-
ing in the context of image patches (Zhou et al., 2009).
Further, the IBP has recently been employed for design
of “deep” graphical models (Adams et al., 2010), al-
though the problem considered in (Adams et al., 2010)
is distinct from that associated with the deep models
discussed above.

In this paper we demonstrate that the idea of build-
ing an unsupervised deep model may be cast in terms
of a hierarchy of convolutional factor-analysis models,
with the factor scores from layer l serving as the in-
put to layer l + 1. The framework presented here has
four key differences with previous deep unsupervised
models: (i) the number of filters at each layer of the
deep model is inferred from the data by an IBP/BP
construction; (ii) multi-task feature learning is per-
formed for simultaneous analysis of different families
of images, using the hierarchical beta process (HBP)
(Thibaux & Jordan, 2007); (iii) fast computations are
performed using Gibbs sampling, where the convolu-
tion operation is exploited directly within the update
equations; and (iv) sparseness is imposed on the filter
coefficients and filters themselves, via a Bayesian gen-
eralization of the ℓ1 regularizer. In the experimental
section, we also give a detailed analysis on the role of
sparseness on different parameters in our deep model.

2. Convolutional Sparse Factor Analysis

2.1. Single task learning & the beta process

We consider N images {Xn}n=1,N , and all images are
analyzed jointly; the images are assumed drawn from
the same (single) statistical model, with this termed
“single-task” learning. The nth image to be analyzed
is Xn ∈ R

ny×nx×Kc , where Kc is the number of color
channels (e.g., for gray-scale images Kc = 1, while
for RGB images Kc = 3). Each image is expanded
in terms of a dictionary, with the dictionary defined
by compact canonical elements dk ∈ R

n′

y×n′

x×Kc , with
n′

x ≪ nx and n′
y ≪ ny; the shifted dk corresponds to

the kth filter. The dictionary elements are designed
to capture local structure within Xn, and all possible
two-dimensional (spatial) shifts of the dictionary ele-
ments are considered for representation of Xn. The
shifted dictionary elements are assumed zero-padded

spatially, such that they are matched to the size of
Xn. For K canonical dictionary elements the cumu-
lative dictionary is D = {dk}k=1,K . In practice the
number of dictionary elements K is made large, and
we wish to infer the subset of D that is actually needed
to sparsely render Xn as

Xn =
K∑

k=1

bnkWnk ∗ dk + ǫn (1)

where ∗ is the convolution operator and bnk ∈ {0, 1}
indicates whether dk is used to represent Xn, and
ǫn ∈ R

ny×nx×Kc represents the residual; The Wnk

represents the weights of dictionary k for image Xn;
the support of Wnk is (ny − n′

y + 1) × (nx − n′
x + 1),

allowing for all possible shifts, as in a typical convolu-
tional model (Lee et al., 2009a). We impose within
the model that the {wnki}i∈S are sparse or nearly
sparse, such that most wnki are sufficiently small to
be discarded without significantly affecting the recon-
struction of Xn, where the set S contains all possi-
ble indexes for dictionary shifts. A similar sparseness
constraint was imposed in (Zeiler et al., 2010; Norouzi
et al., 2009; Lee et al., 2009b; 2008). The model can be
implemented via the following hierarchical construc-
tion:

bnk ∼ Bernoulli(πk) , πk ∼ Beta(1/K, b) (2)

wnki ∼ N (0, 1/αnki) , αnki ∼ Gamma(e, f)

dk ∼
J∏

j=1

N (0, 1/βj), ǫn ∼ N (0, IP γ−1
n )

where J denotes the number of pixels in the dictionary
element dk and dkj is the jth component of dk; hyper-
priors γn ∼ Gamma(c, d) and βj ∼ Gamma(g, h) are
also employed. The integer P denotes the number of
pixels in Xn, and IP represents a P × P identity ma-
trix. The hyperparameters (e, f) and (g, h) are set to
favor large αnki and βj , thereby imposing that the set
of wnki will be compressible or approximately sparse,
with the same found useful for the dictionary elements
dk. In the limit K → ∞, and upon marginalizing out
{πk}k=1,K , the above model corresponds to the Indian
buffet process (IBP) (Griffiths & Ghahramani, 2005;
Thibaux & Jordan, 2007).

Following notation from (Thibaux & Jordan, 2007), we
write that for image n we draw Xn ∼ BeP(B), with
B ∼ BP(b, B0), where the base probability measure

is B0 =
∏J

j=1 N (0, 1/βj), BP(·) represents the beta
process, and BeP(·) represents the Bernoulli process.
Assuming K → ∞, the Xn =

∑∞

k=1 bnkδdk
defines

which of the dictionary elements dk are employed to
represent image n, and B =

∑∞

k=1 πkδdk
; δdk

is a unit
point measure concentrated at dk. The {πk} are drawn
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from a degenerate beta distribution with parameter b
(Thibaux & Jordan, 2007). In this single-task con-
struction all images have the same probability πk of
employing filter dk.

2.2. Multitask learning & the hierarchical BP

Assume we have T learning tasks, where task t ∈

{1, . . . , T} is defined by the set of images {X
(t)
n }n=1,Nt

,
where Nt is the number of images in task t. The T
“tasks” may correspond to distinct but related types
of images. We wish to learn a model of the form

X(t)
n =

K∑

k=1

b
(t)
nkW

(t)
nk ∗ dk + ǫ(t)

n (3)

Note that the dictionary elements {dk} are shared

across all tasks, and the task-dependent b
(t)
nk defines

whether dk is used in image n of task t. The X
(t)
n =∑∞

k=1 b
(t)
nkδdk

, defining filter usage for image n in task
t, are constituted via an HBP construction:

X
(t)
n ∼ BeP(B(t)) (4)

B(t) ∼ BP(b2, B) , B ∼ BP(b1, B0) (5)

with B0 defined as above. Note that via this con-
struction each B(t) =

∑∞

k=1 π
(t)
k δdk

shares the same
filters, but with task-specific probability of filter us-

age, {π
(t)
k }. Therefore, this model imposes that the

different tasks may share usage of filters {dk}, but the
priority with which filters are used varies across tasks.
The measure B =

∑∞

k=1 πkδdk
defines the probability

with which filters are used across all images and tasks,
with dk employed with probability πk.

When presenting results below, we refer to B =∑∞

k=1 πkδdk
as constituting the “global” buffet of

atoms and associated probabilities, across all tasks.
The measure B(t) is a “local” representation specifi-
cally for task t (with the same atoms as B, but with
task-dependent probability of atom usage).

2.3. Exploiting convolution in computations

In this paper we present results based on Gibbs sam-
pling; however, we have also implemented variational
Bayesian (VB) analysis and achieved very similar re-
sults. In both cases all update equations are analytic,
as a result of the conjugate-exponential nature of con-
secutive equations in the hierarchical model. Below we
focus on Gibbs inference, for the special case of single-
task learning (for simplicity of presentation), and dis-
cuss the specific update equations in which convolu-
tion is leveraged; related equations hold for the HBP
model, and for VB inference.

To sample bnk and Wnk (i.e., {wnki}i∈S), we have
p(bnk = 1|−) = π̃nk, and p(wnki, i ∈ S|−) =

(1− bnk)N (0, α−1
nki) + bnkN (µnki,Σnki), where Σnki =

(dT
kidkiγn + αnki)

−1, µnki = ΣnkiγnXT
nkidki, with

Xnki = X−n + bnkdkiwnki, and

π̃nk

1 − π̃nk

=
πk

1 − πk

·
N (Xnk|Wnk ∗ dk, γ−1

n IP )

N (Xnk|0, γ−1
n IP )

Here Xnk = X−n + Wnk ∗ dk, X−n = Xn −∑K

k=1 bnkW ∗ dk and bnk is the most recent sample.

Taking advantage of the convolution property, we si-
multaneously update the posterior mean and covari-
ance of the coefficients for all the shifted versions of
one dictionary element. Consequently,

Σnk = 1 ⊘ (γn‖dk‖
2
2 + αnk)

µnk = γnΣnk ⊙ (X−n ∗ dk + bnk‖dk‖
2
2Wnk)

where both of Σnk and µnk have the same size
with Wnk. The symbol ⊙ is the element-wise prod-
uct operator and ⊘ the element-wise division op-
erator. To sample dk, we calculate the posterior
mean and covariance for each dictionary element as
Λk = 1 ⊘ (

∑N

n=1 γnbnk‖Wnk‖
2
2 + βk) and ξk = Λk ⊙

(
∑N

n=1 bnkγn(X−n ∗Wnk +dk‖Wnk‖
2
2)). The remain-

ing Gibbs update equations are relatively standard in
Bayesian factor analysis (Zhou et al., 2009).

3. Multilayered/Deep Models

Using the convolutional factor model discussed above,
we yield an approximation to the posterior distribu-
tion of all parameters. We wish to use the inferred pa-
rameters to perform a multi-scale convolutional factor
model. It is possible to perform inference of all lay-
ers simultaneously. However, in practice it is reported
in the deep-learning literature (Zeiler et al., 2010; Le-
Cun et al.; Hinton et al.; Jarrett et al., 2009; Ranzato
et al., 2006; Vincent et al., 2008; Erhan et al., 2010; Lee
et al., 2009a;b; Norouzi et al., 2009) that typically se-
quential design performs well, and therefore we adopt
that approach here. When moving from layer l to layer
l + 1 in the “deep” model, we employ the maximum-
likelihood (ML) set of filter weights from layer l, with
which we perform decimation and max-pooling, as dis-
cussed next.

3.1. Decimation and Max-Pooling

A “max-pooling” step is applied to each Wnk, when
moving to the next level in the model, with this
employed previously in deep models (Lee et al.,
2009a) and in recent related image-processing analysis
(Boureau et al., 2010). In max-pooling, each matrix
Wnk is divided into a contiguous set of blocks, with
each such block of size nMP,y × nMP,x. The matrix

Wnk is mapped to Ŵnk, with the mth value in Ŵnk



Hierarchical Beta Process for Convolutional Factor Analysis & Deep Learning

corresponding to the largest-magnitude component of
Wnk within the mth max-pooling region. Since Wnk

is of size (ny−n′
y+1)×(nx−n′

x+1), each Ŵnk is a ma-
trix of size (ny −n′

y +1)/nMP,y × (nx−n′
x +1)/nMP,x,

assuming integer divisions.

To go to the second layer in the deep model, let K̂ de-
note the number of k ∈ {1, . . . ,K} for which bnk 6= 0
for at least one n ∈ {1, . . . , N}. The K̂ corresponding

max-pooled images from {Ŵnk}k=1,K are stacked to
constitute a datacube or tensor, with the tensor as-
sociated with image n now becoming the input image
at the next level of the model. The max-pooling and
stacking is performed for all N images, and then the
same form of factor-modeling is applied to them (the
original Kc color bands is now converted to K̂ effective

spectral bands at the next level). Model fitting at the
second layer is performed analogous to that in (1) or
(3).

3.2. Model features and visualization

Assume the hierarchical factor-analysis model dis-
cussed above is performed for L layers, and therefore
after max-pooling the original image Xn is represented

in terms of L tensors {X
(l)
n }l=1,L (with K̂(l) layers or

“spectral” bands at layer l, and {X
(0)
n }n=1,N corre-

spond to the original images for which K̂(0) = Kc).

It is of interest to examine the physical meaning of the
associated dictionary elements. Specifically, for l > 1,

we wish to examine the representation of d
(l)
ki in layer

one, i.e., in the image plane. Dictionary element d
(l)
ki

is an n
(l)
y ×n

(l)
x × K̂(l) tensor, representing d

(l)
k shifted

to the point indexed by i, and used in the expansion of

X
(l)
n ; n

(l)
y ×n

(l)
x represents the number of spatial pixels

in X
(l)
n . Let d

(l)
kip denote the pth pixel in d

(l)
ki , where

for l > 1 vector p identifies a two-dimensional spatial

shift as well as a layer level within the tensor X
(l)
n ;

i.e., p is a three-dimensional vector, with the first two
coordinates defining a spatial location in the tensor,
and the third coordinate identifying a level k in the
tensor.

For l > 1, the observation of d
(l)
ki at level l − 1 is rep-

resented as d
(l)→(l−1)
ki =

∑
p d

(l)
kipd(l−1)

p , where d(l−1)
p

represents a shifted version of one of the dictionary
elements at layer l − 1, corresponding to pixel p in

d
(l)
ki .

4. Example Results

While the hierarchical form of the proposed model may
appear relatively complicated, the number of param-
eters that need be set is actually modest. In all ex-
amples we set e = g = 1, and c = d = 10−6. The

results are most affected by the choice of b, f , and h,
these respectively controlling sparsity on filter usage,
the sparsity of the factor scores, and the sparsity of the
factor loadings (convolutional filters). These parame-
ters are examined in detail below. Unless explicitly
stated, b = b1 = b2 = 102, f = 10−6 and h = 10−6.
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Figure 1. (Left) Images used in synthesized analysis, where
each row corresponds one class; (Right) estimated posterior
distribution on the number of needed dictionary elements at
Layer-2.

4.1. Synthesized data & MNIST examples

To demonstrate the characteristics of the model, we
first consider synthesized data. In Figure 1 (left) we
generate seven binary canonical shapes, with shifted
versions of these basic shapes used to constitute five
classes of example images (five “tasks” in the multi-
task setting). Each row in the left figure corresponds
to one image class, with six images per class (columns).
Only the triangle appears in all classes, and specialized
shapes are associated with particular classes (e.g., the
45o line segment is only associated with Class 1, in the
first row of the left Figure 1). Each canonical binary
shapes is of size 8 × 8; the thirty synthesized images
are also binary, of size 32 × 32. We consider an HBP
analysis, in which each row of the left figure in Figure
1 is one “task”.

Layer-1 Dictionary

Layer-2 Global Dictionary

  Class1

  Class 2

  Class 3

  Class 4

  Class 5

Figure 2. Inferred dictionary for synthetic data in Figure
1(a), based on HBP analysis. From left to right and top to
bottom: Layer-1 and Layer-2 global dictionary elements,
ordered from left to right based on popularity of use across
all images; Inferred dictionary elements at Layer-2 for par-
ticular classes/tasks, ranked by class-specific usage.

We consider a two-layer model, with the canonical dic-

tionary elements d
(l)
k of spatial size 4 × 4 (J = 16) at

layer l = 1, and of spatial size 3 × 3 (J = 9) at layer
l = 2. In all examples, we set the number of dictio-
nary elements at layer one to a relatively small value,
as at this layer the objective is to constitute simple
primitives (Hinton et al.; Jarrett et al., 2009; Ranzato
et al., 2006; Vincent et al., 2008; Lee et al., 2009a;b);
here K = 10 at layer one. For all higher-level layers
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we set K to a relatively large value (here K = 100),
and allow the HBP construction to infer the number
of dictionary elements needed and the priority prob-
ability of dictionary for each class. The max-pooling
ratio is two. To the right in Figure 1 we depict the
approximate “global” posterior distribution on filter
usage across all tasks (related to the {πk} in the HBP
model) from the collection samples, for layer two in the
model; the distribution is peaked around nine, while
as discussed above seven basic shapes were employed
to design the toy images. In these examples we em-
ployed 30, 000 burn-in iterations, and the histogram
is based upon 20, 000 collection samples. We ran this
large number of samples to help insure that the col-
lection samples are representative of the posterior; in
practice similar results are obtained with as few as 100
samples, saving significant computational expense. In
all subsequent real problem examples including large-
size dataset, 1000 burn-in samples were used, with 500
collection samples.

The dictionary elements inferred at layer one and layer
two of the model are depicted in Figure 2; in both cases
the dictionary elements are projected down to the im-
age plane, and these results are for the ML Gibbs col-
lection sample (to avoid issues with label switching
within MCMC, which would undermine showing av-
erage dictionary elements). Note that the dictionary

elements d
(1)
k from layer one constitute basic elements,

such as corners, horizontal, vertical and diagonal seg-
ments. However, at layer two the dictionary elements

d
(2)
k , when viewed on the image plane, look like the

fundamental shapes in Figure 2 used to constitute the
synthesized images. In Figure 2 the inferred dictio-

Figure 3. Inferred Layer-2 dictionary for MNIST data.
Left: 0, 2, 4 ,6 and 8; Right:1, 3, 5, 7 and 9. The fil-
ters are ordered from left-to-right, and then down, based
upon usage priority within the class (white is zero).

nary elements for each class/task and layer are ordered

from left-to-right based, with respect to the frequency
with which they are used to represent the “local” task-

dependent data, this related to {π
(t)
k } within the HBP.

Note, for example, that the 45o line segment is rel-
atively highly used for class 1 (at layer two in the
model), while it is relatively infrequently used for the
other tasks.

As a second example, we consider the widely stud-
ied MNIST data (http://yann.lecun.com/exdb/
mnist/), in which we perform analysis on 5000 images,
each 28 × 28, for digits 0 through 9 (for each digit,
we randomly select 500 images). We again consider
an HBP analysis, in which now each task/class corre-
sponds to one of the ten digits. We consider a two-layer
model, as these images are again relatively simple. In

this analysis the dictionary elements at layer one, d
(1)
k ,

are 7 × 7, while the second-layer d
(2)
k are 6 × 6. At

layer one a max-pooling ratio of three is employed and
K = 25, and at layer two K = 1000 and a max-pooling
ratio of two is used. In Figure 3 we only present the
top 240, filters ranked by the usage frequency at layer
two for each class. Note that the most prominently
used dictionary elements are basic structures, that ap-
pear to highlight different canonical strokes within the
construction of a particular digit; such simple filters
will play an important role in more general images, as
discussed next.

4.2. Analysis of Caltech 101 data

Figure 4. Layer-1 dictionary elements learned for the Cal-
tech 101 dataset.

We next consider the Caltech 101 data set (http:
//www.vision.caltech.edu/ImageDatasets/

Caltech101/), first considering each class of im-
ages separately (BP construction of Section 2.1);
for these more-sophisticated images, a three-level
model is considered, as in (Lee et al., 2009a). When
analyzing the Caltech 101 data, we resize each image
as 100 × 100 and use 11 × 11 Layer-1 filters, mean-
while, the max-pooling ratio is 5. We consider 4 × 4

Layer-2 filters d
(2)
k and 6 × 6 Layer-3 filters d

(3)
k . The

beta-Bernoulli truncation level, K, was set at 200 and
100 for layers 2 and 3, respectively, and the number
of needed filters is inferred via the beta-Bernoulli
process. Finally, the max-pooling ratio at layers 2
and 3 is set as 2.

There are 102 image classes in the Caltech 101 data
set; we first consider the car class in detail, and then
provide a summary exposition on several other image
classes (similar class-specific behavior was observed
when each of the classes was isolated in isolation). The

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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Figure 5. Inferred Layer-2 dictionary for Caltech101 data, BP analysis separately on each class. Row 1: (Right) ordered

Layer-2 filters for car class, d
(2)
k

; (Middle-left) approximate posterior distribution on the number of dictionary elements
needed for layer two, based upon Gibbs collection samples and car data; (Middle-right) third-layer dictionary elements,

d
(3)
k

; (Right) approximate posterior distribution on the number of dictionary elements needed for layer three; Rows 2-3:
second-layer and third-layer dictionary elements for face, airplane, chair and elephant classes. Best viewed electronically,
zoomed-in.
Layer-1 dictionary elements are depicted in Figure 4,

and we focus on d
(2)
k and d

(3)
k , from layers two and

three, respectively. Considering the d
(2)
k for the car

class (in Figure 5), one can observe several parts of

cars, and for d
(3)
k cars are often clearly visible at Layer-

3. Histograms are presented for the approximate pos-
terior distribution of filter usage at Layers 2 and 3; one
notes that of the 200 candidate dictionary elements, a
mean of roughly 135 of them are used frequently at
Layer-2, and 34 are frequently used at Layer-3.

From Figure 5, we observe that when BP is applied
to each of the Caltech 101 image classes separately, at
Layer-2, and particularly at Layer-3, filters are mani-
fested with structure that looks highly related to the
particular image classes (e.g., for the face data, filters
that look like eyes at Layer-2, and the sketch of an en-
tire face at Layer-3). Similar filters were observed for
single-task learning in (Lee et al., 2009a). However,
in Figure 7 we present HBP-learned filters at layers
2, based upon simultaneous analysis of all 102 classes
(102 “tasks” within the HBP, with 10 images per task,
for a total of 1020 images.); K = 1000 in this case
(Layer-3 dictionary are put in Supplementary Mate-
rial due to limit space). The filters are ranked by us-
age, from left-to-right, and down, and in Figure 7 one
observes that the most highly employed HBP-derived
filters are characteristic of basic entities at Layer-2.
These seem to correspond to basic edge filters, con-
sistent with findings in (Zoran & Weiss, 2009; Puer-

tas et al., 2010); this is also consistent with the ba-
sic Layer-2 filters inferred above for the MNIST data.
It appears that as the range of image classes consid-
ered within an HBP analysis increases, the form of the
prominent filters tend toward simple (e.g., edge detec-
tion) filter forms.

We also considered HBP results for a fewer number of
tasks, and examined the inferred dictionary elements
as the number of tasks increased. For example, when
simultaneously analyzing ten Caltech 101 classes via
the HBP, the inferred dictionary elements at layers
2 and 3 had object-specific structure similar to that
above, for single-task BP analysis. As the number of
tasks increased beyond 20 classes, the most probable
atoms took on a basic, edge-emphasing form, as in
Figure 7.

Concerning computation times, considering this task,
200 images in total, Layer-1 with 25 dictionary ele-
ments takes 18.3 sec on average per Gibbs sample;
Layer-2 with 500 dictionary elements requires 55.2 sec,
and Layer-3 with 400 dictionary elements 191.1 sec.
All computations were performed in Matlab, on an In-
tel Core i7 920 2.26GHz with 6GB RAM.

4.3. Sparseness

In deep networks, the ℓ1-penalty parameter has been
utilized to impose sparseness on hidden units (Zeiler
et al., 2010; Lee et al., 2009a). However, a detailed ex-
amination of the impact of sparseness on various terms
of such models has received limited quantitative atten-
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Figure 6. Average MSE calculated from last 1000 Gibbs
samples, considering BP analysis (Section 2.1) on the Cal-
tech 101 faces data (averaged across 20 face images con-
sidered).
As indicated at the beginning of this section, parame-
ter b controls sparseness on the number of filters em-
ployed (via the probability of usage, defined by {πk}).
The normal-gamma prior on the wnki constitutes a
Student-t prior, and with e = 1, parameter f controls
the degree of sparseness imposed on the filter usage
(sparseness on the weights Wnk). Finally, the compo-
nents of the filter dk are also drawn from a Student-t
prior, and with g = 1, h controls the sparsity of each
dk. The above discussion is in terms of the BP con-
struction, for simplicity, while for HBP the parameters
b1 and b2 play roles analogous to b, with the latter
controlling sparseness for specific tasks and the former
controlling sparseness across all tasks. For simplicity,
below we also focus on the BP construction, and the
impact of sparseness parameters b, d and f on sparse-
ness, and model performance.

In Figure 6 we present variation of MSE with these
hyperparameters, varying one at a time, and keeping
the other fixed as discussed above. These computa-
tions were performed on the face Caltech 101 data,
averaging 1000 collection samples; 20 face images were
considered and averaged over, and similar results were
observed using other image classes. A wide range of
these parameters yield similar good results, all favor-
ing sparsity (note the axes are on a log scale). Note
that as parameter b increases, a more-parsimonious
(sparse) use of filters is encouraged, and as b increases
the number of inferred dictionary elements (at layer-2
in Figure 8) decreases.

4.4. Classification performance

We address the same classification problem as consid-
ered by (Zeiler et al., 2010; Lee et al., 2009a; Lazebnik
et al., 2006; Jarrett et al., 2009; Zhang et al., 2006),
considering Caltech 101 data (Zeiler et al., 2010; Lee
et al., 2009a;b). As in these previous studies, we con-
sider a two-layer model. Two learning paradigms are
considered: (i) the dictionary learning is performed
using natural scenes, as in (Lee et al., 2009a), with
learning via BP; and (ii) the HBP model is employed
to learn the filters, where each task corresponds to an
image class, as above (the images used for dictionary
learning are distinct from those used for classification

-1 -5 -9

-1 -5 -9

Figure 8. Considering 20 face images from Caltech 101, we
examine setting of sparseness parameters; unless otherwise
stated, b = 102, f = 10−5 and h = 10−5. Parameters h

and f are varied in (Top) and (Middle), respectively. In
(Bottom), we set e = 10−6 and f = 10−6 and make hidden
units unconstrained to test the influence of parameter b on
the model’s sparseness. In all of cases, we show the Layer-2
filters (ordered as above) and an example reconstruction.

Table 1. Classification performance of the proposed
model, on Caltech 101. The BP results use filters trained
with natural-scene data, and the HBP results are based on
filters trained using separate Caltech 101 data.

# Training / Testing 15/15 30/30
BP Layer-1 53.6 ± 1.5% 62.7 ± 1.2%

BP Layers-1+2 57.9 ± 1.4% 65.7 ± 0.7%
HBP Layer-1 53.5 ± 1.3% 62.5 ± 0.8%

HBP Layers-1+2 58.2 ± 1.2% 65.8 ± 0.6%

testing). Using these feature vectors, we train an SVM
as in (Lee et al., 2009a), with results summarized in
Table 1. A related table is presented in (Zeiler et al.,
2010) for many related models, and our results are
very similar to those; our results are most similar to
the deep model considered in (Lee et al., 2009a). The
results in Table 1 indicate that as the number of classes
increases, here to 102 classes, the learned filters at
the different layers tend to become generalized, as dis-
cussed above. Therefore, classification performance in
this case based upon filters learned using independent
natural scenes, and the class-dependent filters from the
image classes of interest, tend to yield similar classifi-
cation results. This analysis, based on the novel multi-
task HBP construction, confirms this anticipation, im-
plied implicity in the way previous classification tasks
of this type have been approached in the deep-learning
literature (see aforementioned references).
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Figure 7. Layer-2 dictionary elements, when HBP analysis performed simultaneously on all 102 image classes in Caltech
101 (102 “tasks”). (Best viewed electronically, zoomed-in).

5. Conclusions
A new convolutional factor analysis model has been
developed, and applied to deep feature learning. The
model has been implemented using a BP (single-task)
and HBP (multi-task) construction, with efficient in-
ference performed using Gibbs analysis. There has also
been limited previous work on multi-task deep learn-
ing, or on inferring the number of needed filters.
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