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Abstract

We present an algorithm, Hierarchical ISOmetric Self-
Organizing Map (H-ISOSOM), for a concise, organized
manifold representation of complex, non-linear, large scale,
high-dimensional input data in a low dimensional space.
The main contribution of our algorithm is threefold. First,
we modify the previous ISOSOM algorithm by a local linear
interpolation (LLI) technique, which maps the data samples
from low dimensional space back to high dimensional space
and makes the complete mapping pseudo-invertible. The
modified-ISOSOM (M-ISOSOM) follows the global geomet-
ric structure of the data, and also preserves local geomet-
ric relations to reduce the nonlinear mapping distortion
and make the learning more accurate. Second, we propose
the H-ISOSOM algorithm for the computational complexity
problem of Isomap, SOM and LLI and the nonlinear com-
plexity problem of the highly twisted manifold. H-ISOSOM
learns an organized structure of a non-convex, large scale
manifold and represents it by a set of hierarchical organized
maps. The hierarchical structure follows a coarse-to-fine
strategy. According to the coarse global structure, it “un-
folds” the manifold at the coarse level and decomposes the
sample data into small patches, then iteratively learns the
nonlinearity of each patch in finer levels. The algorithm si-
multaneously reorganizes and clusters the data samples in
a low dimensional space to obtain the concise representa-
tion. Third, we give quantitative comparisons of the pro-
posed method with similar methods on standard data sets.
Finally, we apply H-ISOSOM to the problem of appearance-
based hand pose estimation. Encouraging experimental re-
sults validate the effectiveness and efficiency of H-ISOSOM.

1. Introduction

Modeling and classifying images of articulated visual
objects, such as the pose of human hands under camera
viewpoint variations and self-occlusion conditions [1] [4],
is a challenging problem in computer vision and human

computer interaction [7]. Two main approaches have been
proposed to the problem: one is the class of discriminative
approaches, which try to solve the problem by learning the
mapping function from the visual input [2] [8] to the 3D
configuration output. However, the mapping function from
the visual input to 3D poses might be too complex to be
learned in practice.

Other approaches seek to learn manifolds in a generative
way, i.e., learn the mapping from a large training data set
of visual input to a low dimensional manifold representa-
tion. An advantage of generative mapping is that it is pos-
sible to create a large data set, spanning a wide range of ex-
pected configurations, from synthesized images. Thus, it is
particularly promising for subsequent tracking or dynamic
recognition. The critical problem, however, is the manifold
learning and representation.

Many linear and nonlinear methods have been developed
for visual manifold learning. Classical techniques such
as principle component analysis (PCA), multidimensional
scaling (MDS), and independent component analysis (ICA)
are suitable for the case where the sub-manifolds can be em-
bedded linearly, or almost linearly, in the observation space.

Recently, nonlinear dimensionality reduction tech-
niques, such as Isomap, Locally Linear Embedding, Lapla-
cian Eigenmap, Hessian Eigenmap, Semidefinite Embed-
ding, Kernel PCA, and Kernel ICA have been proposed for
nonlinear manifold learning. Tenenbaum’s Isomap algo-
rithm [12] represents remote distances of sample points as
sums of a trusted set of distances between immediate neigh-
bors, then uses MDS to compute a low-dimensional em-
bedding by minimizing the global error between Euclidean
distance in embedded space and geodesic distances of each
pair of points in the original space. Isomap may distort the
local structure of the data because MDS does a much better
job in representation large distances (the global structure)
than small ones (the local structure).

Roweis’ Local Linear Embedding (LLE) algorithm [9]
represents each point as a weighted combination of a trusted
set of nearest neighbors by solving a least-squares prob-
lem, and minimizes the distortion (reconstruction error) of
neighborhood relationships from high dimensional data to
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the embedding. Because LLE estimates the global geome-
try by the local geometry, it may distort the global structure.

Other techniques involve iterative optimization proce-
dures, such as self-organized maps (SOM) [6], and gen-
erative topographic mapping (GTM). Kohonen’s SOM is
an unsupervised clustering algorithm for dimensionality re-
duction, which is an effective tool for the visualization of
high dimensional data in a low dimensional (normally 2D)
space. It is used to build a mapping from many to few di-
mensions by preserving the topological order of the data.
However Euclidian distance in high dimensional space may
not be the best way to measure the nonlinear manifold.
Growing hierarchical self-organizing map (GHSOM) [3] is
an extended version of SOM with dynamic and hierarchi-
cal structure. The algorithm starts with a “virtual” layer 0,
which consists of a single unit, and continuously trains the
sub-layer by minimizing the mean quantization errors.

By integrating the self-organizing model with the geo-
metric graph distance of Isomap, Guan [5] proposed an Iso-
metric Self-Organizing Map (ISOSOM) method for con-
cise, nonlinear manifold representation, which was applied
to the problem of 3D hand pose estimation. ISOSOM im-
plicitly models the learned manifold through an organized
map. The algorithm not only reduces the input dimension of
the data samples, but also effectively organizes and clusters
the samples in the low dimensional map to reduce the size
of representative samples1. However, there main issues ex-
ist for the algorithm: first, because Isomap has distortions
on local property, ISOSOM also has distortions. Second,
because the computational complexity of Isomap, the algo-
rithm can only handle a middle scale of data set (less than
20,000 generally). It is nearly intractable for the algorithm
to learn a large scale data set.

The main challenges of learning a concise, organized
manifold representation of a large scale, non-convex, high
intrinsic dimension, complex manifold are the following:
†Computation complexity: Most of the algorithms become prac-
tically intractable if the sample size is larger than twenty thousand,
which might not be enough to learn the complex, large scale data
set such as the data set for hand pose estimation.
†Accuracy: Most of the algorithms introduce some global or local
distortion. For example, LLE is susceptible to placing faraway
points nearby to each other and Isomap has problem with non-
convex manifolds.
†Sampling problem: Isomap and LLE assume the data are “well-
sampled”, but the global smoothness condition is a strong assump-
tion for some sparse sampled data sets.
†Invertibility problem: The objective is to calculate the high di-
mensional coordinates in the input sample space of any point on
the low-dimensional manifold to make the mapping invertible.
†Organized representation: An effectively organized structure
is useful for the further tasks such as recognition, fast indexing or
tracking [11].

1The main point is that the scale of the final representation should be
decided by the complexity of the manifold and the required accuracy in-
stead of the scale of the training samples.

In this paper, we propose a Hierarchical ISOmetric Self-
Organizing Map (H-ISOSOM) to address the problems
mentioned above. The main contributions of the paper are
the following: first, we present an modified-ISOSOM (M-
ISOSOM) algorithm with a local linear interpolation (LLI)
technique for better accuracy. LLI constructs a mapping
from low to high dimensional space and makes the whole
mapping pseudo-invertible. Since it preserves local and
global geometric relations simultaneously, the M-ISOSOM
is more accurate than the nearest neighbor technique of the
previous ISOSOM. Second, due to the computational com-
plexity limitation of Isomap, ISOSOM or M-ISOSOM is
incapable to learn large scale data sets. We propose an hi-
erarchical version of the M-ISOSOM to address two com-
plexity problems: the computational complexity, and the
manifold complexity 2 for better accuracy. H-ISOSOM
follows a coarse-to-fine strategy to build the mapping be-
tween the high dimensional input space and the low dimen-
sional space. According to coarse global structure, it “un-
folds” the manifold in the coarse level and decomposes the
sample data into small patches, then iteratively learns the
nonlinear sub-manifolds. Consequently, for a very com-
plex nonlinear manifold, H-ISOSOM divides it to small
patches, each small patch is less complex and makes the
algorithm more accurate, effective and trackable for large
scale data set. Third, we compare the performance of SOM
and GHSOM with ISOSOM and HISOSOM on five dif-
ferent kinds of manifolds, reporting quantitative measure-
ments of signal-to-noise ratio (SNR), mean quantization er-
ror (MQE), and the standard derivation of quantization error
(STDQE). These experimental results show that our algo-
rithm outperforms SOM and GHSOM.

Finally, we apply H-ISOSOM to exemplar-based pose
estimation problem [1]. The hand gesture images can be
approximate as a high dimensional manifold embedded in
the visual input space, which twists significantly depending
on the viewpoint, the hand shape, self-occlusion, geometry,
and the lighting condition. The manifold learning algorithm
not only requires high discriminative ability to distinguish
different hand images with different pose and posture, but
also requires the generative ability to group similar images
together for concise representation in order to reduce the
size of nodes for further retrieval. As Vassilis et al. men-
tioned in [1], the main difficulty of exemplar-based hand
pose estimation is the complexity problem; that is, if the
pose angle accuracy requirement is increased, the size of
the database is exponentially increased 3. The large scale of
the data set is a challenge for further indexing or retrieval
[13] [10]. In such cases, the concise, accurate manifold

2For example, non-convex shapes such as the data samples contain
holes, or shapes with very detailed sharp curvatures locally.

3For example, in the case that the angle interval is 36◦ for each DOF
and the total number of DOF is 24, the number of sample points in the data
set is O((360/36)24). However, if the accuracy requirement is 12◦ , the
number of exemplars in the data set is O((360/12)24) which is O(324)
times greater than the original data set.



Figure 1. The Modified Isometric Self-Organizing Map

representation of the complex, nonlinear, high dimensional
manifold is necessary. H-ISOSOM attempts to reduce the
size of the data set by a hierarchical organized map structure
with relatively small number of nodes.

2. Manifold learning with M-ISOSOM

The objective of M-ISOSOM is to learn the organized
map in a low dimensional lattice for a set of observations by
inverting the following generative model. Let X be a high
dimensional domain in the Euclidian space Rdx . Let Y be
a dy-dimensional domain contained in the Euclidean space
Rdy , where dx � dy . Let fxy : Y → Rdx be a smooth
embedding, where {xi = fxy(yi)} ⊂ Rdx . Let Z be a
dz dimensional lattice (normally the dimension is two) con-
tained in the Euclidean space Rdz . Let fyz : Z → Rdy be
an exemplar-based embedding represented (encoded) by the
vector associated with each node, where {yi = fyz(zi)} ⊂
Rdy . The objective of M-ISOSOM is to learn the organized
map in the low dimensional lattice Z of dimension dz from
the samples in high dimensional space X of dimension dx

through the intermediate space Y of dimension dy , where
dx � dy ≥ dz .

2.1. M-ISOSOM

We modify Guan’s ISOSOM algorithm [5] with the lo-
cal linear interpolation techniques to take both global and
local relationships into account and make the whole map-
ping pseudo-invertible. The intuitive depiction of the M-
ISOSOM is illustrated in Figure 1.

The learning process of the M-ISOSOM algorithm con-
tains three main steps: First, we construct a distance graph
G of the manifold over all data points in input space X . The
graph takes all points as nodes and adds an edge between
two nodes i and j if i is one of the k nearest neighbors of

j. The cost of the edge is measured by the Euclidean dis-
tance between i and j. The distance of any two nodes on
the graph is defined by the cost of the shortest path between
them. The low dimensional embedding Y and f−1

xy is con-
structed by the classic MDS algorithm based on the distance
graph as in the Isomap algorithm (see Alg. 1, Part (I)). This
step focuses on the global relationships of the data samples
and encodes it to the dimensional embedding.

The second step is the exemplar learning and organiza-
tion by the SOM algorithm. The data samples in the inter-
mediate space Y are used as the training samples to train
the organized structure. Similar to the map structure of
SOM, the M-ISOSOM map is a lower dimensional lattice,
A, formed by a set of organized processing units, called
nodes. The nodes are connected with their neighbors on
the lattice. Each representative ai is labeled by an index
i ∈ {1 . . . size(A)} and has reference vectors Yai attached.

In each M-ISOSOM training step, we randomly choose
a sample vector y from the training samples, and the re-
sponse of a representative to the vector y is determined by
the comparisons between y and the reference vector Yai of
each representative with the geometric distance defined by
the distance graph. The Best Matching Unit (BMU) is de-
fined as the winner representative ai which has its reference
vector Yai closest to the given input y. After obtaining the
BMU, its prototype vectors Yai and its topological neigh-
bors are updated and moved closer to the input vector y.

Isomap maps a set of points from the high dimensional
space X to a set of points in the low dimension space Y .
For each sample point in X , there is a point in Y corre-
sponding to it. After SOM training, the associate vector Yai

of each representative is the new point in Y space gener-
ated by SOM iterative training. We need its corresponding
point Xai in the high dimension space X . Since Isomap is a
nonlinear dimension reduction techniques, it is hard to find
the exact inverse mapping. Thus, we approximate its corre-
sponding points in the original space X by the local linear
interpolation (LLI) algorithm (see Alg. 1, Part (III)).

The LLI algorithm (see Alg. 2) is motivated by the idea
of LLE [9], but the objective of LLI is to project the points
from the low dimensional space Y to the high dimensional
space X rather than reducing the dimensionality.

Given a query vector with full components or partial
components with the mask w, the best match nodes are re-
trieved by the following similarity measurement:

BMU = argmin
∀a∈A

Distance(w(xa), w(x)) (1)

where w(xa) is the mask function defined by W represent-
ing the existing components.

2.2. Performance comparisons of SOM, ISOSOM
and M-ISOSOM

To validate the effectiveness of M-ISOSOM, we com-
pare the performance of SOM, previous ISOSOM [5] and



Algorithm 1 The Isometric Self-Organizing Map
(I) Nonlinear dimension reduction using Isomap The data samples in the
high dimensional input space X are mapped into to the low dimensional
intermediate space Y , and the mapping, f−1

xy : X → Rdy , is learned by
the Isomap algorithm.
(II) Clustering and organization using SOM The data samples in the
intermediate space Y is used for the SOM training and the mapping, f−1

yz :

Y → Rdz is learned by the SOM algorithm. The associate vector of each
nodes, Yai , is a new sample in the low dimension Y space.
(III) Local linear interpolation Xai , the inverse mapping point of Yai ,
is approximate by the local linear interpolation of x1, ..., xk , which are
the inverse mapping of y1, ...yk, the effective nearest points of Yai . The
mapping fxy : Y → Rdx is learned by local linear approximation.
(IV) M-ISOSOM Retrieval In the retrieval stage, the best matching unit
(BMU) is the closest representative on the M-ISOSOM map to the query
vector.

Algorithm 2 The Local Linear Interpolation
(I) Effective neighbors For each point described by the learned Isomap
representative vector, and each point from the original point set in low
dimension Y space, their K effective neighbors are identified by choosing
the nearest points from the original point set in Y space (The neighbors
which comes from the new nodes on the map are not effective neighbors).
(II) Local weight The weights for all points is calculated by minimizing
the reconstruction errors given in Eq. 2:

ε(W ) = |−→Yi −
K�

j

Wij
−→
Yj |2 (2)

where
−→
Yj ∈ the effective neighbor set, and

�
j Wij = 1. The error

function adds up the squared distance between all the data points and their
effective reconstructions.
(III) Reconstruction We use the weights to reconstruct a point on the map
by its effective neighbors’ corresponding points in X space,

−→
Xi =

K�

j

Wij
−→
Xj (3)

M-ISOSOM results using five different data sets: a non-
convex roll surface data set A, a roll surface data set B with
intersections, a roll surface data set C, an open box data set,
and a fishbowl data set. The roll surface data sets A and B
are constructed by a group of functions with different para-
meters. The open box data set are constructed by the five
flat sheets. The fishbowl data set are constructed by a part
of 3D sphere and a flat disc.

We use three parameters to measure the learning perfor-
mance: mean quantization error (MQE), signal-to-noise ra-
tio (SNR) (see Eq. 4-6 4), and standard derivation of quan-
tization error (STDQE), which is the standard derivation
from the testing samples to its BMU.

The comparisons of SOM and M-ISOSOM with the
same training data sets are shown in Table 1. The two al-
gorithms are tested with the same five data sets. The test-
ing sample sizes of these five data sets are around 3295-

4SNR (dB) is calculated by the following equations:

SNR=10 lg(Signal Power/Noise P ower) (4)
Signal P ower=1/N

�
i‖xi−x‖2, where,x=1/N

�
ixi (5)

Noise Power=1/N
�

i‖xi−xBMU ‖2, where,xBMU = BMU of xi (6)

For every testing data point, the noise error is the Euclidean distance be-
tween itself and its best matching unit (BMU) in the map.

3300. The training results of the map size is around 285-
294. The lattices of SOM and ISOSOM are hexagonal.
Generally, more nodes have a greater ability to represent the
map accurately. In order to verify that M-ISOSOM is better
than SOM, we guarantee that the map sizes of SOM are all
slightly greater or equal to the map sizes of M-ISOSOM.
According to our experiments, different initializations of
SOM have very slightly effects on the results and could be
neglected.

SOM utilizes the Euclidean distance as measure function
in the original data set space. M-ISOSOM utilizes the geo-
metric distance defined by the distance graph of Isomap. An
inspection of (larger versions of) the figures of the learned
maps in Table 1 shows that the SOM map does not follow
the roll surface and has lots of interpolation between the
roll surface gaps. Thus, the SOM map doesn’t represent the
training data well. At the same time, the best matching unit
(BMU) of the SOM map can not represent the testing data
samples accurately. On the contrary, the M-ISOSOM map
follows the roll surface nicely and represents the training
or testing data set well. This intuition is also verified by
the quantitative measurements: the MQE of M-ISOSOM
are smaller than the MQE of SOM for all five data sets.
The SNR of M-ISOSOM are greater than SOM for all five
data sets. The STDQE of M-ISOSOM are also smaller than
SOM for the first four data sets; for the fishbowl data set,
the STDQE is slightly larger for M-ISOSOM. The com-
parison results also show that M-ISOSOM is very good at
Swiss Roll-like surfaces, such as A and C, for which the per-
formance differences between M-ISOSOM and SOM are
greater than the other cases. Roll Surface B has intersec-
tions and M-ISOSOM has more distortions in calculating
the distance graph than A and C.

We also compare the performance of previous ISOSOM
[5] and M-ISOSOM. The results shows that the SNR of M-
ISOSOM is 0.557dB better than the previous ISOSOM on
average for the five data sets with training samples contains
holes.

One of the objectives of our manifold learning is that we
not only want to accurately represent the map with a limited
number of organized nodes, but we also want to do interpo-
lations on this organized map in order to obtain better accu-
racy with the same set of training samples 5. The map inter-
polation ability of SOM and M-ISOSOM are compared in
Table 2. For ease in implementing the interpolation, the lat-
tices of SOM and M-ISOSOM are rectangular. We do four
times interpolation scale for the first three data sets and two
times interpolation scale for the open box and fish bowl data
sets. Compared with Table 1, the results show that the inter-
polated maps are more accurate than the non-interpolated
maps. In general, the interpolated M-ISOSOM maps are
more accurate than the interpolated SOM maps.

5Such property is very crucial for hand pose estimation, when it is in-
tractable to generate the data set with small viewpoints intervals, we hope
the algorithm has the interpolation ability to approximate it in finer level.



Table 1. SOM vs. M-ISOSOM
Roll Surface A Roll Surface B Roll Surface C Open Box Fish Bowl

SOM

M-ISOSOM
SOM(MQE) 0.1101 0.1048 0.1223 0.0652 0.1086
M-ISOSOM (MQE) 0.0774 0.0851 0.0878 0.0616 0.0936
SOM (SNR) 15.0924 13.1661 14.4780 18.6338 18.1267
M-ISOSOM (SNR) 17.9543 15.1709 17.0674 18.9520 18.8602
SOM (STDQE) 0.0689 0.0660 0.0748 0.0375 0.0562
M-ISOSOM (STDQE) 0.0535 0.0493 0.0601 0.0390 0.0622∗

Table 2. SOM vs. M-ISOSOM with interpolation
Roll A Roll B Roll C Open Box Fish Bowl

SOM(MQE) 0.0910 0.0909 0.1023 0.0485 0.0869
M-ISOSOM (MQE) 0.0512 0.0591 0.0682 0.0433 0.0640
SOM (SNR) 16.0916 13.8285 15.5631 20.4134 19.6408
M-ISOSOM (SNR) 19.3687 18.0018 16.1853 20.7378 20.8217
SOM (STDQE) 0.0728 0.0700 0.0744 0.0375 0.0547
M-ISOSOM (STDQE) 0.0614 0.0653 0.0547 0.0402∗ 0.0628∗

Intrinsically, M-ISOSOM utilizes the global geometric
distance and the local relationship to perform the nonlinear
dimension reduction. The global geometric distance is de-
fined by the metric relationship between the training sam-
ples and preserves the relationship of the samples in high
dimension space. In the SOM learning process, this geo-
metric relationship is also preserved in the ISOSOM map’s
organized structure, where similar nodes are closer to each
other in the grid than dissimilar ones. The local linear in-
terpolation preserves the local details and improves the al-
gorithm accuracy. Above all, ISOSOM preserves the spa-
tial relationships in high dimensional input space X to the
low dimensional ISOSOM lattice map Z , and follows better
the topology of the underlying data set than SOM. In addi-
tion, the organized map of ISOSOM discretely represents
the manifold by exemplars, which to some extent relaxes
the global smoothness constraints of Isomap and LLE.

3. Hierarchical-ISOSOM

3.1. H-ISOSOM

Due to the computational complexity of ISOSOM and
M-ISOSOM, they cannot handle large scale data sets (for
example, more than one million training samples). In or-
der to solve this problem, we present a hierarchical version
of M-ISOSOM. The intuitive depiction of the Hierarchical-
ISOSOM is illustrated in Figure 2. H-ISOSOM aims to
defuse the computation complexity problem for large scale
data sets, to improve the accuracy, and to construct a hierar-
chical structure for the fast retrieval or indexing.

Hierarchical algorithms can be either divisive or agglom-
erative, i.e., top-down or bottom-up. Divisive hierarchical
algorithms begin with the coarsest possible partition and
split groups apart step by step. Alternatively, agglomerative
hierarchical algorithms, which are widely used in cluster-
ing, start from the finest possible structure (each data point

Figure 2. The Hierarchical Isometric Self-Organizing Map
forms a cluster) and merge together at different levels by a
certain criterion. We adopt the divisive strategy.

The complexity of the Isomap is O(N3) (where N is the
size of the training sample) 6. The complexity for SOM is
O(NMD) 7. Both of them have difficulties if the train-
ing sample size is more than 20,000. In order to make the
training of large scale data sets tractable, H-ISOSOM fol-
lows a coarse-to-fine strategy. Let Nmax be the upper limit
of the sample size that the algorithm of O(N3) complexity
can handle in practice. H-ISOSOM (Alg. 3) first randomly
samples the whole data set and obtains the subset with m
samples, where m < Nmax, to train the first layer of the H-
ISOSOM map using the M-ISOSOM algorithm. After that,
for each representative on the map, it collects the training
samples from the original data set and sub-samples them to
train the next layer. The algorithm iteratively trains the sub-
maps with M-ISOSOM until a certain criterion is reached.

The criteria used in the paper are the mean quantization
error (MQE) and signal-noise-ratio (SNR) between the map
representative data set Smap and the training sample data
set Strn. MQE is the average distance of each sample in the
data set Strn to its nearest points in the map data set Smap

6Even for Landmark-Isomap algorithm, with the complexity of
O(n2N) and the tradeoff between the complexity and distortion, the com-
plexity still intractable for the complex, large scale data set.

7where N is the number of training samples, M is the number of the
nodes, and D is the dimension of the input space.



(the quantization error).
In the retrieval stage, given the input data, H-ISOSOM

retrieves the top k BMUs, and continues to find the refined
best match results in the next layer until the last layer is
reached. Then it reorders all the retrieved nodes from the
hierarchical structure according to the distance metric to ob-
tain the final BMU set.

Algorithm 3 The Hierarchical ISOSOM
(I) Sampling (O(N)) If the number of the current data set, DScur , in
the high dimensional input space X is larger than Nmax, the algorithm
randomly sample a small training data set, DStrn, with Nmax number of
training data; or else, the algorithm take the whole data set as training data
set.
(II) ISOSOM training (O(N3)) Given the training data set, DStrn, with
m number of data samples, where m < Nmax, the ISOSOM map of
current layer, mapcur , is trained.
(III) Criterion Judgment (O(N) or O(N2)) For each trained ISOSOM,
mapcur , the MQE and SNR between the current data set, DScur , and the
trained map, mapcur , are measured. If the criterion is satisfied (for exam-
ple, MQE is less than a threshold or/and SNR is greater than a threshold),
the algorithm stops iterative dividing. If not, for each node in current ISO-
SOM map, mapcur , the algorithm continues to collect the samples for the
next layer from the current data set, DScur . The next layer data collection
algorithm for each node is the following: for each sample from the current
data set, DScur , find it’s BMU in the current ISOSOM map, mapcur ,
and labeled the sample to it’s BMU, the data samples for each node in the
next layer are all the samples whose BMU is this node. The algorithm
then repeats step (I) and (II) to iteratively trains the ISOSOM map in the
following layers until the certain criterion is reached or the number of the
training samples in the finer layer is less than a fixed number.
(IV) H-ISOSOM Retrieval (O(logN ′)) For a H-ISOSOM map with N ′
nodes, we find the k number of BMU in the first level, the retrieval iter-
atively search on the sub-layers associated with retrieved nodes until the
finest layer is touched. Then, all the retrieved nodes are reordered and the
top k BMU set is obtained.

According Alg. 3, H-ISOSOM will reduce to M-
ISOSOM if the size of the data sample is tractable for M-
ISOSOM and the criterion is large enough. The criterions
used in H-ISOSOM indicate how well the map fits the train-
ing data. With the criterions, the algorithm can provide a
concise representation of a large-scale training data set.

3.2. GHSOM vs. H-ISOSOM

In this section, we compare the performance of two hi-
erarchical nonlinear clustering algorithm, GHSOM and H-
ISOSOM. Generally, although GHSOM and H-ISOSOM
are hierarchical algorithms, they are intrinsically different
in two main aspects. First, the objective of GHSOM is to
retrieve the hierarchical structure of the data with accuracy.
H-ISOSOM seeks to handle the large scale data sets that
ISOSOM cannot handle in practice. Second, the structures
of the two algorithms are different. GHSOM starts from a
single unit, splits to a 4-unit map, and iteratively splits until
the criterion is reached. H-ISOSOM starts from the global
coarse structure of the data (a large map) and then refines it
in the following layers.

The comparisons of GHSOM and H-ISOSOM with the
same training data sets are shown in Table 3. The two al-

Table 4. GHSOM vs. H-ISOSOM with interpolation
Roll A Roll B Roll C Open Box Fish Bowl

GHSOM(MQE) 0.0407 0.1501 0.1277 0.0525 0.0824
H-ISOSOM (MQE) 0.0156 0.0283 0.0221 0.0148 0.0482
GHSOM (SNR) 19.5035 9.4517 11.8738 18.1149 17.9299
H-ISOSOM (SNR) 27.4414 22.4388 25.4192 26.2211 22.5248
GHSOM (STDQE) 0.1820 0.1159 0.1454 0.0607 0.0943
H-ISOSOM (STDQE) 0.0274 0.0317 0.0136 0.0279 0.0599
GHSOM (# of nodes) 303, 102 180, 768 172, 860 268, 468 36, 708
H-ISOSOM (# of nodes) 300, 198 167, 947 173, 708 228, 749 28, 324

gorithms are also tested with the same five data sets. The
training results of the node map size are shown in the table.
The lattices of GHSOM and H-ISOSOM are rectangular. In
order to verify that H-ISOSOM performs better than GH-
SOM, we guarantee that the node sizes of GHSOM are all
slightly greater or equal to the node sizes of H-ISOSOM.
Both the GHSOM map and the H-ISOSOM map are two-
layer structures.

Compared with Table 1, the performance of GHSOM
and H-ISOSOM are better than that of SOM and ISOSOM.

From the structure point of view, GHSOM starts from a
single “virtual” node and iteratively divides (splits) the map
according to the MQE criterion in the sublayer. H-ISOSOM
follows a global coarse-to-fine strategy with distance graph
of Isomap and refines the local accuracy by ISOSOM. In-
tuitively, H-ISOSOM is better able to follow the data man-
ifold, which is also shown in Table 3, where GHSOM still
interpolates in the gaps between the roll, while H-ISOSOM
follows the surface nicely. The quantitative data also ver-
ifies that H-ISOSOM generally performs better than GH-
SOM.

In addition, for the open box and fish bowl cases, H-
ISOSOM handles the rims much better than M-ISOSOM.
According to the algorithm of H-ISOSOM (Alg. 2), for
each node on the first layer of the H-ISOSOM, it re-gathers
the nearby samples (all the samples whose BMU is this
node) and re-trains the sub-layer M-ISOSOM. This proce-
dure greatly helps the learning on the rims.

Table 4 shows the interpolation results of the GHSOM
map and H-ISOSOM. It shows that H-ISOSOM follows the
data manifold much better than GHSOM, so the interpo-
lation results are more accurate than GHSOM. The rea-
son is that M-ISOSOM utilizes nonlinear reduction tech-
niques with geodesic distance instead of Euclidean distance
to measure the manifold structure.

Finally, we test the computational complexity of H-
ISOSOM algorithm on the large scale data sets with more
than one million training samples. Such large scale data
sets are intractable for ISOSOM or M-ISOSOM. Table 5
shows the learning performance of three layer H-ISOSOM.
It shows that H-ISOSOM follows the coarse-to-fine strat-
egy nicely and it can approximate the training samples and
represented them nearly perfectly, provided enough layers
in the structure and enough nodes.



Table 3. GHSOM vs. H-ISOSOM
Roll Surface A Roll Surface B Roll Surface C Open Box Fish Bowl

GHSOM

H-ISOSOM
GHSOM(MQE) 0.0329 0.0553 0.0547 0.0346 0.0741
H-ISOSOM (MQE) 0.0323 0.0517 0.0435 0.0282 0.0545
GHSOM (SNR) 25.1429 18.8966 21.2024 23.6207 21.1413
H-ISOSOM (SNR) 25.1251∗ 19.1739 23.0723 25.7078 23.8273
GHSOM (STDQE) 0.1820 0.1348 0.0371 0.0294 0.0447
H-ISOSOM (STDQE) 0.0256 0.0341 0.0307 0.0248 0.0326
GHSOM (# of nodes) 2217 1158 1307 1762 981
H-ISOSOM (# of nodes) 2211 1151 1294 1739 974

Table 5. H-ISOSOM with three layers
H-ISOSOM Roll A Roll B Roll C

training sample size 1, 000, 000 7, 363, 381 2, 000, 001

L1(MQE) 0.1126 0.0911 0.1121
L2(MQE) 0.0067 0.0089 0.0067
L3 (MQE) 0.0012 0.0016 0.0011

L1 (SNR) 14.8667 14.5895 15.0211
L2 (SNR) 39.1014 32.7398 39.1653
L3 (SNR) 53.8508 41.6249 54.9354

L1 (STDQE) 0.0732 0.0520 0.0745
L2 (STDQE) 0.0048 0.0094 0.0050
L3 (STDQE) 8.8806e − 4 0.0044 7.9719e − 4

L1 (# of nodes) 156 258 195
L2 (# of nodes) 39, 118 67, 076 50, 529
L3 (# of nodes) 945, 250 3, 052, 340 1, 499, 956

4. 3D hand pose estimation using H-ISOSOM

We apply the H-ISOSOM algorithm to the problem of
3D hand pose estimation. The main challenge for hand
pose estimation is that the mapping from hand angle space
to hand image feature space is a many-to-many nonlinear
mapping. In order to unfold the significantly twisted man-
ifold due to the viewpoint twists and other twists caused
by image formulation or feature extraction, we combine the
ground truth of the hand configuration and the viewpoint
parameters together with the image feature representation to
learn the manifold. Generally speaking, in this way, we con-
vert the supervised learning problem to unsupervised learn-
ing by learning the joint distribution between both the input
(image features) and the target (hand configurations with
camera view points) information 8.

Another main challenge is that if we generate a synthe-
sized data set with a small viewpoint sampling interval, the
size of the data set will exponentially increase. H-ISOSOM
thus is used to handle the large scale data set which is in-

8Given a hand image, due to many-to-many mapping property, there
exist many hand configurations with different hand postures. The algo-
rithm should output all those correct configurations. M-ISOSOM with top
N retrieval is a suitable solution for such problem.

tractable to M-ISOSOM. The Correct Retrieval Rate curve
generally will decrease greatly for a large dense data set
compared with small sparse data set. The Recall-Precision
curve will also decrease if the feature’s discriminative abil-
ity is not strong enough to distinguish the small viewpoint
changes, and even worse if the feature has no distinguishing
ability for different gesture or viewpoints.

In the experiments, we generated a synthesized hand im-
age data set with 15 gestures; each gesture is sampled from
15376 viewpoints from a 3D view sphere (the viewpoint
interval for each DOF is 12◦). In the experiment, instead
of focusing on feature extraction, we aim at improving the
retrieval accuracy given a commonly used feature, Hu mo-
ments.

First we test the algorithms with another dense synthe-
sized data set, whose pitch and yaw camera viewpoint is
sampled at 8◦ intervals. Figure 3 shows the hand images
randomly picked up from the testing dataset. The size for
the testing data set is 861 for each gesture; Hu moment
features are computed, which are in-plane rotation invari-
ant (corresponding to the roll parameter of the camera).
We compare the performance of the H-ISOSOM, GHSOM,
SOM, and K-Nearest Neighbor for pose estimation with a
single gesture. The Recall-Precision Graph of the “pick”
gesture is shown in Figure 4. The correct retrieval rate chart
for the same gesture with the same training results is shown
in Figure 5. The percentage of correct retrieval is calcu-
lated this way: for a given N number of top matches, if the
viewpoint angle parameters are within 15◦ of the ground
truth, it is considered to be correctly retrieved. All 861 test
samples are tested and the percentage of correct retrieval is
calculated 9. Both Figure 4 and 5 show that H-ISOSOM

9In most retrieval applications only the first N retrievals are considered,
regardless the size of the data set. Such information is not easy to deduce
from the Recall-Precision graph. For the hand pose estimation problem,
for example, only the first 100 retrievals might be needed for the further



Figure 3. The hand images for the “pick” gesture
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Figure 4. The Recall Precision graph for the “pick” gesture
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Figure 5. The Correct Retrieval Rate Chart for the “pick” gesture

performs better than GHSOM 10, SOM 11, and a K-nearest
neighbor (K-NN) algorithm.

analysis.
10The size of the GHSOM map is around 6000, which is slightly larger

than the size of the H-ISOSOM map
11The size of SOM is 3577, which is much larger than the default map

size given the data set. It is also the largest map we can obtain with our
PC. From the intuition during the test experiments with different map size
for SOM, even the map size could be enlarged further, the performance is
not going to increase any more.

5. Conclusion

We have presented the H-ISOSOM algorithm for the
concise representation of the nonlinear manifold. We
mainly address two issues: the computational complex-
ity and accuracy problem of the complex, highly twisted,
large-scale, nonlinear manifold learning. We verified the
accuracy and effectiveness of H-ISOSOM quantitatively by
three parameters: MQE, SNR and STDQE on five stan-
dard and challenging synthetic data sets. We also applied
it to hand pose estimation. The experiments show that H-
ISOSOM generally outperforms GHSOM and SOM.
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