
The Hierarchy of LR-Attributed Grammars

Rieks op den Akker

Department of Computer Science, University of Twente

P.O. Box 217, NL-7500 AE Enschede, the Netherlands

e-mail: infrieks@ cs.utwente.nl

Bo~rivoj Melichar

Department of Computers, Czech Technical University
Karlovo n,~atstf 13, 121 35 Prague, Czechoslovakia

Jorma Tarhio

Department of Computer Science, University of Helsinki

Teollisuuskatu 23, SF-00510 Helsinki, Finland
e-mail: tarhio@cs.Helsinki.fi

Abstract

The problem of attribute evaluation during LR parsing is considered.
Several definitions of LR-attributed grammars are presented. Relations of
corresponding attribute grammar classes are analysed. Also the relations
between LR-attributed grammars and LL-attributed grammars and
between LR-attributed grammars and a class of one-pass attributed gram-
mars based on left-corner grammars are considered.

1. Introduction

In one-pass compilation, based on an attribute grammar, parsing and semantic analysis have

been merged so that all attributes are evaluated in conjunction with the parsing process. The

advantages of this approach become apparent in time and space efficiency, because the

derivation tree need not be stored. Moreover, attribute values may be used to solve parse
conflicts. As might be expected, the class of grammars suitable for one-pass compilation is

restricted in semantical sense, but it is, however, large enough from the practical point of

view.
In one-pass compilation, the evaluation strategy depends on the parsing method used,

because the order in which the productions are recognized affects .the evaluation order. For
example, LL parsing allows a full top-down evaluation traversal (a depth-first, left-to-right
walk through a derivation tree), but LR parsing allows only a bottom-up traversal, in which

every node is visited once. This may suggest that it would be possible to evaluate more attri-

bute grammars during LL parsing than during LR parsing, though LL grammars are syntacti-

cally a subclass of LR grammars. However, Brosgol [Bro74] shows how LL parsing can be

simulated in LR parsing, and therefore it is possible to evaluate in conjunction with LR

14

parsing every attribute grammar that can be evaluated during LL parsing.

S-attributed grammars [LRS74] having only synthesized attributes can be evaluated in a

natural way during LR parsing. In principle, it is possible to describe with mere synthesized

attributes the same translations as with inherited and synthesized attributes [Knu68], but this

can lead to unreadable and very complicated semantic rules and complicated data structures

as attribute value domains. Thus in practice, it is necessary to have inherited attributes or

some alternative formalism for inherited information.

Evaluation of inherited attributes is a problem during LR parsing because of insufficient

information of the upper part of the derivation tree. Several strategies have been proposed to

deal with this problem, starting from the pioneering work of Watt [Wat77]. So there are

several algorithms for the attribute evaluator and its construction. Methods for one-pass (i.e.

parse time) evaluation of attribute grammars based on LR grammars can be classified as fol-

lows: the class of attribute grammars covered, the construction of the evaluator and ease of

implementation. Unfortunately, the variant methods are described in different formalisms and

so it is sometimes difficult to compare them.

Section 3 of this paper presents a more precise definition of attribute evaluation during

parsing. In section 4 attribute grammar classes are defined for all known evaluation strategies

during LR parsing. In section 5 we will compare the classes of LR-attributed grammars

covered by the definitions presented in the preceding sections. Section 6 considers the class

of LC-attributed grammars, one-pass attributed grammars based on left-corner grammars.

Basic concepts and notations are presented in the following section.

2. Basic concepts and notations

This section presents some basic concepts and notations concerning LR parsing, attribute

grammars and evaluation of attributes during LR parsing.

2.1. Parsing

We introduce basic concepts of LR parsing following mainly Aho et al. [ASU86] and Aho

and Ullman [AhU72]. We denote a context-free grammar by a four-tuple G = (N, Z, P, Z).

The sets N of nonterminals and Z of terminals form the vocabulary V =N L) Z. Elements of V

are called grammar symbols and they are denoted by roman capitals at the end of the alpha-

bet. A, B denote elements of N. The letters a, b denote elements of Y., and u, v and w

denote elements of Z*. Greek letters a, 13, • • • are used to denote the elements of V*, the set

of strings over V. The symbol e denotes the empty string. P ~ N x V* is the set of produc-

tions. A production p ~ P is written X --~ o~, where X e N is called the left-hand side o f p and

a a V* is called the right-hand side of p. The symbol Ze N is the start symbol which has

only one production and which does not appear on the right-hand side of any production. We

assume that every grammar is reduced, i.e. V does not contain useless symbols and P does not

contain useless productions.

The derivation relation ~ is defined as follows. For any a , 13 ~ V*, a ~ 13 if a = T1A ~/2,

13='hYoY2 andA --->Toe P where A ¢ N and YO,Tl,Y2 ~ V*. If ~t2 ¢ Z* we write a ~ r m ~ . If
a ~r*ra 13, we say that 13 is obtained by a rightmost derivation from cx (=:~* denotes the

reflexive and transitive closure of the relation ~) . Strings in V* obtained by a rightmost

derivation from the start symbol Z are called right sententialforms. A sequence p 1,P2 Pk

of productions is called a right parse of 13 to a in the grammar G, if 13 is obtained by a

15

rightmost derivation from o~ by applying the productions in the reverse order. The set of ter-

minal strings derived from the start symbol Z is denoted by L (G).

A nonterminal A is left-recursive if A ~+r,nA cX for some cxe V*. If for some A e N there is a

derivation A ~ A let 1 ~ --" ~ A n ~ n "'" ~l,(n > 1) with An =A, then the productions

A i --~ Ai+ 1 ¢ti+ I are called left-recursive productions of the grammar.
The derivation tree for a terminal string w e L (G) is a finite ordered tree in which every node

is labeled by X e V o r b y e. If a node n labeled as X has sons n l , n 2 nra labeled as

X 1 ,X2 X m, then X --~ X 1 "" "Xm must be a production in P. The labels 05 the leaves of the

tree for w, concatenated from left to fight, form w.

We define the setFirstk(y) f o r y e V*, as follows (the length of a string o~e V* is denoted

by I=1): Firstk(T) = { x e Y~* I y=:~* x tx and Ix [=k or y ~ * x and Ix I < k}.

Definition 2.1 We say that G is an LR (k) grammar, k > O, if the three conditions

(1) Z ~ m ~ A W ~ r m a ~ W ,

(2) Z ~ r n ' t B x ~rm fx~y, and

(3) Firstt:(w)=Firstk(y)

imply that aAy = TBx.

A production A ---> 1~ of G is said to satisfy the LR (k) condition if the conditions (1), (2) and

(3) above always imply ctAy =TBx.

An LR parser is an algorithm that produces for an input string its fight parse to the start

symbol or reports an error if the string is not in L(G). An LR parser scans the input from left

to fight without any backtracking. We use the following model for an LR parser. The parser

has an input buffer, aparsing stack and aparsing table. The input in the buffer consists of the

string to be parsed followed by the endmarker $. Initially, the stack is empty. For evaluation

purposes we assume that the parsing stack is implemented as an array, i.e. we can access

every element of the stack. At any moment of parsing, the sequence of grammar symbols tx

on the stack and the input w not yet consumed form a fight sentential form ctw of G. The pair

(ix, w) is called a parsing situation. Besides the grammar symbols, an LR parser places spe-

cial state symbols on the stack. The next move of the parser is determined by the next k sym-

bols of the current input and the state symbol on the top of the stack. Information concerning

the move to be made is stored in the parsing table, which consists of two parts: an action table

and a goto table. The move can be one of the four types:

1. Shift. The current input symbol is shifted and pushed on the stack and the state symbol

determined by the goto table is placed on the top of the stack.

2. Reduce by a production A --->cx. First 2 x [tx I symbols are popped off the stack. The

goto table gives the next state symbol s according to the state symbol on the top of the

stack and the nonterminal A. The nonterminal A and the symbol s are pushed on the

stack.

3. Accept. Parsing has been completed successfully.

4. Er ror . The input string does not belong to L (G), An error recovery routine is called.

We give the construction of the LR(k) parsing table for a given cfg G.

An LR(k) item of a context-free grammar G is [A--->tx ,13, u] where A ~o~1] is a rule of G and u

is a lookahead string. Its first component A--->O~oI3 is called the core of the item.

The closure of a set of LR(k) items I is a set of items CLOSURE (I), defined as follows:

1. Every item in I is in CLOSURE (I).

16

2. If [A---}a.B~,u] is in CLOSURE (1), B--)~l is a rule of G and v is in First;:(~u), then add

the item [B---).'t,v] to I, if it is not already there. We say that the latter item is directly

derived from the item [,4---)(x.B I~, u].

The set of items GOTO(I,X) for a set of items I and a grammar symbol X is defined to be the

closure of the set of all items [A--->txX.~J,u] such that [A--->o~.X~J,u] is in L The set of all

items [A---~txX ° [~, u] is called BASIS of GOTO (I, X).
Using CLOSURE and GOTO operations, the collection of sets of LR(k) items,

{ I o I 1 In}, is constructed starting from the initial set of LR(k) items,

Io=CLOSURE([Z'---~ .Z, el). These sets Ij correspond to the states of the LR(k)-automaton.

The state symbols of the LR parser represent these states. Notice that every item in

I=CLOSURE (BASIS (I)) corresponds to the last element of a sequence

AO---)o~.AI~I. A1---~.A2~2 An_l--~.An~n, where A0.--)o~.A 1~1 is the core of an item in
BASIS (t).

The action table f i s computed as follows:

1. f (I , x)=sh i f t i f an i t em[A- -4o t . a~ ,u] i s in se t l andx~Fi r s t k (a~u) ,a~ Y.,

2. f (I , x) = reduce A---)~ if an item [A~c~°,x] is in set/,

3. f (/, e)= accept if item [Z ' ~ Z . , e] is in set I,

4. f (I, x)= e r ro r in all other cases.

The goto table g is defined as follows:

1. g (/, X)---J if GOTO (I, X)--J,

2. g (/, X)= er ror if GOTO (I, X)---O.

Remark that, if GOTO (I, X) =J and GOTO (I', Y) =J then X = Y. Thus the grammar symbol

leading to some state in the LR automaton is unique for that state. This implies that the gram-

mar symbol need not be stored on the parse stack by the LR parser. This is done however in

order to mark places for storing attribute values associated with these grammar symbols.

For an LR(k) grammar every entry in the parsing table constructed, is uniquely defined.

Besides LR(k), there are two other LR parsing methods, SLR(k) and LALR(k), which can be

implemented with the scheme presented above. The methods use the same parsing algorithm,

but they employ different methods for the construction of the parsing tables. Further informa-

tion can be found in Aho et al. [ASU86].

2.2. Attribute grammars

Our definition of attribute grammars is based on the works of Knuth [Knu68] and Fild [Fi183].

An attribute grammar G over a semantic domain D is a context-free grammar Go augmented

with attributes and semantic rules. A semantic domain D is a pair (f~, O), where f~ is a set of

sets, the sets of attribute values, and • is a collection of mappings of the form

f :V t xV2 x...xVm---)V0 , where m > 0 and Vi ~ f~, 0 ~ i < m.
The set of attribute symbols is denoted by A and partitioned into I a (inherited attribute sym-

bols) and Sa (synthesized attribute symbols). For each attribute symbol b e A, a set V(b)e f~
contains all possible values of the attributes corresponding to b. There is a fixed set of attri-

bute symbols associated with every grammar symbol. An attribute is a pair X.a, where X e V

and a ~ A. We assume that no inherited attribute symbols are associated with terminals and

the start symbol. Attribute sets of each grammar symbol are linearly ordered with the inher-

ited attributes preceding the synthesized attributes.

17

A production p:Xo-->XIX2"" "Xn has an attribute occurrence k.b, O<k <-n, if Xk.b is an

attribute. An attribute occurrence k.b of p is called an input occtirrence, if either b ~ IA and

k =0, or b e SA and k > 0. Otherwise k.b is said to be an output occurrence. For each output

occurrence k.b of p, there is exactly one semantic rule k.b := f (j l .a 1, ...,jm.am), where every

ji.ai is an input occurrence o f p and f i s a function of the form f :V1 xV2 x ...x V,n "--> V 0 in
• such that Vo =V(b) and Vi =V(ai) for 1 <i _<m. When f i s the identity function, the rule is

called a copy rule. When f i s constant, the rule is called a constant rule. There are no seman-

tic rules associated with the input occurrences. We employ also an alternative notation for

semantic rules where attributes are used instead of attribute occurrences:

Xk.b := f (Xjl .al Xj.am). Notice that attribute grammars are in Bochmann normal form.

An attributed tree for a terminal string w is a derivation tree for w, where every node n is

attached with attribute instances which correspond to the attributes of the nonterminal X

which is the label of n. An attribute instance is said to be evaluated when its value has been

computed.

An attribute grammar is L-attributed [LRS74], if for every semantic rule

k.b : = f (j 1 .a 1 jm.a,n) such that b ~ IA, Ji < k for each i=1 m.

3. Evaluation of attributes during LR parsing

What do we mean with evaluation of attributes during LR parsing? An LR parser/evaluator is

a deterministic algorithm which is an extension of a shift/reduce LR parsing algorithm in such

a way that it evaluates all synthesized attribute instances of a node in a (virtual) derivation

tree as soon as it has recognized this node and has parsed the subtree rooted in this node (i.e.

with a reduce action of the parser). Moreover, the LR parser/evaluator also computes all

inherited attributes of this recognized node before it computes the instances of the syn-

thesized attributes of this node. An attribute grammar allows attribute evaluation during LR

parsing if parsing and evaluation is implementable by such an LR parser/evaluator. An attri-

bute grammar which allows attribute evaluation during LR parsing in this sense (which is

rather informal but can be formalized) is called an LR-attfibuted grammar.

Although an LR parser/evaluator can handle a restrictive form of non left-attributedness,

we will only consider L-attributed grammars. In general, in any LR-attributed grammar

semantic rules for inherited attributes of left-recursive nonterminals occurring at the first posi-

tion in the right-hand side of a left-recursive production must be either copy-rules or constant

rules. Moreover, if B --->Act and C --->A ~l are left-recursive productions with constant rules

for some inherited attribute of A, then these rules must be the same.

We will only consider in this paper the case with one symbol of look-ahead. Most

definitions of attribute grammar classes axe easy to generalize for k symbols of look-ahead.

We start with a definition of a class of LR-atwibuted grammars that includes all classes that

will be presented in the following sections. The definition uses the concept of a d-expression

for the evaluation of an inherited attribute instance, related to some derivation. We first

define this concept. If G is an unambiguous grammar there is a unique partial derivation tree

associated with each right-sentential form o.Aw of G. This is the tree with yield o.Aw. Let

<oA, a >, with a e Z denote the set of all partial trees of G corresponding to a right-sentential

form txAw with a the leading symbol of w and let <0.4, e> denote the set of partial trees

corresponding to a right-sentential form o.4. Let t e <ty.A,a> and let Ao--->oqAl'tl,

A 1 -'> t~2A 2T2 An-1 -'> ethAn'In, be the sequence of productions applied at the nodes of the

path <too ran> from the root mo of t to the node mn with the distinguished label A (i.e.

18

Z=A0 , A =A n and ¢q . - - ~xn =or). Let a = Y l • • • Yq with Yi ~ V. Each occurrence of a sym-

bol in ot is identified by the index in this sequence.

The d-expression for the inherited attribute instance A i.y associated with node m i of tree t is

defined as follows. Let the semantic rule for inherited attribute occurrence Ai.y associated

with production Ai_ 1 --->otiAi~/i be Ai.Y : = f (d l dj), where d l dj axe input attribute

occurrences of Ai_ 1 or of the symbols in ¢x i. The d-expression for Ai.y is the expression

f (d ' 1 d'j) where d' k is the d-expression for Ai_l.Z if dk=Ai_l.Z and where d' k is Y~,.c

when dk = Y.c and k' is the index of this occurrence of Y in 0t.

A d-expression for the inherited attribute y of A =A n in the right sentential form ¢xAaw is a d-

expression for the inherited attribute instance y of the node m labeled with this occurrence of

A in some tree t e <e.A, a >. In general an inherited attribute A.y in a right sentential form

a,4aw may have several different d-expressions for different trees in the set <¢xA, a >.

Definition 3.1 An attribute grammar G is DLR-attributed, if

a) G is an L-attributed LR (1) grammar and

b) For all A ~ N, for all inherited attributes y of A, the d-expression of y in a right sentential

form otAw is uniquely determined.

The attribute grammar G, given in Figure 3.1 is not DLR-attributed, although it is an L-

attributed LR (1) grammar.

1. Z --> CA A.x :=C.x; A.y :=C.y

2. A ---> Bc B.x :=A.x; B.y :=A.y

3. B --> Ad A.x :=B.y; A.y :=B.x

4. C ---> c C.x := 1; C.y:=2

5. B ---> a

Fig. 3.1 A grammar which is not DLR-attributed

The right sentential forms CBc and CBcdc have partial derivation trees which both belong to

the set <CB, c >. The d-expression for the inherited attribute of B.x is clearly not unique.

Sometimes additional look-ahead for semantic disambiguatlon may be used. We will not con-

sider this here. We assume that for semantic disambiguation the same amount of look-ahead

is used as for parsing.

4. Classes of LR-attributed grammars

In this section we present several definitions of LR-attributed grammars. The first two

definitions are based on methods presented by Watt, in [Wat77], and by Tarhio (see [Tar88]).

In both methods values of inherited attributes are not computed since they axe copied from

particular synthesized attributes which are kept on a stack. This copying is done with the

reduce action of the LR parser. In Watt's method, originally presented in the formalism of

affix-grammars, the stack position of the synthesized attribute value that has to be copied to

obtain the value of an inherited attribute, must always be the same.

Definition 4.1 An attribute grammar G is WLR-attributed, if

a) G is an L-attributed LR (1) grammar,

b) semantic rules for inherited attributes are copy-rules.

19

c) for any fight-most derivation Z =z~m ~Aw and for the k th inherited attribute d of A such

that A has s inherited attributes, the value of the attribute instance corresponding to A.d

is the same as the s +k-1 th synthesized attribute instance of 0~ in the reversed order.

In Watt's method attributes have to be copied over and over again to put them in the fight

order on top of the semantic stack. This is not necessary in the method for uncle-attributed

grammars of Tarhio. Here, each inherited attribute has a set of uncle-attributes from which

its value may be copied. We define a relation C, on the set of attribute symbols of the gram-

mar as follows: b C c , if there is a copy-rule i.c:=j.b associated with a production

Xo --->X1 "" "Xn, where c is an inherited attribute symbol. Let b and d be inherited and s be a

synthesized attribute. If s C d C* b and i.d :=j.s is a copy-rule associated with the production

Xo---~X1 "" "Xn, we say that the grammar symbol Xj is an uncle symbol of b and that the

attribute Xj.s is an uncle-attribute of b (__C* denotes the reflexive and transitive closure of ~ .

Conditions on the attribute dependencies of the attribute grammar should assure that in each

parse situation the value of an inherited attribute d of a symbol to which a reduction takes

place, can be copied from the topmost uncle-attribute of d on the stack.

Definition 4.2 An attribute grammar G is ULR-attributed, if

a) G is an L-attributed LR (1) grammar,

b) semantic rules for inherited attributes are copy rules;

c) ifXo---~X1..X n is a production with a copy rule j.b :=i.c, where 0 _ i < j <n , then for

every inherited attribute symbol d, such that b C* d, none of the grammar symbols

Xi+ 1 Xj+ 1 is an uncle symbol ofd.

d) An inherited attribute symbol is copy-dependent on only one of the synthesized attribute

symbols associated with its uncle symbol.

Watt and Tarhio both have introduced transformations into the class of WLR- and ULR-

attributed grammars, respectively. These transformations make the methods more practical

than the rather restrictive definitions of these classes might suggest. We do not treat these

transformations here. The following definition is from [Poh83].

Definition 4.3 An attribute grammar G is ALR-attributed, if

a) G is DLR-attfibuted,

b) semantic rules for inherited attributes are copy rules or constant rules.

The following definitions of particular LR-attributed grammar classes are based on methods

in which inherited attribute values do not necessarily have to be either copied from other

values or assigned a constant value. These inherited attributes are also computed before

reduction take place. In fact some inherited attributes are computed if a state symbol is

pushed on the stack. The methods are all based on an idea presented by Madsen in [Mad80]

(see also [JoM80]).

If [A --->{x.B 13;u] is an item in state S, then the inherited attributes of B are associated with

state S of the LR-automaton. Formally, the set IN(S) of inherited attributes of state S is

defined as

IN(S) = { a I a ~Ia(B) for some B such that [A ~ tx.B ~;u] in S }. The inherited attributes in

IN (S) are evaluated when a state S is pushed on the parse stack.

If [A --~ ot.~J;u]~BASIS (S) then every attribute of every symbol in tx is considered different,

also in case the same symbol occurs more than once in ix. It follows from the construction of

the/_,R-states that in an L-attributed grammar all attributes in IN(S) are some function of the

input attributes of S. During parsing, these attributes are stored in the (attribute) parse stack.

The problem how to refer to the fight attribute occurrences in the attribute stack is not solved

20

satisfactory by Jones and Madsen in [JoM80] and [Mad80]. The problem is solved by Sassa

and others; cf. [SIN85] and [SIN87]. We follow their exposition with some minor

modifications. We distinguish occurrences of an attribute of a nonterminal symbol at dif-

ferent positions in the attribute stack. An occurrence of attribute A.a in the stack is a pair

(A.a, offset(A.a)) where the second element indicates the position in the attribute stack rela-

tive to the top of this stack.

Let the attributed parse corrfi.~uration be

(SolN(So)X1X1 "'" Xm-kXm-kS,n-klN(Sm-k) ' '" XmXmSm;aj "'" and-), where S i is a

state,iN (Si) is a record containing the inherited attributes of state Si, Xi is a grammar symbol

andXi is a record containing the synthesized attributes of Xi.

The offset of an attribute in the stack is defined as follows. If a is a synthesized attribute

of Xm-k or if a is an inherited attribute of state Sm-k then offset(a) = k.

Let [,4 -'~Xm-p..~,n-i..J~m .B fl;u] be an item in state Sm on top of the stack. It follows from

the nature of LR parsing that if a is an inherited attribute of A then offset(a) is p +1. If a is a

synthesized attribute of Xm-i then offset(a) is i.

The set INP (S) of input attribute occurrences of state S is defined as follows.

INP (S)=

{(A.a, k)]a ~ Sa (A) for some A s.t. [B ~ tzlA tz2 ,J3;u] in S and k = offset(A.a) } u

{(A.a, k) l a ~ la (A) for some A s.t. [.4 ~ tz ° ~;u] in BASIS (S) and k = offset(A.a) }.

We use numbers as superscripts of nonterminal symbols to distinguish occurrences of a non-

terminal symbol after the dot in different items in a particular state S. (e.g. A 1, A 2,) In

the same way we distinguish occurrences of an inherited attribute A.a of these occurrences of
A b y A l . a , A2.a,

We define Fs(A t.a), the set of semantic expressions for the occurrence A t.a of A.a ~IN (S).
It is defined in terms of attribute occurrences in INP (S).

For each state S and for each A.a~IN(S), let Es(A.a) denote the set of semantic expressions

for A.a.

Es(A.a) = kJ Fs(At.a),
l~ <_p

where p is the number of items in state S in which A occurs at the position after the dot.

Fs(At.a) is defined for all occurrences of inherited attributes in S simultaneously as follows:

Fs(At.a) is the smallest set such that:

a) if [B ~o~°At~;u]eBASIS(S), the semantic rule for A.a associated with production

B ~ tzA 13 is A.a ~ expr (a 1 an), and a~ = (ai, k) with k is the offset of the occurrence

of ai in this item, then

expr(al a_.n)~ Fs(A t.a).

b) ff [tl ~ .A t~;u]~ S, this item is directly derived from item [C --, t~.B Vy, v] ¢ S and the

semantic rule for A.a associated with production B ~ A 13 is A.a ~ expr (a 1 an), then

expr (e x en) ~ Fs(A t.a), for all ei ~ Fs(B V.ai) (lEd .<.n).

For the meaning of "i tem I is directly derived from item J " see the definition of the LR-

automaton in section 2.1.

Definition 4.4 An attribute grammar G is MLR-attributed if

a) G is an L-attributed LR (1) grammar,

21

b) For all states S of the/.,R-automaton for G, for all attributes a in IN (S) the set Es(a) of

semantic expressions for a contains one element.

If an attribute grammar is MLR-attributed then the attribute a in IN(S) of a state S can be

evaluated when this state is pushed on the parse stack using the semantic expression in Es(a).

Synthesized attributes are computed with reduce actions of the parser.

Example 4.5. The attribute grammar G is given by the following productions and semantic

rules.

Z --¢ BA A.x := B.s

B.y := 1

Ao ---> CA 1B B.y := A0.x

A 1 .x := C.s

Ao --~ A1Bd B,y := A0.x

Al.X := A0.x

C --¢ c C.s := 2

A --~ a

B --~ b B.s := 1

G is not MLR-attributed. The problem concerns the offset of the inherited attribute of A. The

LR-automaton for G has a state which contains items [A ~ CA .B] and [A --. A .Bd]. If this

state is pushed on the parse stack it cannot be decided how far from the top we find the inher-

ited attribute of A from which we have to copy the inherited attribute value of B. This

depends on whether the B is in the right-hand side of the second or of the third production

given in the table. The problem can be solved by splitting the production A --, CAB in two

productions, A --,CH and H--,AB. The conflicting productions are then in different item

sets. []

Nakata and Sassa [NaS86] have defined a class of LR (1)-attributed grammars which

properly includes the class of L-attributed LL(1) grammars. For this definition of LR(1)-

attributed grammars, the states of the LR (1)-automaton are divided into partial states with

respect to a set of look-ahead symbols.

Let S be a state (i.e. a set of LR (1)-items). The partial state of state S with look-ahead symbol

a, PS(S,a)isdefined: PS(S,a)={[A -.~o~.~, b]~S { a¢First l(~b) }.

The set of inherited attributes IN(PS), which should be evaluated at partial state PS is defined

as follows. IN (PS)={ B.b I there is an item [A ---~ tx.B ~, a]~ P S such that B.b ¢ l A (B) }.

An interesting extension of Madsen's method is obtained by the introduction of

equivalence classes of inherited attributes. These were proposed by Pohlmann in [Poh83] as

a method for saving space for the attributes. It is further developed by Sassa and others

[SIN87]. In most attribute grammars a lot of semantic rules are copy rules. Thus the values

of a number of distinct attributes in a parse tree are often the same. These equivalence classes

are, informally, defined as follows. If two inherited attributes of one and the same state of the

LR-automaton always have the same value, then they can share the same storage location.

These attributes belong to an equivalence class. Instead of a set Es(A.a) of semantic expres-

sions for an attribute, we now have a set of expressions for an equivalence class of inherited

attributes. For details we refer to [SIN87].

Definition 4.6 An attribute grammar G is ECLR-attributed if

a) G is an L-attributed LR (1) grammar,

22

b) there is an partition of attributes such that for any partial state PS of the LR-automaton

for G and for any inherited attribute A.a in IN(PS) the evaluation rule of A.a can be

uniquely determined.

Definition 4.7 An attribute grammar G is SALR-attributed, if G is ECLR-attributed with the

strong partition on attributes (i.e. each block of the partition contains one attribute).

The difference between MLR-attributed and SALR-attributed grammars is that for the

latter class we usepartial states (i.e. lookahead) instead of the complete states as in MLR-

attributed grammars. The class of ECLR-attributed grammars is a proper superset of the class

of SALR-attributed grammars (see also the next section). Attribute grammar G from Exam-

ple 4.5 is not ECLR-attributed. In general, using partial states instead of states doesn't solve

problems with the offset of attribute occurrences in the stack. Also the introduction of

equivalence classes is no remedy for offset problems.

5. Relations between classes of LR-attributed grammars

In this paper we do not consider the different aspects of the implementations of the several

classes of LR-attributed grammars presented. Therefore we refer to [MOT90]. Here, we will

only compare the extensions of these classes.

The class of XYZ-attributed grammars is denoted by XYZ. In particular: DLR will denote

the class of DLR-attributed grammars as defined in Definition 3.1. We will also consider the

relations between these classes and LL, the class of L-attributed LL (I) grammars.

We say that two grammar classes A and B are incomparable if A-B ~ O and B-A ~ 0 . By the
definition of the classes DLR, ALR, MLR, ECLR and SALR, the following inclusions hold:

a) A L R c D L R

b) MLR ~ SALR ~ ECLR ~DLR.

The grammar in Figure 5. I shows that the class MLR is a proper subclass of SALR.

Z --4 Ab A.x := 1

Z --4 Ac A.x :=2

A ~ e

Fig. 5.1 Grammar in SALR-MLR.

The grammar in Figure 5.2 is in ECLR, but it is not in SALR. The reason is that in the state

with items [A --->a,Bb], [C--->a,Bc] and [B ~ ,d] there are two expressions A.x and C.x

(with their offsets) for B.x.

equivalence class.

Z ---> A

A ---> aBb

A ~ C

C ---> aBc

B --4 d

This conflict disappears when A.x and C.x are put in the same

A ~ : = I

B~:=A~

C~:=A.x

B ~ : = C J

Fig. 5.2 Grammar in ECLR-SALR.

The grammar G in Example 4.5 is in LR and hence (see the discussion in section 4) in

23

LR-ECLR. Thus we have also the proper inclusions: MLR c SALR c ECLR c DLR.

We consider the relations with the class LL. By the definitions we have that:

a) LL c D L R

b) LL and ALR are incomparable.

In [NaS86] it is shown that L L c SALR. LL is not included in the class MLR since the gram-

mar in Figure 5.1 is in LL but not in MLR, and so LL and MLR are incomparable classes.

The fact that A in this grammar only generates the empty string is quite essential. A grammar

that doesn't contain nonterminals that only generate e, is called p-reduced. If an LL-grammar

is p-reduced, then it is also in the class MLR. Thus partial states are not necessary to include

the p-reduced LL(1) grammars. Since p-reduced LL(1) grammars are LALR (1) [Bea82], we

can also use the method for LALR (1) grammars in the bottom-up parser and still handle all

L-attributed p-reduced LL (1) grammars. Notice that the insertion of marker nonterminal

symbols in the fight-hand side of production rules, often used in transformations, (of.

[Watt77] and ~ar88]) has the effect of the introduction of partial states. When we insert two
distinct marker symbols in the first two productions of the AG in Figure 5.1, then the conflict

is solved.

We now turn to the classes ALR, WLR and ULR. It is clear from the definitions that

a) WLR ~ ALR

b) U L R ~ ALR

The above inclusions are proper and there exist attribute grammars in ALR, which are neither

in ULR nor in WLR.

The classes WLR and ULR are incomparable. To see this, first consider a grammar with pro-

ductions and semantic rules as in Figure 5.3. Such a grammar cannot be in ULR but it might

be in WLR.

Z --~ AB B.x :=A.y

B --~ AC C.z 1 :=B.x

C.z 2 :=A.y

A ~ a A.y := 1

B --~ b

C --~ c

Fig. 5.3 Grammar in WLR-ULR.

Consider a grammar with a production S -4 ABC and a semantic rule C.x :=A.y. Suppose that

B has a synthesized attribute. An attribute grammar which contains this construction cannot

be in WLR, though it can be a member of ULR.

We flnaUy compare the classes WLR and ULR with the class ECLR. Since the grammar G in

Example 4.5 is in ULR and not in ECLR, these classes are incomparable. The grammar in

Figure 5.4 is in WLR but not in ECLR, because there is an offset conflict. Hence also the

classes WLR and ECLR are incomparable. It follows that ULR and WLR are incomparable

with all subclasses of ECLR.

The classes ALR and ECLR are incomparable. The grammar in Figure 5.5 is in

ALR-ECLR. The grammar in Figure 5.6 is in ECLR-ALR.

Z

A

A

A

B

2,*

BA A.x := B . s

B.x := 1

aABb B.x :=A 0.x

A 1 .x :=A 0.x

ABc A l.X :=A0.x

B.x :=A0.x
a

---> d B.s := I

Fig. 5.4 Grammar in WLR-ECLR.

Z ~ AB A.x :=1

Z ~ Ac A.x :=2

A ~ a

Fig. 5,5 Grammar in ALR-ECLR.

Z
B

B

A

B B.x := 1

--¢ bA A.x :=fl (B.x)

cA A.x := f2(B.x)
--¢ a

Fig. 5.6 Grammar in ECLR-ALR.

6. LC-attributed grammars

In this s~tion we define a class of one-pass attribute grammars based on the class of left-

comer grammars (LC(k) grammars). LC(k) grammars form a class of context-free grammars
between the class of LL(k) and the class of LR(k) grammars.

Definition 6.1 Let k be a nonnegative integer. A grammar G is said to be LC (k) if each e-

production satisfies the LR(k)-condition (see Definition 2.1) and if for each production

a-->X 1~, the conditions

(1) Z ~ ~xAzl ~ , cOCl3zl ~ ~Yazl

(2) Z =*~ a'Bz2 J r a 'a"XTz2 ~ a 'a"Xy2z2

(3) a" a " =Ix and Firstk(y l z l) = Firstk(Y 2 Z 2),

always imply that o,4 = a'B and ~) = 7.

Informally, if a grammar is LC(k) then we can recognize the production applied at a

node in a derivation tree of that grammar after we have recognized the first symbol of the

right-hand side of that production. This symbol is called the left-corner of the production. If

the production is an e-production, the left-corner of the production is e. This form of the

definition of LC (k) grammars is from Soisalon-Soininen and Ukkonen [SOU76]. Other char-

acterizations of the left-comer grammars can be found in [Akk88]. It is shown in [SOS77]

that LL(k) grmmnars are LC(k) and that LC(k) grammars are LR(k). These inclusions are

proper. LC(k) grarmnars may be left-recursive.

25

In order to define the LC-attributed grammars we need to define a few notions.

Definition 6.2 Let G=(N, Z,P, S) be a grammar. For each symbol X e V - - N u Z , we define

the set of chains CH(X) of X (with respect to G) as follows:

a) IfXeZthenCH(X)={<X>}.

b) IfXeNthen <X>eCH(X)andifX---~inPthcn <X, 8>eCH(X).

c) ForaUXeN, <X,p>eCH(X)if <p>eCH(Y)forsomeYeV, suchthatX---~YTinP.

Hence, a chain in CH (X) is a sequence of symbols, starting with X. Moreover, Y may follow

Z in a chain, if there is a production Z ~ Y o~ for some oc e V*.

Elements of CH (X) are called chains of X and denoted by a. The last element of a chain a is

denoted by I (a). Notice that CH (X) is an infinite set iff there is a derivation X =#+ Xz, z e Z*,

in G.

Let chain o=<X0,X 1 Xn>eCH(Xo), with n>1. It follows from the definition of a chain

that there is a derivation

X o ~ f ~ X171 ~ f 2 . . . ~ f ' X , Tn, 7ieV*, l</~n (*)

in G. The sequence of productions PlP2...Pn used in derivation (*) is called a production

sequence associated with the chain o. The production sequence associated with chains of the

form <X > is the empty sequence. The string Tn is called an r-string of chain o, or the r-

string of the sequence ~=p lP2...Pn of productions. Notice that a chain may have more than

one r-string. The length of a sequence of productions ~ is denoted by]~]. l(rc) denotes the

last production of the sequence g.

Let G =(N, Z, P, S) be a grammar.

ForaUAeNandXeV, IetCH(A,X)= {aeCH(A) I l(o)=X } and

PS (A, X) = {~ [~ is a production sequence of a chain oe CH (A, X) and [~[_>I }.

Definition 6.3 For all A e N, X e V and u e Z, the partial set of production sequences compati-

ble with look-ahead symbol u, PPS(A,X, u), is defined as follows: gePPS(A,X, u), iff

i) ~EPS(A,X)

ii) There is production B ~ oA 8 with ctee and u ~ First 1 (T 8.Follow 1 (B)), where Y is an r-

string of ~.

We now define the set of inherited attributes of a partial set of production sequences PPS as

follows

IN (P PS)= { a [a e I A (13), B is left-hand side of I (/r), for some ~e PPS }.

Let G be an LC(1) grammar. Then for any two production sequences gl and g2 of a set

PPS(A,X, u) associated with G, 1(~1)=l(~2). Thus, the inherited attributes in IN(PPS) are

inherited attributes of a nonterminal symbol of the grammar.

Consider a sequence g in PPS (A, X, u), for some A, X and u. If g has length one, then 10r) is

A and the inherited attributes of PPS(A,X,u) are the inherited attributes of A. Let

g-~ lP 2...Pn with n > l, pi : Xi_ 1 "-> XiYi (l</~-n), Xo=A and Xn=X. Let a e lN (PPS (A,X, u)).
This means that a is an inherited attribute of symbol Xn-1.

Suppose that G is the underlying context-free grammar of an L-attributed grammar. Then the

inherited attributes of symbols Xi only depend on inherited attributes of the symbol Xi-1.

Thus inherited attribute a depends -via a sequence of semantic functions associated with the

productions that occur in 7t without the last production- on the inherited attributes of X 0 (A).

The composite semantic function associated with the production sequence g for computing

the value of a will be denoted by csfr~a. If we apply csfn.a to the appropriate attribute of A

26

then we obtain the value of a. In case the length of ~x equals 1, csfn.a denotes the identity

function.

Definition 6.4. An attribute grammar G is LC-attributed, if

a) G is L-attributed, and

b) G is an LC (1) granmaar, and

c) for all partial sets of production sequences PPS, if gl , g2e PPS, then for all a ~ IN (PPS),

csf nz, a=CSf n2, a.

For the construction of a parser-evaluator for LC-attributed grammars we refer to [Akk88].

Example 6.5.

Consider the following attribute grammar.

P0: Z'---~ E
Pl: E--~E+T

P2: E ---~ T

P3: T - o T x F

P4: T - o F
Ps: F --~ i

E.left :=true
E.left :=true

T.left :=false
T.left :=E.left
T.left :=true

F.left :=false
F.left :=T.left

The underlying context-free grammar is LC(1). The attribute left indicates whether an

operand is the leftmost operand of the corresponding operator.

p ~ p 2 p ~ P P S (E , T, ×)=PPS1. p~p2~PPS (E, T, +)=PPS2. p~pnP5~PeS(T, i, x)=PPS3.

p 4P s~ PPS (T, i, +)=PPS 4.

IN (PPS1)={ T.left }, IN (PeS 2)={ E.left }, IN (PPS 3)={ F,Ieft } and lN (PPS 4)={ F.left }.
Let g(n,m) (n>_0,m>0) denote the production sequence PlP2P3n m E p p s l . The composite

semantic function for computing the attribute left of T, csfncn, m),r.teft equals the function
(true) m-1 o id o (true) n, where id denotes the identity function. Since (n =0 and m =1) implies

T.lefl=true, T.lefi has the value true for all n L'0, m >0. Notice that the value of E.left is

always true. []

We know that the LL (k) grammars are a proper subset of the LC (k) grammars. Does

this proper inclusion also hold for the classes of L-attributed one-pass attribute grammars

based on these context-free grammars?

If G is an LL (1) grammar then for all A, X ~ N and u e Z, the set PPS (A, X, u) contains at

most one element. From this we may conclude that LL-attributed grammars are LC-

attributed.

LC is a proper subclass of DLR, but grammar G in Example 6.5 is not ECLR-attributed

although it is LC-attributed. Hence, the classes LC and ECLR are incomparable. The prob-

lem with the offset of attributes in the stack doesn't occur for LC grammars, because the pro-

duction is recognized as soon as its left-comer symbol is recognized.

27

7. Concluding remarks

One-pass compilation based on attribute grammars has several advantages over more general
methods. We have considered here a number of definitions of LR-attributed grammars for
one-pass compilation. We also presented a class of one-pass left-corner attributed grammars
and we have compared the extensions of the classes of attributed grammars defined. The
extensions of the classes is only one of the relevant aspects. In [MOT90] also aspects of the
various implementations of LR-attributed grammars are presented and compared. To get a

clear picture of the relations between the different definitions and methods we did not include
the transformations into the several classes in our comparison. For these transformations we
also refer to [MOT90].

Fig. 7.1 Classes of LR-attributed grammars

Figure 7.1 shows the inclusions of the grammar classes that we considered in the paper. A
dashed line between classes denotes that they are incomparable. An arrow from A to B means
proper inclusion of B in class A.

References

[ASU86] Aho, AN., Sethi, R. and Ullman, J.D. Compilers, Principles, Techniques and Tools.
Addison-Wesley PUN., Reading, Mass., 1985.

[AhU72] Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation and Compiling.
Vol.1 and Vol.2, Prentice Hall, Englewood Cliffs, N.J., 1972.

[Akk88] op den Akker, R. Parsing attribute grammars. Ph.D. Thesis, Department of Com-

-puter Science, University of Twente, The Netherlands, 1988.

[Bea82] Beatty, J.C. On the relationship between the LL(1) and LR(1) grammars, Journal of
theACM 29 (1982) 1007-1022.

28

[Bro74] Brosgol, B.M. Deterministic translation grammars. Ph.D. Thesis, TR-74, Harvard
University, Cambridge, Mass., 1974.

[Fi183] Fild, G. The theory of attribute grammars. Doct. Diss., Twente University of Technol-
ogy_,-Enschede, The Netherlands, 1983.

[JoM80] Jones, N.D. and Madsen, C.M. Attribute-influenced LR parsing. In: Proceedings of
the Aarhus Workshop on Semantics-Directed Compiler Generation, N.D. Jones (ed.)
Springer-Verlag,Berlin, 1980, 393-407.

[Knu68] Knuth, D.E. Semantics of context-free languages, Mathematical Systems Theory 2
(1968) 127-145. Correction in: Mathematical Systems Theory 5 (1971) p.95.

[LRS74] Lewis, P.M., Rosenkrantz, D.J. and Stearns, R.E. Attributed translations, J. Comput.
System Sci. 9 (1974) 279-307.

[Mad80] Madsen, C.M. Parsing attribute grammars. M. Sc. Thesis. Dept. of Computer Sci-
ence, University of Aarhus, Aarhus, 1980.

[MOT90] Melichar, B., R. op den Akker and J. Tarhio. Evaluation of attributes during LR
parsing. In preparation.

[NaS86] Nakata, I and Sassa, M. L-attributed LL(1)-grammars are LR(1)-attributed, Infor-
mation Processing Letters 23 (1986) 325-328.

[Poh83] Pohlmann, W. LR Parsing of affix grammars, Acta lnformatica 20 (1983) 283-300.

[SIN85] Sassa, M., Ishizuka, H. and Nakata, I. A contribution to LR-attributed grammars,
Journal of lnformation Processing 8 (1985) 196-206.

[SIN87] Sassa, M., Ishizuka, H. and Nakata, I. ECLR-attributed grammars: a practical class
of LR-attributed grammars, Information Processing Letters 24 (1987) 31-41.

[SOS77] Soisalon-Soininen, E. Characterzafion of LL(k) languages by restricted LR(k) gram-
mars, Report A-1977-3. Department of Computer Science, University of Helsinki, Fin-
land, 1977.

[SOU76] Soisalon-Soininen, E. and Ukkonen, E. A characterization of LL(k) languages. In:
Automata, Languages and Programming, S. Michaelson and R. Milner (eds.), Edin-
burgh University Press, Edinburgh, 1976, 20-30.

[Tar88] Tarhio, J. Attribute grammars for one-pass compilation. Report A-1988-11, Ph.D
Thesis, Department of Computer Science, University of Helsinki, Finland, 1988.

[Wat77] Watt, D.A. The parsing problem of affix grammars, Acta Informatica 8 (1977) 1-20.

