
ARTICLE

Received 1 Sep 2014 | Accepted 22 Jan 2015 | Published 20 Mar 2015

The HIF-1/glial TIM-3 axis controls inflammation-
associated brain damage under hypoxia
Han Seok Koh1,2, Chi Young Chang1, Sae-Bom Jeon1, Hee Jung Yoon1, Ye-Hyeon Ahn1, Hyung-Seok Kim3,

In-Hoo Kim3, Sung Ho Jeon2, Randall S. Johnson4 & Eun Jung Park1,3

Inflammation is closely related to the extent of damage following cerebral ischaemia, and the

targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we

present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3

can function as a modulator that links inflammation and subsequent brain damage after

ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse

cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated

microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor

(HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size,

neuronal cell death, oedema formation and neutrophil infiltration in H/I mice.

Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1a-deficient

mice. Moreover, functional neurological deficits after H/I are significantly improved in both

anti-TIM-3-treated mice and myeloid-specific HIF-1a-deficient mice. Further understanding

of these insights could serve as the basis for broadening the therapeutic scope against

hypoxia-associated brain diseases.
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C
erebral ischaemia triggers a complex cascade of patho-
physiological changes that ultimately lead to brain injury,
particularly in the penumbral area surrounding the

ischaemic core1,2. These alterations include the activation of
resident cells, production of inflammatory mediators and
infiltration of inflammatory cells. Clinical and experimental
studies have shown that inflammatory interactions following
brain ischaemia are closely related to the pathogenesis of brain
injury, and strongly suggest that the inflammatory status might
critically determine the outcome and prognosis of brain
ischaemia3–5. In recent years, much attention has been focused
on the therapeutic modulation of inflammatory status during
cerebral ischaemia. However, the relevant information on the
inflammatory events is very limited.

TIM-3, a member of the T-cell immunoglobulin and mucin
domain protein family, was originally identified as a type 1 helper
T cell (TH1)-specific surface molecule that negatively regulates
TH1-dependent immune responses6. Subsequent studies have
shown that TIM-3 is also expressed on multiple immune cell
types, including TH17 cells, Tregs, NK cells, monocytes, dendritic
cells, mast cells and microglia, where it potently regulates not
only adaptive immunity but also innate immunity7–10. Recent
studies have revealed that TIM-3 plays critical roles in regulating
the activities of innate immune cells, functioning as either an
activation marker or an activation limiter in a context-dependent
manner11. TIM-3 has been closely associated with diverse
immune-associated diseases, such as infection, autoimmune
diseases and cancer, in both animal models and humans6,12–14.
Interestingly, TIM-3 appears to have diverse functions under
various pathological conditions, with its functional outcomes
depending on the cell type and context11. For example,
blocking of TIM-3 has been shown to improve the effector
function of exhausted T cells in chronic viral infections and
tumours12,15–17, whereas enhancement of TIM-3 signalling
appears to ameliorate Th-1-mediated experimental autoimmune
encephalomyelitis (EAE)6,18,19. Reduced levels of TIM-3 on
CD4þCD25� T cells reportedly contribute to impaired
immunoregulation in autoimmune hepatitis20, whereas TIM-3
is overexpressed on CD4þ and CD8þ T cells in chronic hepatitis
C infection12,21.

The physiological response to hypoxia is primarily mediated by
hypoxia-inducible factor (HIF)-1, a heterodimeric transcription
factor that consists of an oxygen-regulated a-subunit and a
constitutive b-subunit22. The HIF-1 complex binds to the
hypoxic-response elements (HREs) of many genes that have
been linked with the adaptation to hypoxia23. Interestingly,
HIF-1 can regulate cellular responses under not only hypoxic
conditions but also inflammatory conditions, and plays an
important role in the pathogenesis of several inflammation-
associated diseases24–27. In vivo and in vitro experiments
have demonstrated that HIF-1 is essential for myeloid cell-
mediated inflammation such as myeloid cell motility25,28. In
addition, HIF-1 activation has been implicated in pathogenic
inflammatory responses after ischaemic lung and gut injuries29,30.
Thus, HIF-1 is now considered to be a key regulator responsible
for controlling inflammation-associated signalling events.

The central nervous system (CNS) has long been known to
harbour immune-privileged regions, but recent work has shown
that it is also equipped with an elaborate sentinel system that can
rapidly trigger innate and subsequent adaptive immune
responses31. Glial cells, which act as major immune cells in the
immune responses of the CNS, recognize subtle changes in the
brain and quickly respond to pathophysiological stimuli32,33. In
this paper, we suggest that expression of TIM-3 on microglia and
astrocytes is upregulated under hypoxia, and that this
enhancement influences the infiltration of neutrophils into the

hypoxic penumbra. Such infiltration has been identified as a main
cause of ischaemic brain damage5,34. In addition, we show that
HIF-1 controls the oxygen-dependent expression of TIM-3 in
glial cells, and that not only TIM-3 blockade but also HIF-1
deficiency significantly improves functional neurological
outcomes in mice. Collectively, our results suggest that
hypoxia-induced glial TIM-3 may be an important molecular
player in inflammation-associated brain injury under hypoxic
conditions. These insights into the link between inflammation
and ischaemic brain injury improve our understanding of the
functions of glial TIM-3 and HIF-1, and may contribute to the
development of new therapeutic strategies for cerebral ischaemia.

Results
TIM-3 expression is distinctly elevated in hypoxic penumbra.
To examine the molecular mechanisms underlying the inter-
dependent association between ischaemic brain damage and
inflammation, we explored candidate molecular players that
could exert key roles in the pathophysiological inflammatory
events that follow cerebral hypoxia-ischaemia (H/I). For this, we
utilized an experimental mouse model of transient unilateral
cerebral ischaemia by unilateral ligation of the right carotid artery
followed by exposure to systemic hypoxia35. Twenty-four hours
after H/I, we obtained tissues from both contralateral and
penumbral cortex regions (Supplementary Fig. 1), and then
examined the expression levels of various inflammation-
associated molecules at the RNA and protein levels.
Interestingly, we found that transcript levels of T-cell
immunoglobulin and mucin domain-3 (TIM-3) were notably
higher in ipsilateral penumbra compared with contralateral
regions. TIM-3 protein was also elevated in the ipsilateral
penumbra, where the transcript and protein levels of HIF-1, a
positive control that is reportedly abundant under hypoxia36,37,
were increased compared with contralateral regions (Fig. 1a,b).

To confirm these results, we performed immunohistochemistry
on coronal sections of H/I mice using an antibody against TIM-3
(refs 38,39). Consistent with the above results, TIM-3-positive cells
were markedly elevated in ipsilateral penumbra (Fig. 1c). Using the
hypoxia marker pimonidazole (hypoxyprobe-1), we further demon-
strated that TIM-3 was highly expressed in the hydroxyprobe-1-
stained hypoxic penumbra of H/I mice (Fig. 1d). Taken together,
these findings suggest that TIM-3 expression is upregulated in
hypoxic penumbra, and imply that TIM-3 may play a role in the
pathophysiological events following cerebral ischaemia.

Glial TIM-3 is upregulated under hypoxia. We next examined
which cells show TIM-3 upregulation after H/I. Western blot ana-
lyses revealed that protein expression levels of ionized calcium-
binding adaptor molecule-1 (Iba-1, an activated microglial marker)
and glial fibrillary acidic protein (GFAP, an activated astrocyte
marker) were higher in the ipsilateral cortex than in the contralateral
cortex of H/I mice at 24 h post-H/I, whereas the expression levels of
neuronal cell markers, such as neuronal nuclei (NeuN), micro-
tubule-associated protein 2 and glutamate decarboxylase, were
reduced in penumbral cortex tissues (Supplementary Fig. 2a). We
thus examined the expression levels of TIM-3 in microglia and
astrocytes 24 h after H/I. Immunohistochemistry showed that a
large portion of TIM-3-expressing cells in the ipsilateral cortex of
the H/I mice were Iba-1 positive (Supplementary Fig. 2b). Strong
TIM-3 expression was also observed in GFAP-immunoreactive
astrocytes in the ipsilateral cortex.

Fluorescence-activated cell sorting (FACS) analyses of the
brain cells isolated from the H/I mice further showed that
hypoxia-ischaemia results in activation of microglia and astro-
cytes, which exhibit elevated TIM-3 expression. Microglia
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expressing high levels of Iba-1 and astrocytes expressing high
levels of GFAP were significantly enhanced in ipsilateral
penumbra at 24 h after H/I, indicating that microglia and
astrocytes were activated under hypoxic conditions (Supplemen-
tary Fig. 2c,d). In addition, TIM-3 expression was meaningfully
higher in Iba-1-positive microglial cells and GFAP-positive
astrocytes isolated from ipsilateral cortex compared with those
from contralateral regions (Fig. 1e,f and Supplementary Fig. 2c,d).
These results support our contention that TIM-3 expression is
significantly elevated in activated microglia and astrocytes under
hypoxia.

TIM-3 is elevated in a HIF-1-dependent manner under hypoxia.
On the basis of the above observations, we next examined
whether TIM-3 expression in glial cells could be altered by
oxygen tension, using the BV2 microglial cells and
primary cultured glial cells. BV2 cells were incubated under nor-
moxic (20% O2) or hypoxic (1% O2) conditions for 24 h,
and the cell surface levels of TIM-3 were determined by
FACS analysis. Interestingly, TIM-3 expression was markedly
elevated under hypoxia (Fig. 2a). Immunocytochemistry also
demonstrated that TIM-3 expression was considerably higher
in mouse primary mixed glial cells under hypoxia versus
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Figure 1 | TIM-3 is highly expressed in hypoxic brain regions of a H/I mouse model. (a) TIM-3 transcript levels were examined in brain tissues from the

contralateral cortex (C, boxed region) and ischaemic ipsilateral cortex (I, boxed region) of mouse model 24 h after H/I. The RT–PCR products were

quantified with Image J and normalized with respect to the expression of actin. The HIF-1a transcript level represents a positive control for hypoxia. The

right panel shows representative TTC staining of three brain sections from the H/I mice. (b) Representative western blot analyses of the TIM-3 and HIF-1a

proteins (n¼ 3). Relative levels of TIM-3 are shown as the mean±s.d. from three independent experiments. (c) Contralateral and ipsilateral cortical regions

of coronal sections from the H/I mice were subjected to immunohistochemistry using an anti-TIM-3 antibody, and the number of TIM-3-expressing cells

per mm2 was counted. (d) Immunohistochemistry was performed on brain sections from the H/I mice using anti-TIM-3 and hypoxyprobe-1 (red, to detect

hypoxic regions). Scale bars, 50mm (� 20); 50mm (�40). (e,f) Brain cells were isolated from the ipsilateral and contralateral hemispheres of three mice

per group, processed for simultaneous detection of TIM-3 plus Iba-1 (e) or GFAP (f), and analysed by FACS. The results are presented as relative TIM-3

levels in the indicated gated populations, as determined from three independent experiments.
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normoxia (Fig. 2b). In addition, we observed that TIM-3
transcript levels were increased in primary mixed glial
cells under hypoxia, but not in primary neuronal cells under

the same conditions (Fig. 2c,d and Supplementary Fig. 2e). These
results suggest that hypoxia induces TIM-3 expression in glial
cells.
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HIF-1 is a master transcriptional regulator of numerous genes
under hypoxic conditions. To examine whether the hypoxia-
stimulated upregulation of TIM-3 was mediated by HIF-1 in
glial cells, we performed chromatin immunoprecipitation
(ChIP) assays using an anti-HIF-1a antibody and TIM-3
promoter elements containing putative HIF-responsive element
(HRE) consensus sequences. As shown in Fig. 2e, HIF-1a was
able to bind to the HRE-containing TIM-3 promoter elements in
primary mixed glial cells under hypoxia. To further demonstrate
this, we examined TIM-3 promoter activity in HIF-1a-deficient
glial cells. Primary mixed glial cells were cultured from
HIF-1aflox/flox (HIF1aþ f/þ f) mice and then infected with
adenovirus-Cre/GFP (Ad-Cre/GFP) or control GFP (adenovirus
encoding green fluorescence protein (Ad-GFP)). We confirmed
the efficiency of viral infection using FACS, then transfected the
cells with a TIM-3 luciferase reporter (� 1,517/þ 1) and
measured TIM-3 promoter activity. As expected, TIM-3
promoter activity was significantly enhanced in control
Ad-GFP-infected glial cells (HIF1aF/F) under hypoxic conditions,
but it was markedly reduced in Ad-Cre/GFP-infected, HIF-1a-
deficient glial cells (HIF1aD/D; Fig. 2f). Site-directed mutagenesis
of the putative HREs in the TIM-3 promoter significantly
diminished the hypoxia-dependent increase of luciferase activity
compared with the wild-type reporter (Supplementary Fig. 3).
In addition, hypoxia-stimulated increase of TIM-3 transcripts
and proteins was markedly suppressed in Ad-Cre/GFP-infected
HIF-1a-deficient glial cells (Fig. 2g,h). These results support that
TIM-3 expression is regulated in a HIF-1-dependent manner
under hypoxia.

Blocking TIM-3 reduces brain damage in the mouse H/I model.
Given that TIM-3 is upregulated in glial cells subjected to H/I, we
explored the role of hypoxia-induced TIM-3 in the brain after
cerebral H/I. For this, we investigated the effect of a TIM-3-
blocking antibody on brain damage 24h post H/I using 2,3,5-
triphenyltetrazolium (TTC) staining. As shown in Fig. 3a, the
TTC-negative area was significantly reduced in mice that were
given intravenous injections of 100mg TIM-3-blocking antibody,
compared with control IgG-injected mice. These results suggest
that the TIM-3-blocking antibody may ameliorate brain damage
under hypoxic conditions.

Oedema, a life-threatening consequence of brain infarction, is
accompanied by inflammation and the consequent extension of
ischaemic brain lesions40. We thus assessed the effect of TIM-3
blockade on the formation of oedema following H/I. To monitor
infarct area and oedema formation, we acquired T2-weighted
magnetic resonance images from days 1 to 7 post-H/I. Similar to
the results obtained from TTC staining, the infarction and
formation of oedema in the ipsilateral hemispheres of TIM-3-
antibody-injected mice was significantly reduced compared with
that in IgG-injected mice on day 1 post-H/I (Fig. 3b–d). These
decreases in oedema formation and infarction persisted on days 3,
5 and 7 days post insult (Fig. 3c,d and Supplementary Fig. 4a–c).

To further investigate the involvement of TIM-3 in post-H/I
brain damage, we examined the effect of the TIM-3-blocking
antibody on neuronal cell death by assessing the expression of
caspase-3, a key cell death effector protease that plays a crucial
role in cerebral ischaemia41,42. Immunohistochemistry showed
that the expression of caspase-3 in neuronal cells was significantly
elevated in the ipsilateral cortex regions of IgG-treated H/I mice,
whereas this elevation was dramatically diminished in mice
treated with TIM-3 blocking antibody (Fig. 3e). We next
examined the level of poly (ADP-ribose) polymerase (PARP), a
marker for caspase-3 activity that is cleaved by caspase-3 and has
been implicated in ischaemic cell death41,43, in the ipsilateral and
contralateral cortex of H/I mice treated with control IgG or the

TIM-3-blocking antibody. As shown in Fig. 3f, the expression of
full-length PARP was markedly decreased in tissues from the
ipsilateral cortex of control IgG-injected H/I mice, but not TIM-
3-blocking antibody-injected H/I mice. These findings show that
blocking of TIM-3 may significantly reduce infarct volume and
neuronal cell death after cerebral ischaemia in mice.

Neutrophil infiltration is attenuated by blocking TIM-3.
Studies have shown that neutrophils are rapidly infiltrated into
the ischaemic brain within hours, contributing to inflammatory
events and brain damage44,45. Given that glial cells are among the
first cells that respond to brain injury, exhibiting relevant
activities within just minutes of ischaemia onset5, we
hypothesized that a HIF-1-dependent increase of TIM-3 in glial
cells would influence the infiltration of neutrophils into ischaemic
penumbra, and speculated that downregulation of the ability of
TIM-3 to recruit neutrophils could reduce brain damage after
cerebral ischaemia. We first assessed the expression of
myeloperoxidase (MPO) and granulocyte receptor-1 (Gr-1), two
representative neutrophil markers, and confirmed that cells
positive for these markers (MPOþGr-1þ ) were markedly
increased in the penumbral cortex and striatum compared with
contralateral regions at 24 h after H/I (Supplementary Fig. 5).
Next, we examined whether glial cells could recruit
Gr-1highCD11bhigh neutrophils under hypoxic conditions.
Splenocytes were isolated from C57BL/6 mice and incubated in
a Transwell system with or without primary mixed glial cells or
murine embryonic fibroblast control cells that reportedly recruit
immune cells to injured sites46 for 24 h under 1 or 20% O2

conditions. In the presence of glial cells or murine embryonic
fibroblasts, Gr-1highCD11bhigh cells markedly migrated to
the lower chamber under hypoxic conditions, whereas only a
few cells migrated under normoxic conditions (Supplementary
Fig. 6a). However, this hypoxia-dependent increase of migration
of Gr-1highCD11bhigh cells was significantly attenuated in the
absence of glial cells (Supplementary Fig. 6b). These results
suggest that glial cells may be involved in recruiting Gr-
1highCD11bhigh cells under hypoxia.

Next, we examined the effect of TIM-3-blockade on neutrophil
infiltration into ipsilateral hemispheres at 24 h after H/I. Reverse
transcription–PCR (RT–PCR) and western blot analyses of cortex
tissues from the H/I mice showed that MPO expression levels
were significantly reduced in TIM-3-blocking antibody-treated
mice compared with control IgG-treated mice (Fig. 4a,b).
Immunohistochemistry of coronal sections from ipsilateral cortex
also showed that MPOþGr-1þ cells were significantly reduced
by TIM-3-blocking antibody treatment (Fig. 4c). These results
were confirmed by immunohistochemistry using anti-neutrophil
and anti-MPO antibodies (Supplementary Fig. 7). Using coronal
sections from several ipsilateral regions of the H/I brain (bregma
� 2 to þ 2), we further examined the effect of TIM-3 blockade
on neutrophil infiltration at various time points. As shown in
Fig. 4d,e and Supplementary Fig. 8a–d, fewer MPOþGr-1þ cells
were observed in the penumbral cortex and striatum of mice
subjected to TIM-3 blockade at all tested time points (days 1–7).
Collectively, these findings strongly suggest that TIM-3 may be
associated with the infiltration of neutrophils into the injured
brain under hypoxic conditions.

TIM-3 blockade reduces recruitment of neutrophils by glia. To
more specifically assess the influence of glial TIM-3 on neutrophil
migration, we examined whether the blocking TIM-3 affected the
ability of glia to recruit neutrophils under hypoxia. Using a
Transwell system, we plated primary glial cells into the lower
chamber, pretreated these cells with the TIM-3-blocking antibody
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or control IgG, and then loaded the upper chamber with sple-
nocytes. The cells were incubated under 1% O2 for 24 h, and the
proportion of Gr-1highCD11bhigh cells in the lower chamber was
determined by FACS analysis. Our results revealed that Gr-
1highCD11bhigh cells in the lower chamber under hypoxia were
considerably reduced in the presence of 10 mg of TIM-3-blocking
antibody, compared with control IgG (Fig. 5a).

To further validate the above results, we examined the
migration of bone marrow (BM)-derived Gr-1highCD11bhigh cells
under hypoxic conditions. Gr-1highCD11bhigh cells were sorted
from BM cells, plated into the upper chamber, and the lower
chamber was loaded with TIM-3-blocking antibody- or control
IgG-treated primary mixed glial cells under 1% O2

(Supplementary Fig. 6c). Consistent with the results described
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mice treated with 100mg of IgG (n¼ 12) or anti-TIM-3 antibody (n¼ 12). The infarct volume was quantified with Image J analyser and expressed as a

percentage of the damaged ipsilateral hemisphere. (b) Representative magnetic resonance images (MRIs) from TIM-3-antibody-treated mice (n¼4)
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above, the migration of BM-derived Gr-1highCD11bhigh cells to
the lower chamber was significantly reduced by TIM-3-blocking
antibody treatment compared with control IgG treatment
(Fig. 5b). These results clearly support the role for glial TIM-3
in recruiting neutrophils to hypoxic regions after cerebral
ischaemia.

TIM-3 blockade decreases neutrophil chemoattractants. The
infiltration of neutrophils into inflamed or injured sites is regu-
lated by chemoattractants, which are upregulated before neu-
trophil infiltration of the brain following ischaemia34. We thus
examined the effect of the TIM-3 blockade on the levels of IL-1b
and CXCL1, which act as neutrophil chemoattractants in the
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ischaemic brain44,47. Mice were intravenously injected with
100mg of TIM-3-blocking antibody or control IgG at 30min
after H/I. Twenty-four hours later, the transcript levels of IL-1b
and CXCL1 were examined in tissues from ipsilateral and
contralateral cortex. As shown in Fig. 5c,d, the levels of both IL-
1b and CXCL1 transcripts were markedly elevated in ipsilateral
cortex regions of H/I mice injected with control IgG, but this
effect was significantly reduced in mice injected with TIM-3-
blocking antibody.

To further assess the role of glial TIM-3, we investigated the
effect of TIM-3 blockade on the expression levels of IL-1b and
CXCL1 in primary glial cells. The cells were treated with the
TIM-3-blocking antibody or control IgG, and incubated
under 1% O2 or 20% O2 for 24 h. Consistent with the
above results, the levels of IL-1b and CXCL1 transcripts
were considerably increased in IgG-treated control cells
incubated under 1% O2 compared with 20% O2, but these
enhancements were markedly reduced in cells treated with the
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TIM-3-blocking antibody (Fig. 5e,f). These results further support
our hypothesis that glial TIM-3 may be an important player in
the pathogenesis of cerebral ischaemia via the regulation of
neutrophil infiltration.

HIF-1 deficiency reduces neutrophil migration and infarct.
Given our observation that HIF-1a controls expression of TIM-3
in glial cells under hypoxia, we examined whether HIF-1a could
influence the ability of glial cells to recruit neutrophils under
hypoxic conditions. Primary mixed glial cells cultured from
HIF-1aþ f/þ f mice were infected with Ad-GFP or Ad-GFP/Cre,
and incubated in a Transwell system with splenocytes under
1% O2 or 20% O2 for 24 h. The proportion of Gr-1high CD11bhigh

cells in the lower chamber under hypoxia was significantly
decreased when splenocytes were incubated with Ad-GFP/Cre-
infected HIF-1a-deficient glial cells, compared with control
Ad-GFP-infected cells. In contrast, the number of migrated
Gr-1high CD11bhigh cells did not significantly differ between
HIF-1a-deficient and normal cells under 20% O2 (Fig. 6a).
We next found that the number of migrated BM-derived
Gr-1highCD11bhigh cells was meaningfully reduced following
incubation with HIF-1a-deficient glial cells under 1% O2

(Fig. 6b). In addition, the hypoxia-dependent increases of IL-1b
and CXCL1 were significantly reduced in Ad-GFP/Cre-infected
HIF-1a-deficient glial cells, where hypoxia-dependent increase of
TIM-3 was not detected, compared with control Ad-GFP-infected
cells (Fig. 6c,d)

Microglia have been reported to be resident myeloid cells in the
brain48. In an attempt to ascertain the role of glial HIF-1a, we
investigated the extent of brain damage after H/I in LysMCre-
HIF-1aþ f/þ f (LysM-Hif-1a� /� ) mice, which lack HIF-1a
specifically in myeloid cells. We first examined the level of HIF-
1a in primary microglia from LysM-Hif-1a� /� mice. As shown
in Fig. 7a and Supplementary Fig. 9a, HIF-1a transcript levels
were markedly lower in microglia from LysM-Hif-1a� /� mice
compared with HIF-1aþ f/þ f mice. TIM-3 transcript levels were
also lower in the ipsilateral cortex regions of LysM-Hif-1a� /�

mice at 24 h post H/I (Fig. 7b). We observed that the TTC-
staining-negative area was markedly reduced in LysM-Hif-1a� /�

mice compared with HIF-1aþ f/þ f mice, indicating a role for
microglial HIF-1a in brain damage 24 h after H/I (Fig. 7c).
Expression of caspase-3 in neuronal cells was also meaningfully
decreased LysM-Hif-1a� /� mice compared with HIF-1aþ f/þ f

mice (Fig. 7d). Furthermore, we failed to detect any significant
increase of IL-1b and CXCL1 expression in the ipsilateral cortex
of LysM-Hif-1a� /� mice at 24 h post H/I (Supplementary
Fig. 9b). These results imply that HIF-1a may be closely involved
in TIM-3-associated neutrophil infiltration and subsequent brain
damage under hypoxia.

Both TIM-3 blockade and HIF-1a deficiency influence NDS. To
determine whether the reduced infarct volume and neuronal cell
death are correlated with improvement in neurological function,
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we measured the neurological deficit score (NDS) in the H/I
model using widely used methods49,50. The neurological deficits
were assessed by flexion of contralateral torso and forelimb,
circling to the contralateral side, leaning to the contralateral side
at rest, and spontaneous motor activity. Neurological deficits
caused by H/I were decreased in mice treated with TIM-3-
blocking antibody compared with IgG-treated mice. Twenty
hours after H/I, the NDS for mice treated with IgG was 2.8±0.8
(±s.d.), whereas the NDS for mice treated with TIM-3-blocking
antibody was 0.8±0.8 (Table 1a; P¼ 0.012; Mann–Whitney U-
test). These results suggest that TIM-3 is associated with
neurological function under hypoxia. Next, we assessed the
NDS in HIF-1aþ f/þ f mice (n¼ 10) and LysM-Hif-1a� /� mice
(n¼ 11) at 24 h after H/I. Leaning behaviour and an absence of
spontaneous motor function were observed in HIF-1aþ f/þ f mice,
but not in LysM-Hif-1a� /� mice (Supplementary Movies 1–4).
The average NDS in LysM-Hif-1a� /� mice were significantly
lower than that in HIF-1aþ f/þ f mice (Table 1b; 1.2±0.6 versus
2.6±1.1, P¼ 0.0008). Taken together, these findings suggest that
the HIF-1a/TIM-3 axis may be closely involved in neurological
function as well as cerebral infarct volume and pathophysiological
inflammatory events.

TIM-3 increases neuronal damage in HIF-1a-deficient mice.
We next examined whether TIM-3 could influence the phenotype
of HIF-1a-deficient mice after H/I. For this, we generated a
lentiviral vector expressing TIM-3 and GFP (LV-TIM3-GFP). We
first examined whether the lentiviruses were capable of infecting
glial cells and observed that TIM-3 expression was significantly
increased in GFP-positive-CD11bhighCD45low glial cells from
lentivirus-injected mice (Supplementary Fig. 10a). We injected
the viruses into the right hemisphere of LysM-HIF-1a� /� mice
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Figure 7 | H/I-induced brain damage is reduced in LysM-Hif-1a� /� mice. (a) RT–PCR analysis was performed in primary microglia cultured from HIF-

1aþ f/þ f or LysM-Hif-1a� /� mice using the indicated primers. (b) TIM-3 transcript levels were examined in bran tissues from the contralateral cortex and

ischaemic ipsilateral cortex of HIF-1aþ f/þ f or LysM-Hif-1a� /� mice (n¼ 3) at 24 h post-H/I. (c) Representative images of TTC-stained brain slices from in
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graph shows the mean number of NeuN and cleaved caspase-3-stained cells per mm2 (±s.d. from three independent experiments).

Table 1a | Neurological deficit scores in mice after 24 h of

H/I in mice with IgG (n¼ 5) or anti-TIM-3 (n¼6).

Treatment Number with the indicated

score

n Mean±s.d.

0 1 2 3 4

IgG control 0 0 2 2 1 5 2.8±0.8

TIM-3-blocking antibody 3 2 1 0 0 6 0.8±0.8*

H/I, hypoxia-ischaemia; TIM, T-cell immunoglobulin and mucin domain protein.

The data were analysed by Mann–Whitney U-test; *P¼0.012.
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using a stereotaxic instrument. Control mice were injected with
LV-GFP, expressing GFP alone. Each mouse was subjected to
four intracranial injections in the right hemisphere (Fig. 8a and
Supplementary Fig. 10b). H/I was induced 5 days after injection
of LysM-Hif-1a� /� mice with LV-TIM3-GFP or LV-GFP, and
infarct size and neurological outcomes were examined 24 h later.
As shown in Fig. 8b,c, the TTC-staining-negative area was sig-
nificantly increased in mice given injections of LV-TIM3-GFP
(n¼ 5), compared with control LV-GFP-injected mice (n¼ 6). In
addition, the average NDS for LysM-Hif-1a� /� mice injecting
LV-TIM3-GFP were higher than that for LV-GFP-injected con-
trol mice (Fig. 8d and Supplementary Fig. 10C) (1.1±0.7 versus
2.3±0.8, P¼ 0.046). These results further support the involve-
ment of the HIF-1/TIM-3 axis in brain injury under hypoxia.

Discussion
Clinical and experimental findings indicate that inflammatory
processes are critically involved in the pathogenesis of ischaemic
brain injury, and that patients with abnormally elevated
inflammation exhibit poorer outcomes5,44. In addition,
strategies aimed at limiting pathological inflammatory processes
have been shown to have therapeutic potential in experimental
models of brain ischaemia. Thus, researchers have recently
focused on developing anti-inflammatory agents that target
immune and inflammatory cells/mediators for the treatment of
brain ischaemia47,51. In this study, we explored molecular players
that could play pivotal roles in the interdependent associations
between post-ischaemic inflammatory events and brain damage.

Tissues in the ischaemic core are irreversibly damaged, but
penumbral tissues are metastable and potentially salvageable. The
penumbra includes ischaemic area that recover spontaneously
and areas that progress to irreversible changes unless effectively
treated2,52. Thus, salvageable tissue is the potential target for
therapeutic intervention. Our experiments in a H/I mouse model
and a primary glial cell culture system revealed that TIM-3
expression is elevated under hypoxic conditions, predominantly
in activated microglia and astrocytes of penumbral regions, where
it may play a crucial role in inflammatory processes associated
with neutrophil infiltration. Accumulating evidence has shown
that, under pathological conditions, expression of TIM-3 can be
induced in some cells, where it appears to play multiple roles in
both adaptive and innate immunity7. In this context, we

Table 1b | Neurological deficit scores after H/I in

HIF-1aþ f/þ f (n¼ 10) and LysM-Hif-1a� /� (n¼ 11) mice

Mean scores are given±s.d.

Mouse Number with the indicated score n Mean±s.d.

0 1 2 3 4

HIF-1aþ f/þ f 0 2 3 2 3 10 2.6±1.1

LysM-HIf-1a� /� 6 4 1 0 0 11 1.2±0.6**

H/I, hypoxia-ischaemia.

The data were analysed by Mann–Whitney U-test; **P¼0.0008.
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hypothesized that hypoxia-induced glial TIM-3 expression could
be involved in pathophysiological immune responses following
cerebral ischaemia, and tested this by examining the characteristic
features and functions of TIM-3 in post-ischaemic responses.

HIF-1 is generally accepted to be a pivotal physiological
regulator of anaerobic metabolism, as well as an essential
modulator of immunological responses22,25,28. In addition, HIF-
1 has been suggested to play an essential role in hypoxic-
ischaemic brain damage, and has been proposed as therapeutic
target for the treatment of ischaemic diseases53. Given our
observation that TIM-3 expression is regulated by oxygen
tension, we examined whether HIF-1 was capable of
modulating TIM-3 expression in the activated glial cells of H/I
mice. ChIP and promoter activity assays showed that HIF-1
bound to the TIM-3 promoter and regulated its activity under 1%
O2. Experiments using HIF-1a-deficient glial cells strongly
support that HIF-1 might critically modulate glial TIM-3
expression under brain hypoxic conditions. These results
collectively suggest that TIM-3 serves as a downstream
mediator of HIF-1 in the inflammatory processes associated
with hypoxic-ischaemic damage.

To examine whether TIM-3 could indeed contribute to the
pathogenesis of brain ischaemia, we investigated the influence of
TIM-3 upregulation on the brain damage and pathological
inflammatory responses observed following H/I. Notably, we
found that blocking TIM-3 using a monoclonal antibody
significantly reduced infarct size and oedema formation com-
pared with that in IgG-treated control H/I mice. Previous reports
have shown that TIM-3 is associated with several CNS diseases.
For example, TIM-3 has been found to play important roles in
inducing and determining the severity of EAE6,17. Recently, Zhao
et al. reported that TIM-3 expression is augmented in peripheral
blood mononuclear cells of ischaemic stroke patients and brain
tissues of global ischaemia-reperfusion mice, suggesting a possible
role for TIM-3 in brain ischaemic disease54. Our findings, taken
together with these previous reports, suggest that TIM-3 may be
closely associated with the pathogenesis of inflammation-related
CNS diseases.

TIM-3 has been implicated in diverse pathophysiological
events, including both activation and inhibition of immune
responses, and induce distinct signalling responses in various cell
types and conditions8,55. TIM-3 blockade was shown to increase
Th1 inflammation and trigger immune-mediated tissue injury in
autoimmune diseases and transplant rejection models56. In
contrast, activation of TIM-3 on antigen-presenting cells was
shown to play a proinflammatory role and contribute to the
regulation of inflammation-associated diseases8. Notably, the
outcome of TIM-3 signalling may differ even within the same cell
type in a context-dependent manner. For example, TIM-3 has
been reported to suppress nucleic acid-mediated innate immune
responses in tumour-infiltrating dendritic cells (DCs)9, whereas
TIM-3 promotes lipopolysaccharide-induced DC activation8.
Considering that these reports indicate that TIM-3 has multiple
functions, we sought to carefully decipher the role of glial TIM-3
and the outcome of TIM-3 signalling in our H/I model.

Studies have shown that inflammatory cells infiltrate the brain
during brain ischaemia and that this infiltration is closely
correlated with the inflammatory status and severity of tissue
damage. Blood-derived macrophages are recruited into the
ischaemic brain beginning 24–48 h after focal ischaemia, with the
most abundant recruitment seen on days 3–7 after stroke57–61.
T cells are reported to infiltrate around the infarct by day 3, and
their numbers increase progressively between days 3 and 7 (refs
5,62,63). Infiltration of neutrophils into the ischaemic brain begins
within 30min to a few hours of focal cerebral ischaemia, peaks at
days 1–3 and disappears thereafter. These infiltrating neutrophils

release various cytokines and chemokines, and their massive
infiltration exacerbates brain injury5. Thus, the balanced regulation
of neutrophil infiltration might be an important factor in
determining secondary damage after cerebral ischaemia. Brain
resident glial cells are among the first cells to respond to brain
injury and release various inflammatory mediators. We therefore
questioned whether HIF-1-dependent upregulation of TIM-3 on
glial cells influenced the infiltration of neutrophils into ischaemic
regions under hypoxia. Interestingly, we found that migration of
Gr-1highCD11bhigh cells was increased in the presence of glial cells
under 1% O2. In addition, blockade of TIM-3 significantly reduced
the ability of glial cells to recruit neutrophils in vivo and in vitro,
and diminished the levels of IL-1b and CXCL1, which are known
to act as neutrophil chemoattractants in the ischaemic brain44,47.
Furthermore, blockade of TIM-3 improved functional neurological
deficits in the H/I mouse model. These results indicate that glial
TIM-3 may be closely involved in neutrophil infiltration and
production of neutrophil chemoattractants in ischaemic brain
regions, supporting our hypothesis.

Experiments in HIF-1a-deficient glial cells further support our
hypothesis. To more address the question on the HIF-1/TIM-3
axis in hypoxia-associated brain inflammation, we examined
neutrophil infiltration in Ad-GFP- or Ad-GFP/Cre-infected glial
cells from HIF-1aþ f/þ f mice. Consistent with the results
obtained with our TIM-3-blocking antibody, both neutrophil
infiltration and IL-1b production were significantly diminished in
studies using HIF-1a-deficient glial cells. Neurological deficits
caused by H/I were also decreased in LysM-HIf-1a� /� mice

Hypoxia

(penumbral area)

Hypoxia
IL-1β

CXCL1
Neutrophil

recruitment

Unbalanced increase of

neutrophil infiltration

Neutophil

TIM-3

TIM-3

TIM-3

HIF-1α

HIF-1α

HIF-1β

HIF-1β

TIM-3 promoter

Microglia

astrocytes

CXCL1

Neuron

Glia

IL-1β

Excessive inflammation

Neuronal injury

HIF-1α

HIF-1β

Neurological

deficits

Figure 9 | Schematic diagram depicting possible TIM-3-associated

events in the brain under hypoxia. The hypoxia-dependent activation of

HIF-1 enhances TIM-3 expression in microglia and astrocytes. Activation of

the HIF-1/TIM-3 axis induces the production of neutrophil attractants and

the recruitment of neutrophils to hypoxic sites. Aberrant increase of

neutrophil infiltration causes abnormal inflammation and subsequent

pathological events in the brain.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7340

12 NATURE COMMUNICATIONS | 6:6340 | DOI: 10.1038/ncomms7340 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


lacking microglial HIF-1a. Moreover, intracranial injection of
LV-TIM3-GFP into cortical region of LysM-HIf-1a� /� mice
increased infarct area and worsened neurological outcomes.
Previously, our group reported that neutrophil infiltration was
downregulated in the skins of HIF-1a-null mice subjected to
chemical irritation owing to impairment of HIF-1a-regulated
metabolic responses25. It has also been shown that HIF-1a is
directly involved in regulating neutrophil survival under
hypoxia63. Our current findings provide that TIM-3 is induced
by HIF-1a in glial cells under hypoxia, and that this appears to
affect the recruitment of neutrophils into ischaemic regions, at
least in part through increased production of neutrophil
chemoattractants (Fig. 9). Taken together, these results suggest
that HIF-1a may affect neutrophil infiltration into the hypoxic
brain by regulating the expression of glial TIM-3 as well as that of
genes associated with metabolic responses. They also strongly
support that infiltration of inflammatory cells is an important
factor in brain damage after cerebral ischaemia.

In summary, we here present a function for TIM-3 as a
molecular player that links inflammation and brain damage after
cerebral ischaemia. We reveal that glial TIM-3 is increased in a
HIF-1-dependent manner under hypoxia, and that either TIM-3
blockade or HIF-1a deficiency significantly reduces the ischaemic
infarct volume and functional neurological deficits in a H/I
mouse model. Further understanding of the function and
characteristics of TIM-3 and HIF-1 during cerebral ischaemia,
particularly in the balanced regulation of neutrophil infiltration,
may contribute to the future development of effective therapeutic
approaches against hypoxia-associated brain diseases.

Methods
Mice. Mice carrying HIF-1a-floxed alleles (HIF-1aþ f/þ f) were produced by Dr
Randall Johnson, and were maintained in the animal facility at the National Cancer
Center (AAALAC accredited facility). Mice lacking HIF-1a in myeloid lineage cells
were generated by cross-breeding HIF-1aþ f/þ f mice to LysM-Cre transgenic
mice25. Eight0week-old male C57BL/6 mice (Orient Bio) were used for in vivo and
in vitro experiments. All animal procedures were performed according to ARRIVE
guidelines and National Cancer Center guidelines for the care and use of laboratory
animals. The protocol was approved by the Committee on the Ethics of Animal
Experiments of the National Cancer Center (Permit Number: NCC-11-125). To
avoid bias, the animal studies in this study were properly randomized in a blinded
manner with respect to the genotypes and treatments.

Hypoxic cerebral ischaemia model and assessment of infarct volume. H/I was
induced in C57BL/6 male mice (8 weeks, Orient Bio) as described by Zhang et al.35

Briefly, mice were anaesthetized with Zoletil (Virbac) and Rompun (Bayer) (4:1),
and each mouse’s right common carotid artery was exposed and double-ligated
with 4-0 surgical silk. The incisions were sutured, and mice were allowed to recover
for 2 h with access to food and water. Systemic hypoxia was induced by exposure to
8% O2/balance N2 in temperature-controlled hypoxia chambers (BioSpherix,
C-474). This model of transient unilateral cerebral ischaemia has been shown to
generate reproducible brain damage in the ipsilateral hemisphere, but not in the
contralateral hemisphere. For TIM-3-blocking experiments, mice were
intravenously injected with 100 mg of rat IgG2a, k isotype (eBioscience, 16-4321) or
an anti-TIM-3 monoclonal antibody (eBioscience, RMT-3-23) 30min after H/I. At
24 h after H/I, mice were killed, and brains were removed and immediately sliced
into 2-mm-thick sections, which were incubated with TTC at 37 �C for 30min.
Images of these sections were obtained under stereomicroscope fitted with a
camera (Zeiss, Stereo Discovery.V20). Infarct volume, which was determined using
an indirect method that compensates for oedema of the infarcted tissue, was
calculated as the percentage of the ratio of the damaged area to the area of the
hemisphere with correction for hemispheric swelling due to oedema, using the
formula: Infarct volume (%)¼ [(contralateral hemisphere-healthy area in ipsilateral
hemisphere)/contralateral hemisphere]� 100 (ref. 64).

Magnetic resonance imaging assessments. Mice were fixed in an animal bed
and placed in an MRI spectrometer (Bruker7T BioSpec), and then anaesthetized
during imaging to minimize discomfort. T2-weighted images were acquired
using Rapid Acquisition with Relaxation Enhancement sequence. Eighteen
contiguous axial slices with a thickness of 0.7mm were acquired matrix 256� 256,
field of view¼ 20� 20mm, TR (Repetition Time)¼ 2,500ms, TE (Echo
Time)¼ 35ms, acquisition time¼ 4min and no gap. A map of apparent diffusion

coefficient (ADC) was obtained by diffusion-weighted images using a spin-echo
sequence. For this, eight contiguous axial images were acquired (thickness 0.7mm,
matrix 256� 128, field of view¼ 20� 20mm, TR¼ 2,000ms, TE¼ 26.936ms,
acquisition time¼ 16min, 1 average, b values¼ 45, 350, 1,000 and 2,000 s per mm2

and no gap). The ADC maps were obtained from scanner. Oedema volumes were
calculated with the T2-weighted images and the ADC maps by the Image J ana-
lyser. Oedema volume (%)¼ [(Ipsilateral volume—contralateral volume)/con-
tralateral volume]� 100.

Isolation of microglia and astrocytes from mouse brain tissues. Microglia were
isolated from brain tissue using the previously described Percoll-gradient isolation
technique65. Briefly, brains were removed from perfused mice, divided into
ipsilateral and contralateral hemispheres, minced and digested by incubation with
250 mgml� 1 collagenase IV/DNase I at 37 �C for 45min each. The resulting cell
suspensions were fractionated on 50/70% Percoll gradients at 1,000 g for 25min.
Microglial cells were collected from the interface between the 50 and 70% bands
and washed with hanks’ balanced salt solutions (HBSS, Welgene). The purity of the
isolated microglial cells was determined by FACS analysis. Astrocytes were isolated
as previously described66. In brief, cell suspensions from brain tissues were
fractionated on 30/60% Percoll gradients at 1,000 g for 25min. Astrocytes were
collected from the PBS/30% interface. The purity of the isolated astrocytes was
determined by FACS analysis using an anti-GFAP antibody (Cell Signaling
Technology, #3670, 1:500).

Glial cells and neuron-enriched mesencephalic cultures. Mouse primary mixed
glial cells were cultured from the cerebral cortices of 1- to 3-day-old mice, as
described in our previous study67. The proportion of microglia in murine mixed
glial cultures was demonstrated to be 30–50% by FACS analyses using an anti-
CD11b antibody (eBioscience, 11-0112, 5 mgml� 1). Neuron-enriched
mesencephalic cells were cultured from embryonic day 14 mice as described
previously67. In brief, ventral mesencephalic tissues were dissected and incubated
in Ca2þ -, Mg2þ-free HBSS (CMF-HBSS) for 10 min and a 0.01% trypsin in CMF-
HBSS for 9min at 37 �C. The cultures were rinsed twice in Dulbecco’s modified
eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 6mgml� 1

glucose, 204 mg ml� 1
L-glutamine and 100U ml� 1 penicillin/streptomycin (P/S)

for trypsin inhibition, and then dissociated into single cells by trituration. Cells
were seeded onto plates (2� 106 cells per well) precoated with poly-D-lysine
(5mgml� 1) and laminin (0.2mgml� 1).

Adenoviral transduction. A nonreplicative adenovirus (AD-GFP/Cre) in which
the Cre recombinase gene is expressed under the control of the cytomegalovirus
promoter was purchased from Vector Biolabs. A reporter Ad-GFP was used as the
control (Vector Biolabs). For adenoviral transduction, primary mixed glial cells
were cultured from HIF1-aþ f/þ f mice, and infected with Ad-GFP or Ad-GFP/Cre
(multiplicity of infection (MOI)¼ 100) for 24 h. Infection efficiency, assessed by
flow cytometry, was determined to be B50%.

ChIP assay. ChIP assay was performed using a ChIP assay kit (Upstate Bio-
technology). Mouse primary mixed glial cells were incubated under hypoxic con-
ditions for 24 h, and immediately fixed with 1% formaldehyde/phosphate-buffered
saline, and sonicated to obtain 500- to 1,000-bp DNA fragments. Chromatin was
immunoprecipitated with 5 mg of anti-HIF-1a (Novus, NB100-134) or rabbit IgG.
The immunoprecipitated DNA was amplified with a promoter pair specific for the
TIM-3-promoter (F, 50-CCTGCTGCTTTGGAATTTGC-30 ; and R, 50-GAGTAC
TTGGCAGGGGAAATC-30).

Neutrophil migration assay. Neutrophils were isolated with a FACS Aria system
(BD Bioscience), based on binding of FITC-conjugated anti-CD11b (eBioscience,
11-0112, 5 mgml� 1) and PE-conjugated anti-Gr-1(Ly6G) (eBioscience, 12-5931,
2 mgml� 1). Sorted neutrophils were added to the upper chamber of Transwell
inserts positioned on 24-well plates in which mouse primary mixed glial cells had
been seeded. The cells were incubated under 1% O2 or 20% O2 for 24 h, and
transmigration was evaluated using a haematocytometer and flow cytometry.

Determination of neurological deficits. Neurological deficit was assessed by a
neurological scoring system according to a widely used method as follows68. The
neurological scores of mice were given as follows: 0, normal motor function; 1,
flexion of contralateral torso and forelimb upon lifting by tail; 2, circling to the
contralateral side when mouse was held by the tail, but normal posture at rest; 3,
leaning to contralateral side at rest and 4, no spontaneous motor activity.

Immunohistochemistry. For immunohistochemistry, brains were removed, post-
fixed and embedded in paraffin. Coronal sections (10-mm thick) through the infarct
were cut using a microtome and mounted on slides. The paraffin was removed, and
the sections were washed with PBS-T and blocked in 10% bovine serum albumin for
2 h. Thereafter, the following primary antibodies were applied: goat anti-TIM-3
(Santa Cruz Biotechnology, sc-30326, 2mgml� 1), rat anti-Gr-1(Ly6G) (eBioscience,
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14-5931, 10mgml� 1), rat anti-neutrophil (Abcam, ab2557, 2mgml� 1), rabbit anti-
MPO (Dako, A0398, 10mgml� 1), rabbit anti-Iba-1 (Wako, #019-19741, 2mgml� 1),
rabbit anti-cleaved caspase-3 (Cell Signaling Technology, #9662S, 1:300), mouse
anti-NeuN (Millipore, #MAB377, 10mgml� 1). Hypoxic regions were detected using
pimonidazole (Hypoxyprobe-1, Natural Pharmacia International) as described pre-
viously69. Images were obtained using a confocal microscope (Carl Zeiss LSM510).
For assessment of TIM-3 expression in primary glial cells, mouse primary mixed
glial cells were fixed with methanol, washed with PBS-T and incubated at 4 �C with
anti-TIM-3 antibody (R&D Systems, AF1529, 1mgml� 1).

TIM-3 promoter assay. A 1,517-bp fragment of the mouse TIM-3 promoter
(� 1,517 to þ 1 relative to the start codon) was PCR-amplified from genomic
DNA and cloned into the PGL3 basic vector (Promega). Site-directed mutagenesis
of each HRE was performed using mutant primers and Phusion High-Fidelity
DNA Polymerase (NEB). All constructs were confirmed by DNA sequencing.
Mouse primary mixed glial cells were transfected using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions. After transfection, cells
were incubated under 1% O2 or 20% O2 for 24 h, and reporter gene activity was
determined with a luciferase assay system (Promega). b-Galactosidase activity was
measured for the normalization of transfection efficiency.

Western blot analysis. Right and left hemispheres were dissected from H/I mice,
and homogenized with a pellet pestle (Fisher) in ice-cold RIPA buffer containing
protease inhibitors (2mM phenylmethylsulphonyl fluoride, 100 mgml� 1 leupeptin,
10mgml� 1 pepstatin, 1 mgml� 1 aprotinin and 2mM EDTA). Homogenates were
centrifuged at 12,000 r.p.m. for 30min at 4 �C, and supernatants were collected.
The samples were separated by SDS–polyacrylamide gel electrophoresis, trans-
ferred to nitrocellulose membranes and incubated with the following primary
antibodies: goat anti-TIM-3 (R&D Systems, AF1529, 0.1 mgml� 1), mouse anti-
PARP (Zymed, 33-3100, 2 mgml� 1), rabbit anti-MPO (Dako, A0398, 2 mgml� 1),
goat anti-Iba-1 (Abcam, ab5076, 0.5 mgml� 1), mouse anti-GFAP (Cell Signaling
Technology, #3670, 1:1,000), mouse anti-NeuN (Millipore, #MAB377, 1 mgml� 1),
mouse anti-a-tubulin (Sigma, T5168, 1:5,000), microtubule-associated protein 2
(Millipore, #MAB3418, 1 mgml� 1), glutamate decarboxylase (Abcam, ab11070,
1 mgml� 1), peroxidase-conjugated goat anti-rabbit (Bio-Rad, #170-6515, 1:5,000),
peroxidase-conjugated rabbit anti-goat (Zymed, R-21459, 1:5,000), peroxidase-
conjugated goat anti-mouse (Bio-Rad, #170-6516, 1:5,000). The results were
visualized using an enhanced chemiluminescence system, and quantified by den-
sitometric analysis (Image J software, NIH). All experiments were performed
independently at least three times.

RT–PCR analysis. Total RNA was isolated using Easy-Blue (iNtRON), and cDNA
was synthesized using avian myeloblastosis virus reverse transcriptase (TaKaRa)
according to the manufacturer’s instructions. PCR was performed with 25–30
cycles of sequential reactions. All experiments were performed independently at
least three times, and the PCR products were quantified using NIH Image J and
normalized to actin. The QuantiFast SYBR Green PCR kit (Qiagen) was used for
real-time PCR. Roche LightCycler 480 Real-Time PCR System (Roche Applied
Science) and LigthCycler 480 Quantification Software Version 1.5 were used for
real-time PCR performance and analysis. The primers used in quantitative PCR
were as follows: (forward) 50-GGATGAGGACATGAGCACCT-30 and (reverse)
50-TCCATTGAGGTGGAGAGCTT-30 for IL-1b; (forward) 50-TGCACCCAA
ACCGAAGTCAT-30 and (reverse) 50-TTGTCAGAAGCCAGCGTTCAC-30 for
CXCL1; (forward) 50-CTCATCAGTTGCCACTTCC-30 and (reverse) 50-TCATC
TTCACTGTCTAGACCAC-30 for HIF-1a; (forward) 50-TGTCGTGGAGTCTA
CTGGTGTCTTC-30 and (reverse) 50-CGTGGTTCACACCCATCACAA-30 for
GAPDH. The sequences of the utilized PCR primers were follows: (forward) 50-CC
CTGCAGTTACACTCTACC-30 and (reverse) 50-GTATCCTGCAGCAGTAG
GTC-30 for TIM-3; (forward) 50-AGCCTTAACCTGTCTGCCACTT-30 and
(reverse) 50-GAAATCATTTAACATTGCATATATACTAGAACAT-30 for HIF1a;
(forward) 50-AGGATAGGACTGGATTTGCCTG-30 and (reverse) 50-GTGGTG
ATGCCAGTGTTGTCA-30 for MPO; (forward) 50-TACAGGCTCCGAGATGAA
CAACAA-30 and (reverse) 50-TGGGGAAGGCATTAGAAACAGTCC-30 for IL-
1b; (forward) 50-CGCTCGCTTCTCTGTGCAGC-30 and (reverse) 50-GTGGCTA
TGACTTCGGTTTGG-30 for CXCL1; (forward) 50-CATGTTTGAGACCTTCAAC
ACCCC-30 and (reverse) 50-GCCATCTCCTGCTCGAAGTCTAG-30 for Actin.

Flow cytometry. All staining steps were performed in the dark and blocked with
BD Fc Block. Freshly obtained microglia and astrocytes were stained using the
following antibodies: rabbit anti-Iba-1 (Wako, #019-19741, 1 mgml� 1) followed by
Alexa 488-conjugated chick anti-rabbit (Invitrogen, A21441, 2 mgml� 1), and
either PE-conjugated anti-mouse TIM-3 (eBioscience, RMT-3-23, 2 mgml� 1) or
isotype control Ab (eBioscience, 2 mgml� 1) for 30min at 4 �C. For intracellular
staining of GFAP, cells were fixed and permeabilized for 20min with IC fixation/
permeabilization buffer (eBioscience), washed twice with permeabilization buffer,
incubated with anti-GFAP (Cell Signaling Technology, #3672, 1:500) in permea-
bilization buffer for 30min and stained with Alexa 488-conjugated chick anti-
mouse (Invitrogen, A21200, 2 mgml� 1). The data were analysed with the Cell-
Quest software (BD Bioscience) and FlowJo software (Treestar) packages.

Lentiviral production and stereotaxic injection. The coding sequence of TIM-3
(GE Dharmacon) was ligated into the PLL3.7.EF1a plasmid (Addgene, Inc.) to
produce PLL3.7.EF1a-TIM3. The plasmid was then used to generate the recom-
binant lentivirus LV-TIM3-GFP. As a control, a lentiviral vector that expressed
GFP alone (LV-GFP) was generated. Lentiviruses were titrated using flow cyto-
metry as previously reported70. LV-TIM3-GFP or LV-GFP was injected using a
stereotaxic instrument. Each mouse received four intracranial injections of
lentivirus (20ml containing 5� 106TUml� 1 into the right hemisphere). For
in vitro fluorescence imaging, the collected cells were analysed by FACS and
western blotting using an anti-GFP antibody (Santacruz, sc-9996, 1:1,000). Whole-
body in vivo imaging was performed in a fluorescent light box illuminated at
excitation filter, from 445 to 490 nm, and emission filter, from 515 to 575 nm, using
Caliper Life Science’s Xenogen IVIS Spectrum.

Data analysis. All data are expressed as the mean±s.d. Post-hoc comparisons
(Student–Newman–Keuls test) were performed using SigmaPlot 10.0. Neurological
scores were assessed by nonparametric statistical procedures. Two group (IgG
versus anti-TIM-3, HIF-1aþ f/þ f mice versus LysM-HIf-1a� /� mice, LV-GFP
injected LysM-HIf-1a� /� mice versus LV-TIM3-GFP injected LysM-HIf-1a� /�

mice) comparisons were analysed by the Mann–Whitney U-tests.
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