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We study the Higgs sector in the next-to-minimal supersymmetric standard model both
with and without explicit CP violation, focusing on the case of a weak-scale expectation value
of the singlet field. We scan a wide range of the parameter space to determine allowed regions
by requiring that the electroweak vacuum be the global minimum of the effective potential
and that the neutral Higgs bosons with moderate gauge coupling be heavier than the lower
bound on the Higgs boson in the standard model. Among the allowed sets of parameter
values, some sets yield the situation in which the light Higgs bosons couple with the Z boson
too weakly for observation to be possible in present collider experiments. For such parameter
sets, we determine an upper bound on the charged Higgs mass that is attainable in LHC.

§1. Introduction

The search for the Higgs boson is one of the most important issue of high-energy
particle physics, because the Higgs boson is the only unobserved particle in the
minimal standard model (MSM). The results of the LEP 2 experiment place a limit
on the MSM-Higgs mass: mh > 114.4 GeV with 95% CL.1),2) Although there are
some theoretical restrictions on the Higgs mass, it cannot be predicted in the MSM
framework, because the Higgs self-coupling is a free parameter. Supersymmetric
extensions of the MSM, which were formulated with the goal of solving the hierarchy
problem, place limitations on the possible range of the Higgs mass, because of the self-
coupling resulting from the gauge couplings. Among such extensions, the minimal
supersymmetric Standard Model (MSSM) has been extensively studied and is known
to give an upper bound on the mass of the lightest Higgs boson, namely, mh ≤ mZ

at the tree level. This bound seems somewhat severe, but it is modified by radiative
corrections, through which it becomes mh ≤ 135 GeV at the two-loop level. These
corrections come mainly from the loops of the top quark and squark.3)

The MSSM contains a µ-parameter in the superpotential. It enters the Higgs
potential with the soft scalar masses to determine the vacuum expectation value
(VEV) of the Higgs fields. Thus, µ must take a value on the order of the weak
scale, which is much smaller than the GUT scale or Planck scale. However, there is
no a priori reason for µ to have such a small value. One solution of this so-called
µ-problem is to substitute a VEV of an extra gauge-singlet field for the parameter
µ. The NMSSM is among the models that have a gauge-singlet Higgs superfield N .
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The superpotential of the model contains

W = −λNHdHu − 1
3
κN3, (1.1)

in addition to the MSSM terms with µ = 0.4) We adopt the Z3-symmetric version
of the superpotential so that it does not contain any dimensional coupling. The
µ-parameter of the MSSM is generated as µ = λ 〈N〉. The NMSSM behaves like
the MSSM in the limit that 〈N〉 � v with λ〈N〉 and κ〈N〉 fixed, in which case
the singlet decouples. Here v =

√
〈Hd〉2 + 〈Hu〉2 is the VEV of the Higgs doublets.

Because the superpotential has no dimensional parameters, the VEVs of the Higgs
fields are determined by the mass parameters in the soft-supersymmetry-breaking
terms together with the couplings. If all the mass parameters in the Higgs potential
are of the weak scale and all the couplings have moderate values approximately in
the range 0.1 – 1, it is natural for the singlet to acquire a VEV of the same order as
v. Then we expect there to appear features that do not exist in the MSSM, and our
main concern is the Higgs sector in this case.

The NMSSM contains three CP -even neutral Higgs bosons, S1, S2 and S3, two
CP -odd bosons, A1 and A2, and a pair of charged bosons, H±, in the CP -conserving
case. The spectrum of the CP -conserving model is studied in Refs. 5)–7). In contrast
to the situation in the MSSM, in the NMSSM the three CP -even scalars can mix
to form mass eigenstates of small mass with very small gauge coupling.7) Such a
light Higgs boson cannot be produced in lepton colliders, and therefore it is not
excluded, even if its mass is smaller than 114 GeV. We refer to this situation as the
light Higgs scenario. As we see below, such a light Higgs situation is realized in the
case of weak scale 〈N〉 and small κ. A similar situation has been observed in the
MSSM when a large mixing among CP eigenstates is caused by the CP violation
in the squark sector, which is characterized by the imaginary part of the product
of µ and the A-term.8) Then the gauge coupling of the lightest scalar is so small
that it can escape the lower bound on the Higgs mass.9) While the same mixing is
also expected in the NMSSM, it contains another source of CP violation in the tree-
level Higgs sector. Such a CP violation has been studied in several cases in which
it is caused spontaneously10) and explicitly11) in some special situations. We give
the one-loop formulation with all possible CP phases including the squark sector
in a manner that is independent of the phase convention. In this formulation, one
can easily arrange the phases in such a way that the phase relevant to the neutron
electric dipole moment (nEDM) is suppressed while those which affect the mixing of
the Higgs bosons are retained. We investigated the mass spectrum and couplings in
the case that such a CP phase is included.

Another aspect of the NMSSM Higgs sector is that the Higgs potential contains
cubic terms including the singlet field. Although these terms must be constrained in
such a manner that they do not cause the global minimum of the effective potential
to differ from the electroweak vacuum, they are expected to strengthen the first-
order phase transition at high temperature. In this sense, this model is more suited
for electroweak baryogenesis than is the MSSM, which requires a light stop with a
mass less than the top quark mass for the strongly first-order phase transition.12)
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We pointed out that the CP violation in the squark sector weakens the electroweak
phase transition (EWPT) caused by a light stop in the MSSM.13) We conjecture
that, in contrast to the MSSM, the CP violation in the Higgs sector of the NMSSM
does not weaken the EWPT, while being sufficient to generate chiral charge flux,
which is the source of baryon asymmetry. The effects of this CP violation on the
phase transition will be discussed in a forthcoming paper.

This paper is organized as follows. In §2, we analyze the NMSSM Higgs sector
at the tree level and explain how to obtain restrictions on the parameters in the
model. There we derive the upper and lower bounds on the mass of the charged
Higgs, which are trivial in the MSSM limit but important in the case of weak scale
〈N〉. In §3, we derive the one-loop formulas for the mass-squared matrix of the
neutral Higgs bosons and the mass of the charged Higgs boson. In §4, we present
the results of the numerical parameter search. The spectrum condition divides the
allowed parameter sets into two classes. The first class consists of MSSM-like allowed
parameter sets, in which all the Higgs bosons are heavier than 114 GeV, and the
second class corresponds to the light Higgs scenario. The study of the CP violation
is described in §5. The formulas used to define the effective potential and to calculate
the mass matrix are summarized in the appendices.

§2. Tree-level Higgs sector

2.1. Higgs potential

In this section we analyze the tree-level Higgs sector. The NMSSM has the
following superpotential with the singlet superfield N :7)

W = fdHdQDc − fuHuQU c − λNHdHu − κ

3
N3. (2.1)

Here Q, Dc and U c denote chiral superfields containing quarks, and Hd and Hu

contain the Higgs doublets required in the MSSM. The couplings λ and κ for the
singlet are in general complex numbers. We consider the Z3-symmetric version of
the superpotential, and therefore it contains no dimensional coupling.

In addition to the supersymmetric Lagrangian, the low-energy NMSSM contains
the soft-SUSY-breaking terms,

Lsoft = − m2
1Φ

†
dΦd − m2

2Φ
†
uΦu − m2

nn∗n − m2
q̃ q̃

†
Lq̃L − m2

d̃
d̃†Rd̃R − m2

ũũ†
RũR

−
{

(fdAd)Φdq̃Ld̃∗R − (fuAu)Φuq̃Lũ∗
R − λAλnΦdΦu + h.c.

}
−

(
m′

nn2 +
1
3
κAκn3 + h.c.

)
, (2.2)

where q̃L, d̃R and ũR are the squark fields, and Φd, Φu and n are the Higgs fields.
Although the n2 term breaks the global Z3-symmetry, the n2-term does not exist in
the simple supergravity model. For this reason we do not include the n2-term in the
following. We assume that the values of all the dimensional parameters in Lsoft are
near weak scale.
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In the case κ = 0, the global Z3-symmetry is promoted to U(1) PQ symmetry
(n → eiαn and Φu → e−iαΦu). Then the pseudoscalar component of the singlet be-
comes a Nambu-Goldstone (NG) mode when the singlet acquires a VEV. For small
κ, the PQ symmetry is slightly broken, and a relatively light axion is expected.14)

The spontaneous breakdown of the global Z3-symmetry causes the domain wall prob-
lem.15) If we introduced Z3-breaking linear or bilinear terms into the superpotential,
this problem could be solved.16) However, this inevitably results in the appearance
of a dimensional parameter in the superpotential. Therefore we assume that this
symmetry is broken at an early stage of the universe far before the EWPT by some
higher-dimensional operator that becomes irrelevant at low energies.

The tree-level Higgs potential is composed of three parts, V = VF + VD + Vsoft:

VF = |λn|2(Φ†
dΦd + Φ†

uΦu) + |εijλΦi
dΦ

j
u + κn2|2, (2.3)

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)2 +

g2
2

2
(Φ†

dΦu)(Φ†
uΦd), (2.4)

Vsoft = m2
1Φ

†
dΦd + m2

2Φ
†
uΦu + m2

N |n|2 −
(

εijλAλnΦi
dΦ

j
u +

1
3
κAκn3 + h.c.

)
. (2.5)

Here, we expand this potential about the VEVs represented by vd, vu, vn and the
phases θ and ϕ. The parametrization of the scalar fields is as follows:

Φd =

(
1√
2
(vd + hd + iad)

φ−
d

)
, Φu = eiθ

(
φ+

u
1√
2
(vu + hu + iau)

)
, (2.6)

n =
1√
2
eiϕ(vn + hn + ian). (2.7)

The condition for the scalar potential to have an extremum at the vacuum is
that the first derivatives with respect to the Higgs fields evaluated at the vacuum
vanish:

0 =
1
vd

〈
∂V0

∂hd

〉
= m̃2

1 − Rλ
vuvn

vd
+

g2
2 + g2

1

8
(v2

d − v2
u) +

|λ|2
2

(v2
u + v2

n) +
R
2

vuv2
n

vd
,

(2.8)

0 =
1
vu

〈
∂V0

∂hu

〉
= m̃2

2 − Rλ
vdvn

vu
− g2

2 + g2
1

8
(v2

d − v2
u) +

|λ|2
2

(v2
d + v2

n) +
R
2

vdv
2
n

vu
,

(2.9)

0 =
1
vn

〈
∂V0

∂hN

〉
= m̃2

N − Rλ
vdvu

vn
− Rκvn +

|λ|2
2

(v2
d + v2

u) + |κ|2v2
n + Rvdvu, (2.10)

0 =
1
vu

〈
∂V0

∂ad

〉
=

1
vd

〈
∂V0

∂au

〉
= Iλvn − 1

2
Iv2

n, (2.11)

0 =
1
vn

〈
∂V0

∂aN

〉
= Iλ

vdvu

vn
+ Iκvn + Ivdvu. (2.12)

Here, we have

R = Re[λκ∗ei(θ−2ϕ)], I = Im[λκ∗ei(θ−2ϕ)], (2.13)
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Rλ =
1√
2
Re[λAλei(θ+ϕ)], Iλ =

1√
2
Im[λAλei(θ+ϕ)], (2.14)

Rκ =
1√
2
Re[κAκei3ϕ], Iκ =

1√
2
Im[κAκei3ϕ], (2.15)

and 〈· · · 〉 denotes the value evaluated at the vacuum. These conditions are called
tadpole conditions in the sense that the conditions make the tadpole diagrams vanish
if we set the Higgs fields to their VEVs. Note that R and I are dimensionless pa-
rameters and Rλ, Rκ, Iλ and Iκ have the dimension of mass. The phases appear only
through the three combinations (2.13)–(2.15) given above. Hence, our formulation
to this point does not depend on the convention for the phases. From (2.11) and
(2.12), we obtain the two conditions

Iλ =
1
2
Ivn, Iκ = −3

2
I vdvu

vn
. (2.16)

Because of the two tadpole conditions on the three CP violating parameters I, Iλ

and Iκ, only one of them is physical. When we introduce complex parameters, they
must be chosen to satisfy the tadpole conditions (2.16).

2.2. The mass and couplings of the Higgs scalars

The mass matrix of the neutral Higgs scalars, which is defined using the second
derivative of the Higgs potential evaluated at the vacuum, has the structure

M2 =
(

M2
S M2

SP

(M2
SP )T M2

P

)
, (2.17)

where the basis is (hT aT ) = (hd hu hn ad au an). Here, the block components of
M2 are given by

M2
S =




Rλvn tanβ + m2
Z cos2 β −Rλvn − m2

Z sinβ cos β −Rλvu + |λ|2vnvd

−1
2Rv2

n tanβ +1
2Rv2

n + |λ|2vdvu +Rvnvu

−Rλvn − m2
Z sinβ cos β Rλvn cot β + m2

Z sin2 β −Rλvd + |λ|2vnvu

+1
2Rv2

n + |λ|2vdvu −1
2Rv2

n cot β +Rvnvd

−Rλvu + |λ|2vnvd −Rλvd + |λ|2vnvu Rλ
vdvu

vn
− Rκvn

+Rvnvu +Rvnvd +2|κ|2v2
n




,

(2.18)

M2
P =


 (Rλ −Rvn/2)vn tan β (Rλ −Rvn/2)vn (Rλ + Rvn)vu

(Rλ −Rvn/2)vn (Rλ −Rvn/2)vn cotβ (Rλ + Rvn)vd

(Rλ + Rvn)vu (Rλ + Rvn)vd Rλ
vdvu

vn
+ 3Rκvn − 2Rvdvu


,

(2·19)

M2
SP =


 0 0 3

2Ivnvu

0 0 3
2Ivnvd

−1
2Ivnvu −1

2Ivnvd −2Ivdvu


 , (2.20)

where we have used the tadpole conditions (2.8)–(2.10) and (2.16) to express the
scalar soft masses and Iλ and Iκ in terms of the other parameters. In the following,
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we also adopt the usual conventions tan β = vu/vd and v2 = v2
d + v2

u. It is worth
emphasizing that if CP violation at the tree level is turned off (i.e. I = 0), the
scalar mass matrix becomes block diagonal.

The three pseudoscalars contain one NG mode, which is isolated by the β rota-
tion

a = U(β)
(

G
a′

)
=


 cos β sinβ 0

− sin β cos β 0
0 0 1





 G

a
an


 , (2.21)

where G is the NG mode which would be eaten up by the gauge bosons. After
isolating the NG mode, the mass term of the neutral Higgs bosons is given by

Lm = −1
2
( hT a′T )

(
M2

S M2
SP

′

(M2
SP

′)T M2
P
′

)(
h
a′

)
, (2.22)

where

M2
SP

′ =


 0 3

2 sinβ
0 3

2 cos β
−1

2 − sin 2β


 Ivnv, (2.23)

M2
P
′ =

(
(2Rλ −Rvn) vn

sin 2β (Rλ + Rvn)v
(Rλ + Rvn)v Rλ

2
v2

vn
sin 2β + 3Rκvn −Rv2 sin 2β

)
. (2.24)

The equations (2.23) and (2.24) demonstrate that one of the pseudoscalars is massless
in the case κ = 0 (I = R = Rκ = 0). This is true even when we include radiative
corrections. We define M′2 as the mass matrix of the neutral Higgs bosons after
extracting the NG mode. Then the masses of the neutral Higgs bosons are obtained
by diagonalizing the mass matrix M′2 through an orthogonal rotation OTM′2O =
diag(m2

h1
m2

h2
m2

h3
m2

h4
m2

h5
), where we define the matrix O in such a way that the

eigenvalues satisfy
m2

h1
< m2

h2
< m2

h3
< m2

h4
< m2

h5
. (2.25)

Without CP violation (i.e., for I = 0), the mass eigenstates are also CP eigenstates
Si and Ai, where Ai has vanishing gV V h coupling. (V represents the W and Z
bosons.)

Similarly, the charged Higgs mass mH± is obtained through the β rotation of
the charged Higgs mass matrix:

m2
H± =

1
sinβ cosβ

〈
∂2V

∂φ+
d ∂φ−

u

〉

= m2
W − 1

2
|λ|2v2 + (2Rλ −Rvn)

vn

sin 2β
. (2.26)

We use this equation in order to substitute mH± for Rλ using the relation

Rλ =
1
2
m̂2 sin 2β

vn
+

1
2
Rvn, (2.27)

where
m̂2 ≡ m2

H± − m2
W +

1
2
|λ|2v2. (2.28)
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For example, the CP -odd components of the mass matrix are written

M2
P
′ =

(
m̂2 1

2m̂2 v
vn

sin 2β + 3
2Rvnv

1
2m̂2 v

vn
sin 2β + 3

2Rvnv 1
4m̂2( v

vn
sin 2β)2 − 3

4Rv2 sin 2β + 3Rκvn

)
.

(2.29)
Now we have seven mass eigenstates, but we have no obvious bounds on the

eigenvalues, like the upper (lower) bound on the lightest (heaviest) Higgs scalar
in the MSSM at the tree level. Instead, without CP violation, the inequality
det

(
m̂2 −M2′

P

)
< 0 implies that m2

A1
< m̂2 < m2

A2
. It is difficult to derive such

inequality for the CP -even scalars, but in the limit that m̂2 � v2
0, v

2
n, we have the ap-

proximate relation det
(
m̂2 −M2

S

)
<∼ 0, which implies that m2

S1
< m2

S2
< m̂2 < m2

S3
.

These relations account for the relations among the mass eigenvalues in the case of
heavy charged Higgs boson, with the help of TrM2

S and TrM2
P , which constrain the

sum of the masses.
Although the singlet Higgs fields hn and an do not couple to the gauge bosons, all

the mass eigenstates of the neutral Higgs boson can interact with the W , Z bosons
and fermions, because the singlet fields are mixed with the doublet fields. The
couplings of the charged Higgs boson with the gauge bosons and quarks are identical
to those in the MSSM. In particular, the V V h-, Zhh- and bbh-vertices are important
for the study of Higgs production and decay events in colliders.2) In a LEP-type
e+e− collider, the dominant production processes of the neutral Higgs bosons are
the Higgs strahlung process associated with the Z boson, the W -fusion production
process, and the pair production processes if mh1 + mh2 <

√
s. For the decay of

a light Higgs boson, h → bb̄ is the main mode, with the subleading h → τ+τ−
mode. In both cases, the correction factors to the relevant Yukawa couplings are the
same, and they characterize the deviation from the MSM. In addition to the above-
cited processes, the gluon fusion process and the Yukawa process are important in
high-energy hadron collider experiments.17)

It is straightforward to read off the vertices from the kinetic terms of the Higgs
bosons and from the Yukawa coupling terms. We find

LV V h = g2mW gV V hi

(
W+

µ W−µ +
1

2 cos2 θW
ZµZµ

)
hi, (2.30)

LZhh =
g2

2 cos θW
(hd

↔
∂ µad − hu

↔
∂ µau)Zµ (2.31)

=
g2

2 cos θW
gZhihj

Zµ(hi

↔
∂ µhj),

Lbbh = − g2mb

2mW
b̄(gS

bbhi
+ iγ5gP

bbhi
)bhi, (2.32)

where the correction factors to the couplings are

gV V hi
= O1i cos β + O2i sinβ, (2.33)

gZhihj
=

1
2
{(O4iO2j − O4jO2i) cos β − (O4iO1j − O4jO1i) sinβ} , (2.34)

gS
bbhi

= O1i
1

cos β
, gP

bbhi
= −O4i tanβ. (2.35)
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Thus, the mass eigenstates and the gauge eigenstates are related as hd = O1ihi,
hu = O2ihi and a = O4ihi, where i is summed from 1 to 5. The Zhihj coupling
vanishes for i = j, because of its antisymmetric derivative form. This coupling also
vanishes when both the Higgs bosons are either scalars (i, j = 1, 2, 3) or pseudoscalars
(i, j = 4, 5). However, we believe that all the gZhihj

have nonzero values in the
CP -violating case, because of the mixing of these CP eigenstates. The equations
(2.33)–(2.35) have the same structure as the corresponding equations in the MSSM,8)

except for the mixing including the singlet.

2.3. Constraints on the parameters

The NMSSM has more parameters than the MSSM. Our main concern is to
search for allowed parameter values in the case of a weak scale vn, for which we
expect there to appear new features in the spectrum and coupling of the Higgs
bosons, as well as phase transitions at finite temperature. In order to determine the
allowed parameters, we impose the following two conditions on the model:
(1) The vacuum condition, which requires that prescribed vacuum be the global

minimum of the effective potential. This also requires that all the masses-
squared of the scalars including the sfermions be positive.

(2) The spectrum condition, which requires that the mass of the Higgs boson with
its couplings to the vector boson |gV V h| larger than 0.1 be heavier than the
bound 114 GeV.

The constraint on the gauge coupling is the most stringent, and for this reason
we examine the other couplings for the allowed parameters later. Because the mass
matrix of the Higgs bosons is subject to large radiative corrections, we need numerical
studies to determine the results of the spectrum condition. Such results are presented
in §4. Here we attempt to find an analytic form of the constraints obtained from the
vacuum condition at the tree level.

In the MSSM, the global minimum of the tree-level potential is always located at
the vacuum, as long as the D-flat direction is lifted by the soft terms and the tadpole
conditions are satisfied. Although the Higgs potential in the NMSSM is bounded
from below by the F -terms, the prescribed vacuum is not always the global minimum
of the potential, even when the tadpole conditions are satisfied. This is because the
trilinear terms in Lsoft, which give negative contributions to the potential, cause
the global minimum to appear at some point other than the vacuum. We must
exclude sets of parameter values that yield such an unwanted global minimum. A
necessary condition for the correct vacuum is that the mass-squared of all the scalars
be positive. In the CP -conserving case, applying this condition to the pseudoscalars
implies that detM′

P
2 > 0. Hence we have

m̂2

(
−3

4
Rv2 sin 2β + Rκvn

)
>

3
4
R2v2v2

n. (2.36)

This requires that each factor on the left-hand side has the same sign, and it gives
a lower bound on the charged scalar mass, which must be large enough in the case
that m̂2 > 0.
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Another necessary condition is that the value of the scalar potential at the
prescribed vacuum be smaller than that at the origin. At the tree level, V (0) is zero
and V |vacuum is

V |vacuum = − 1
4
|λ|2v2

nv2 − 1
4
|κ|2v4

n − 1
8
m2

Zv2 cos2 2β − 1
8
m2

W v2 sin2 2β

+
1
8
m2

H±v2 sin2 2β − 1
8
Rv2

nv2 sin 2β +
1
6
Rκv3

n, (2.37)

where we have used the tadpole conditions (2.8)–(2.10) to eliminate the soft masses
of the Higgs fields and have used mH± instead of Rλ. Then, requiring V |vacuum < 0
yields the following condition on mH± :

m2
H± < 2|λ|2v2

n

1
sin2 2β

+ 2|κ|2 v4
n

v2

1
sin2 2β

+ m2
Z cot2 2β + m2

W

+ Rv2
n

1
sin 2β

− 4
3
Rκ

v3
n

v2

1
sin2 2β

. (2.38)

This bound holds whether there is CP violation or not. The charged Higgs mass mH±

is not constrained in the MSSM-limit in which λvn and κvn are fixed for vn → ∞,6)

due to the effect of the infinitely large v4
n term. Therefore the above condition is

important in the pure-NMSSM parameter set, i.e., the case in which vn is not large
and λ and κ are not small. Figure 1 displays the tree-level charged Higgs mass
bounds for an example of a pure-NMSSM parameter set. The solid curve, which
represents the upper bound, suggests that the charged Higgs boson must be lighter
than 400 GeV. Hence the pure-NMSSM parameter set predicts that the charged
Higgs boson possesses a mass that can be measured by the LHC.18) The dashed
curve represents the lower bound on the charged Higgs boson. It ends near Aκ = 0
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-500 -400 -300 -200 -100 0 100

mH±max

mH±min

mH± [GeV]

Aκ [GeV]
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mH±min
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Fig. 1. The tree-level bounds on the mass of the charged Higgs boson as a function of Aκ for

tanβ = 5, vn = 300 GeV, λ = 0.1 and κ = −0.3 (left-hand plot) and κ = 0.3 (right-hand plot).

The solid curve represents the upper mass bound of the charged Higgs boson and dashed curve

represents the lower bound.
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because near there the left-hand side of (2.36) becomes negative. The consistency
of the model implies both upper and lower bounds on Aκ, which are on the order of
the weak scale for a weak scale vn. In particular, the situation in which κ and Aκ

have the same sign is favored.
Once we fix mH± and Aκ, the condition (2.38) excludes the elliptic region in the

(λ, κ)-plane, whose area vanishes in the MSSM-limit. As we see below, this excludes
a large portion of the parameter space for the case of a weak scale vn.

§3. One-loop effective potential

We now evaluate the one-loop contributions to the tadpole conditions and the
spectrum of the Higgs bosons. As mentioned in the previous section, the basic idea
is almost the same as that in the tree-level analysis, and therefore we only present
the results here. We analyze the effective potential of the Higgs fields taking into
account the one-loop contributions from the gauge bosons and the third generation
of the quarks and squarks. The corrections from the leptons and the other quarks
and squarks can be ignored, because of their small Yukawa couplings to the Higgs
fields. The corrections to the Higgs potential are given by

∆V = ∆qV + ∆q̃V + ∆gV, (3.1)

where

∆qV = − NC

16π2

∑
q=t,b

(
m̄2

q

)2

(
log

m̄2
q

M2
− 3

2

)
, (3.2)

∆q̃V =
NC

32π2

∑
q=t,b

∑
j=1,2

(
m̄2

q̃j

)2
(

log
m̄2

q̃j

M2
− 3

2

)
, (3.3)

∆gV =
3

64π2

[(
m̄2

Z

)2
(

log
m̄2

Z

M2
− 3

2

)
+ 2

(
m̄2

W

)2
(

log
m̄2

W

M2
− 3

2

)]
. (3.4)

The field-dependent masses m̄2
X are listed in Appendix A. The tadpole conditions

and the mass matrix are obtained by calculating the derivatives of the effective
potential at the vacuum with these corrections. In particular, the imaginary parts
of the tadpole conditions are

Iλ + ∆Iλ =
1
2
Ivn, Iκ = −3

2
I vdvu

vn
, (3.5)

where Iκ does not undergo a loop correction at this level. The correction ∆Iλ comes
from the squark loops,

∆Iλ =
NC

16π2

∑
q=t,b

|yq|2Iq

[
f(m2

q̃1
, m2

q̃2
) − 1

]
vn, (3.6)

where Iq is defined by (A.10), and we have

f(m2
1, m

2
2) =

1
∆m2

[
m2

1

(
log

m2
1

M2
− 1

)
− m2

2

(
log

m2
2

M2
− 1

)]
, (3.7)
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with ∆m2 = m2
1 − m2

2.
Here we present the corrections to the mass matrix in detail. The couplings to the

gauge bosons and the quarks are subject to the loop effects through the orthogonal
matrix O, which is determined from the corrections to the neutral mass matrix M.
The scalar part M2

S of the neutral mass matrix contains the loop contributions,

∆M2
S = ∆qM2

S + ∆gM2
S + ∆q̃M2

S , (3.8)

from the quarks, gauge bosons and squarks. The quark loops and gauge loops
contribute only to the elements in the upper-left 2 × 2 submatrix, explicitly,

∆qM2
S = −NC

4π2


 |yb|2m2

b log m2
b

M2 0 0
0 |yt|2m2

t log m2
t

M2 0
0 0 0


 , (3.9)

∆gM2
S =

3
32π2

(
m2

Z log
m2

Z

M2
+ 2m2

W log
m2

W

M2

)
 cos2 β cos β sinβ 0

cosβ sinβ sin2 β 0
0 0 0


 ,

(3.10)
because they do not couple to the singlet in the tree-level potential. The squark-loop
contributions are

∆t̃M2
S =

NC

16π2


T Sf(m2

t̃1
, m2

t̃2
) +

∑
j=1,2

〈
∂m̄2

t̃j

∂h

〉〈
∂m̄2

t̃j

∂h

〉T

log
m2

t̃j

M2


 , (3.11)

∆b̃M
2
S =

NC

16π2


BSf(m2

b̃1
, m2

b̃2
) +

∑
j=1,2

〈
∂m̄2

b̃j

∂h

〉〈
∂m̄2

b̃j

∂h

〉T

log
m2

b̃j

M2


 , (3.12)

where the matrices T and B and the list of derivatives of the field-dependent masses
are given in Appendix B.

The quantities M2
P and M2

SP are not affected by the quark and gauge loops,
but they contain contributions from squark loops,

∆M2
P = ∆q̃M2

P , ∆M2
SP = ∆q̃M2

SP , (3.13)

where the squark-loop contributions are

∆t̃M2
P =

NC

16π2


T P f(m2

t̃1
, m2

t̃2
) +

∑
j=1,2

〈
∂m̄2

t̃j

∂a

〉〈
∂m̄2

t̃j

∂a

〉T

log
m2

t̃j

M2


 , (3.14)

∆b̃M
2
P =

NC

16π2


BP f(m2

b̃1
, m2

b̃2
) +

∑
j=1,2

〈
∂m̄2

b̃j

∂a

〉〈
∂m̄2

b̃j

∂a

〉T

log
m2

b̃j

M2


 , (3.15)

and

∆t̃M2
SP =

NC

16π2


−T SP f(m2

t̃1
, m2

t̃2
) +

∑
j=1,2

〈
∂m̄2

t̃j

∂h

〉〈
∂m̄2

t̃j

∂a

〉T

log
m2

t̃j

M2


 , (3.16)
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∆b̃M
2
SP =

NC

16π2


−BSP f(m2

b̃1
, m2

b̃2
) +

∑
j=1,2

〈
∂m̄2

b̃j

∂h

〉〈
∂m̄2

b̃j

∂a

〉T

log
m2

b̃j

M2


 . (3.17)

The NG mode can be extracted from M2
P and M2

SP with the same orthogonal
transformation as at the tree level. The loop contributions to the off-diagonal matrix
M2

SP are proportional to the CP -violating parameters in the squark sector, Iq, which
is defined in (A.10).

The charged Higgs mass is not affected by the singlet field, but it contains
contributions from the gauge, quark and squark loops,

∆m2
H± = ∆gm

2
H± + ∆qm

2
H± + ∆q̃m

2
H± , (3.18)

where the detailed form of each term is given in Appendix C of Ref. 13), except that
µ in the MSSM is replaced by λvneiϕ/

√
2. The quantity Rλ, which is determined

from Eq. (2.27), undergoes loop corrections through the corrections to the charged
Higgs mass.

§4. Parameter search

In this section, we report the results of a numerical search for the allowed pa-
rameter region with the one-loop corrections in the CP -conserving case. The allowed
parameter sets are determined by requiring the two conditions discussed in §2.3. For
this purpose, we scanned parameter values in the Higgs sector within the region de-
fined as follows: tanβ = 3 – 20, vn = 100 – 1000 GeV, 100 ≤ mH± ≤ 5000 GeV and
−1000 ≤ Aκ ≤ 0 GeV. Because we can always make λ positive, without loss of gener-
ality, the (λ, κ)-plane was scanned over the region defined by the relations 0 ≤ λ ≤ 1
and −1 ≤ κ ≤ 1. For the squark sector, we adopt a small value of the A-term, specif-
ically, At = Ab = 20 GeV, so that the squark fields do not acquire nonzero VEVs
and three cases for the soft masses: the heavy-squark scenario with (mq̃, mt̃R

) =
(1000 GeV, 800 GeV), the light-squark-1 with (mq̃, mt̃R

) = (1000 GeV, 10 GeV)
and the light-squark-2 with (mq̃, mt̃R

) = (500 GeV, 10 GeV), where mq̃ (mt̃R
)

denotes the doublet (singlet) soft mass. For simplicity, we set mb̃R
= mt̃R

. First, we
consider a set of values for all parameters except λ and κ and exclude the regions
in (λ, κ)-plane where the effective potential at the origin is smaller than that at the
vacuum and the spectrum condition is not satisfied. Within the remaining region,
we carried out a numerical search for the global minimum of the effective potential
and excluded the points for which the minimum is located somewhere other than
the vacuum.

In Fig. 2, we present a typical example of the allowed parameter region for
tanβ = 3, vn = 200 GeV, mH± = 400 GeV and Aκ = −200 GeV in the heavy-
squark scenario. The white region indicates the allowed parameter region in the (λ,
κ)-plane. Although negative κ is favored for negative Aκ, as mentioned in §2.3, we
study the range of κ from −1 to 1, because it is not excluded completely. Within the
dark gray elliptic region, the effective potential at the origin is smaller than that at
the prescribed vacuum. This is predicted by (2.38), which was derived from the tree-



The Higgs Sector in the NMSSM 833

κ

λ

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Allowed parameter region as a function of λ and κ for tanβ = 3, vn = 200 GeV, mH± = 400

GeV and Aκ = −200 GeV in the heavy-squark scenario. The allowed parameter region is the

white region.

level potential. The broad, light gray region is excluded by the spectrum condition.
Within the upper allowed region near κ = 0, the light Higgs scenario is realized,
while in the lower allowed region, the lightest Higgs boson is heavier than 114 GeV.
The narrow black region to the right of the elliptic one is excluded, because in that
case, the global minimum is located at a point that is not the prescribed vacuum.
For these excluded parameter values, the global minimum is located at v = 0, with
large vn, which depends on m2

N , Rκ and |κ|2.
We now explain the dependence of the allowed regions on the parameters. In

Fig. 3, we make the same plot as in Fig. 2, but with (a) vn = 500 GeV, (b) Aκ = 500
GeV, (c) light-squark-2 scenario and (d) tanβ = 5 and mH± = 600 GeV. As shown
in Fig. 3(a), as vn increases, the allowed region for the light Higgs shrinks, and the
allowed region of the heavy Higgs spreads to small λ values. An allowed parameter
set with small λ corresponds to the MSSM limit. Although not shown in the graph,
similar behavior is observed when the charged Higgs boson becomes heavier. As
Aκ increases, the allowed region becomes smaller. This is shown in Fig. 3(b), and
it is also expected from Fig. 1. If we choose small mq̃ and mq̃R , Fig. 3(c) and the
same plot for the light-squark-2 scenario exhibit weak dependence on the squark soft
masses. Figure 3(d) indicates that as tan β increases, the allowed region with light
Higgs becomes narrower. At tan β = 20, the allowed region is point-like at κ = 0,
where one of the pseudoscalar is always massless.

Now, we consider the details of the Higgs mass spectrum and couplings. In
Figs. 4 and 5, we display the behavior of the Higgs masses (Fig. 4, left) and the
couplings of the three lightest Higgs bosons to the massive gauge bosons (Fig. 4,
right) and to the bottom quarks (Fig. 5, left), and the Zhh-couplings (Fig. 5, right)
as functions of κ for the same parameter values as in Fig. 2, with λ = 0.9. These
correction factors to the coupling constants are defined in (2.33)–(2.35). As seen
from Fig. 2, the allowed region along λ = 0.9 is divided into two parts, one of which
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Fig. 3. The same as Fig. 2, but with (a) vn = 500 GeV, (b) Aκ=500 GeV, (c) light-squark-2

scenario (i.e. mq̃ = 500 GeV, mt̃R
= 10 and At = 20 GeV) and (d) tanβ = 5 and mH± = 600

GeV.

corresponds to the light Higgs scenario with small |κ|. The range of values of κ
satisfying the spectrum condition can be read from Fig. 4 to be −0.33 < κ < −0.05,
some part of which is excluded by the vacuum condition. Within the other allowed
region, for −1.0 < κ < −0.8, all the Higgs bosons are heavier than 114 GeV. We
refer to such sets of parameter values as the heavy Higgs scenario. In the scenario,
the relatively heavy Higgs boson h3 is almost decoupled from the theory, because its
couplings gV V h3 and gbbh3 are small. The lighter two Higgs bosons are both CP -even
scalars. Hence, in this scenario, the NMSSM behaves like the MSSM. In particular,
the lightest Higgs boson is heavier than 120 GeV, and its coupling to the bottom
quark is not so large, g2

bbh1
< 2.2, which is outside the experimental bounds, as also

is the case for the MSSM. We thus find that it is difficult to distinguish the NMSSM
from the MSSM in the heavy Higgs scenario.

In the light Higgs scenario, light Higgs bosons cannot be observed in collider
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experiments. The main processes for producing Higgs bosons at the LEP 2 are
the Higgs strahlung process and the W -fusion process, but both processes include
small V V h-couplings (shown in the right plot of Fig. 4) and are not capable of
producing light Higgs bosons. Though pair production becomes important when the
total mass of the lightest scalar and the lightest pseudoscalar bosons is under the
LEP 2 threshold, they cannot be created as a pair19) because the coupling g2

Zh1h3

(g2
Zh1h2

), shown in the right plot of Fig. 5, is too small. The Yukawa processes could
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be dominant where these processes are suppressed, but the Yukawa processes cannot
be observed unless the bbh-couplings are fairly large.20) In the left plot of Fig. 5,
the Yukawa couplings gbbh are almost unity in the light Higgs region. With these
couplings, the light Higgs bosons h1 and h2 produced in the Yukawa processes are
likely to be unobservable. The situation is essentially the same even if we consider
hadron colliders. The SM-Higgs search experiments at the Tevatron mainly consider
the strahlung process with W (Z) in the low mass range 110 < mh < 140 GeV, and
the results show that the signal efficiency is too small to observe a Higgs boson.21) At
the LHC, the gluon fusion and the W fusion processes become important. Though
h1 and h2 production in the W fusion process is suppressed by their small gauge
couplings, their production in the gluon fusion process is not suppressed. However,
it is in general difficult to distinguish gluon fusion events from the background,
because the process produces the Higgs boson only. Therefore, it is expected that h3

will first be detected in collider experiments. In this case, the model is very similar
to the SM with a Higgs mass that can be as large as 150 GeV.

§5. Effects of the CP violation

Now we turn to CP violation and study its effects on the spectrum and gauge
couplings of the Higgs bosons. Such an analysis is carried out in Ref. 8) for MSSM
by considering CP violation in the squark sector. Here we focus on tree-level CP
violation, which does not exist in the MSSM and is characterized by the parameter
I defined in (2.13). In addition to I, the complex parameters in the Higgs sector
entering the mass-squared matrix are included in R, Rλ and Rκ. When all the
parameters are real, as in the previous section, one can freely assign their values.
However, if some of them are complex, we must choose the parameters and the phases
θ and ϕ in such a way to satisfy the tadpole conditions (3.5). Before presenting the
numerical results, we explain how we parameterize the CP violation.

First, Rλ is fixed by the charged Higgs mass mH± from the equations (2.27) and
(3.18). The remaining parameters, R, Rκ and I, are determined by λ, κ, Aκ, θ and
ϕ. Here, λ, κ and Aκ are complex numbers, and some of the phases are redundant.
We denote the phases of λ, κ and Aκ by δλ, δκ and δAκ , respectively. Among these,
the independent phases are collected into δ′κ ≡ δκ + 3ϕ, δAκ and δEDM ≡ δλ + θ + ϕ.
The phase δEDM is effective to nEDM if the gaugino masses and Aq are real. The
counterpart to δEDM in the MSSM is the phase of the µ-parameter plus θ. Suppose
that we first choose |λ|, |κ|, δEDM and δ′κ, from which R and I are determined.
Because Iκ is fixed by (3.5), the absolute value of Aκ can be chosen freely, but not
the phase. In particular, Rκ is determined, without specifying δAκ , by the relation

R2
κ =

1
2
|κAκ|2 − I2

κ =
1
2
|κAκ|2 −

(
3Ivdvu

2vn

)2

, (5.1)

where we have used the second equation in (3.5). Note that |κAκ| must be larger
than 3Ivdvu/

√
2vn in order for (5.1) to have a real solution for Rκ. In the following,

we adopt the phase convention so that the phase relevant to the nEDM vanishes.
Therefore, δ′κ is the only phase that can be freely chosen.
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Finally, we present the effects of δ′κ on the masses and couplings of the Higgs mass
eigenstates with δEDM = 0. For illustration, we consider two parameter sets with
κ = −0.2 and κ = −0.9, while the other parameters are the same as in Fig. 4, and we
plot the δ′κ dependences of the masses and couplings in Figs. 6 and 7, respectively. In
order to allow comparison with previous results, a positive value of Rκ in Eq. (5.1)
was chosen. As shown in Figs. 6 and 7, the phase dependences in the light Higgs
scenario (κ = −0.2) are weaker than in the heavy Higgs scenario (κ = −0.9), because
|κ| is smaller for the light Higgs scenario. In Fig. 6, the next-to-lightest Higgs boson
h2 becomes lighter than 114 GeV for δ′κ/π < 0.31, and hence a large value of δ′k
is not allowed by the spectrum condition. From Fig. 7 it is seen that the model is
not feasible for δ′κ/π > 0.24, because of the small Higgs mass with moderate gauge
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Fig. 6. The Higgs masses and couplings as functions of δ′κ, with the same parameter values as in

Fig. 4, but with κ = −0.2 (light Higgs scenario) and δEDM = 0.
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coupling, and also for δ′κ/π > 0.39, where the prescribed vacuum becomes unstable.
We have not found an example in which an excluded parameter set becomes allowed
as a light Higgs as a result of the introduction of CP violation in the tree-level Higgs
sector. However, a light Higgs boson is realized even for the heavy Higgs parameter
sets when we introduce CP violation in the squark sector, in the same way as in the
MSSM.

§6. Summary

We have investigated the spectrum and coupling constants of Higgs bosons in the
NMSSM in the case that the vacuum expectation value of the singlet is of the weak
scale for wide ranges of values of all the parameters in the model. We formulated the
mass matrices of the neutral Higgs bosons and the charged Higgs mass independently
of the phase convention in CP -violating case. Using of the effective potential includ-
ing one-loop corrections of the third generation of quarks and squarks, we obtained
constraints on the parameters of the model. Then, we required that the neutral Higgs
boson whose coupling to the Z boson is not so small be heavier than 114 GeV and
that the prescribed vacuum be the absolute minimum of the effective potential. The
latter condition is nontrivial in the NMSSM, in contrast to the MSSM, in which the
electroweak vacuum is the global minimum of the potential as long as the symmetry
breaking conditions are satisfied. We found that the vacuum condition leads to an
upper bound on the charged Higgs boson, which is irrelevant in the MSSM limit but
effective in our case, in which of 〈N〉 = O(100) GeV. The allowed parameter regions
are classified into two distinct sets: one allows a light scalar with a very small gauge
coupling, while the other contains scalars whose masses exceed the bound. The for-
mer is realized only in the case of a weak scale 〈N〉 for κ � 0. The light Higgs bosons
in this light Higgs scenario are not inconsistent with experimental data published
to this time: the correction factors to the Yukawa coupling of the light bosons are
not so large, and those to the Zhh-coupling are so small that the light bosons have
not yet been observed in experiments. Therefore, the lightest scalar among those
with large gauge coupling, which is the expected to be observed in future collider
experiments, behaves just like the Higgs boson in the SM. The SM-like Higgs boson
could be as heavy as 150 GeV. Therefore, this model would be regarded as more
feasible than the MSSM if the first observed Higgs boson is heavier than 135 GeV.

Another feature of the Higgs sector in the NMSSM is a possible CP violation at
the tree level. We studied explicit CP violation in the Higgs sector, which does not
affect the neutron EDM. Such a CP violation is likely to play an important role in
the scenario of electroweak baryogenesis. For several sets of allowed parameters in
the CP -conserving case, we gradually introduced a CP phase and studied its effects
on the masses and couplings of the Higgs bosons. As expected, the effect is larger for
parameter sets in the heavy Higgs region, which has a larger |κ| than the light Higgs
scenario. However, we have not found a case in which a large CP violation causes the
lightest Higgs boson to be lighter than the present bound on the SM Higgs, while its
gauge coupling is sufficiently small that it would not be produced in lepton colliders.
Such a situation has been observed in the MSSM, in which the CP violation in the
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squark sector induces a large CP violation in the Higgs sector. If such a large CP
violation is common to all the generations of squarks, it should be constrained by
neutron EDM experiments. We have found that such a CP violation weakens the
first-order EWPT in the MSSM with a light stop.13) Thus the feasible parameter
region for electroweak baryogenesis is very limited in the MSSM. As expected on
the basis of naive consideration, if the EWPT in the NMSSM is strongly first order
because of the trilinear terms in the Higgs potential, there will be a new possibility
for baryogenesis.12) Because the strong phase transition is not caused by a light
stop, it should persist even with CP violation in the Higgs sector. Further, the CP
violation is not so strongly constrained by EDM experiments. A study of the EWPT
in the NMSSM is now in progress.
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Appendix A
The Field Dependent Masses

In this appendix, we list the field-dependent masses of the third generation
quarks and squarks and of the gauge bosons. We retain only the neutral components
of the Higgs fields, which appear in the definition of the effective potential (3.1) and
are necessary for the neutral Higgs mass-squared matrix. For the charged Higgs
mass, we need the expressions including the charged Higgs fields φ−

d and φ+
u , but

they are almost the same as those in the MSSM,13) except for replacement of µ with
λvneiϕ/

√
2.

The quark masses are expressed in terms of the Higgs fields and vacuum expec-
tation values as

m̄2
b = |yb|2|φ0

d|2 =
1
2
|yb|2(v2

d + 2vdhd + h2
d + a2

d), (A.1)

m̄2
t = |yt|2|φ0

u|2 =
1
2
|yt|2(v2

u + 2vuhu + h2
u + a2

u), (A.2)

where φ0
d = (vd +hd + iad)/

√
2 and φ0

u = eiθ(vu +hu + iau)/
√

2. If we take the Higgs
fields as hd = hu = hn = 0, the masses at the vacuum are obtained as

〈
m̄2

b

〉
= m2

b =
1
2
|yb|2v2

d,
〈
m̄2

t

〉
= m2

t =
1
2
|yt|2v2

u, (A.3)

where the brackets indicate the vacuum expectation value. The field dependent
masses of the gauge bosons are

m̄2
Z =

g2
2 + g2

1

2
(|φ0

d|2 + |φ0
u|2), m̄2

W =
g2
2

2
(|φ0

d|2 + |φ0
u|2). (A.4)
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Then, the gauge bosons masses are

〈
m̄2

Z

〉
= m2

Z =
g2
2 + g2

1

4
(v2

d + v2
u),

〈
m̄2

W

〉
= m2

W =
g2
2

4
(v2

d + v2
u). (A.5)

Similarly, the field dependent top- and bottom-squark masses are

m̄2
t̃1,2

=
1
2

[
m2

q̃ + m2
t̃R

+
g2
2 + g2

1

4
(|φ0

d|2 − |φ0
u|2) + 2|yt|2|φ0

u|2

±
√

(m2
q̃ − m2

t̃R
+ xt(|φ0

d|2 − |φ0
u|2))2 + 4|yt|2|λnφ0

d − A∗
t φ

0∗
u |2

]
, (A.6)

m̄2
b̃1,2

=
1
2

[
m2

q̃ + m2
b̃R

− g2
2 + g2

1

4
(|φ0

d|2 − |φ0
u|2) + 2|yb|2|φ0

d|2

±
√

(m2
q̃ − m2

b̃R
+ xb(|φ0

d|2 − |φ0
u|2))2 + 4|yb|2|λnφ0

u − A∗
bφ

0∗
d |2

]
, (A.7)

where

xt ≡
1
4

(
g2
2 −

5
3
g2
1

)
, xb ≡ −1

4

(
g2
2 − 1

3
g2
2

)
.

The masses of the squarks at the vacuum are〈
m̄2

t̃1,2

〉
= m2

t̃1,2
=

1
2

[
m2

q̃ + m2
t̃R

+
g2
2 + g2

1

8
(v2

d − v2
u) + |yt|2v2

u

±
√

M2
t + 2|yt|2(Ptv2

d + Qtv2
u)
]

, (A.8)

〈
m̄2

b̃1,2

〉
= m2

b̃1,2
=

1
2

[
m2

q̃ + m2
b̃R

− g2
2 + g2

1

8
(v2

d − v2
u) + |yb|2v2

d

±
√

M2
b + 2|yb|2(Pbv2

u + Qbv
2
d)
]

, (A.9)

where we have defined the following combinations of the parameters:

Rq =
1√
2
Re(λAqe

i(θ+φ)), Iq =
1√
2
Im(λAqe

i(θ+φ)), (q = t, b)

Pt =
1
2
|λ|2v2

n − Rtvn tanβ, Qt = |At|2 − Rtvn cotβ,

Pb =
1
2
|λ|2v2

n − Rbvn cot β, Qb = |Ab|2 − Rbvn tanβ,

M2
t = m2

q̃ − m2
t̃R

+
xt

2
(v2

d − v2
u), M2

b = m2
q̃ − m2

b̃R
+

xb

2
(v2

d − v2
u). (A.10)

Although Iq does not appear in the above equations, we define it here for later
convenience. (We use Iq in Appendix B)

Appendix B
Derivatives of the Squark Masses

The corrections to the neutral-mass matrix from the squark loops contain first
derivatives of the field-dependent squark masses and the matrices T S , T P , T SP , BS ,
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BP and BSP (3.11)–(3.17). The first derivatives of the squark masses are as follows:

〈
∂m̄2

t̃1,2

∂h

〉
=




g2
2+g2

1
8 vd(

|yt|2 − g2
2+g2

1
8

)
vu

0


± t

2∆m2
t̃

,

〈
∂m̄2

t̃1,2

∂a

〉
= ± |yt|2

∆m2
t̃

Itvnp,

(B.1)

〈
∂m̄2

b̃1,2

∂h

〉
=




(
|yb|2 − g2

2+g2
1

8

)
vd

g2
2+g2

1
8 vu

0


± b

2∆m2
b̃

,

〈
∂m̄2

b̃1,2

∂a

〉
= ± |yb|2

∆m2
b̃

Ibvnp,

(B.2)

where

t =




(xtM
2
t + 2|yt|2Pt)vd

(−xtM
2
t + 2|yt|2Qt)vu

2|yt|2Pt
v2

d
vn


 , b =


 (xbM

2
b + 2|yb|2Qb)vd

(−xbM
2
b + 2|yb|2Pb)vu

2|yb|2Pb
v2

u
vn


 ,

p =
1
vn


 vuvn

vnvd

vdvu


 , ∆m2

q̃ = m2
q̃1
− m2

q̃2
. (q = t, b) (B.3)

The explicit forms of the matrices T S and BS are

T S =




x2
t
2 v2

d −x2
t
2 vdvu |ytλ|2vnvd

−x2
t
2 vdvu

x2
t
2 v2

u 0
|ytλ|2vnvd 0 0




+|yt|2Rt




vuvn
vd

−vn −vu

−vn
vnvd
vu

−vd

−vu −vd
vdvu

vn


− ttT

2(∆m2
t̃
)2

, (B.4)

and

BS =




x2
b
2 v2

d −x2
b
2 vdvu 0

−x2
b
2 vdvu

x2
b
2 v2

u |ybλ|2vnvu

0 |ybλ|2vnvu 0




+|yb|2Rb




vuvn
vd

−vn −vu

−vn
vnvd
vu

−vd

−vu −vd
vdvu

vn


− bbT

2(∆m2
b̃
)2

. (B.5)

These are obtained from the second derivatives of ∆q̃V with respect to hd, hu and hn

and applying the tadpole conditions. The corrections to the pseudoscalar and scalar-
pseudoscalar-mixing components of the neutral-mass matrix include the following
matrices:

T P =


|yt|2Rt

vn

vdvu
− 2

(
|yt|2Itvn

∆m2
t̃

)2

ppT , BP =


|yb|2Rb

vn

vdvu
− 2

(
|yb|2Ibvn

∆m2
b̃

)2

ppT .

(B·6)
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6 and

T SP =
|yt|2Itvn

(∆m2
t̃
)2

tpT , BSP =
|yb|2Ibvn

(∆m2
b̃
)2

bpT . (B.7)
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