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ABSTRACT: The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced
Research version of the Weather Research and Forecasting (WRF-ARW) Model with hourly data assimilation that covers
the conterminous United States and Alaska and runs in real time at the NOAA/National Centers for Environmental
Prediction (NCEP). Implemented operationally at NOAA/NCEP in 2014, the HRRR features 3-km horizontal grid spac-
ing and frequent forecasts (hourly for CONUS and 3-hourly for Alaska). HRRR initialization is designed for optimal
short-range forecast skill with a particular focus on the evolution of precipitating systems. Key components of the initializa-
tion are radar-reflectivity data assimilation, hybrid ensemble-variational assimilation of conventional weather observations,
and a cloud analysis to initialize stratiform cloud layers. From this initial state, HRRR forecasts are produced out to 18 h
every hour, and out to 48 h every 6 h, with boundary conditions provided by the Rapid Refresh system. Between 2014 and
2020, HRRR development was focused on reducing model bias errors and improving forecast realism and accuracy.
Improved representation of the planetary boundary layer, subgrid-scale clouds, and land surface contributed extensively to
overall HRRR improvements. The final version of the HRRR (HRRRv4), implemented in late 2020, also features hybrid
data assimilation using flow-dependent covariances from a 3-km, 36-member ensemble (“HRRRDAS”) with explicit
convective storms. HRRRv4 also includes prediction of wildfire smoke plumes. The HRRR provides a baseline capability
for evaluating NOAA’s next-generation Rapid Refresh Forecast System, now under development.

SIGNIFICANCE STATEMENT: NOAA’s operational hourly updating, convection-allowing model, the High-Resolution
Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in
assimilation of weather observations, as well as in physics parameterizations, have led to improvements in simulated radar
reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014. Other
targeted development has focused on improved representation of the diurnal cycle of the planetary boundary layer, result-
ing in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation changes have
led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale clouds. The final
version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire smoke plumes.
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1. Introduction

Over the past few decades, operational numerical weather
prediction in the United States, and indeed around the world,
has advanced significantly in terms of data assimilation (DA)
and model complexity (e.g., Wang and Lei 2014; Gustafsson
et al. 2018; Gross et al. 2018), as well as toward finer model
horizontal grid spacing (e.g., Brown et al. 2012). The advent
of convection-allowing models (CAMs; Table 1), having

sufficiently fine horizontal resolution to produce explicit deep,
moist convection, allows more accurate forecasts of high-impact
weather (e.g., Done et al. 2004; Weisman et al. 2008; Kain et al.
2008). In addition, rapidly updating NWP systems, able to take
advantage of the latest weather observations, form a critical
component of situational awareness and short-range (0–48 h)
forecast guidance for quickly evolving weather events (e.g.,
Sun et al. 2014; Benjamin et al. 2016, hereafter B16; Simonin
et al. 2017).

Given the need for accurate, short-range, fine-scale fore-
casts, NOAA has developed the High-Resolution Rapid
Refresh (HRRR), an hourly updating, convection-allowing
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model with 3-km horizontal grid spacing, based on a frame-
work of community-supported data-assimilation and forecast-
model infrastructure. The HRRR provides guidance for rapidly
evolving mesoscale weather phenomena, including convective
storms, mesoscale snow bands, tropical cyclones, downslope
windstorms, fog and low cloud ceilings, intense cold fronts,
dense smoke plumes from active wildfires, and rapid changes
(ramps) in wind and solar energy sources. These local, rapidly
evolving phenomena dramatically affect many sectors of soci-
ety including the everyday lives of the public. The wide range
of high-impact weather events forecast by the HRRR is repre-
sented in Fig. 1: composite radar reflectivity in tornadic supercell
thunderstorms impacting the Dallas–Fort Worth metropolitan
area (Fig. 1a); snow accumulation from a lake-effect snowstorm
over the lower Great Lakes region (Fig. 1b); 80-m wind speeds
up to and exceeding 90 kt (1 kt ≈ 0.51 m s21) associated with a
severe Midwest derecho (Fig. 1c); and near-surface smoke near
the Camp Fire in northern California (Fig. 1d).

An essential feature of the HRRR system is its rapid
(hourly) updates useful for assimilating the latest weather
observations (B16); the HRRR assimilates all conventional
observations (aircraft, rawinsonde, GPS precipitable water,
surface, buoy/ship, profiler, and satellite winds) used for
the Rapid Refresh (RAP), as well as three-dimensional

radar-reflectivity observations provided through the NOAA
Multi-Radar Multi-Sensor project (MRMS; Zhang et al. 2016;
Smith et al. 2016; Kelleher et al. 2007). A radar-based latent-
heating technique used for all HRRR versions (Weygandt et al.
2022), complemented by the more recent 3-km ensemble DA
in HRRRv4, is described in this paper in section 3d. Availabil-
ity of the frequently updated MRMS radar reflectivity mosaic
over the entire country is a key enabler for the success of the
HRRR. Assimilation of these radar observations is particularly
critical for convective-storm forecasts in which the environ-
ment is often evolving and skill decreases rapidly with forecast
lead time (Sun et al. 2014).

The NOAA Global Systems Laboratory (GSL) devel-
oped initial versions of an experimental HRRR as a real-
time demonstration tool for short-range thunderstorm fore-
cast guidance for severe weather and for aviation routing,
using initial and boundary conditions from the Rapid
Update Cycle (RUC) in 2008–10 and then from the 13-km
RAP (B16) starting in 2011 (Table 2). The FAA, recogniz-
ing the potential value of frequent CAM simulations for
anticipating the occurrence, timing, and three-dimensional
coverage of convective storms for flight-planning guid-
ance, provided significant support for the required com-
puting infrastructure in the mid- to late 2000s. Successful

TABLE 1. International operational regional non-hydrostatic NWP systems applied at a horizontal grid spacing of #5 km as of late
2020. (Adapted from Benjamin et al. 2019, their Table 13-8.)

NWP system Center

Grid
spacing/No.
of layers

Initialization
frequency

Frequency
for free
forecast

Current data
assimilation
method

Use of radar
data

Operational
since Reference(s)

HRRR NCEP,
United
States

3 km/L51 1 h 1 h Hybrid 3D EnVar
(HRRRv4)

Latent heating;
EnKF

Sep 2014 This
manuscript;
James et al.
(2022);
Weygandt
et al.
(2022)

HRDPS ECCC,
Canada

2.5 km/L62 6 h 6 h Downscaled from
10-km EnVar

None Nov 2014 Milbrandt
et al.
(2016)

UKV Met Office,
United
Kingdom

1.5 km/L70 1 h 1 h 4DVar Latent heat
nudging

2009 Tang et al.
(2013)

AROME-
France

Météo-
France

1.3 km/L90 1 h 3 h 3DVar Assimilation of
pseudo-RH
from radar

Dec 2008 Seity et al.
(2011);
Wattrelot
et al.
(2014);
Brousseau
et al.
(2016)

COSMO-DE DWD,
Germany

2.2 km/L65 1 h 3 h Nudging-LETKF Latent heat
nudging

Apr 2007 Baldauf et al.
(2011);
Schraff
et al.
(2016)

LFM JMA,
Japan

2 km/L58 1 h 1 h 3DVar Assimilation of
RH from
radar and
radial wind

Mar 2013 Saito et al.
(2006)
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demonstrations of the experimental HRRR system in the
subsequent several years (e.g., Smith et al. 2008) spurred
the development of the Consolidated Storm Prediction for
Aviation (CoSPA) forecast product (Wolfson et al. 2008).
Used for strategic flight planning, CoSPA provides 0–8-h
forecasts of vertically integrated liquid (VIL) and echo
tops (ET) by blending these products from the Corridor
Integrated Weather System (CIWS; Klingle-Wilson and
Evans 2005) with HRRR forecasts.

Beyond the aviation applications of the HRRR, the severe-
weather forecasting community, most notably the National
Weather Service’s Storm Prediction Center (SPC), recognized
the utility of CAM guidance for predicting the mode of poten-
tially severe convection to aid in the development of severe
weather outlooks (e.g., Kain et al. 2006; Clark et al. 2012).
The availability of hourly updated CAM forecasts with 3-km

grid spacing has advanced the state of the science towards the
“Warn-on-Forecast” (WoF) paradigm (Stensrud et al. 2009),
in which severe weather warnings could be issued based
upon NWP. More recently, other applications of HRRR
forecasts have emerged. Notable among these has been re-
newable energy, in which forecasts of turbine hub-height
winds and solar irradiances are important for anticipating
variable electricity supply in regions where these renewable
resources are available (Marquis et al. 2011; James et al
2017). An additional major application of HRRR forecasts
has been for hydrology and flood forecasting, with HRRR
output (especially precipitation) providing input to the op-
erational National Water Model since 2016 (e.g., Lahmers
et al. 2019). HRRR analyses and forecasts are also widely
used for research, education, and commercial applications.
Research ranges from very-high-resolution simulation, with

FIG. 1. Example HRRR forecasts for high-impact weather events: (a) evening supercells including an EF3 tornado
producer impacting Dallas, TX [4-h simulated composite radar reflectivity forecast (dBZ) valid at 0100 UTC 21 Oct 2019];
(b) lake-effect snowstorm near Lakes Huron and Erie [17-h variable density accumulated snow depth (in.) valid at
2300 UTC 1 Dec 2020]; (c) 80-m wind speed (kt) during Iowa derecho (13-h forecast valid at 1700 UTC 10 Aug 2020);
and (d) dense smoke pollution [PM2.5 concentrations (mg m23)] from Camp Fire in California (24-h forecast valid at
0000 UTC 11 Nov 2018).
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HRRR data providing initial and boundary conditions,
to machine-learning applications (e.g., Arulaj and Barros
2021; Wang et al. 2022).

Throughout the history of the HRRR system, valuable as-
sessment of forecasts has come from field projects (e.g., Olson
et al. 2019a) and annual testbeds focused on severe thunder-
storms, quantitative precipitation forecasting, convective
storm impacts on aviation, and winter weather (Clark et al.
2012; Erickson et al. 2019). Individual forecasters have con-
tributed to HRRR development through assessment of re-
gional forecast performance. The forecast deficiencies that
were identified motivated testing of possible system changes,
first for individual cases, and then for long retrospective peri-
ods with verification. Decisions on proposed system changes

relied extensively on the forecast performance measures de-
scribed by James et al. (2022), with emphasis on the measures
related to convective-storm forecasting, renewable energy,
and hydrology.

The HRRR was built with community-developed model
and DA tools: a customized version of the Advanced
Research version of the Weather Research and Forecasting
(WRF-ARW) Model (Skamarock et al. 2019; Powers et al.
2017) and the Gridpoint Statistical Interpolation (GSI) analy-
sis system (Wu et al. 2002; Whitaker et al. 2008; Kleist et al.
2009). Use of community-supported software for an opera-
tional model facilitates collaboration on system development,
allowing the operational and research communities to work
jointly toward the advancement of NWP capabilities and

TABLE 2. History of experimental and operational HRRR versions.

HRRR version Domain(s) Notes (major changes for DA and model, dates)

2008 experimental Northeast corridor United
States (745 3 383 grid
points)

Real-time forecasts starting in September 2007; initial
conditions from RUC using radar-based latent-
heating assimilation (Weygandt et al. 2022)

2009 experimental Eastern 2/3 CONUS
(1000 3 700 grid points)

Expanded domain

2010 experimental CONUS (1800 3 1060 grid
points)

Expanded domain to CONUS; forecast period
extended from 12 to 15 h

2011 experimental CONUS Initial conditions from RAP starting in 2011, including
13-km land surface fields

2012 experimental CONUS DA: Improved timing of convection initiation and
reduced false alarms through changes to RAP
surface data assimilation and cloud analysis

2013 experimental CONUS DA: Change from 3DVar to hybrid ensemble-
variational DA in RAP; introduction of 1-h HRRR
spinup with reflectivity DA, 3-km 3DVar analysis,
and 3-km cloud analysis. Model: change from MYJ
to MYNN PBL scheme

HRRRv1 (2014 experimental) CONUS DA: Change from 3DVar to hybrid
ensemble–variational DA in HRRR; operational
30 Sep 2014

HRRRv2 (2015–16 experimental) CONUS Model: Reduced biases in parameterizations; initial
RH-based SGS clouds; reduced wilting point;
aerosol-aware precipitation microphysics;
introduction of full cycling of 3-km land surface
fields; forecast period extended to 18 (36) h in
operational (experimental) version. DA: PBL
pseudo-innovations added; lightning DA added to
1-h HRRR spinup; operational 23 Aug 2016

HRRRv3 (2016–17 experimental) CONUS, Alaska Model: Improvements in MYNN PBL scheme
(addition of mass-flux scheme, transition to EDMF
framework); hybrid vertical coordinate. DA:
improvements to better retain stratiform clouds;
reduced latent heating for radar in RAP; Alaska
domain coverage; operational 12 Jul 2018

HRRRv4 (2018–20 experimental) CONUS, Alaska DA (CONUS domain): Use of 36-member
HRRRDAS ensemble information for initial
conditions. Model: MYNN PBL improvements for
better representation of SGS clouds; specification of
Great Lakes temperature and ice coverage based on
FVCOM; introduction of small-lake model and
wildfire smoke forecasting capability; removal of
microphysics temperature-tendency limit;
operational 2 Dec 2020
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increasing the efficiency of transitions to operations (e.g.,
Bernardet et al. 2008).

On 30 September 2014, the first NWS-operational ver-
sion of the HRRR (HRRRv1; Table 3), covering the entire
CONUS (Fig. 2), was implemented by NCEP Central
Operations (NCO), with nearly 100% operational reliability
and widespread product availability and use. Downstream
forecast products developed for the NWS also relied exten-
sively on the HRRR, including its cloud fields for the Local-
ized Aviation Model Output Statistics Program (LAMP;
Glahn et al. 2017), its near-surface fields for the Real-Time
Mesoscale Analysis (RTMA; De Pondeca et al. 2011), all
fields for the National Blend of Models (NBM; Hamill et al.
2017), and its precipitation forecasts for the NOAA National
Water Model (https://water.noaa.gov/about/nwm). In addition
to providing hourly forecasts out to 15 h (HRRRv1) and 18 h
(later versions), a longer forecast every 6 h was added to
HRRRv3 (out to 36 h) and HRRRv4 (out to 48 h; Table 4).
The longer forecasts are helpful for preparing day 2 outlooks
(e.g., for severe weather forecasting) and for covering weather
events that span multiple days. The availability of increased
computing resources at NCEP (Table 3) enabled the longer
forecasts in HRRRv3–v4 and the addition of the ensemble

component to HRRRv4. An Alaska domain (Fig. 2) was
added with HRRRv3 in 2018. The availability of operational
HRRR forecasts has led to significant, quantifiable economic
savings through better decision making for activities such as
wind-energy production, commuting, and agriculture (Turner
et al. 2022, Hartman et al. 2021).

The HRRRv4 represents the final operational WRF-
ARW-based CAM implementation at NCEP. Work is now
underway to transition the hourly updating CAM capability
represented by the HRRR system into a framework built
around NOAA’s Unified Forecast System (UFS). The opera-
tional HRRR is tentatively scheduled for replacement by a
Rapid Refresh Forecast System (RRFS) in 2024. The opera-
tional HRRR represents an important baseline for forecast
performance for the RRFS while it is being developed.

The purpose of this article, the first of a two-part series, is
to summarize the design of the HRRR system. The follow-
ing section provides a description of its prognostic variables
and physical parameterization schemes. Section 3 provides
a detailed description of the HRRR initialization. Section 4
provides case study examples illustrating qualitative HRRR
forecast performance for high-impact weather phenomena.
The conclusion (section 5) includes a discussion of future
CAM development in the era succeeding the HRRR. The
appendix contains a list of acronyms used in this paper and
their definitions. The second paper (James et al. 2022) in
this two-part series documents HRRR objective forecast
performance.

2. WRF Model configuration for HRRR

The HRRR, like the RAP, uses the non-hydrostatic WRF-
ARW dynamic core with a set of dynamic options and physi-
cal parameterizations described in this section. Wide commu-
nity testing and development of the WRF Model (Powers
et al. 2017; with several common coauthors included on this
paper) was essential to HRRR development and operational
implementation. Within the WRF-ARW framework, HRRR
configurations (Table 4) have generally used the same dy-
namics and physics options as the RAP (Table 2 of B16); a
notable exception is that the HRRR, with 3-km grid spacing
sufficient to produce explicit convective storms, does not
use a convective parameterization. Additional unique fea-
tures of the HRRR dynamics and physics options as com-
pared to the RAP are described below.

TABLE 3. History of RAP and HRRR versions at GSL and operational implementations at NCEP. The computing resources
required for the operational HRRR are expressed in terms of peak usage (high-water mark).

RAP (13 km) version/
HRRR (3 km) version

Version finalized at
GSL}Experimental

Implementation at
NCEP}Operational

Operational HRRR
computing resources (max
instantaneous node usage)

RAPv1 19 Mar 2012 1 May 2012
RAPv2 17 Mar 2013 25 Feb 2014
HRRRv1 10 Apr 2014 30 Sep 2014 124 nodes on WCOSS phase 1
RAPv3/HRRRv2 10 Apr 2015 23 Aug 2016 124 nodes on WCOSS phase 2
RAPv4/HRRRv3 26 May 2017 12 Jul 2018 260 nodes on WCOSS Cray
RAPv5/HRRRv4 5 Jun 2019 2 Dec 2020 491 nodes on WCOSS Cray

FIG. 2. HRRR domains (green): HRRR CONUS (v1, v2, v3,
and v4), and Alaska (v3 and v4). Also shown is the 13-km RAP
domain (white).
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TABLE 4. Model and physics configuration for HRRRv1–HRRRv4.

System HRRRv1 HRRRv2 HRRRv3 HRRRv4

Model WRF-ARWv3.4.11 WRF-ARWv3.61 WRF-ARWv3.8.11 WRF-ARWv3.9.11
Domain CONUS CONUS CONUS, Alaska CONUS, Alaska
Initialization

frequency
1 h 1 h 1 h, 3 h 1, 3 h

Map projection Lambert conformal Lambert conformal Lambert conformal
(CONUS), polar
stereographic (AK)

Lambert conformal
(CONUS), polar
stereographic (AK)

Grid points (x, y) 1800 3 1060 1800 3 1060 1800 3 1060, 1300 3

920
1800 3 1060, 1300 3

920
Grid spacing 3 km 3 km 3 km 3 km
Vertical layers 51 51 51 51
Pressure top 20 hPa 20 hPa 20 hPa 15 hPa
Lateral boundary

conditions
RAP RAP RAP RAP

Initial conditions RAP post-DFI plus
1-h spinup, 3-km GSI
with GDAS

RAP post-DFI plus
1-h spinup, 3-km GSI
with GDAS

RAP post-DFI plus 1-h
spinup, 3-km GSI
with GDAS

HRRRDAS mean plus
1-h spinup, 3-km GSI
with HRRRDAS

Vertical coordinate Sigma Sigma Hybrid sigma-terrain-
following

Hybrid sigma-terrain-
following

Horizontal/ vertical
advection

Fifth-order upwind Fifth-order upwind Fifth-order upwind Fifth-order upwind 1

IEVA
Scalar advection Positive definite Positive definite Positive definite Positive definite
Large time step 20 s 20 s 20 s 20 s
Upper-level

damping
Rayleigh, dampcoef 5

0.2 s21, zdamp 5

5000 m

Rayleigh, dampcoef 5
0.2 s21, zdamp 5

5000 m

Rayleigh, dampcoef 5
0.2 s21, zdamp 5

5000 m

Rayleigh, dampcoef 5
0.2 s21, zdamp 5

5000 m
Computational

horizontal
diffusion

None Sixth-order (0.25) Sixth-order (0.25),
horizontal only (not
on slopes), applied to
all variables

Sixth-order reduced to
0.04 for tracers,
including water
vapor and
hydrometeors, and to
0.12 for other model
variables

Forecast frequency Hourly Hourly Hourly, 3 h Hourly, 3 h
Forecast duration 15 h 18 h 36 h every 6 h,

otherwise, 18 h
48 h every 6 h,

otherwise, 18 h
Radiation RRTMG RRTMG RRTMG RRTMG (modified

with SGS cloud)
Land surface,

including No. of
layers

RUC LSM, nine soil
levels, two-layer
snow (v3.51)

RUC LSM, nine soil
levels, two-layer
snow, reduced
wilting point (v3.61)

RUC LSM, nine soil
levels, two-layer
snow (v3.81)

RUC LSM, nine soil
levels, two-layer
snow (v3.91)

Land use 30′′ MODIS 30′′ MODIS 30′′ MODIS, 15′′ MODIS, BNU soil
type (via WRF),
switch to MODIS
albedo

Planetary boundary
and surface layer

Mellor–Yamada–
Nakanishi–Niino
(v3.51)

Mellor–Yamada–
Nakanishi–Niino
(v3.61)

Mellor–Yamada–
Nakanishi–Niino
(v3.81)

Mellor–Yamada–
Nakanishi–Niino
(v3.91)

Subgrid-scale
clouds

None MYNN RH-based
(Benjamin et al 2016,
their appendix B)

MYNN prognostic SGS
cloud fraction, cloud
water

MYNN removed limit
to SGS cloud water,
reduced radii

Orographic drag None None Small-scale orographic
drag

Turbulent drag from
subgrid orography
(CONUS only)

Cloud Microphysics Thompson (v3.4.1) Thompson–Eidhammer
“aerosol-aware”
(v3.6.1)

Thompson–Eidhammer
“aerosol-aware”
(v3.8)

Thompson–Eidhammer
“aerosol-aware”
(v3.8)

Microphysics
temperature
tendency limit

0.07 K s21 0.07 K s21 0.07 K s21 None needed due to
IEVA
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a. Dynamics

While it is generally accepted that deep, moist convection is
not truly “resolved” at horizontal grid spacings of greater
than 1 km (Bryan et al. 2003), NWP forecasts with explicit
convection at grid spacings of 2–4 km have nevertheless been
shown to provide significant skill improvements over those
with grid spacings greater than 5 km (Weisman et al. 1997). A
horizontal grid spacing of 3 km was chosen for the HRRR sys-
tem, striking a balance between increasing computational cost
with higher resolution and the benefits of finer representation
of convective storms (Schwartz and Sobash 2019), coastlines,
and terrain (Olson et al. 2019a). Considering possible applica-
tions in future operational CAMs such as the RRFS and WoF
System, we have during the past few years produced experi-
mental forecasts, initialized from HRRR analyses, over sub-
CONUS domains with horizontal grid spacing ∼1 km. These
experimental higher resolution forecasts have focused on
wind (Olson et al. 2019a) and precipitation (English et al.
2021) in complex terrain, coastal clouds and fog, lake-effect
snow, supercooled liquid water for in-flight icing hazards, and
convective storms. Olson et al. (2019a) noted improvements
in wind forecasts with higher resolution; investigations of the
results for other high-resolution forecast applications are
ongoing.

The HRRR uses the same specification of 51 vertical
levels1 as the RAP (Table 7 in B16). The lowest model level
is at ∼8 m AGL for areas near sea level, and somewhat closer
to the ground in higher terrain. The vertical spacing between
vertical levels increases from approximately 15–30 m in the
lowest levels to about 400 m in the midtroposphere and
increases again up to about 700 m near the tropopause. In
RAPv4 and HRRRv3, a hybrid pressure-sigma vertical coor-
dinate (Klemp 2011) was introduced, replacing the pure sigma
coordinate in HRRRv1–v2. The new vertical coordinate tran-
sitions from the terrain-following sigma coordinate near the
surface to isobaric at mid and upper levels and allows for a re-
duction of small-scale numerical noise aloft in situations of
flow across mountain barriers (Kim et al 2019). Beck et al.
(2020) demonstrated the benefits of the change in vertical
coordinate for both the RAP and the HRRR.

The time step used for the HRRR is 20 s (Table 4), slightly
above the recommended 18 s for a 3-km grid length [Skamarock
et al 2019; section 3c(1)], an important extension considering
limited operational computational resources. This extension
was enabled by limiting the cloud-physics temperature ten-
dency to 0.07 K s21 in HRRRv1–v3. However, the advent
of the new implicit-explicit vertical advection option for
WRF-ARW (Wicker and Skamarock 2020) allowed for
removal of the temperature tendency limit in HRRRv4. Dif-
ferences between HRRR forecasts with and without the
temperature-tendency limit are particularly noticeable
for the maximum vertical velocities in convective-storm

updrafts. Whereas maximum updraft speeds plateaued
around 30 m s21 in HRRRv1–v3 forecasts, the updraft
speeds in HRRRv4 forecasts are more realistic, at times ex-
ceeding 60 m s21 (not shown).

The mean terrain elevation for each 3-km grid area in the
HRRR CONUS and Alaska domains was specified using the
WRF Preprocessing System (WPS; Skamarock et al. 2019)
based on 30-arc-s USGS 2010 Global Multi-resolution
Terrain Elevation Data. Terrain modification was needed
in the Alaska domain to avoid CFL instability in strong flow.
Following the WPS interpolation, a nine-point smoother was
applied to the gridded terrain elevation in the Alaska domain
at all points higher than 2500 m MSL, reducing the maximum
gradient from 29.18 to 21.88 and thus improving model
stability.

To ensure damping of poorly resolved features having a
length scale 2–4 times the model grid spacing, the HRRRv2
employed sixth-order horizontal diffusion within WRF (Xue
2000; Knievel et al. 2007). A diffusion parameter modulates
the magnitude of the reduction in strength of features of
scale twice the grid interval; this parameter was set to 0.25
for HRRRv2 and HRRRv3 (Table 4). Beginning with
HRRRv3, the sixth-order diffusion was modified to account
for local terrain slope, which acted to reduce inadvertent
vertical mixing along complex or sloping terrain (Arthur
et al. 2021). For HRRRv4, the diffusion parameter was de-
creased substantially, to 0.04 for water vapor and hydrome-
teors and to 0.12 for other variables.

b. Atmospheric model physics

A major focus of physics development over the past few
years has been the improved treatment of subgrid-scale (SGS,
i.e., sub-3-km horizontal dimension for HRRR) clouds and the
turbulence within cloudy and clear environments (Table 4).
The RAP-HRRR physics suite accounts for both stratus and
shallow-cumulus SGS clouds within the Mellor–Yamada–
Nakanishi–Niino eddy-diffusivity/mass-flux (MYNN-EDMF;
Nakanishi and Niino 2009; Olson et al. 2019b) planetary
boundary layer scheme using the Chaboureau and Bechtold
(2002, 2005) approach, while the associated nonlocal transport
is parameterized by a multi-plume mass-flux scheme following
Neggers (2015). With HRRRv1, SGS cloud fraction was de-
termined based on Xu and Randall (1996) using grid-scale
RH, but starting with HRRRv2, the cloud fractions and as-
sociated SGS cloud mixing ratios are determined within the
MYNN-EDMF, where they directly impact the turbulence.
The shortwave and longwave radiation physics, RRTMG
(Iacono et al. 2008), uses the SGS cloud properties (from
MYNN-EDMF) in its calculations. The effective radii for
the SGS clouds starting with HRRRv4 are determined based
on Miles et al. (2000), Turner et al. (2007), and Mishra et al.
(2014). A more detailed discussion of MYNN-EDMF bound-
ary layer scheme development and coupling to other model
components is provided by Olson et al. (2019b). As a result of
combined physics changes, particularly in the representation
of SGS, HRRRv4 has reduced bias errors in surface

1 The target for the future RRFS is 65 vertical levels, with im-
proved resolution in and near the PBL (enabling better represen-
tations of clouds and temperature inversions) and a higher model
top (enabling more effective satellite-radiance data assimilation).
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temperature and incoming shortwave radiation relative to
previous HRRR versions (James et al. 2022).

The parameterization of the wind drag force imparted by
subgrid topography down to ∼1 km in horizontal extent was
implemented in HRRRv4. Small-scale orographic gravity
wave drag due to wave breaking that can occur within and
immediately above stable PBLs is represented by the
parameterization of Tsiringakis et al. (2017), which was
implemented in HRRRv3. The HRRRv4 adds the parame-
terization of Beljaars et al. (2004), which represents turbu-
lent form drag imparted by subgrid topography.2 These two
schemes represent drag forces missing from the resolved
gridscale dynamics. Tests for retrospective periods in all
four seasons demonstrated that the schemes reduced high
wind speed biases of modeled near-surface winds.

The HRRR uses the Thompson bulk scheme (Thompson
et al. 2004, 2008; Thompson and Eidhammer 2014) to repre-
sent cloud microphysics. The capabilities of this scheme in-
creased during the HRRR era, and as of HRRRv4 it included
one-moment prediction of snow and two-moment prediction
of cloud water, cloud ice, rain, and graupel/hail. Beginning
with HRRRv2, the scheme incorporated “aerosol awareness”;
climatological water-friendly and ice-friendly 3D aerosol con-
centrations are prescribed in the initial conditions of each
HRRR simulation. During the model integration, aerosols af-
fect cloud droplet nucleation and ice activation, and processes
such as aerosol collection by precipitation are also repre-
sented. Starting with HRRRv3, the RRTMG scheme included
the impacts of the aerosols on shortwave and longwave radia-
tion as well.

c. Land surface physics

Like the RAP, the HRRR uses the RUC land surface
model (LSM), originally developed for use in the RUC sys-
tem (Smirnova et al. 2000, 2016) and often applied as an LSM
option by WRF users. The RUC LSM receives surface ex-
change coefficients as input from the MYNN surface layer
scheme (Olson et al. 2021) and uses them in an iterative algo-
rithm to solve for the surface energy balance. In 2013, the soil
modeling expanded from six levels to nine levels, better repre-
senting soil conditions at the interface with the atmosphere
and improving the 2-m temperature diurnal cycle (e.g., Fig. 2
in Smirnova et al 2016). HRRR versions 2–4, with continu-
ously cycled land surface variables, are able to represent sea-
sonal snowfall accumulation, and previous work (Rasmussen
et al. 2011) suggests that the HRRR has fine enough grid
spacing to do so realistically. Updates to the RUC LSM start-
ing with HRRRv2 included improved treatment of snow melt-
ing, trimming, and building (Smirnova et al. 2016). Additional
improvements within the scheme have included its application
in conditions of sea ice, an accounting for subgrid heterogene-
ity in land surface characteristics, a simple irrigation scheme,
and a seasonal variation of roughness length for croplands.

Starting with HRRRv3, a snow “mosaic” approach for grid
cells with partial snow cover, utilizing a separate treatment
of snow-covered and snow-free portions of the grid cells,
has been implemented. Also, an empirical formulation is
used in the RUC LSM to evaluate the density of solid pre-
cipitation based on snow, ice, and graupel fall rates pre-
dicted by the Thompson microphysics scheme for improved
prediction of accumulated snowfall.

d. Aerosol and smoke prediction

A basic wildfire smoke forecasting capability has been in-
corporated in the RAPv5 and HRRRv4 systems (Ahmadov
et al. 2017). This addition has proved to be a critical tool for
air quality and visibility forecasting applications. The RAP
and HRRR employ a single tracer, representing particulate
matter less than 2.5 mm (PM2.5), to forecast smoke within the
modeling systems. Smoke sources are initialized from satel-
lite-based fire radiative power observations. The evolution of
the smoke is treated with a simplified version of WRF-Chem
(Grell et al. 2005). The HRRR is configured to use boundary
conditions of smoke from the RAP, which allows smoke from
outside the CONUS domain (particularly from Canada and
Mexico) to influence air quality within the CONUS domain
(Wang et al. 2010; Wu et al. 2018). The HRRR also continu-
ously cycles smoke; therefore, each hourly HRRR run begins
with a 3D smoke field derived from the previous run’s 1-h
forecast. The HRRR employs simple direct radiative feed-
back of the smoke on atmospheric evolution, allowing incom-
ing solar radiation to be attenuated by thick smoke plumes,
and also represents precipitation scavenging of smoke.

3. Model initialization

In this section, we describe the components of the
HRRR initialization, including system flow charts, observa-
tions assimilated, GSI variational and ensemble algorithms,
cloud-hydrometeor assimilation, land surface assimilation,
and smoke initialization. The initialization steps common
to all HRRR versions (Figs. 3a,b) are a first guess, a 1-h
“pre-forecast,” and a GSI analysis. For HRRRv1-v3, a
downscaled RAP analysis provided the first guess, and the
80-member Global Data Assimilation System (GDAS) in
the Global Forecast System (Kleist and Ide 2015) provided
the background error covariances for the GSI hybrid ensem-
ble-variational data assimilation (Fig. 3a). A major change in
HRRRv4 for the CONUS domain was to add an hourly cy-
cled, 36-member, convection-allowing WRF ensemble to the
system (section 3d; Dowell et al. 2016). This ensemble was
named the HRRR Data Assimilation System (HRRRDAS),
analogous to the GDAS. For HRRRv4 CONUS initialization,
the HRRRDAS analysis mean provides the first guess, and
the HRRRDAS member 1-h forecasts provide the back-
ground error covariances for the GSI hybrid data assimilation
(Fig. 3b). The Alaska domain in HRRRv4 continues to be ini-
tialized as in HRRRv3, with a first guess from the RAP and
background error covariances from the GDAS.

2 Due to an oversight on the need to update static files, the
Alaska domain of HRRRv4 does not use this Beljaars et al. (2004)
parameterization.
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FIG. 3. Wiring diagrams for hourly initialization of (a) HRRRv1–v3, (b) HRRRv4, and (c) the planned
RRFS. Blue, green, and red indicate deterministic, ensemble, and other information (observations and
static covariances), respectively.
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a. Observations

The HRRR uses the same broad set of observations as the
RAP (B16, section 2a), except satellite radiance observations
are not assimilated in the CONUS domain. New to RAPv5
and HRRRv4 is the assimilation of “TCVitals” tropical cy-
clone minimum pressure and location (Trahan and Sparling
2012). Unique aspects of how some observation types are
assimilated, including radar reflectivity, Vaisala lightning,
METAR cloud-ceiling height and visibility, and satellite
cloud-top pressure, are described in upcoming subsec-
tions. The use of surface observations in the HRRR, in-
cluding vertically projected PBL “pseudo-innovations”
(B16, section 2f), is important for the accuracy of short-
range predictions of PBL evolution.

The HRRR observation assimilation window, observation
errors, and model surface vs. station elevation adjustment for
assimilation of surface observations are like those in the RAP
(B16, section 2a). Even with relatively fine 3-km grid length,
6% of METAR and mesonet stations have elevation differ-
ences from HRRR topography exceeding 100 m, which would
result in a 1-K daytime bias without this adjustment.

b. GSI

Community-supported GSI software, with unique exten-
sions for the HRRR application, provides the framework for
the HRRR data assimilation. The HRRR performs a 3D
hybrid ensemble–variational (EnVar) analysis every hour,
with background error covariances from a combination of
static and ensemble-based covariances. The unique exten-
sions of GSI for HRRR include a utility to convert 3D
radar-reflectivity and lightning observations to a 3D dist-
ribution of latent heating (Weygandt et al. 2022), the str-
atiform cloud-hydrometeor data assimilation (SCHDA;
Benjamin et al. 2021a), and soil adjustment based on near-
surface temperature and water vapor analysis increments,
as described below in sections 3c, 3e, and 3f.

c. Radar and lightning assimilation and the
EnVar analysis

The 13-km RAP (B16; Hu et al. 2017; Lin et al. 2017;
Benjamin et al. 2021a; Weygandt et al. 2022) is the parent
model of the HRRR, providing both initial and boundary
conditions. The RAP cycle initialized three hours prior to
the HRRR initialization provides lateral boundary condi-
tions to the HRRR at 3-h intervals.

For HRRRv1-v3, a first-guess state at T 2 1 h comes from
interpolating the 13-km RAP post-DFI analysis to the 3-km
HRRR grid (Fig. 3a; Weygandt et al. 2022). In HRRRv4
(Fig. 3b), the 36-member HRRRDAS analysis ensemble
mean is used instead as the first-guess state at T 2 1 h. In all
HRRR versions, the first guess contains mesoscale circ-
ulations established during the hourly cycling with conven-
tional and radar-data assimilation in the parent system (RAP
or HRRRDAS). Since the first guess comes from either the
13-km RAP (HRRRv1-v3) or an ensemble mean (HRRRv4),
this first guess is not “spun up” on the smallest resolvable
scales on the HRRR grid.

The first guess at T 2 1 h is the starting point for a HRRR
“pre-forecast” integrated from T 2 1 h to T 2 0 h, during
which rapid energy growth occurs for small-scale features
(Skamarock 2004) including convective storms. The execution
of the 1-h pre-forecast is carried out with latent heating based
on 3D MRMS radar data, augmented with lightning data.
Radar and lightning data at four times (i.e., at 15-min inter-
vals) are used, coarsely representing evolution during the 1-h
period (Weygandt et al. 2022).

After the pre-forecast, the HRRR assimilates conventional
observations with GSI’s hybrid 3DEnVar method, leveraging
a combination of static and flow-dependent, ensemble-based
background error covariances (Figs. 3a,b). The HRRR DA is
configured similarly to the RAP DA (B16; Hu et al. 2017),
leveraging all the conventional observations used in the RAP
except satellite radiances over CONUS. In HRRRv1-v3, the
background ensemble fields from the 80-member GDAS
(horizontal grid spacing approximately 25 km) are interpo-
lated to a 12-km analysis grid. In the hybrid DA in HRRRv4,
the HRRRDAS background ensemble is used at its native
3-km grid spacing. Additional details of the HRRRv4 initiali-
zation are in Table 5. Positive impacts of the assimilation of
conventional observations (rawinsonde, aircraft, surface, etc.)
on forecast skill have been shown to persist through at least
12 h for the RAP (James and Benjamin 2017). Within the
3-km GSI at T2 0 h, the SCHDA (section 3e) is also applied.

d. 3-km ensemble data assimilation for HRRRv4 using
the HRRRDAS

Convection-allowing ensemble systems have recently been
developed both for research use (e.g., Schwartz et al. 2021)
and operational deployment (e.g., Hagelin et al. 2017). Such
ensembles represent uncertainty both in initial conditions and
in model physics, and they allow the use of high-resolution,
flow-dependent covariances to improve data assimilation.
HRRRv4 features a significant data-assimilation advance-
ment over previous versions by using the 36-member, hourly
cycled, 3-km HRRRDAS rather than the coarser global
GDAS for the hybrid data assimilation (Figs. 3a,b). This de-
sign enables more accurate and balanced spreading of obser-
vation information in regions of complex flow and within the
PBL.

The HRRRDAS initialization is staggered, with 18 members
initialized daily at 0900 UTC and 18 members initialized daily
at 2100 UTC. Each member is cycled hourly for 24 h before be-
ing replaced; thus, 36 ensemble members are available at each
hour of the day. The atmospheric state in each HRRRDAS
member is initialized by adding a perturbation from a corre-
sponding member in the 9-h GDAS ensemble forecast to the
RAP analysis at 0900/2100 UTC. This strategy allows the
HRRRDAS to take advantage of recent global atmospheric
information in two ways: the GFS state inherited through the
twice-daily RAP partial cycles (B16; James and Benjamin
2017) and perturbations in the GDAS. The land surface state
in each HRRRDAS member is reinitialized daily from the 1-h
HRRR forecast valid at 0900/2100 UTC.
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Ensemble spread in the HRRRDAS comes from multiple
sources: initial-condition perturbations from the GDAS; ran-
dom, spatially correlated boundary condition perturbations
(Torn et al. 2006, Romine et al. 2014); and hourly posterior
relaxation-to-prior spread (Whitaker and Hamill 2012, Schwartz
and Liu 2014). The HRRRDAS uses an ensemble Kalman filter
(EnKF; Houtekamer and Zhang 2016), specifically the ensem-
ble square-root filter (EnSRF; Tippett et al. 2003) to assimilate
conventional and radar-reflectivity observations (Table 5). To
prevent development of excessive cloudiness during cycling,
hourly cloud clearing is also applied to members individually,
employing the same non-variational cloud-clearing method as
in the HRRR (Benjamin et al. 2021a).

Although the operational implementation of a convection-
allowing ensemble and use for data assimilation represent sig-
nificant advances, we consider the HRRRv4 configuration to
be an intermediate phase (Fig. 3b) toward the proposed next-
generation NOAA regional modeling system, the RRFS. In
one RRFS design being considered, a continuously cycled de-
terministic control member would be two-way coupled with a
continuously cycled ensemble (Fig. 3c); this design is similar
to that of the NOAA GFS (Wang et al. 2013). This proposed
future configuration would improve upon the HRRRv4 con-
figuration by adding hourly cycling of the deterministic con-
trol member and eliminating the use of the ensemble mean in
initializing the control member. Research will be needed to
optimize storm-scale data assimilation (e.g., Wang and Wang
2021) and to harmonize regional and global ensemble model-
ing (e.g., Schwartz et al. 2021).

e. Cloud and hydrometeor assimilation

The SCHDA procedure (Benjamin et al. 2021a) procedure
is a non-variational method to initialize stratiform clouds in
the RAP and HRRR, applied after the EnVar assimilation of
conventional observations. Clouds in the model background
are updated with observations of cloud layers (or their absence)
from METAR ceilometer/visibility and satellite cloud-top ob-
servations. The SCHDA procedure is effective for initializing
stratiform clouds and retaining cloud layers in the model fore-
cast, which is particularly important for aviation applications
and PBL evolution. SCHDA consists of both cloud clearing
and cloud building. In volumes with building or clearing, tem-
perature and water vapor are modified to ensure convective
stability and to produce realistic vertical profiles. As described
by Benjamin et al. (2021a), precipitation hydrometeors (rain
and snow mixing ratios) are added, based on radar-reflectivity
observations, in limited circumstances.

f. Land surface assimilation

Under the assumption that near-surface atmospheric fore-
cast errors may be related to errors in the soil state, the
HRRR adjusts soil temperature and moisture with equations
that depend on the EnVar analysis increments in temperature
and relative humidity at the lowest model level in the atmo-
sphere (B16, their appendix B; Smirnova et al 2016; Benjamin
et al. 2022b). To retain high-resolution soil information, in-
cluding snow, HRRRv2 and later versions have continuously
cycled land surface variables between model initializations.

TABLE 5. Summary of assimilation of conventional (B16, section 2a) and MRMS radar-reflectivity (Smith et al. 2016) observations in
the 36-member HRRRDAS and deterministic HRRRv4.

Parameter HRRRDAS (3-km CONUS domain) HRRRv4

Assimilation method: Conventional
observations

EnKF CONUS 3D EnVar: 85% weight to BEC
from HRRRDAS 1-h forecast, 15%
weight to static BEC

Alaska 3D EnVar: 85% weight to BEC
from GDAS forecast, 15% weight to
static BEC

Localization full width:
Conventional observations

Horizontal: 300 km Horizontal: 110 km
Vertical: 0.5 scale height Vertical: 3 grid levels

WRF model variables updated from
conventional observations

Zonal and meridional wind components;
potential temperature; water vapor
and cloud water mixing ratios

Zonal and meridional wind components;
potential temperature; pressure; water
vapor mixing ratio

MRMS reflectivity observation
preprocessing

Horizontal thinning to 6-km (12-km)
spacing in precipitation (non-
precipitation) regions; vertical thinning
also applied

Interpolation to model grid points

Assimilation method: Radar-reflectivity
observations

EnKF Diabatic initialization and stratiform
cloud-hydrometeor data assimilation
(SCHDA)

Localization full width: Radar-reflectivity
observations

Horizontal: 18 km
Vertical: 0.5 scale height

WRF model variables updated from
radar-reflectivity observations

Zonal and meridional wind components;
potential temperature; water vapor,
cloud water, rain, snow, and graupel
mixing ratios

All variables affected by diabatic
initialization. Following variables
updated by SCHDA: potential
temperature; water vapor, cloud
water, rain, and snow mixing ratios
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In HRRRv3-v4, satellite-detected greenness vegetation
fraction (GVF) from the polar-orbiting Visible Infrared Imag-
ing Radiometer Suite (VIIRS) instrument is used to update
vegetation greenness daily instead of using climatological val-
ues. This information is used to partition each grid cell into
vegetated and bare soil components. The use of this remotely
sensed land surface dataset enables a more realistic evolution
of surface fluxes within the RUC LSM system, particularly
during anomalously dry or wet periods.

All HRRR versions include daily specifications of sea sur-
face temperature (SST) and snow cover. The updates for
these variables are nominally valid for 0000 UTC each day, when
new data from a daily analysis become available. The SST data
are provided by the Real-Time Global (RTG) analysis devel-
oped by NCEP (updated to an SST analysis within the GDAS in
February 2020), and snow cover information is provided by
NOAA’s daily Interactive Multisensor Snow and Ice Mapping
System analysis at 4-km grid spacing (Helfrich et al. 2007).

In HRRRv4, lake temperatures are specified more accu-
rately, including loose coupling with the NOAA Great Lakes
Operational Forecast System (Anderson et al. 2018, Benjamin
et al. 2022a) based on the FVCOM (Chen et al. 2006) to pro-
vide improved initial conditions in those regions. Variables
copied directly from the interpolated FVCOM grid to the
HRRR grid include lake surface temperatures and fractional
lake ice coverage. Use of FVCOM forecast fields allows the
HRRR to better estimate Great Lakes surface conditions,
particularly in winter when information on fractional ice im-
proves predictions of surface fluxes or at times when clouds
obscure the Great Lakes for many consecutive days and
render satellite-based estimates less useful (Fujisaki-Manome
et al. 2020). HRRRv4 predicts the evolution of other lakes using
the 10-level lakemodel component of theCommunity LandModel
(CLMv4.5; Oleson et al. 2010; Zeng et al. 2002). Continuous
HRRR cycling of 3D lake variables over many months allows a
more realistic lake temperature initialization than from the
NOAARTG SST, greatly improving forecasts in the vicinity of
these lakes.

g. Smoke initialization for HRRRv4

Identification of fire locations within the HRRR domain is
provided by hotspots detected by polar-orbiting satellites
(Ahmadov et al. 2017). The HRRR uses data from the VIIRS
instrument aboard the Suomi NPP and NOAA-20 satellites,
as well as by the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) instrument aboard NASA satellites Aqua
and Terra. Currently, the HRRR uses fire hotspots collected
over the previous 24 h. Once the satellite fire detection data
are obtained, the hotspots are mapped onto the 3-km HRRR
grid, along with an associated “fire radiative power” (FRP)
determined by the detecting instrument. From this point,
biomass burning emissions and smoke plume evolution are
parameterized based upon the measured FRP as well as the
underlying land surface type. Point sources of PM2.5 are
then introduced into the HRRR forecast with diurnally
varying emissions. Once the smoke tracer is included in
the 3D HRRR grid, the HRRR provides a forecast of the

evolution of the smoke plume based upon the atmospheric
conditions.

4. High-impact weather prediction examples
using HRRR

In this section, we provide examples illustrating the capabil-
ities of the HRRR for predicting high-impact weather events
from the past decade.

a. Aviation forecasting and CoSPA

The FAA Aviation Weather Research Program has led an
effort over the last 20 years to simplify and consolidate the
variety of forecast products available for aviation decision
making. The advent of the HRRR enabled development of
the CoSPA system (Wolfson et al 2008; section 1), a blend of
heuristic-based extrapolation forecasts with HRRR forecasts.

CoSPA’s focus on convective storms is attributable to the
fact that weather-related delays account for nearly 70% of
total delays in the U.S. National Airspace System, and con-
vective weather accounts for 60% of these weather delays
(Klingle-Wilson and Evans 2005). The problem is particularly
acute in the northeastern portion of the NAS, due to enroute
and terminal congestion and an associated lack of excess ca-
pacity available for delaying or rerouting aircraft. Benefits
from more accurate forecasts of aviation-relevant parameters
such as VIL and ET include more efficient use of air-traffic
management initiatives and a reduced need for tactical action.
Figure 4 provides an example of a successful VIL forecast
from the HRRR, as compared against MRMS-analyzed VIL,
for a potentially high-impact convective line passing through
the northeastern NAS on 14 July 2016. The HRRR accurately
forecasts the porosity of the significant convective line passing
through New York and captures the position of a stronger cell
in northwestern New Jersey as well. The 6–12 h of advance
warning of this feature permitted air traffic managers to antici-
pate effects on arrivals and departures from New York City
area terminals, minimizing air traffic delays due to several hours
of aircraft rerouting. VIL forecasts from the HRRR were used
directly in CoSPA for forecast lengths greater than 2 h.

b. Severe weather forecasting

On 10 August 2020, a derecho (Johns and Hirt 1987) struck
the U.S. Midwest, producing $101 billion in damage to homes,
businesses, utility infrastructure, and crops (NOAA/NCEI
2022). The derecho was particularly severe at midday in
eastern Iowa (Fig. 5e), producing estimated surface winds ex-
ceeding 60 m s21 in the Cedar Rapids, Iowa, area (NWS 2020).

The Midwest derecho was not anticipated far in advance.
Outlooks issued by the SPC at 1730 UTC 9 August and
0600 UTC 10 August indicated only a marginal risk of se-
vere weather from Iowa into northern Illinois; at 1300 UTC
10 August, the risk was upgraded to enhanced (not shown).
HRRR forecasts initialized before 0000 UTC 10 August pro-
vided no clear guidance, showing a variety of scenarios for the
convective-storm evolution in the Midwest (not shown).

We focus here on forecasts initialized between 0300 and
0900 UTC 10 August (Figs. 1c, 5), with lead times of 6–24 h, a
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key situational-awareness and short-range-forecasting time
frame for the NWS SPC and Weather Forecast Offices. By
this time, HRRR forecasts were consistently indicating
a daytime convective system that would affect Iowa and Illi-
nois. The derecho occurred while both the operational HRRRv3
and experimental (soon to be operational) HRRRv4 were
running, providing an opportunity to compare forecasts from
the two systems. The comparisons in Fig. 5 focus on the re-
flectivity structure and the swaths of maximum surface winds
associated with the convective system. The experimental
HRRRv4 forecasts (Figs. 5c,d) indicated a more organized
and more realistic reflectivity structure than the HRRRv3
(Figs. 5a,b) forecasts, in terms of a more extensive high-
reflectivity leading line exhibiting bowing characteristics and
a more extensive trailing stratiform region. Forecasts from
both HRRR versions tended to be too slow to move the sys-
tem through Iowa, though (e.g., Figs. 5b,d,e).

The derecho produced surface winds exceeding 35 m s21

over a wide swath from central Iowa to northern Illinois
(NWS 2020). Compared to HRRRv3, the experimental
HRRRv4 forecasts provided more realistic guidance about
where these severe winds would occur (orange and red
colors in Iowa and Illinois in Figs. 5i–k). Although the
HRRRv3 forecasts also indicated a threat of severe winds,
these forecasts tended to emphasize Illinois more than
Iowa (Figs. 5g,h) and indicated only small areas of strong
winds in Iowa (Figs. 5f,g). Overall, it is encouraging to see
that the experimental HRRRv4 provided more realistic
forecasts for this case. Determining which specific changes
to the HRRR system contributed most to the improved
forecasts would require further investigation, beyond the
scope of this article.

c. Quantitative precipitation forecasting

On 23 June 2016, an MCS impacted West Virginia. Convec-
tion continually redeveloped to the rear of the MCS for about
18 h, producing torrential rain over the complex terrain of
central West Virginia. The resulting runoff produced cata-
strophic flooding, leading to 23 fatalities and extensive prop-
erty damage (Martinaitis et al. 2020). During a 24-h period
ending 0000 UTC 24 June, storm-total rainfall exceeded
3.0 in. over a northwest–southeast swath from central Ohio
through central West Virginia into central Virginia and ex-
ceeded 6.0 in. over a small area in southern West Virginia
(Fig. 6). An experimental HRRRv2 3–27-h forecast of the
event captured the main features of the Stage-IV QPE well, in-
cluding the spatial extent of the 31 in. rainfall amounts, as well
as small areas of 61 in. totals in West Virginia, although these
regions of heaviest rain are forecast slightly too far north.

d. Winter weather forecasting

Winter weather hazards represent a significant forecasting
challenge in much of the United States. Hazards include sub-
freezing or extreme cold temperatures, limited vehicle trac-
tion due to ice or snow buildup on roads, low visibility due to
fog or snow (whether falling or blowing), and high winds. The
SPC provides winter weather mesoscale discussions, and local
forecast offices within the NWS issue winter weather adviso-
ries and winter storm watches/warnings. Many winter weather
impacts occur in conjunction with “nor’easter” snowstorms
on the east coast of the United States (Kocin and Uccellini
2004). The HRRR system provides forecast guidance on all
the hazards related to these systems in the day 1 to day 2 time
frame.

FIG. 4. (right) Real-time experimental HRRRv2 9-h forecast of vertically integrated liquid (kg m22) compared against
(left) MRMS analysis, both valid at 1900 UTC 14 Jul 2016.
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FIG. 5. (a),(b),(f),(g),(h) Operational HRRRv3 and (c),(d),(i),(j),(k) experimental HRRRv4 forecasts for the 10 Aug 2020
derecho. Composite radar reflectivity (dBZ) at 1800 UTC is shown for HRRR forecasts initialized at 0300 UTC in (a) and (c),
HRRR forecasts initialized at 0900 UTC in (b) and (d), and MRMS observations in (e). Maximum 10-m wind speeds (m s21)
during 0–18-h forecasts are shown for HRRR forecasts initialized at 0300 UTC in (f) and (i), 0600 UTC in (g) and (j), and 0900
UTC in (h) and (k).
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In late January 2016, a particularly strong extratropical
cyclone developed over the eastern United States, follow-
ing a track historically associated with other large snow-
storms (Leathers et al. 1998). The storm set new snowfall
records in several major East Coast cities, including Balti-
more, Maryland; Harrisburg, Pennsylvania; Newark, New
Jersey; and New York City, New York. States of emergency
were declared in 11 states, and more than 13 000 flights
were canceled in association with the storm.

Spatial verification of snowfall is difficult due to several fac-
tors, including melting, sublimation, compaction, and drifting
of snow. The summed snowfall in three 24-h forecasts from
the experimental HRRRv2 (22, 23, and 24 January 2016, each
initialized at 0600 UTC) are compared with the NCEI 72-h
snowfall analysis (Fig. 7). For one comparison, the HRRR
snowfall is derived by applying the typical 10:1 conversion fac-
tor to the equivalent amount of liquid water reaching the
ground as snow (middle panel of Fig. 7). The HRRR success-
fully captured the main axis of the storm, with totals of 201 in.
in a swath from West Virginia through the Washington, D.C.,
area into the New York City region.

An alternative comparison uses a variable snow density cal-
culation for the snowfall accumulation during the HRRR
forecasts (bottom panel in Fig. 7). The variable density calcu-
lation improves the snowfall forecast in the eastern portion of
the snowfall swath, increasing the snowfall forecast in south-
eastern Pennsylvania while reducing amounts in southern
New England. The variable density calculation also results in
more snowfall forecast in northern Virginia, in better agree-
ment with the snowfall analysis. However, the extent of the
301 in. snowfall appears overdone by the HRRR forecast.
The variable density algorithm shown here is the one present
in HRRRv2-v3; the relationship between snow density and
near-surface temperature was refined in HRRRv4 (Benjamin
et al. 2021b), most notably producing greater accumulations
when temperatures are near 08C.

e. Landfalling tropical cyclone hazard forecasting

The Gulf and East Coasts of the United States are vulnera-
ble to hazards from landfalling tropical cyclones (TCs), with
massive human and economic impacts [e.g., Hurricane
Katrina in 2005 (Beven et al. 2008); Hurricane Sandy in 2012

FIG. 6. (top) Stage-IV QPE (in.) and (bottom) experimental HRRRv2 QPF (in.) for the 24-h period ending at 0000 UTC 24 Jun 2016.
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(Uccellini 2013)]. The National Hurricane Center issues track
and intensity forecasts for TCs in both the Atlantic and the
eastern Pacific basins. The HRRR is well positioned to pro-
vide forecasts of TC hazards at landfall as storms approach
the U.S. coast.

Hurricane Harvey was the largest weather-related catastro-
phe of 2017 in the United States (NOAA/NCEI 2022), pro-
ducing extensive storm-surge flooding and wind damage,
followed by prodigious inland rainfall totals over southeastern
Texas. Devastating flooding impacted the Houston, Texas,

metropolitan area as Harvey moved slowly eastward across
the area.

The 48-h experimental HRRRv3 initialized at 1200 UTC
24 August 2017 forecast the storm track accurately and suc-
cessfully indicated rainfall totals exceeding 10 in. Some note-
worthy details were incorrect, such as advancing the heavy
rain too quickly toward Houston, and underestimating the
rainfall totals near the hurricane center (Figs. 8a,b). A subse-
quent 48-h experimental HRRRv3 forecast, initialized at
1200 UTC 26 August 2017, captured the swath of 201 in. 48-h

FIG. 7. (top) Observed snowfall analysis (in.) and (bottom) 72-h accumulated snowfall forecast
by the experimental HRRRv2 using two different accumulation methods, for the 72-h period
ending at 0600 UTC 24 Jan 2016.
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rainfall over far southeastern Texas remarkably well (Figs. 8c,d).
The east–west orientation of the heaviest rainfall, as well as
the westward extension of the 5–10-in. rainfall amounts to the
west of Houston, were forecast successfully. The HRRR fore-
cast the heaviest rainfall slightly farther south than where it
was observed but nonetheless indicated the potential for cata-
strophic amounts of rain over a multiday period.

Verification of HRRR forecasts of minimum pressure and
maximum surface winds for Harvey (Figs. 8e,f) is consistent
with our qualitative impressions of HRRR forecast perfor-
mance for landfalling tropical cyclones in general during the
last several years: typically helpful for identifying periods

of strengthening and weakening, but with large errors in
storm intensity. The HRRR forecasts of Harvey initialized at
1200 UTC 24 August and 0000 UTC 25 August (red and blue
lines in Figs. 8e,f) indicate storm strengthening before landfall
but overestimate minimum pressure and underestimate maxi-
mum wind by as much as 30 hPa and 15 m s21, respectively.

f. Dense smoke pollution

Owing to impacts of smoke on air quality and health,
visibility and transportation, solar-energy production, and
weather, accurate smoke forecasts are of significant value
(James et al. 2019). As described in section 2d, HRRRv4

FIG. 8. Experimental HRRRv3 forecasts and verification for Hurricane Harvey in August 2017. The 48-h QPF (in.)
from the forecasts initialized at (b) 1200 UTC 24 Aug and (d) 1200 UTC 26 Aug are compared to (a),(c) 48-h MRMS
radar-only QPE during the same time periods. Observed (from National Hurricane Center; black) and forecast
(HRRR; green) tracks of the central pressure minimum are also shown. (e),(f) The minimum central pressure (hPa)
and hourly maximum 10-m wind speeds (m s21) are shown for the experimental HRRRv3 forecasts initialized at
1200 UTC 24 Aug (red), 0000 UTC 25 Aug (blue), and 1200 UTC 25 Aug (green). TCVitals estimates of these quanti-
ties every 6 h are shown with black dots.
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includes prediction of smoke in terms of PM2.5. We com-
pare an example experimental HRRRv4 forecast of verti-
cally integrated smoke (Fig. 9a) to visible satellite imagery
(Fig. 9b) during the significant 2020 fire season in the west-
ern CONUS. Fires in Colorado and Utah that had been
burning since July and August 2020, as well as more recent
lightning-ignited fires in Washington, Oregon, and California,
displayed active behavior with large smoke plumes transport-
ing smoke pollution far downstream. The experimental fore-
cast captured both the national scale of the resulting smoke
coverage, as well as the location and orientation of some of
the major smoke plumes. For 9-h forecasts valid at 2100 UTC
7 September (cf. Fig. 9a), the experimental HRRRv4 (with
smoke) produced surface temperatures as much as 10 K less
than the operational HRRRv3 (without smoke) beneath the
plume of the Cameron Peak Fire in northern Colorado (not
shown).

g. Wind-energy forecasting

The high spatial resolution and rapid-update nature of the
HRRR make it an ideal tool for the wind-energy community,
which needs to consider and frequently reassess day-ahead
forecasts to more efficiently integrate wind-produced energy
into the electrical grid. Cases in which the forecast wind is
higher than the actual wind are particularly troublesome be-
cause more wind energy is anticipated than can be delivered,
forcing the energy provider to produce or purchase the
“missing energy” from other sources. Thus, the energy com-
munity is very sensitive to rapid decreases (down ramp
events, Bianco et al 2016) in the wind speed because of the
significant economic impact of these events (Turner et al.
2022).

A case on 11 August 2019 shows the ability of the experi-
mental HRRRv4 to accurately forecast a significant down
ramp event in a region where there are many wind turbines
(Fig 10). The down ramp at the observing site in northern
Oklahoma (red square in top panel of Fig. 10) started just

after 1200 UTC (bottom panel of Fig. 10). While the forecast
initialized at 0000 UTC 10 August did not capture the down
ramp, the forecast initialized at 0600 UTC 10 August, as well
as each subsequent forecast, captured this down-ramp event.
The consistency of these forecasts allows the energy commu-
nity to have confidence in forecast ramp events (and overall
wind-energy predictions), and allows them the time to bring
other energy sources (e.g., fossil-fuel generation) online to
compensate for the lack of wind-produced power.

5. Conclusions

The HRRR system represents a culmination of nearly three
decades of development on frequently updated NWP systems
within NOAA. The RUC system (operational 1994–2012;
Benjamin et al. 2004), initially developed to take advantage of
frequent aircraft-based observations, paved the way for de-
velopment of the community-based hourly RAP system and
its use of satellite radiance observations from polar-orbiting
satellites, providing forecasters with low-latency, hourly up-
dated mesoscale model analyses and forecasts, as compared
with 6-hourly updated modeling systems. With 3-km grid
spacing, the HRRR system provided the opportunity to
better represent convection and its associated hazards. The
HRRR was first employed by aviation forecasters to aid
with both strategic and tactical decision making, with more
recent applications emerging such as severe weather fore-
casting, renewable-energy generation forecasting, and flash
flood forecasting. A quantitative evaluation of the HRRR
forecast performance is provided in the companion paper,
part two of this two-part series (James et al. 2022).

Important to its application for short-range forecasting is the
design of the HRRR initialization. The HRRR system has
evolved significantly over the years, but use of radar-reflectivity
observations as well as hybrid ensemble-variational data
assimilation, originally with ensemble covariances from GDAS
but more recently from the HRRRDAS convection-allowing
ensemble, are key to initializing convective storms and their

FIG. 9. (a) The 21-h experimental HRRRv4 forecast of vertically integrated smoke (mg m22) valid at 2100 UTC
7 Sep 2020, compared with (b) visible polar-orbiting satellite imagery from 7 Sep 2020.
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environments. A non-variational cloud analysis has been very
effective in initializing stratiform clouds to improve the sur-
face energy balance driving PBL evolution, and provides a
baseline for evaluation of more advanced cloud initialization
procedures in the future. Overall, data assimilation for multi-
ple components of the Earth system (mesoscale and synoptic-
scale atmosphere, clouds and convective storms, land, lakes,
smoke) are essential for the effective application to short-
range prediction problems.

The use of community-supported software within the
HRRR data assimilation and dynamical model core has pro-
vided an important link between the operational and research
communities during the development of the HRRR. For ex-
ample, the use of GSI for the HRRR has enabled the use of
hybrid ensemble-variational data assimilation at the 3-km
scale, with significant associated forecast improvements. Simi-
larly, the use of the community WRF-ARW non-hydrostatic
model opened the door for effective 3-km storm prediction.

Finally, community physics parameterizations within WRF-
ARW were essential for HRRR such as the development at
NCAR on the Thompson microphysics scheme and at Atmo-
spheric and Environmental Research on the radiation param-
eterization RRTMG. Similarly, mutual benefit to the NOAA
HRRR/RAP models and the larger WRF community resulted
from development of the RUC land surface model and scale
awareness within the MYNN PBL and surface layer schemes.

HRRR output is distributed to users via many different
avenues, with forecast grids available in real time from NCEP
in GRIB2 format. Until recently, the only publicly available
data archive was hosted by the University of Utah, featuring
novel data access solutions for interrogating a large data vol-
ume (Blaylock et al. 2017). This archive has recently been
transitioned to Amazon Web Services, while Google has also
developed an archive on their Cloud Platform.

Many aspects of the future RRFS will be based on data-
assimilation and forecasting methods developed for the

FIG. 10. (top) Wind speed at 80 m above ground level for a 33-h experimental HRRRv4
forecast valid at 1500 UTC 11 Aug 2019, and (bottom) the wind speeds at 60 m above
ground forecast at the ARM Southern Great Plains site (red square) from multiple model
initialization times compared to the observed wind speed on a 60-m tower at the ARM site
(black line). The vertical dashed line denotes the valid time for the spatial map in the upper
panel. The white symbols denote the locations of wind turbines.
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HRRR, and the operational HRRRv4, along with other
present-day operational CAMs, will provide a baseline for
forecast performance for evaluating the RRFS as it is being
developed. The 3-km RRFS domain will cover a much
larger area than the HRRR, including the CONUS and
Alaska. When the RRFS becomes operational, both the
HRRRv4 CONUS and Alaska systems will be discontinued.
The large RRFS domain will allow improved treatment
of approaching tropical cyclones from the Caribbean, the
simulation of high-resolution smoke transport through the
complex terrain of western Canada, and the prediction of
rainfall and snowfall in the northern reaches of the
Columbia River watershed, which influences streamflow for
hydroelectric production in Washington and Oregon. The
larger domain will also require additional physics and data
assimilation development for representing weather in the
tropics, maritime regions, and the Arctic; such development
is critical for the future deployment of a global rapid refresh
NWP capability. For local regions and specific types of
weather, higher-resolution forecasting will be required. The
related WoF project will particularly evaluate sub-kilome-
ter grid spacing for convective-storm forecasting (Bryan
et al. 2003), with a target of 250 m proposed by Stensrud
et al. (2009).

The planned RRFS will be an ensemble system, enabling
advanced DA and providing forecasts with explicit uncer-
tainty information and increased ability to detect rare, high-
impact weather events. Valuable experience with storm-scale
ensembles has been gained during the HRRR era (e.g.,
Kalina et al. 2021), but numerous challenges lie ahead with
developing sharp and reliable ensemble-forecast capabili-
ties in a single-model system.
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APPENDIX

Acronyms and Abbreviations

BEC Background-error covariances
CAM Convection-allowing model
CFL Courant–Friedrichs–Lewy
CIWS Corridor Integrated Weather System
CLM Community Land Model
CONUS Conterminous United States
CoSPA Consolidated Storm Prediction for Aviation
DA Data assimilation
DFI Digital filter initialization
EDMF Eddy-diffusivity/mass-flux
EnKF Ensemble Kalman filter
EnSRF Ensemble square-root filter
EnVar Ensemble–variational
ET Echo tops
FAA Federal Aviation Administration
FRP Fire radiative power
FVCOM Finite Volume Community Ocean Model
GDAS Global Data Assimilation System
GFS Global Forecast System
GPS Global positioning system
GSI Gridpoint Statistical Interpolation
GSL Global Systems Laboratory
GVF Greenness vegetation fraction
HRRR High-Resolution Rapid Refresh
HRRRDAS HRRRData-Assimilation System
IEVA Implicit-explicit vertical advection
LAMP Localized Aviation Model Output Statistics

Program
LSM Land surface model
MCS Mesoscale convective system
MODIS Moderate Resolution Imaging

Spectroradiometer
MRMS Multi-Radar Multi-Sensor
MYNN Mellor–Yamada–Nakanishi–Niino
NBM National Blend of Models
NCEP National Centers for Environmental

Prediction
NOAA National Oceanic and Atmospheric

Administration
NWP Numerical weather prediction
NWS National Weather Service
PBL Planetary boundary layer
PM2.5 Particulate matter less than 2.5 mm
QPE Quantitative precipitation estimation
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QPF Quantitative precipitation forecast
RAP Rapid Refresh
RRFS Rapid Refresh Forecast System
RRTMG Rapid Radiative Transfer Model for general

circulation models
RTG Real-Time Global
RTMA Real-Time Mesoscale Analysis
RUC Rapid Update Cycle
SCHDA Stratiform cloud-hydrometeor data

assimilation
SGS Subgrid scale
SPC Storm Prediction Center
SST Sea surface temperature
TC Tropical cyclone
UFS Unified Forecast System
VIIRS Visible Infrared Imaging Radiometer Suite
VIL Vertically integrated liquid
WCOSS Weather and Climate Operational Supercom-

puting System
WoF Warn-on-Forecast
WPS WRF Preprocessing System
WRF-ARW Advanced Research version of the Weather

Research and Forecasting Model
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