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Abstract
The statistical thermodynamic model for the vibrational partition function with separated 
stretching and bending is developed. The model is studied on the example of CO

2
 molecule 

for temperature up to 20,000 K with the aim to describe efficient dissociation by deposition 
of energy mainly to the stretching modes of vibration. The observed separation of bend-
ing mode at lower temperatures suggest that it is possible to construct such kinetic model 
of plasma in which the high vibrational temperature of stretching and the low vibrational 
temperature of bending are obtained resulting in an efficient dissociation. In particular, the 
proposed model is extended to ideal-gas version where all the interactions between atoms 
are taken into account. The idea behind such approach is to eliminate contributions to par-
tition functions stemming from non-interacting dissociated fragments of the molecule. The 
application areas of such partition functions are discussed and the full vibrational partition 
functions based on that model are compared with the known data.

Keywords High temperatures · Vibrational partition function · Bend-stretch separation · 
Ideal gas · Carbon dioxide

Introduction

The vibrational partition function is a basic quantity discussed in statistical mechanics 
books [1], but its thermodynamical applications are limited. If the temperature is high 
enough separation of rotations and vibrations fails [2] because of ro-vibrational coupling, 
theoretical mechanics do not allow to separate rotations from vibrations exactly.

The multi-temperature approaches to thermodynamics are sometimes discussed [3] (in 
the present manuscript the situation of high vibrational and low rotational temperatures is 
of interest) but such approach has never been successfully applied. This topic is discussed 
in the review paper on non-equilibrium phenomena in thermal plasma flows [4].

In general idea of vibrational partition function in the context multi-temperature ther-
modynamics should be considered incorrect [5] but still it finds its applications in kinet-
ics. The vibrational partition function is used for rate constants in the theory of gas and 
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plasma flows. The specific physical situations are hypersonic flows in aerodynamics or 
shock waves [6–9]. In those applications the recurring model for vibration-dissociation 
coupling is the Treanor-Marrone (or Marrone-Treanor) model where the rate constant 
expression contains vibrational partition function [10]. Note that the Treanor–Marrone 
model can be extended for state specific rates [11]. The Treanor-Marrone model is dis-
cussed in the standard plasma chemistry texts [12].

In particular hypersonic flows of CO2 , with the methods that needs vibrational parti-
tion functions, are studied in [13] and other studies by this group. The recent study for 
the Mars entry problem [14] describe ionized shock wave (the vibrational excitation 
of CO2 by electrons is considered) in which the vibrational temperatures equilibrate to 
5000 K and exceed this value close to the shock front. The rate constants in Annaloro 
[14] study are given up to 10,000 K. The earlier work of those authors [15] describes 
models for CO2 plasma jets generated in high enthalpy wind tunnels, in this models all 
vibrational modes have the same temperature equal to electron temperature which is 
11,000  K. This theory needs the separate vibrational partition functions of electronic 
states (state-to-state model). One more example [16] assumes temperature of asymmet-
ric vibrational mode to be 8000 K. The example of experimental study of vibrations in 
microwave plasma at very high (translational and vibrational) temperatures is Ref. [17].

Finally, another one application of the vibrational partition function is for the spec-
tral lines intensities in non-equilibrium conditions [18].

All those applications may require very high temperatures (for example in hypersonic 
flows temperatures exceeding 10,000 K are considered) which is the perfect situation for 
a fully classical approach. At high temperatures the ro-vibrational partition functions 
are known to disagree between various studies [19], this happens even for the simplest 
H+

2
 molecule [20]. The same can be expected for vibrational partition functions too.
At high temperature the molecules are highly dissociated so that the most important 

are the simplest ones—namely diatomic and triatomic. The author already dealt with the 
high temperature partition functions for diatomic molecules [2, 20–23] and this work is 
an extension of that theory towards triatomic systems.

For diatomic molecules, the present approach amounts to one dimensional integra-
tion with no numerical problems. It will be shown that the triatomic model of stretches, 
with two or four dimensional integration only, proves to be numerically challenging.

The main aim of the present study is to calculate the vibrational partition function of 
stretching on example of the CO2 molecule. The separated stretching model of triatomic 
molecules presented here gives thermodynamical description of the situation when the 
energy in the system is distributed mainly into the stretching modes (what results in an 
effective dissociation) and very little energy is distributed into the bending mode which 
do not lead to the molecule dissociation. Note that dissociation to C + O2 (not covered 
by the model presented here) is a result of symmetric stretching at certain bending 
angles (only stretches cause C–O bond elongation and, as a result, dissociation of CO2).

A lot of research has been done recently into the CO2 dissociation [24–26], but in 
those studies there is distinction between symmetric and asymmetric modes which is 
not the most effective with respect to the thermal decomposition. Despite the presence 
of the Fermi resonance, the separation of bending observed in the present study suggests 
that it is possible to construct a kinetic model to obtain high temperature of stretching 
modes and low temperature of bending mode for CO2 or other molecules. In principle is 
seems theoretically to be the most effective model for thermal decomposition. Note also 
usefulness of reduced-dimensionality models in the research of larger molecules [27].
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The recent study [14], which was already mentioned, supports the separation of vibrational 
modes in plasma, the non-conventional treatment of CO2 vibrations based on distinguishing 
the sets of vibrational levels with lower and higher energy (the latter set has one mode excited) 
is used. This model uses separate vibrational temperature for each mode.

Apart from possible applications to dissociation of CO2 in plasmas, the linear CO2 model 
for vibrational partition function was used recently at very high temperatures for equation of 
state. [28]. That model assumes the ideal-gas approach and uses harmonic approximation 
which cannot be valid at extreme temperatures of the study.

It is worth to mention the other methods of phase space integration for partition functions. 
The classical approach to vibrational partition function due to Varandas group [29, 30] is the 
Monte Carlo based but deals with the bound states only, in such cases kinetic energy should be 
lower than potential energy and that condition restricts the integration volume to the regions 
near the equilibrium position of nuclei.

The other approaches, the quantum ones based on path integrals, are applied to ro-vibra-
tional partition functions and allows convenient multi-dimensional integration. The novel 
one by Szekeres et al. [31] (this publication reviews other numerical methods) does not apply 
boundedness condition but because of that is applicable to relatively low temperatures (but 
still high from the point of view of conventional chemistry).

In the present study there is no restriction on nuclei positions and integration spans over 
large volume of phase space. The application of Hill decomposition [22, 32, 33] of the parti-
tion function to the partition function of interacting atoms (i.e. partition function of actual sys-
tem) and the partition functions of non-interacting products of thermal decomposition allows 
to calculate the partition function at arbitrary high temperature; the Monte Carlo simulations 
(when Hills decomposition is not taken into account) will then cause problems because of 
sampling non-interacting species and the breakup of molecular system would be observed. To 
sum up, the present method is complementary to the mentioned path integrals ones—at high 
temperatures the present classical approach is correct (also no problem with system breakup) 
but at lower temperatures the Monte Carlo based on path integrals approaches are applicable 
(or even simple harmonic oscillator approximations).

Finally, it is worth mentioning that in addition to the fact that that the high temperature 
thermodynamic data are not accurate, the 2017 Plasma Roadmap [34] identifies some thermo-
dynamic data as missing and points out importance of the non-equilibrium conditions as well 
as some situations where the temperatures are very high.

The  “Classical Vibrational Partition Function of Stretching” section of this article 
describes the classical method of phase space integration for the vibrational partition function. 
The “Results” section presents the results for the CO2 molecule. Finally “Conclusions” section 
concludes the present research.

Classical Vibrational Partition Function of Stretching

The classical partition function was calculated in valence coordinates (two bond lengths and 
angle between them), the kinetic energy of triatomic system is then given by [35]



1084 Plasma Chemistry and Plasma Processing (2020) 40:1081–1089

1 3

for the molecule X1 − X3 − X2 , where p1 , p2 , p3 are momenta of respective atoms, m1 , m2 , 
m3 are masses of respective atoms, � ’s are the reduced masses, and the valence coordinates 
are the bond lengths ( r1 , r2 ) and the angle between them ( � ). Note that other coordinate 
systems can be used in principle but they are less convenient regarding physical picture; 
their main advantage seems to be mathematical convenience because of kinetic energy 
simplification.

This function can be integrated over momenta (with the inverse temperature � = 1∕(kBT

)):

and then the vibrational partition function is then given by

where V(r1, r2, �) is the potential energy surface in valence coordinates.
The vibrational partition function of stretching of the triatomic molecule (i.e. separated 

bending because of the lower temperature of bending mode) is obtained by setting p� = 0 
(no bending) and � = 0 (linear molecule; for non-linear molecule it would be generalized 
as � = �0 ). In this case the kinetic energy of CO2 stretching is ( �13 = �23 = �CO , m3 = mC ; 
subscript S indicates stretches only expression):

After integration, as in Eq.  2 but without p� momentum, the expression independent of 
bond lengths is obtained

Finally, the vibrational partition function of stretching can be calculated

note (2�)2 in this expression instead of (2�)3 because of one integration  (degree of free-
dom) less. For the carbon dioxide molecule the potential energy surface in valence coor-
dinates according to Cerezo et al. [36] was used. The influence of higher electronic states 
on partition function will increase with temperature, it can be estimated by calculation of 
e−��E factor to account for the energy shift ( �E ) of the lowest excited state that for the 
10,000 K the partition function of the lowest excited state calculated without energy shift 
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would have to be multiplied by a 0.0085 factor. There are two reasons to do the calcula-
tions with only one potential energy surface—the theoretical one to study the effect on a 
given potential energy surface (not a mixed effect from more potential energy surfaces) 
and the practical one based on the idea to treat every state (electronic, and in most detailed 
approaches also vibrational) as a separate “molecule” (state-to-state models) [13].

In order to get the full vibrational partition function, the above expression has to be 
complemented by partition function of bending Qb in classical

or quantum

harmonic oscillator approximation, where the vibrational frequencies ( �
ss
= 0.00606

a.u. = 1330 cm−1 , �as = 0.0107 a.u. = 2349 cm−1 , �b = 0.003039 a.u. = 667 cm−1 ; all cal-
culations were done in atomic units) were taken form Ref. [37] and the second powers are 
due to bending mode degeneracy.

Because it is customary to give partition functions without zero point energy in order to 
transform all the above expressions which contain zero point contribution, the multiplica-
tion by exp(��∕2) factors appropriate for each vibrational mode is done and all the results 
are presented in such form.

If the temperature is high enough, meaning that the high energy states (over dissociation 
threshold) contribute significantly to the partition function, there is a possibility to include 
all the interactions (scattering and resonance) in the partition function what allows to per-
form the calculations at temperature as high as needed with no difficulties. According to 
the above mentioned theory of Hill (the resulting expression will be called Hill decomposi-
tion and the partition function will be indicated by HD superscript) the following expres-
sion is the ideal-gas counterpart of Eq. 6

where infinity sign is understood as the appropriate limit. In the above expression the sec-
ond term was subtracted twice in order to remove the partition function of non-interacting 
CO + O species. Stretching one of the bonds ( r1 = ∞ ) causes dissociation and the stretch-
ing of the other one ( r2 = ∞ ) also, because of the symmetry the resulting physical situa-
tions are the same and can be treated by subtracting twice the same expression. In the dis-
sociation product CO the bond can have arbitrary length, this means that both expressions 
describing CO + O system describe also dissociated CO (i.e. describe O + C + O non-
interacting atoms), because CO2 molecule can dissociate on one set of O + C + O atoms 
it have to be compensated adding the third terms in Eq.  9 which describes O + C + O 
( r1 = ∞ = r2 , that is both bonds are dissociated).

The above analysis explaining how to write Eq. 9 is based on valence coordinates (i.e. 
bond lengths) and would be much more difficult in other coordinate systems if possible at 
all.
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The Hill decomposition expression can be verified by expanding integration limits to 
infinity at some very high temperature—in case of Eq.  6 the result will tend to infinity 
(because it describes non-interacting products of CO2 thermal decomposition) and the 
value given by Eq. 9 will remain constant with expanding integration range, so that only 
this expression leads to well defined ideal-gas high temperature result. The well defined 
result will give also the classical approach using only bound states [38] (the contributions 
from resonance and scattering states are not taken into account).

There is also the possibility to take into account resonance and scattering states with the 
scattering theory [39], the results for water molecule were obtained by considering disso-
ciation to H + OH but not the total dissociation to atoms. The temperatures at which those 
effects are important allow for classical treatment. In general ideal-gas treatments of tria-
tomic molecules are very scarce because from the viewpoint of standard chemistry it is not 
so important but in high temperature situations may become crucial.

Results

In the calculation of partition functions the numerical problems are known so that a lot 
of research is done into devising new numerical methods [31] which are often based on 
Monte Carlo methods. In light of that fact, the numerical errors have to be considered, it 
turns out that even only two dimensional integration can cause problems so that the various 
methods of integration were considered.

In the present study the numerical integration methods implemented in the Mathematica 
computation system [40] and library of numerical multidimensional integration procedures 
Cuba [41] (a very reliable free of charge alternative) were used. The results in temperature 
range of 1000–20,000 K were given in Table 1 where NIntegrate is the default function of 
Mathematica, NIntegrate+mod is the improved modification of the default function (Min-
Recursion → 2, Method → { “GlobalAdaptive”, “MaxErrorIncreases” → 100,000, “Symbol-
icProcessing” → 0, “SingularityHandler” → None} , PrecisionGoal → 2), AMC is the Adap-
tive Monte Carlo procedure also implemented in Mathematica, Sauve is one the Monte 
Carlo procedures implemented in the Cuba library, finally for the check of both theory and 

Table 1  Vibrational partition functions of stretching ( Q
vib,s

 ) of the CO
2
 molecule calculated with: default 

Mathematica integration (NIntegrate), modified Mathematica integration (NIntegrate  +  mod), adaptive 
Monte Carlo (AMC), Monte Carlo from the Cuba library (Suave), integration of momenta and positions 
with modified Mathematica integration (NIntegrate + mod + p)

T (K) NIngerate NIntegrate mod AMC Suave NInte-
grate + mod + p

1000 2.12 2.12 2.13 2.12 2.12
2000 2.28 2.28 2.24 2.28 2.29
3000 3.33 3.30 3.18 3.33 3.32
4000 4.80 4.66 4.80 4.81 4.69
5000 6.65 6.68 6.67 6.65 6.62
6000 8.86 8.88 7.75 8.86 8.78
10,000 21.7 21.4 21.9 21.7 21.7
15,000 48.9 48.9 47.6 48.9 48.9
20,000 96.3 94.9 96.2 96.2 96.4
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numerical integration, the integration with modified NIntegrate of Mathematica of both 
momenta and positions (without analytical M function) was used (NIntegrate + mod + p).

All the methods usually yield very similar results but sometimes some can differ (there 
are others numerical integration methods implemented both in Mathematica and Cuba). 
Moreover, not all the methods behave reliably with increasing the upper integration limit, 
for the subsequent calculations the modified Mathematica integration will be used. In gen-
eral there are some differences between methods so that it is good to check more than one 
(in Table 3 it can be seen that AMC method is not good—values at 3000 K, 6000 K and 
15,000 K are significantly different than all the other).

Various theoretical methods for the vibrational partition function of stretching are com-
pared in Table 2. To confirm at what temperatures the classical approximation is valid, the 
quantum (QHO) and classical (CHO) harmonic oscillator approximations based on the fre-
quencies given in the previous section are calculated (for each vibrational mode the expres-
sions as in Eqs. 7 and 8 were used). It can be concluded that above 5000 K the classical 
approximation gives reasonable estimate and over 10,000 K its accuracy is very good.

The following two columns are the Qvib,s according to Eq. 6 and the ideal-gas version 
QHD

vib,s
 of Eq. 9. The ideal-gas approach starts to differ from the conventional expression over 

10,000 K, so that below that temperature simpler Eq. 6 is sufficient. In general, the present 
methodology is applicable at temperatures over 5000 K.

As mentioned before, convergence with respect to the integration limit should be veri-
fied, indeed there is a constant value of QHD

vib,s
 at high distances r1 = r2 which confirms that 

Table 2  Q
vib,s

 of CO
2
 comparison 

of theoretical approaches. 
Quantum harmonic oscillator 
approximation (QHO), 
classical harmonic oscillator 
approximation (CHO), Q

vib,s
 

based on Eq. 6 (Eq. 6), QHD

vib,s
 with 

Q
HD

vib,s
 based on Eq. 9 (Eq. 9)

T (K) QHO CHO Eq. 6 Eq. 9

1000 1.21 2.18 2.12 2.12
2000 1.99 2.32 2.28 2.28
3000 3.14 3.36 3.30 3.30
4000 4.61 4.80 4.66 4.66
5000 6.40 6.56 6.68 6.68
6000 8.50 8.65 8.88 8.88
10,000 20.0 20.2 21.4 21.3
15,000 41.4 41.5 48.9 47.4
20,000 70.5 70.6 94.9 81.7

Table 3  Q
vib

 of CO
2
 comparison 

of theoretical approaches. 
Quantum harmonic oscillator 
approximation (QHO), Q

vib,s
Q

b
 

with Q
vib,s

 based on Eq. 6 (Eq. 6), 
Q

HD

vib,s
Q

b
 with QHD

vib,s
 based on 

Eq. 9 (Eq. 9), values based 
on Capitelli internal partition 
function (Capitelli), values based 
on HITRAN internal partition 
function (HITRAN)

T (K) QHO Eq. 6 Eq. 9 Capitelli HITRAN

1000 3.19 × 100 6.02 × 100 6.02 × 100 3.15 × 100 3.20 × 100

2000 1.37 × 101 1.60 × 101 1.60 × 101 1.34 × 101 1.39 × 101

3000 4.19 × 101 4.44 × 101 4.44 × 101 4.07 × 101 4.25 × 101

4000 1.01 × 102 1.03 × 102 1.03 × 102 0.98 × 102 1.01 × 102

5000 2.10 × 102 2.20 × 102 2.20 × 102 2.03 × 102 2.00 × 102

6000 3.89 × 102 4.07 × 102 4.07 × 102 3.78 × 102 –
10,000 2.39 × 103 2.55 × 103 2.55 × 103 2.53 × 103 –
15,000 1.08 × 104 1.27 × 104 1.23 × 104 1.46 × 104 –
20,000 3.21 × 104 4.32 × 104 3.72 × 104 5.30 × 104 –
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contributions from non-interacting dissociated fragments were correctly removed. For all 
calculations the integrations are performed up to 10a.u. which was found to be sufficient.

Even though the method is proposed for the vibrational partition function of high tem-
perature stretching complemented with the vibrational partition function of low tempera-
ture bending, it is interesting to compare the results in case of equal stretching and bending 
temperature to the other known results.

Table  3 shows the following: quantum harmonic oscillator approximation (separated 
normal modes), Qvib,sQb with Qvib,s based on Eq. 6 and quantum harmonic oscillator bend-
ing, QHD

vib,s
Qb with QHD

vib,s
 based on ideal-gas expression Eq. 9 and quantum harmonic oscil-

lator bending, Capitelli [3] data and HITRAN [42] data calculated as the respective inter-
nal partition function divided by the rotational partition function Qrot = I∕� = 280181∕� 
(I-moment of inertia).

Interestingly, it turns out that for the CO2 molecule the approximation with the quantum 
harmonic oscillator below 5000K gives reasonable agreement with Capitelli or HITRAN 
data. This confirms that the both separation of vibrational modes, ro-vibrational coupling, 
and anharmonicity have very minor effect on vibrational partition function up to relatively 
high temperatures. This should be considered before undertaking summation of energy lev-
els. Good performance of harmonic oscillator approximation which is based on separated 
modes suggests that this separation at lower temperatures can be the basis for separation of 
bending also at higher temperatures.

Conclusions

The possibility to separate stretching and bending in linear CO2 molecule is found to be 
possible from the viewpoint of statistical thermodynamics and the appropriate classical 
mechanics methodology applicable for arbitrary high temperatures is developed to calcu-
late the vibrational partition function.

The presented classical approach allows calculation of vibrational partition function 
which is not becoming more difficult with increasing temperature. For some applica-
tions the present method is the most convenient because it can be used at arbitrary high 
temperature.

The present considerations are applicable to systems with a distinct bending mode, it 
would not be possible to use it for a molecule like H+

3
 where bending is not separated.
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