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ABSTRACT

We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties

for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude

survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing

a large sample unbiased regarding any rotational parameters of neutron stars. We found that

the energy distribution of many pulsars is well described by a log-normal distribution, with

few deviating from a small range in log-normal scale and location parameters. Some pulsars

exhibited multiple energy states corresponding to mode changes, and implying that some

observed ‘nulling’ may actually be a mode-change effect. PSR J1900−2600 was found to emit

weakly in its previously identified ‘null’ state. We found evidence for another state-change

effect in two pulsars, which show bimodality in their nulling time-scales; that is, they switch

between a continuous-emission state and a single-pulse-emitting state. Large modulation

occurs in many pulsars across the full integrated profile, with increased sporadic bursts at

leading and trailing sub-beam edges. Some of these high-energy outbursts may indicate the

presence of ‘giant pulse’ phenomena. We found no correlation with modulation and pulsar

period, age or other parameters. Finally, the deviation of integrated pulse energy from its

average value was generally quite small, despite the significant phase-resolved modulation

in some pulsars; we interpret this as tenuous evidence of energy regulation between distinct

pulsar sub-beams.

Key words: astronomical databases: miscellaneous – pulsars general.

1 IN T RO D U C T I O N

Radio pulsars have long been known to display a myriad of intrinsic

amplitude modulation effects. Averaged over many rotations, most

pulsars have a reproducible pulse shape, reflective of the long-term

stability of their rotation and magnetism. In contrast, sequential

rotations of a pulsar can differ considerably in pulse shape and

intensity; ordered effects such as subpulse drift, mode changing

⋆E-mail: sarah.burke-spolaor@jpl.nasa.gov

and nulling (e.g. Backer 1970; Cole 1970), as well as stochastic

pulse-to-pulse shape and intensity variations affect pulsars to vary-

ing degrees. Other effects such as intense giant pulses (Staelin &

Reifenstein 1968; Comella et al. 1969) or ‘giant micropulses’ (ref-

erencing their narrow structure; e.g. Johnston et al. 2001) occur in

some pulsars at a limited phase range.

The energy distribution of radio pulses can provide a window into

the state of pulsar plasma and the method of emission generation.

There exist a great number of viable plasma-state models, a few

of which predict pulse energy distributions; the most commonly

proposed predictions are of Gaussian, log-normal and power-law
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distributions. Cairns, Johnston & Das (2003a) and Cairns et al.

(2003b), and references therein, provide discussion on these mod-

els. Energy distributions have been examined in detail for only a few

pulsars (Cognard et al. 1996; Cairns, Johnston & Das 2001, 2004),

resulting in the conclusion that those pulsars obey log-normal statis-

tics. These analyses have substantially contributed to the hypothesis

that genuine ‘giant pulses’ are generated separately from standard

pulse generation; while ‘giant pulse’ is sometimes used to refer to

any single pulse of more than 10 times the average intensity, stud-

ies have revealed giant pulses with power-law energy distributions,

distinct from log-normal main pulse components (Lundgren et al.

1995; Johnston & Romani 2002; Kramer, Johnston & van Straten

2002). No survey targeting single-pulse energy distribution shapes

or giant pulses in the general population has yet been performed.

Phase-resolved modulation analysis is likewise thought to be an

indicator of radio emission’s geometry and generation mechanism.

Weisberg et al. (1986) first noted differences in modulation between

core and conal-type pulse profiles, while Jenet & Gil (2003) derived

theoretical predictions for anticorrelations between the modulation

index (defined in Section 3.4) and four ‘complexity parameters’,

corresponding to four pulsar emission models. Their complexity

parameters are a1 = 5Ṗ 2/6P −9/14, for the sparking gap model,

a2 = (Ṗ /P 3)0.5 for the continuous current outflow instabilities,

a3 = (P Ṗ )0.5 for surface magnetohydrodynamic wave instabili-

ties and a4 = (Ṗ /P 5)0.5 for outer magnetospheric instabilities. The

Jenet & Gil (2003) measurements of modulation index for a small

sample of core-type profiles disfavoured the magnetohydrodynamic

wave instability model. The studies of Weltevrede, Edwards & Stap-

pers (2006a) and Weltevrede, Stappers & Edwards (2007) surveyed

ordered, longitude-resolved modulation in ∼190 pulsars at 21 and

92 cm. Their large sample enabled them to test correlations with

other neutron star properties. They determined that the modulation

index is generally higher at lower frequencies, and noted a weak

correlation between modulation index and age that is dampened at

higher frequency.

The study of single-pulse modulation in a large pulsar sample

can also contribute to several practical questions: for instance, how

common is giant-pulse emission, and are some ‘giant pulses’ the

manifestation of a broad log-normal energy distribution? Are the

prospects of pulsar detection in other galaxies better for single-pulse

or Fourier searches (e.g. Johnston & Romani 2003; McLaughlin &

Cordes 2003)? Quantification of pulsars’ modulation will also aid

in understanding the physical makeup of ‘rotating radio transients’

(RRATs; McLaughlin et al. 2006). Energy distributions in bright,

individual RRATs show that some appear to be pulsars with ex-

tremely high (≫95 per cent) nulling fractions (e.g. Burke-Spolaor

& Bailes 2010; Burke-Spolaor et al. 2011; Miller et al. 2011). How-

ever, an unknown fraction of RRATs may be distant pulsars with

extremely broad energy distributions, such that only their bright-

est, infrequent pulses are detectable (Weltevrede et al. 2006b). The

distinction between these two cases will be critical in quantifying

RRATs’ potentially overwhelming contribution to Galactic pulsar

populations (Keane & Kramer 2008); however, the general pulsar

population’s intrinsic energy distributions have not yet been exten-

sively studied.

The High Time Resolution Universe survey recently completed

its southern intermediate-latitude (‘HTRU med-lat’) survey of

Galactic latitudes |b| < 15◦ and longitudes −120◦ < l < 30◦ for

pulsars (Keith et al. 2010) and single pulses (Burke-Spolaor et al.

2011). Single pulses from known pulsars were detected at rates that

vastly improve on previous surveys of the same region, testifying

to the increased sensitivity of the high dynamic range, frequency

resolution and time resolution of a new digital search back-end on

Parkes radio telescope (described in Keith et al. 2010).

In this paper, we study the modulation properties of all med-lat

pulsars with detectable single pulses, using the relatively unbiased,

single-pulse flux-limited sample provided by the HTRU med-lat

survey. We focus here on studies that can be performed within

the survey’s 9-min observations, pursuing pulse intensity distribu-

tion statistics and the measurement of basic pulse-to-pulse modula-

tion properties. In Section 2 we describe our sample selection, and

Section 3 describes our analysis methods. In Sections 4 and 5, we

describe the results of our energy distribution analysis and modu-

lation analysis, respectively, and provide discussion of the results.

Section 6 reviews other science aspects addressed by our analysis.

Section 7 summarizes our findings.

2 DATA AND PULSAR SAMPLE

Our data are made up of HTRU med-lat survey observations. This

survey had 64-µs sampling, and a bandwidth of 340 MHz is divided

into 870 frequency channels, centred on 1352 MHz. Two polar-

ization channels are summed prior to data recording, and data are

digitized using 2 bits. The system temperature was 23 K.

2.1 Determination of pulsar sample

The initial pulsar set included all pulsars in the med-lat survey region

as queried through the online ATNF Pulsar Database (PSRCAT).1

We selected the observation of smallest angular distance within

0.◦25 to each pulsar, yielding 1159 observations near 1113 pulsars

(some had multiple observations at roughly equal distance to the

pulsar). We scrutinized the HTRU Fourier and single-pulse search

results for each observation (as described in Keith et al. 2010 and

Burke-Spolaor et al. 2011, respectively) to determine the pulsar’s

detectability. Single pulses were ‘detected’ if a pulse peaking near

the pulsar’s dispersion measure (DM) exceeded a significance of 6,

and was confirmed by inspection of the data. 411 pulsars were not

detected by single-pulse or Fourier analysis,2 and 16 were detected

only through single-pulse analysis. Of the Fourier-detected pulsars,

45 per cent had at least one detected single pulse. It is the 315 pulsars

with detected single pulses that we analyse in this study.

Our sample is not isolated in period–period derivative phase

space, consistent with previous studies (e.g. Burke-Spolaor & Bailes

2010). We explore the full range of pulsars’ magnetic field strength

(B), energy derivative (Ė), period (P), period derivative (Ṗ ) and

characteristic age (τ c), giving us acute sensitivity to any dependence

of modulation effects on these parameters. Our sample includes two

millisecond pulsars (PSRs J1439−5501 and J1744−1134) and one

radio magnetar (PSR J1622−4950; Levin et al. 2010).

2.2 Pulse stacks and data configuration

We dedispersed each observation and resampled the resulting time

series to break it into integrations of duration equal to the pulsar’s

rotational period. We used DMs and periods as predicted by PSRCAT

1 Originally published by Manchester et al. (2005), available at

http://www.atnf.csiro.au/research/pulsar/psrcat/.
2 These non-detections were investigated, and typically found to be due

to strong interference, scintillation or insufficient integration time (i.e. the

faint objects discovered by the 35-min Parkes multibeam survey pointings;

Manchester et al. 2001).
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Figure 1. Two examples of pulsars with log-normal energy distributions. The upper plots show the energy distribution of on-pulse data (black dash–dotted

histogram with points and error bars), the log-normal energy model fits (thick green line), the off-pulse noise model (thin red line) and the intrinsic energy

distribution (blue dotted line). Errors shown are the square root of the number in each bin. The lower plots show the corresponding pulse stacks for each pulsar.

PSR J1428−5530, in (b), has a brief nulling episode from pulse indexes ∼50–80 that is visible, distinct from the log-normal distribution for non-null pulses.

A figure showing all pulse stacks, energy distributions and phase-resolved modulation is available online (see Supporting Information, Appendix A).

ephemerides. In some cases, the observed period did not match

the ephemeris prediction. For these we used the rotational period

measured in our observation. Each integration consisted of 1024

phase bins, or in some cases integer divisors of two where needed

to ensure the size of one bin equalled or exceeded the sampling

time of the original data. This caused slightly degraded longitude

resolution for short-period pulsars.

Throughout this analysis we refer to ‘pulse stacks’, which are the

observed power represented as a function of pulse phase and number

(indexed from the observation’s start), as shown in the lower panels

of Fig. 1.

3 M E T H O D S A N D A NA LY S I S

3.1 Flux and energy measurements

Normalized energy, E/〈E〉, was calculated using the standard

method for determining pulse energy distributions (e.g. Ritchings

1976; Biggs 1992). In each observation, we defined on-pulse win-

dows of size Non bins, the position and width of which were de-

termined by inspection of the integrated pulsar profile. Where the

pulsar duty cycle was less than 0.5, we chose an off-window also of

size Non to determine the off-pulse energy. All bins not part of the

on-window were used to estimate the integration’s per-bin standard

deviation, and to remove a baseline from all bins. We did not divide

integrations into shorter analysis blocks (as in Ritchings 1976), as

interstellar scintillation at our observing frequency for each pulsar

was expected, and observed, to be minimal based on the NE2001

Galactic electron density and scintillation model (Cordes & Lazio

2002). Furthermore, it was realized that block analysis mutes the

modulation induced by intermediate-time-scale nulling and mode

changing in some pulsars. The normalized on-pulse and off-pulse

energies (Eon and Eoff , respectively) were calculated for each stel-

lar rotation by integrating the energy in the on- and off-window

bins, respectively, then dividing by the mean on-pulse energy of

all integrations. The single-pulse energy significance, 〈sE〉, is given

by 〈sE〉 = Eon/(σ
√

Non), where σ is the standard deviation of the

off-pulse energy.

3.2 Energy distribution tests

We performed analysis of pulse energy distributions to assess

whether the probability distribution function of pulse energy

is well fitted to either a log-normal or Gaussian distribution, and

if so, whether pulsars share typical distribution parameters. We

analysed the Eon distributions by constructing histograms of Eon

and Eoff in 25 fixed-size bins over the full range of detected nor-

malized energy for each available observation. We modelled each

observation’s noise with a Gaussian of the same mean and standard

deviation as the off-pulse distribution.

We then performed a least-squares minimization of the data fitted

by a model for the intrinsic on-pulse energy distribution convolved

with noise. The test distributions were defined by Gaussian and

log-normal probability density functions. For the Gaussian case,

we tested a grid of probable values in the range 0.02 < σ g <

1.10, 0.2 < μg < 4.0, where σ g and μg are the standard deviation

and mean of the distribution, respectively. In the log-normal case,

we tested over scale and location parameters in the range 0.02 < σ ℓ

< 1.10, − 2.0 < μℓ < 2.0, where these parameters are defined in

the probability distribution as

P (E) =
1

Eσℓ

√
2π

exp

[

−(log10(E) − μℓ)

2σ 2
ℓ

]

. (1)

We sampled each test distribution at equal bin size and range

as the data, then convolved it with the Gaussian noise model. A
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least-squares fit was then computed between the noise-convolved

model and the data.

The goodness of fit of the best-fitting distribution was quantified

by a χ2 analysis, using only bins where the value of the convolved

model in the bin was greater than 5.3 We took the degrees of freedom

to be the number of valid bins minus 3, and a goodness-of-fit prob-

ability was calculated from the χ2 cumulative distribution function

and the fit’s χ2 value. Probabilities were calculated for both the

logarithmic and Gaussian cases (giving Pℓ and Pg, respectively).

Finally, the best-fitting convolved Gaussian and log-normal models

were overlaid on the data (e.g. Fig. 1) and inspected by eye to aid in

classification of the energy distributions. The results of this analysis

are described and discussed in Section 4.

3.3 Recognition of pulse nulling

We performed an inspection of both pulse stacks and pulse energy

distributions to determine whether nulls were either not present,

or clearly present, in each observation. In Table 1, we indicate for

each pulsar whether no null pulses were observed (marked by N,

indicating no pulses occurred at a zero energy state), or whether a

peak at zero energy was discernible from a distinct on-pulse dis-

tribution (marked by Y). For the remaining pulsars, we could not

distinguish the presence or non-presence of nulls without further

analysis, which will be performed in the future for all pulsars ob-

served in the HTRU med-lat survey. We could distinguish 31 pulsars

(∼10 per cent of the full sample) with no observed nulls and 69 pul-

sars (∼22 per cent of the sample) with a null state. The remaining

pulsars in the sample were not sufficiently bright to distinguish

whether they were nulling or not.

3.4 Parametrization of modulation

We quantified the longitude-resolved modulation in each pulsar by

computing two values for each bin of a pulse stack. The observed

‘modulation index’ is defined as mobs,j = σ j/μj, where σ j and μj are

the standard deviation and the mean across the whole observation,

respectively, of the jth bin. Interstellar scintillation can induce sig-

nal in mobs,j of mISM = (1 + ηB/δb)−1/2, where B = 340 MHz is the

receiver bandwidth, η is a filling factor and δb is the scintillation

bandwidth of the pulsar. We determined δb from the Cordes & Lazio

(2002) Galactic electron density model and scaled the value to the

centre HTRU survey observing frequency of 1.352 GHz assuming

δb∝f 4. The induced mISM value was inferred using the prescrip-

tion of Jenet & Gil (2003), where setting η = 0.18, the intrinsic

modulation index is

m =

(

m2
obs − m2

ISM

m2
ISM + 1

)1/2

. (2)

The modulation index is most sensitive to persistent oscillations in

a pulsar’s signal, e.g. as would be caused by subpulse drift or mode

changing on time-scales much less than the observation time. This

parameter has poor accuracy for observations of low integrated

signal-to-noise ratio (S/N), for instance it is undefined off-pulse,

3 Note that the χ2 value we use is defined using χ2 =
∑

[(data value −
model value)2/(model value)], which avoids the use of ill-defined errors on

our distributions. This is not expected to introduce a bias in the measured

goodness-of-fit probability or distribution parameters because the initial

fit was performed using a least-squares minimization that took the full

distribution into account.

and is insensitive to non-persistent modulation like sporadic or in-

frequent outbursts.

To identify sparse modulated emission (on- and off-pulse), we

use the R modulation statistic introduced by Johnston et al. (2001).

They define the R-parameter as Rj = (Mj − μj)/σ j, again computed

in the jth bin of each observation, where Mj is the maximum value

observed in that bin. Given that the per-bin statistics are (in the

absence of pulsar signal or interference) Gaussian-distributed, even

off-pulse regions are expected to exhibit Rj values consistent with a

Gaussian distribution. This and its dependence on the significance of

mean single-pulse brightness render it difficult to use as an absolute

comparative modulation statistic between pulsars; however, it is

ideal for identifying the presence of giant pulses, and other extreme

phase-dependent, sparse modulation or significantly non-Gaussian

behaviour. We consider a measurement of Rj ‘significant’ if the

bin’s value minus the off-pulse mean is more than four times the

standard deviation of the Rj values in the off-pulse window.

4 SI NGLE-PULSE ENERGY D I STRI BUTIO NS

Here we describe the results of our energy distribution fitting anal-

ysis, with the goal of characterizing the field statistics of the radio-

generating pulsar plasma. Section 4.1 organizes the pulsars into

categories defined by their energy distribution shape. Section 4.2

interprets these class divisions in terms of underlying pulsar en-

ergy statistics, taking into account the noise properties of our data

and other caveats of the fitting analysis. That section also reviews

the typical distribution parameters defining the best-fitting pul-

sar shapes. Finally, Section 4.3 explores the cause of the distinct,

multiple, non-zero energy peaks exhibited by some pulsars in our

sample.

4.1 Classification of energy distributions

Table 1 reports our classifications (described below) for each pulsar,

along with the best-fitting parameters and goodness-of-fit probabil-

ity for the Gaussian and log-normal fits.

During visual inspection of the energy distributions, we noted

multiple non-null peaks in the distributions of some pulsars. As with

nulling pulsars, these are not unimodal and thus their best-fitting

distribution statistics are not reliable. We provide the fit results in

Table 1 for nulling and multipeaked pulsars only for the sake of

Section 4.2 discussion. Several nulling pulsars had a sufficiently

bright non-null state to have a recognizably distinct distribution

from the null pulses. These are identifiable in Table 1 as pulsars with

a distribution class (column 9) reported in parentheses. An example

of such a case is shown in Fig. 1(b). These objects are included in our

statistical analyses. Multipeaked energy distributions were defined

as any distribution with either more than two points deviating more

than one standard deviation, or one point deviating more than two

standard deviations from a smooth single-peaked distribution. These

were identified by inspection of the pulse energy plots.

We divided the pulsars into five energy distribution classifications

(the percentage of constituent pulsars is given for each category;

these percentages are calculated based on the 255 non-nulling, and

classifiable-nulling, pulsars).

(i) Log-normal (L; 33 per cent). Distribution appeared unimodal

and the best-fitting results obeyed Pℓ ≥ 0.75 and Pg < 0.75.

(ii) Gaussian (G; 3 per cent). Distribution appeared unimodal

and the best-fitting results obeyed Pℓ < 0.75 and Pg ≥ 0.75.

(iii) Unimodal (U; 9 per cent). Pℓ and Pg were ≥0.75.
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Table 1. The numerical results of the energy distribution and modulation analysis. Columns are (1) PSR name (J2000); (2) number of pulses detected in

blind single-pulse search, and total number of rotations in the observation; (3) integrated (Fourier) S/N; (4) S/N of the brightest single pulse detected in the

blind single-pulse search; (5) average single-pulse energy significance; (6) maximum Rj value, where significant; (7) minimum on-pulse, phase-resolved

modulation index, where significant; (8) indication of whether pulse appears to be nulling (Y) or had no zero-energy pulses (N); (9) energy distribution

classification; (10–12) the probability and fit values associated with the best-fitting log-normal energy distribution; (13–15) the probability and fit values

associated with the best-fitting Gaussian energy distribution.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J0726−2612 17/163 18.4 35.4 1.2 9.3 – Y – 0.2363 0.05 1.02 0.0023 0.30 2.86

J0738−4042 1469/1482 2645.5 47.1 53.3 11.1 0.3523 N G 0.1387 0.07 0.12 0.7804 0.21 1.15

J0742−2822 3306/3341 1303.5 35.4 19.9 6.3 0.3353 N O 0.0119 0.07 0.10 0.0000 0.18 1.10

J0745−5353 126/2625 163.6 15.6 2.7 5.5 1.8748 – O 0.0017 0.10 0.27 0.0000 0.30 1.34

J0809−4753 12/1024 101.8 8.0 2.7 – 1.0487 – L 0.9372 0.09 0.15 0.2798 0.24 1.20

J0818−3232 49/251 64.1 13.7 2.9 5.6 – – L 0.9289 0.17 0.17 0.1499 0.44 1.20

J0820−4114 1/1030 103.0 6.5 3.4 – 2.7182 – O 0.0000 0.17 0.32 0.3852 0.53 1.39

J0828−3417 10/296 14.5 41.4 1.0 11.5 – Y – 0.0021 0.35 1.00 0.0000 1.09 2.48

J0831−4406 1/1810 32.1 6.4 0.6 – – – L 0.9425 0.18 0.62 0.5718 0.87 1.96

J0835−3707 6/1023 31.6 13.2 0.7 9.7 – – U 0.9934 0.17 0.67 0.9497 0.87 2.05

J0835−4510
∗

6206/6259 18957.3 22.1 146.1 17.2 0.0649 N O 0.0000 0.05 0.07 0.0000 0.11 1.05

J0837−4135 726/737 2139.3 149.0 45.1 12.6 0.5839 – M 0.0063 0.14 0.20 0.0000 0.36 1.25

J0840−5332 2/779 63.1 6.7 1.5 – – – L 0.8239 0.14 0.40 0.1862 0.51 1.53

J0842−4851 2/874 44.1 8.5 1.0 5.6 – – L 0.8862 0.15 0.65 0.1996 0.72 1.96

J0846−3533 219/490 138.7 18.9 5.3 5.7 0.6191 – L 0.9933 0.10 0.20 0.7240 0.29 1.25

J0855−3331 57/443 65.4 16.4 2.2 6.0 – Y – 0.0017 0.26 0.42 0.4117 0.94 1.48

J0902−6325 1/842 36.7 6.2 1.1 – – – O 0.0548 0.06 0.55 0.0153 0.28 1.72

J0904−4246 5/564 29.7 9.7 1.0 5.3 – – L 0.9844 0.19 0.45 0.6663 0.72 1.63

J0907−5157 1170/2208 456.0 29.0 7.2 10.6 0.8975 – O 0.0048 0.15 0.12 0.0000 0.38 1.10

J0908−4913 4619/5224 102.8 40.3 7.5 7.2 0.4716 – O 0.0000 0.09 0.15 0.0008 0.22 1.15

(i) – – – 0.6 7.2 0.4807 N O 0.0002 0.14 0.87 0.3194 0.80 2.43

(m) – – – 8.7 – 0.4716 N O 0.0000 0.09 0.17 0.0000 0.25 1.20

J0922−4949 2/591 24.6 7.9 0.8 5.5 – – O 0.0251 0.04 0.65 0.0032 0.13 1.91

J0924−5302 1/614 48.0 6.7 1.5 4.4 – – L 0.9909 0.09 0.35 0.6844 0.26 1.44

J0924−5814 36/724 69.5 9.2 2.6 5.0 – – O 0.6873 0.14 0.35 0.0000 0.41 1.44

J0934−5249 349/385 221.7 51.9 8.5 11.4 0.8599 Y (U) 1.0000 0.10 0.20 0.9613 0.28 1.25

J0942−5552 445/842 327.2 41.9 9.0 4.8 0.8019 – M 0.0087 0.22 0.15 0.0000 0.53 1.10

J0942−5657 198/682 121.5 12.7 2.9 4.7 0.6559 – L 0.9973 0.10 0.27 0.6542 0.33 1.29

J0945−4833 1/1687 32.0 6.6 0.6 – – – U 0.9988 0.17 0.65 0.9885 0.83 2.01

J0955−5304 12/652 40.4 9.0 1.3 5.2 – – U 0.9993 0.21 0.37 0.9230 0.79 1.44

J1001−5507 376/386 410.8 45.4 14.5 5.2 0.4926 N U 0.8644 0.13 0.15 0.9681 0.34 1.15

J1001−5559 1/334 31.2 6.2 1.4 – – – O 0.0523 0.02 0.45 0.0036 0.09 1.58

J1001−5939 18/70 21.9 15.8 1.0 4.1 – – O 0.3614 1.07 −0.85 0.2075 0.17 1.05

J1003−4747 1/1823 47.6 6.5 0.9 – – – O 0.1650 0.22 0.35 0.1353 0.86 1.44

J1012−5830 1/262 6.0 6.2 0.3 – – Y – 0.0365 0.04 1.07 0.0010 0.49 2.95

J1012−5857 150/683 108.0 26.1 3.0 6.4 1.0507 – O 0.6336 0.14 0.30 0.0001 0.40 1.34

J1013−5934 51/1268 78.3 11.9 2.1 5.0 – – L 0.9548 0.14 0.30 0.4019 0.43 1.39

J1016−5345 61/729 76.5 13.8 2.0 5.7 – – L 0.9809 0.21 0.17 0.6692 0.59 1.20

J1017−5621 157/1105 84.0 17.4 1.9 7.3 – – L 0.8495 0.15 0.32 0.0009 0.45 1.39

J1020−5921 4/448 22.6 9.5 0.8 6.8 – – L 0.9745 0.25 0.37 0.7425 1.03 1.44

J1032−5206 2/231 24.4 7.3 1.3 5.1 – – L 0.9552 0.09 0.45 0.4127 0.25 1.58

J1032−5911 4/1214 50.6 7.5 1.2 – – – O 0.0694 0.23 0.45 0.6103 0.98 1.53

J1036−4926 65/1096 78.5 12.5 1.8 6.3 – – L 0.7617 0.09 0.35 0.0531 0.28 1.44

J1038−5831 2/846 30.7 7.2 0.8 4.7 – – M 0.2974 0.11 0.45 0.0517 0.41 1.63

J1042−5521 31/479 76.4 10.3 2.7 4.5 – – L 0.9559 0.14 0.17 0.3674 0.40 1.20

J1043−6116 68/1930 44.8 13.6 0.7 4.8 – – O 0.0076 0.18 0.70 0.0009 0.92 2.05

J1046−5813 3/1525 67.4 7.2 1.4 – – – U 0.9953 0.11 0.42 0.8222 0.40 1.58

J1047−6709 173/2836 76.8 139.7 1.2 19.5 – – O 0.0000 0.11 1.60 0.0000 1.09 3.95

J1048−5832 2235/4561 408.5 41.0 4.8 13.1 1.1688 – M 0.0000 0.33 0.07 0.0000 0.64 0.96

J1049−5833 54/239 40.5 11.0 2.0 5.8 – Y – 0.0004 0.35 0.35 0.0000 1.09 1.29

J1055−6905 22/188 33.2 10.2 1.8 4.6 – Y – 0.2285 0.31 0.40 0.0061 1.09 1.34

J1056−6258 1225/1326 974.0 39.9 22.3 9.5 0.4494 N O 0.0000 0.06 0.12 0.0692 0.17 1.15

J1057−5226 237/2847 57.9 34.2 1.7 14.8 – – O 0.0217 0.15 0.60 0.3086 0.63 1.86

(i) – – – 1.0 – – N O 0.0284 0.13 0.87 0.0000 0.72 2.48

(m) – – – 1.1 14.8 – N O 0.0058 0.30 0.10 0.0001 0.94 1.10

J1059−5742 91/454 75.1 17.1 2.6 8.8 – Y (M) 0.8808 0.14 0.22 0.0728 0.38 1.25
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Table 1 – continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J1104−6103 5/2008 18.1 12.6 0.3 7.1 – – O 0.1278 0.26 1.02 0.0000 1.09 2.95

J1106−6438 2/200 18.8 6.7 0.9 – – – U 0.9981 0.10 0.25 0.8714 0.38 1.29

J1107−5907 1/2220 4.5 6.2 0.0 – – Y – 0.0000 1.07 1.97 0.0000 0.24 3.76

J1110−5637 175/1006 153.6 18.4 4.3 6.6 0.9004 – O 0.7491 0.10 0.17 0.0950 0.28 1.20

J1112−6926 9/679 68.9 9.7 2.2 5.2 – – L 0.8444 0.09 0.27 0.3124 0.26 1.34

J1114−6100 94/639 109.2 14.6 3.8 4.8 1.1906 – L 0.9568 0.22 0.12 0.0096 0.53 1.10

J1117−6154 7/1099 42.1 9.4 1.1 – – – O 0.4040 0.07 0.40 0.1030 0.22 1.53

J1123−4844 100/2276 93.6 10.6 1.8 4.8 – – O 0.0089 0.13 0.25 0.0000 0.40 1.34

J1123−6102 5/871 55.0 10.1 1.5 5.5 – – U 0.9846 0.15 0.32 0.9179 0.49 1.44

J1126−6054 21/2742 76.5 10.0 1.1 6.0 – – G 0.0273 0.19 0.35 0.7906 0.67 1.48

J1129−53 6/525 6.5 31.3 0.2 9.9 – Y – 0.3768 0.30 1.42 0.1604 0.05 3.67

J1133−6250 93/551 112.8 20.6 5.2 5.3 1.3483 Y – 0.1134 0.17 0.25 0.5942 0.49 1.25

J1136−5525 81/1520 122.5 17.3 2.7 6.5 1.7026 – O 0.0000 0.13 0.30 0.0897 0.41 1.34

J1143−5158 6/829 27.2 10.1 0.7 5.2 – – O 0.0436 0.19 0.55 0.0345 0.78 1.91

J1146−6030 30/2045 99.5 18.9 2.0 10.1 – – M 0.4683 0.13 0.32 0.0043 0.43 1.39

J1152−6012 4/1489 25.1 8.6 0.5 – – – L 0.9999 0.18 1.22 0.0000 1.09 3.52

J1157−6224 339/1408 203.0 25.5 4.1 7.2 1.1461 Y – 0.0000 0.17 0.20 0.0416 0.47 1.20

J1202−5820 287/1233 164.1 21.1 3.5 7.9 0.9868 – L 0.9970 0.14 0.20 0.0024 0.40 1.25

J1215−5328 1/884 23.4 7.0 0.7 4.7 – – O 0.4205 0.05 0.65 0.1644 0.26 1.91

J1224−6407 1801/2573 430.1 38.6 7.0 14.5 0.7175 N O 0.0000 0.09 0.17 0.0000 0.26 1.20

J1225−6035 5/889 24.9 7.5 0.6 – – Y – 0.8720 0.11 0.82 0.5116 0.59 2.39

J1225−6408 2/1327 73.8 7.1 1.8 – – – O 0.1341 0.09 0.15 0.0068 0.24 1.20

J1231−6303 1/407 48.0 6.2 2.2 4.6 – – O 0.4088 0.14 0.25 0.0394 0.43 1.29

J1239−6832 11/435 37.9 8.7 1.4 5.8 – – L 0.9460 0.19 0.25 0.1745 0.60 1.34

J1243−6423 1268/1448 1786.4 76.1 31.4 5.1 0.5690 Y (M) 0.0000 0.29 0.25 0.0000 0.64 1.15

J1252−6314 27/684 22.3 11.3 0.7 5.2 – – L 0.9838 0.35 0.25 0.2636 1.09 1.44

J1253−5820 141/2190 168.1 10.6 2.7 6.0 1.0648 – L 0.7623 0.13 0.15 0.1696 0.37 1.20

J1255−6131 1/847 5.8 9.9 0.1 5.8 – Y – 0.9963 0.10 1.97 0.0000 1.09 3.95

J1259−6741 85/840 80.1 17.0 2.3 6.0 – – L 0.9356 0.21 0.17 0.0118 0.57 1.20

J1306−6617 138/1183 155.6 19.6 3.8 – 1.2613 – M 0.0407 0.15 0.25 0.0141 0.45 1.25

J1307−6318 11/111 22.8 9.9 2.1 4.6 – Y – 0.9127 0.35 0.25 0.8660 1.09 1.01

J1312−5516 3/664 46.4 6.4 1.5 4.5 – – O 0.6515 0.09 0.37 0.2849 0.33 1.48

J1314−6101 1/192 17.8 7.5 1.0 – – – O 0.2115 0.41 0.25 0.0701 1.09 1.34

J1320−5359 2/1985 76.6 7.7 1.6 – – – U 0.9936 0.11 0.40 0.8477 0.40 1.53

J1324−6302 1/196 13.4 6.7 0.8 – – – L 0.9973 0.26 0.72 0.3508 1.09 2.05

J1326−5859 972/1101 964.9 36.7 21.6 4.7 0.3409 Y (L) 0.8518 0.07 0.12 0.0000 0.20 1.10

J1326−6408 90/704 92.7 12.1 2.5 4.8 – Y – 0.5453 0.19 0.17 0.4103 0.52 1.20

J1326−6700 682/1022 402.1 31.5 12.4 7.1 0.8457 – M 0.0000 0.15 0.27 0.0000 0.45 1.29

J1327−6222 980/1062 1412.3 76.2 33.0 5.5 0.4381 N M 0.0478 0.15 0.15 0.0001 0.37 1.10

J1327−6301 89/2867 127.4 15.0 1.8 – 1.8150 – O 0.0000 0.15 0.40 0.0557 0.56 1.53

J1327−6400 9/1997 10.7 9.9 0.2 – – – O 0.0906 0.09 1.50 0.0000 1.09 3.95

J1328−4921 2/377 28.4 6.7 1.3 – – – L 0.9948 0.07 0.47 0.6989 0.26 1.63

J1338−6204 13/452 116.3 9.4 5.4 4.5 1.1405 N L 0.8890 0.07 0.12 0.2629 0.20 1.10

J1340−6456 48/1470 53.9 26.9 1.3 12.6 – – O 0.0591 0.11 0.67 0.0000 0.47 2.01

J1341−6023 2/894 42.6 7.6 1.0 – – – L 0.8118 0.11 0.50 0.5079 0.47 1.72

J1345−6115 15/423 35.4 10.3 1.4 4.8 – – O 0.2355 0.06 0.32 0.0210 0.16 1.39

J1347−5947 13/898 43.0 13.9 1.1 6.8 – – O 0.6197 0.18 0.47 0.0016 0.68 1.67

J1355−5153 36/870 86.5 12.5 2.0 6.8 – – O 0.5448 0.09 0.27 0.0695 0.29 1.34

J1357−62 690/1236 396.5 12.0 11.0 5.1 0.5327 N O 0.2966 0.06 0.15 0.0000 0.16 1.15

J1359−6038 2863/4407 541.4 18.3 4.5 – 0.3342 – O 0.0023 0.07 0.15 0.0003 0.20 1.15

J1401−6357 610/656 603.2 109.5 15.2 11.4 0.7267 – M 0.9663 0.18 0.07 0.0000 0.38 1.01

J1406−5806 111/1927 21.1 27.2 0.4 8.6 – Y – 0.0000 0.25 1.45 0.0000 1.09 3.95

J141−7404 21/2000 79.7 12.0 1.0 6.3 – – O 0.0414 0.11 0.57 0.0007 0.45 1.86

J1413−6307 32/1408 57.5 22.6 1.1 9.9 – – U 0.9496 0.18 0.57 0.9941 0.80 1.82

J1414−6802 9/112 37.0 10.1 2.7 4.8 – – O 0.5113 0.17 0.25 0.0663 0.45 1.39

J1416−6037 6/1903 24.6 9.8 0.5 – – – U 0.9577 0.19 0.80 0.8583 1.09 2.29

J1423−6953 108/1676 35.6 43.6 0.5 12.4 – Y – 0.0003 0.17 0.97 0.0000 0.99 2.91

J1428−5530 613/984 269.2 38.8 7.2 11.6 0.7993 Y (L) 0.9972 0.11 0.22 0.0000 0.32 1.25

J1430−6623 680/708 1315.8 78.4 38.3 11.2 0.4381 N L 0.8144 0.15 0.15 0.0000 0.36 1.10

J1439−5501 1/10000 9.5 6.1 0.1 – – – O 0.0000 0.65 1.97 0.0000 0.10 2.81

J1440−6344 2/1228 67.9 6.5 1.6 – – – O 0.1214 0.13 0.30 0.0352 0.40 1.39
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Table 1 – continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J1444−5941 2/204 16.1 7.1 0.7 – – – O 0.7104 0.05 1.17 0.0968 0.22 3.14

J1452−6036 86/3577 64.0 19.3 0.6 7.6 – – O 0.0000 0.26 0.70 0.0000 1.09 2.15

J1453−6413 1828/3107 889.5 23.5 9.5 6.0 0.5077 Y (L) 0.7562 0.10 0.22 0.0000 0.28 1.25

J1456−6843 1218/2124 1077.9 41.8 21.5 15.8 0.8839 – O 0.0000 0.17 0.27 0.0000 0.43 1.25

J1457−5122 54/315 43.4 37.4 2.0 9.3 – Y – 0.2639 0.38 0.22 0.0066 1.09 0.86

J1502−5653 96/1050 45.2 16.6 1.0 5.6 – Y – 0.0000 0.11 0.27 0.0000 0.26 1.48

J1507−4352 1584/1952 380.6 19.0 6.2 6.2 0.4956 – G 0.0087 0.09 0.22 0.8712 0.24 1.25

J1507−6640 117/1576 107.8 12.0 1.6 6.4 1.2561 – L 0.7522 0.17 0.50 0.4182 0.64 1.67

J1512−5759 11/4367 189.8 7.9 2.0 – 0.9679 – O 0.0053 0.14 0.20 0.0435 0.40 1.25

J1514−4834 123/1224 99.6 10.9 2.4 – – Y – 0.3051 0.14 0.17 0.0051 0.40 1.20

J1514−59 2/533 5.7 6.6 0.1 – – Y – 0.1941 0.11 1.97 0.0000 1.09 3.95

J1522−5829 474/1429 244.5 12.9 5.9 5.9 0.7823 – O 0.0470 0.11 0.12 0.0158 0.30 1.15

J1527−3931 40/227 64.9 12.8 3.3 5.9 – Y – 0.9552 0.13 0.17 0.1991 0.36 1.25

J1527−5552 6/535 48.7 7.5 1.6 4.5 – – O 0.5225 0.02 0.20 0.0595 0.10 1.25

J1528−4109 2/1063 28.3 7.5 0.7 – – – U 0.9792 0.17 0.65 0.8310 0.84 2.01

J1530−5327 6/1992 40.7 7.8 0.8 4.8 – – O 0.0364 0.17 0.60 0.0495 0.74 1.91

J1534−5334 301/410 194.1 24.4 6.6 4.8 0.4798 N L 0.9280 0.11 0.05 0.0522 0.28 1.05

J1534−5405 1/1940 63.0 6.4 1.3 – – – O 0.0049 0.11 0.37 0.0000 0.37 1.48

J1535−4114 16/1290 75.1 12.7 1.8 8.3 – – O 0.0772 0.14 0.25 0.0583 0.44 1.34

J1535−5848 1/1824 24.3 7.5 0.5 5.2 – – U 0.9606 0.26 0.45 0.7970 1.09 1.67

J1536−5433 6/638 43.2 8.3 1.6 5.2 – – O 0.0000 0.07 0.37 0.0000 0.28 1.44

J1539−5626 7/2299 103.9 6.8 2.0 – 1.8576 – O 0.1407 0.13 0.35 0.0096 0.40 1.44

J1539−6322 9/345 58.0 8.8 2.7 – – – M 0.8521 0.11 0.40 0.2512 0.37 1.48

J1542−5303 6/468 10.5 11.6 0.4 – – – L 0.9764 0.19 0.85 0.4618 1.09 2.48

J1544−5308 2/3162 88.2 9.0 1.2 – – – O 0.5381 0.13 0.42 0.1461 0.47 1.58

J1548−4927 86/934 62.0 19.7 1.5 7.9 – – L 0.9758 0.23 0.45 0.0014 0.91 1.53

J1553−5456 8/522 33.4 10.6 1.2 – – – O 0.3615 0.06 0.32 0.0617 0.11 1.44

J1556−5358 1/561 21.4 6.8 0.8 – – – O 0.0368 0.05 0.60 0.0054 0.14 1.86

J1557−4258 76/1701 104.1 12.7 1.8 4.8 1.3912 – O 0.5319 0.14 0.32 0.3982 0.47 1.39

J1559−4438 561/2169 514.1 17.4 9.3 7.3 0.4438 N O 0.0000 0.05 0.17 0.0000 0.14 1.20

J1559−5545 10/305 33.8 10.6 1.3 4.8 – Y – 0.9392 0.27 0.30 0.5304 0.94 1.34

J1600−5044 2362/2899 721.5 28.3 10.5 – 0.4560 – O 0.0000 0.11 0.15 0.6171 0.30 1.15

J1602−5100 513/652 252.3 41.2 7.5 9.1 0.7918 – M 0.0368 0.13 0.17 0.0000 0.36 1.20

J1603−5657 13/1126 98.9 7.9 1.7 – – – L 0.9654 0.09 0.27 0.5089 0.29 1.34

J1604−4909 328/1725 165.8 13.7 3.0 5.6 0.9248 – O 0.4132 0.14 0.32 0.0000 0.45 1.39

J1605−5257 224/847 315.6 19.1 11.2 10.8 0.8175 – L 0.9943 0.11 0.15 0.0571 0.30 1.15

J1611−5847 1/1578 17.4 6.2 0.3 – – – L 0.9129 0.07 1.72 0.0000 0.02 3.86

J1615−5444 4/1549 33.4 6.9 0.8 – – – L 0.7997 0.26 0.35 0.0040 0.95 1.48

J1615−5537 1/686 15.8 7.2 0.4 6.5 – – O 0.5578 0.15 0.52 0.1792 0.68 1.77

J1621−5039 1/514 13.5 11.0 0.5 6.0 – – L 0.8536 0.31 0.45 0.2189 1.09 1.86

J1622−4950 75/130 263.3 22.5 22.9 6.4 0.5474 – O 0.0156 0.13 0.12 0.0035 0.32 1.15

J1624−4613 10/636 13.2 9.8 0.5 4.8 – Y – 0.8338 0.43 0.45 0.1425 1.09 1.44

J1625−4048 6/230 27.7 7.6 1.6 – – – U 0.9853 0.18 0.45 0.7576 0.72 1.67

J1626−4537 2/1515 43.4 7.6 1.0 – – – L 0.8209 0.22 0.35 0.2921 0.78 1.48

J1632−4621 1/325 26.3 6.1 0.9 – – – L 0.9188 0.18 0.47 0.5621 0.75 1.67

J1633−4453 47/1285 57.2 9.1 1.4 – – Y – 0.0163 0.35 0.37 0.0000 1.09 1.10

J1633−5015 867/1590 340.1 22.1 7.3 – 0.5949 – O 0.0000 0.15 0.15 0.1412 0.38 1.15

J1644−4559 1225/1237 8209.0 43.5 186.1 7.5 0.1741 N O 0.0000 0.07 0.07 0.0002 0.20 1.05

J1646−6831 195/312 248.1 64.9 12.5 9.9 1.0749 Y – 0.0000 0.63 0.40 0.0000 1.09 0.20

J1647−36 22/2672 9.5 15.1 0.2 6.5 – Y (L) 0.8319 0.22 1.47 0.0000 0.13 3.48

J1648−3256 52/764 97.0 9.8 2.4 4.7 – – L 0.9798 0.07 0.15 0.4164 0.18 1.20

J1649−4349 4/639 19.4 6.9 0.7 4.7 – Y – 0.0034 0.41 0.55 0.0000 1.09 1.67

J1651−4246 147/664 385.8 12.8 14.8 7.1 0.6205 N M 0.0002 0.10 0.12 0.0034 0.26 1.15

J1651−5222 290/878 157.5 15.0 4.1 4.9 0.8903 – G 0.0702 0.15 0.17 0.7991 0.41 1.20

J1651−5255 4/633 58.6 6.2 1.9 4.5 – – L 0.9433 0.11 0.22 0.5034 0.36 1.29

J1653−3838 188/1848 110.0 30.6 2.3 7.6 1.6457 Y – 0.0012 0.15 0.32 0.0000 0.47 1.39

J1653−4249 2/918 48.5 7.6 1.3 – – – O 0.0121 0.07 0.32 0.0015 0.26 1.39

J1653−4854 1/182 11.8 7.3 0.6 – – – L 0.8089 0.30 0.92 0.7055 1.09 2.72

J1654−23 11/1036 10.9 13.5 0.3 9.1 – – L 0.9931 0.30 1.02 0.0000 1.09 3.00

J1654−4140 3/427 24.3 7.0 1.0 4.6 – – M 0.0125 0.14 0.57 0.0023 0.64 1.82

J1700−3312 62/357 65.8 16.1 2.7 8.0 – – L 0.9846 0.15 0.25 0.5991 0.44 1.29
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Table 1 – continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J1700−3611 2/371 28.6 7.9 1.1 4.5 – – O 0.6352 0.13 0.35 0.1433 0.38 1.44

J1701−3130 7/1929 55.5 8.2 1.1 – – – U 0.9928 0.15 0.40 0.9647 0.56 1.58

J1701−3726 139/224 119.5 18.9 6.6 7.3 0.8977 Y – 0.0000 1.07 1.27 0.2732 0.36 1.86

J1701−4533 1/1720 115.1 6.9 2.8 4.9 1.8759 – O 0.0917 0.13 0.25 0.5211 0.36 1.29

J1703−3241 405/405 314.6 43.2 13.6 7.2 0.5948 Y (M) 0.0011 0.07 0.15 0.0000 0.20 1.15

J1703−4442 2/318 10.8 9.2 0.5 5.7 – – O 0.6385 0.05 0.65 0.1818 0.11 2.05

J1705−1906 872/1867 242.5 18.8 13.6 9.6 0.4264 N O 0.0000 0.17 0.15 0.0000 0.40 1.10

(i) – – – 1.8 8.3 0.7883 N L 0.9997 0.13 0.65 0.0011 0.59 1.96

(m) – – – 14.2 9.6 0.4264 N O 0.0000 0.18 −0.00 0.0000 0.37 0.96

J1705−3423 187/2238 188.1 10.4 3.8 5.3 1.3555 – O 0.0029 0.15 0.12 0.1837 0.40 1.15

J1705−3950 7/1746 35.6 9.8 0.7 4.8 – – L 0.8104 0.26 0.50 0.0063 1.09 1.72

J1706−6118 119/1534 52.1 34.5 0.8 8.7 – – O 0.6280 0.17 0.72 0.0000 0.75 2.24

J1707−4053 16/960 124.9 9.2 3.5 – 1.3939 – O 0.6191 0.10 0.25 0.3935 0.29 1.29

J1707−44 3/98 13.5 8.2 1.1 5.3 – – L 0.9345 0.09 0.70 0.7019 0.48 2.05

J1707−4729 68/2084 60.8 14.2 1.3 – – Y – 0.0000 0.31 0.37 0.1334 1.09 1.34

J1708−3426 19/802 62.2 10.9 1.9 5.6 – – O 0.3210 0.15 0.22 0.0445 0.45 1.29

J1709−1640 627/857 386.2 37.2 10.1 12.9 0.7796 Y – 0.0000 0.21 0.25 0.0006 0.60 1.20

J1709−4429 31/5438 198.3 7.5 2.3 5.9 1.3016 – O 0.0001 0.13 0.22 0.0001 0.38 1.29

J1711−5350 7/614 53.2 7.9 1.6 – – – L 0.9692 0.15 0.35 0.6167 0.53 1.44

J1715−4034 14/270 49.5 11.3 2.7 – – – O 0.0401 0.18 0.25 0.0004 0.53 1.34

J1717−3425 2/848 94.3 7.0 2.8 – – – O 0.2274 0.02 0.20 0.0019 0.09 1.20

J1717−4043 7/1416 17.4 8.2 0.5 – – – L 0.8154 0.23 0.87 0.0000 1.09 2.58

J1718−3825 1/7607 29.5 7.7 0.3 – – – O 0.0000 0.30 1.27 0.0000 1.09 3.76

J1720−2933 1/885 31.5 6.4 0.9 5.0 – – L 0.8275 0.09 0.42 0.4992 0.26 1.53

J1721−3532 15/1987 220.1 7.9 4.6 4.9 1.4397 – O 0.0000 0.15 0.22 0.0001 0.44 1.25

J1722−3207 652/1170 265.2 50.0 6.8 14.9 0.7151 N O 0.1234 0.09 0.20 0.0000 0.25 1.20

J1722−3632 1/1413 37.9 6.5 1.0 – – – O 0.4579 0.21 0.47 0.3012 0.84 1.67

J1722−3712 241/2382 214.7 10.3 3.3 – 0.8111 – O 0.0361 0.05 0.65 0.1161 0.22 1.96

J1723−3659 1/2740 38.5 14.5 0.7 – – – G 0.0745 0.25 0.42 0.7637 1.01 1.63

J1725−4043 8/368 18.4 15.5 0.8 8.1 – Y – 0.9392 0.34 0.60 0.0040 1.09 1.77

J1727−2739 127/434 74.6 28.4 3.8 7.3 – Y – 0.0000 0.57 0.52 0.0026 1.09 0.91

J1730−3350 22/4057 83.4 12.6 1.0 4.8 – – O 0.0000 0.26 0.57 0.0103 1.09 1.72

J1731−4744 593/674 1167.8 106.8 33.1 13.9 0.5113 N L 0.9826 0.14 0.15 0.0055 0.36 1.15

J1732−4156 1/1736 8.7 8.4 0.2 6.0 – – O 0.0762 0.46 0.90 0.0000 1.09 3.95

J1733−2228 19/645 136.4 7.8 5.3 4.7 1.0549 – L 0.8932 0.09 0.15 0.1185 0.24 1.20

J1733−3716 146/1663 53.8 32.9 1.4 9.9 – – O 0.0002 0.23 0.32 0.0000 0.74 1.39

J1735−0724 13/1318 96.8 7.0 2.3 – – – U 0.9983 0.09 0.45 0.9913 0.32 1.58

J1736−2457 25/211 40.3 11.4 2.2 4.6 – Y – 0.9564 0.21 0.22 0.2750 0.56 1.25

J1737−3555 3/1417 30.8 7.0 0.7 – – – O 0.6267 0.22 0.52 0.0172 0.92 1.77

J1738−2330 7/277 13.1 8.1 0.7 4.8 – Y – 0.9480 0.33 0.40 0.5859 1.06 1.82

J1738−3211 162/732 105.7 27.9 2.9 14.6 1.3554 Y – 0.0496 0.17 0.32 0.1170 0.52 1.39

J1739−2903 104/1739 82.2 20.8 2.1 11.6 – – O 0.0024 0.13 0.25 0.0000 0.38 1.29

(i) – – – 0.9 – – N L 0.9197 0.14 0.55 0.5745 0.55 1.82

(m) – – – 1.9 11.6 – N O 0.3612 0.17 0.45 0.0000 0.57 1.58

J1739−3023 1/4870 13.8 6.1 0.1 – – – O 0.0191 0.25 1.35 0.0000 0.13 3.95

J1740−3015 480/919 179.6 19.8 3.5 6.8 0.6859 – O 0.0574 0.10 0.22 0.0002 0.28 1.29

J1741−0840 154/272 121.7 27.1 6.3 6.6 1.0280 Y – 0.0000 0.81 0.82 0.0000 1.09 0.20

J1741−2019 29/135 31.6 19.8 2.0 6.3 – – O 0.7164 0.21 0.20 0.4152 0.59 1.25

J1741−3016 9/297 41.1 9.3 2.1 4.6 – Y – 0.9920 0.14 0.32 0.5881 0.49 1.44

J1741−3927 375/1015 200.4 17.5 5.3 4.7 0.6947 N M 0.1270 0.11 0.15 0.0000 0.30 1.15

J1742−4616 10/1357 56.2 7.5 1.5 5.3 – Y – 0.0000 0.31 0.35 0.0790 1.09 1.25

J1743−3150 86/233 85.5 20.9 4.1 6.3 – – L 0.9926 0.19 0.10 0.5792 0.45 1.10

J1744−1134 16/138924 22.4 11.0 0.0 – – – O 0.0000 0.38 1.97 0.0000 0.05 2.34

J1744−1610 3/320 18.5 8.1 0.8 4.8 – – L 0.9892 0.22 0.45 0.6995 0.91 1.63

J1744−3130 4/528 18.2 8.0 0.6 4.8 – – O 0.0181 0.09 0.32 0.0005 0.22 1.48

J1745−3040 738/1529 408.3 79.5 7.7 11.0 1.3502 Y – 0.0000 0.34 −0.13 0.0000 0.41 0.72

J1749−5605 22/418 47.7 16.1 1.6 6.4 – – O 0.7369 0.17 0.20 0.1151 0.49 1.29

J1750−3157 42/610 41.1 13.3 1.5 5.9 – Y – 0.0058 0.27 0.50 0.0935 1.09 1.48

J1751−3323 2/1014 47.7 8.4 1.3 – – – O 0.7010 0.15 0.30 0.3216 0.51 1.39

J1751−4657 179/739 133.6 31.9 3.6 13.3 0.9885 – L 0.9992 0.11 0.45 0.2437 0.43 1.58

J1752−2806 938/995 1304.1 66.7 26.6 8.3 0.4962 N O 0.0531 0.21 0.12 0.0000 0.48 1.10
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Table 1 – continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J1753−38 14/848 20.1 16.0 0.4 8.8 – – O 0.0820 0.38 0.22 0.0000 1.09 1.72

J1754−3510 31/1421 41.2 11.0 0.8 6.1 – – O 0.3901 0.18 0.57 0.0259 0.80 1.86

J1755−2521 1/465 16.7 9.2 0.6 4.4 – – L 0.8487 0.10 0.77 0.3250 0.53 2.29

J1756−2225 9/1387 11.4 10.9 0.3 – – – L 0.9745 0.19 1.27 0.0001 1.09 3.81

J1756−2435 1/827 70.6 6.5 2.2 – – – O 0.0273 0.14 0.17 0.0176 0.38 1.20

J1757−2223 40/3042 17.5 19.7 0.2 8.6 – Y – 0.0284 0.27 1.00 0.0000 1.09 3.95

J1757−2421 168/2380 197.4 17.4 3.6 9.1 1.3102 – O 0.7076 0.10 0.27 0.0242 0.32 1.29

J1758−2540 12/266 32.6 8.7 1.9 – – Y – 0.0028 0.66 0.82 0.0017 1.09 1.10

J1758−2846 1/725 13.8 6.1 0.4 – – – O 0.1359 0.05 0.90 0.0358 0.18 2.53

J1759−1956 19/194 43.1 9.7 2.0 5.9 – – O 0.6426 0.21 0.37 0.0449 0.68 1.48

J1759−2205 181/1222 133.1 15.1 2.1 5.0 0.7153 – O 0.0001 0.09 0.27 0.0000 0.25 1.29

J1759−3107 13/511 48.9 8.9 1.6 – – – U 0.9915 0.14 0.32 0.8948 0.47 1.44

J1801−2920 42/514 48.5 18.3 1.9 7.6 – – L 0.9067 0.18 0.45 0.0076 0.67 1.53

J1803−1857 7/191 29.2 12.3 1.3 4.3 – – O 0.7172 0.11 0.37 0.1624 0.41 1.48

J1803−2137 67/4166 158.6 11.7 1.9 5.3 1.7331 – O 0.0000 0.21 0.40 0.0000 0.69 1.44

J1805−1504 1/357 81.2 6.4 4.3 – – – U 0.8400 0.15 0.30 0.9497 0.47 1.34

J1806−1154 1/1071 75.8 6.1 2.2 – – – L 0.9721 0.13 0.22 0.2183 0.36 1.29

J1807−0847 824/3403 390.2 10.9 5.4 5.9 0.4645 – G 0.0105 0.07 0.20 0.7922 0.20 1.25

J1807−2715 11/676 56.2 11.4 1.7 4.7 – – U 0.9929 0.11 0.30 0.8543 0.37 1.39

J1808−0813 2/629 53.0 8.4 1.8 – – Y – 0.0425 0.18 0.30 0.1071 0.60 1.39

J1808−2057 41/603 108.3 11.9 3.2 4.5 1.1464 – L 0.9894 0.15 0.20 0.2860 0.43 1.25

J1808−3249 3/1544 34.8 6.7 0.8 5.1 – – O 0.0001 0.11 0.42 0.0000 0.45 1.58

J1809−2109 35/795 41.0 12.1 1.0 6.6 – Y – 0.0181 0.38 0.52 0.0000 1.09 1.48

J1814−0618 1/109 17.6 6.9 1.4 – – – U 0.8606 0.39 0.27 0.9719 1.09 1.10

J1814−1649 1/593 41.7 6.9 1.5 – – – L 0.9840 0.14 0.30 0.5557 0.45 1.39

J1815−1910 1/449 9.2 6.3 0.3 – – – O 0.4623 0.38 0.60 0.0241 1.09 2.24

J1816−1729 3/713 59.4 7.3 1.7 – – – L 0.8081 0.09 0.35 0.1825 0.29 1.44

J1817−3618 279/1453 114.4 29.1 2.3 13.1 1.5808 Y – 0.0000 0.33 0.22 0.0031 0.92 1.10

J1817−3837 17/1465 85.4 8.3 1.6 4.7 – – L 0.9383 0.11 0.40 0.4887 0.37 1.53

J1819−1458 7/132 9.7 16.8 0.5 8.1 – Y (L) 0.8941 0.06 0.40 0.3709 0.18 1.53

J1820−0427 913/926 595.9 43.1 14.7 7.0 0.3359 N L 0.8796 0.09 0.12 0.0151 0.22 1.15

J1820−0509 22/1661 17.8 9.8 0.4 4.9 – Y – 0.0477 0.26 1.15 0.0000 1.09 3.33

J1820−1346 29/592 76.5 10.1 2.8 – – – L 0.9107 0.17 0.25 0.1762 0.48 1.29

J1821−1432 1/273 12.9 7.9 0.7 – – – O 0.0125 0.06 0.47 0.0001 0.07 1.67

J1822−2256 175/279 103.3 17.1 5.1 6.5 1.0380 Y (U) 1.0000 0.10 0.20 0.7840 0.29 1.20

J1823−1126 9/292 20.5 20.6 0.9 7.0 – Y (L) 0.9112 0.30 0.12 0.0420 0.40 1.44

J1824−1945 2009/2962 454.2 24.9 5.4 6.2 0.4280 N O 0.1838 0.09 0.20 0.0000 0.24 1.20

J1824−2233 2/456 21.2 8.2 0.7 – – – O 0.6926 0.49 0.17 0.0162 1.09 1.20

J1824−2328 1/329 25.1 6.8 1.1 – – – L 0.8165 0.22 0.40 0.3816 0.80 1.53

J1825−0935 566/731 358.9 69.5 8.1 14.5 0.7238 – O 0.4060 0.18 0.20 0.0000 0.47 1.20

(i) – – – 1.0 – 1.9292 N L 0.9755 0.18 0.52 0.1689 0.68 1.77

(m) – – – 8.3 14.5 0.7238 N O 0.0166 0.15 0.17 0.0000 0.37 1.15

J1825−1446 236/2016 110.0 50.4 2.2 6.5 2.3894 Y – 0.0000 0.17 0.27 0.0000 0.41 1.29

J1826−1131 1/267 60.3 7.2 3.3 – – – L 0.9887 0.02 0.30 0.4725 0.07 1.34

J1827−0750 45/2070 48.7 17.9 1.0 5.5 – Y – 0.0000 0.17 1.20 0.0000 1.09 3.14

J1829−0734 5/1750 19.6 8.0 0.4 5.1 – – O 0.0046 0.25 0.90 0.0000 1.09 2.72

J1829−1751 615/1820 301.7 17.2 6.3 9.0 0.7746 – L 0.9018 0.09 0.20 0.0016 0.25 1.25

J1830−1059 10/1370 48.3 9.3 0.9 – – – O 0.7474 0.18 0.35 0.5392 0.67 1.48

J1830−1135 16/78 31.0 12.4 2.6 4.6 – Y – 0.2407 0.25 0.27 0.2606 0.72 1.24

J1831−1223 15/193 29.2 10.1 1.8 5.0 – Y – 0.9205 0.22 0.42 0.2856 0.90 1.48

J1831−1329 3/253 29.2 6.7 1.5 – – – U 0.9920 0.18 0.37 0.7959 0.60 1.48

J1832−0827 111/875 113.6 15.0 2.7 6.3 0.8993 – L 0.8204 0.13 0.15 0.0827 0.34 1.20

J1833−0338 296/818 153.1 13.9 3.4 9.0 0.6031 – O 0.2235 0.10 0.15 0.0003 0.26 1.15

J1833−0827 288/6566 110.6 19.4 0.8 – 1.8933 – O 0.0000 0.27 0.75 0.0000 1.09 2.05

J1833−1055 2/869 15.3 6.6 0.5 – – – O 0.1725 0.35 0.75 0.0000 1.09 2.24

J1834−0426 12/1951 277.3 9.1 6.3 6.3 1.5350 – O 0.0000 0.09 0.20 0.1849 0.25 1.20

J1835−1020 1/609 40.9 6.7 1.4 – – – U 1.0000 0.13 0.32 0.9650 0.41 1.39

J1835−1106 8/3393 83.3 8.4 0.9 5.1 – – L 0.9600 0.11 0.85 0.3537 0.65 2.39

J1836−0436 3/1582 75.1 7.2 1.6 – – – O 0.0684 0.09 0.37 0.0070 0.29 1.48

J1836−1008 255/995 172.2 10.9 4.0 – 0.5883 – O 0.5187 0.05 0.17 0.0001 0.16 1.20
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Table 1 – continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

PSR Npulses S/N S/N 〈sE〉 Max. Min. Null? Dist. Pℓ σ ℓ μℓ Pg σ g μg

Jname (int) (SP) Rj mj class

J1837−0653 79/290 72.1 24.4 3.5 6.1 – Y – 0.0000 0.81 1.30 0.0000 1.09 0.91

J1837−1243 2/285 6.4 8.6 0.2 – – Y – 0.9562 0.33 1.20 0.0432 1.09 3.71

J1839−1238 1/291 25.6 8.1 1.2 5.2 – – O 0.1427 0.04 0.40 0.0089 0.13 1.48

J1840−0809 64/568 75.3 12.3 2.5 4.9 – – L 0.8623 0.11 0.47 0.5718 0.44 1.63

J1840−0815 55/477 82.2 18.9 2.7 6.7 – – L 0.8874 0.13 0.25 0.2749 0.37 1.29

J1840−0840 42/101 72.3 33.2 6.6 6.3 – Y – 0.4169 0.49 0.50 0.4267 1.09 0.91

J1840−1417 9/85 28.8 68.9 1.3 7.3 – Y – 0.9129 0.05 0.47 0.4385 0.29 1.63

J1841−0157 9/846 47.4 8.2 1.5 5.1 – – O 0.5375 0.17 0.35 0.0186 0.53 1.44

J1841−0310 4/334 5.7 9.7 0.3 5.5 – Y – 0.9858 0.10 1.25 0.5221 0.53 3.95

J1841−0425 32/3016 128.2 8.9 1.9 – 1.7033 – O 0.5864 0.10 0.32 0.0001 0.33 1.39

J1842−0359 92/305 110.5 20.4 7.0 6.2 1.1869 – L 0.9958 0.17 0.20 0.1326 0.44 1.20

J1843−0459 1/734 45.8 6.3 1.6 4.8 – – G 0.0409 0.26 0.30 0.8523 0.95 1.29

J1844−0433 53/570 76.6 15.1 2.3 5.6 – – O 0.1971 0.15 0.30 0.2807 0.49 1.34

J1845−0434 15/1149 113.5 7.6 2.9 – 1.2484 – L 0.8873 0.13 0.12 0.1470 0.32 1.15

J1846−07492 1/655 28.2 6.1 0.9 – – – L 0.9840 0.11 0.57 0.5607 0.44 1.82

J1847−0402 59/927 124.3 10.6 3.4 5.1 1.1194 – O 0.0243 0.09 0.15 0.0002 0.25 1.20

J1847−0605 4/686 13.7 7.3 0.5 5.0 – – L 0.9282 0.13 0.72 0.2881 0.59 2.15

J1848−1150 3/417 15.7 8.5 0.6 – – – O 0.3449 0.35 0.40 0.0009 1.09 1.63

J1848−1952 58/122 137.2 91.5 8.0 7.4 1.0877 Y – 0.0084 0.42 −0.13 0.0175 0.87 0.53

J1852−0635 150/1067 87.7 21.8 2.7 9.1 – Y – 0.4344 0.23 0.10 0.0000 0.51 1.10

J1854−1421 149/476 116.8 22.9 4.2 8.7 0.8327 – O 0.1650 0.15 0.12 0.0351 0.40 1.15

J1857−1027 73/145 92.5 41.0 6.4 7.3 – Y – 0.1064 0.34 0.15 0.1667 0.78 1.05

J1900−2600 548/919 385.8 21.9 12.6 8.4 0.7765 – M 0.0003 0.09 0.27 0.0000 0.29 1.29

J1901−0906 219/313 156.5 58.0 6.8 7.1 0.8386 – U 1.0000 0.11 0.22 0.9777 0.30 1.25

J1901−1740 5/285 17.3 7.7 0.8 – – – L 0.9654 0.39 0.15 0.5161 1.09 1.15

J1903−0632 8/1304 47.1 9.0 1.0 – – – L 0.7572 0.15 0.47 0.2843 0.61 1.67

∗Many single pulses from the Vela pulsar (PSR J0835−4510) saturated the observing instrumentation. This disrupted the observed integrated and

single-pulse S/N, and the modulation parameters at phases near the pulse peak. The modulation parameters are not reported here but Vela’s modulation

profile can be viewed in the online figure (see Supporting Information, Appendix A).

(iv) Multipeaked (M; 7 per cent). As described above, two or

more peaks were discernible at energy levels above the noise.

(v) Other (O; 48 per cent). Pulsars with Pℓ, Pg < 0.75.

In cases where we had multiple observations on the same pulsar, we

only use the observation in which the pulsar’s integrated intensity

was brightest. It is pertinent to note, however, that in duplicate

observations, the modulation statistics were reproducible. In only

a few cases the energy distribution had a different classification in

the fainter observation, typically transforming an L-class pulsar to

an O or U, and likely caused by the stronger influence of noise on

the lower S/N observation.

4.2 The distribution statistics of pulse energy

More than one-third of our classifiable sample was found to be

above our threshold for agreement with a log-normal distribution.

This is accented by Fig. 2, in which we show a comparison of

the best-fitting probability for all pulsars. The general tendency of

the energies away from a symmetric, Gaussian distribution here is

pronounced. The origin of the tail of objects across all probabil-

ities for both the log-normal and Gaussian trials is thought to be

a low-S/N effect, and is discussed below. A primary target of this

analysis was to determine whether pulsar energy is well fitted to

a Gaussian or log-normal distribution, and if so, what distribution

parameters are typical. We will focus momentarily on determining

the parameters of the log-normal pulsars in our sample. We include

unimodal objects in this discussion on the basis of their agreement

with a log-normal distribution. The distribution of both σ ℓ and

Figure 2. A comparison of our best-fitting distribution probabilities. Log-

normal distributions are clearly favoured. All objects classified as G, L, U or

O (Section 4.1) are shown as black crosses (solid line), while unclassifiable

nulling pulsars are shown as red circles (dashed line) and multipeaked

distributions are shown as blue squares (dotted line). The upper and right-

hand panels show the integrated distribution of Gaussian and log-normal

probabilities, respectively.
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Figure 3. The normalized best-fitting σ ℓ distribution for strong-signal

(thick dark line), non-nulling (dashed line) and all sources under the log-

normal classification.

Figure 4. As in Fig. 3, but reporting the best-fitting μℓ.

μℓ is qualitatively similar for the log-normal and unimodal sources

[and a Kolmogorov–Smirnov (KS) test between the distributions

does not support the null hypothesis].

Care must be taken when considering the σ ℓ and μℓ results for

our log-normal targets. Low-S/N single-pulse observations can lead

to average single-pulse energies which lie below the receiver noise

(thus, we see e.g. only noise and the log-normal tail of the brightest

pulses), and may limit our ability to identify null pulses. The pres-

ence of null and multipeaked pulsars at high Pℓ in Fig. 2 already

indicate that multimodal pulsars may contaminate the log-normal

sample. Unidentified nulling sources and low-signal measurements

may potentially skew the log-normal parameter estimation, and we

can see evidence of such an effect in an anticorrelation of low-〈sE〉
pulsars with μℓ in our data. To avoid contamination of our potential

correlations by low-S/N data, we measured the σ ℓ and μℓ distribu-

tions only for pulsars whose single pulses were on average detected

with significance 〈sE〉 > 4. Figs 3 and 4 compare the probabil-

ity distribution of the best-fitting σ ℓ and μℓ, respectively, of the

〈sE〉 > 4 objects to the distributions of non-nulling and all objects.

The non-nulling sources, although numbering only six, are com-

pletely unaffected by pulse nulling and provide a consistency check

for the 〈sE〉 > 4 distributions; a KS test between the non-nulling

and 〈sE〉 > 4 pulsars does not support the null hypothesis for σ ℓ

or μℓ. The distribution of all sources is found to differ significantly

from the 〈sE〉 > 4 sources (supporting the null hypothesis at prob-

abilities of 0.006 and <0.001 for σ ℓ and μℓ, respectively). This is

not thought to be a physical effect, but as previously stated is likely

to be caused by errors in parameter estimation in the low-signal

sample due to the influence of noise or unidentified nulling. For

comparison, we report the mean and standard deviation of σ ℓ and

μℓ for the three populations in Table 2.

Only 3 per cent of our classifiable population were in agreement

with a Gaussian distribution, of which only four objects (PSRs

J0738−4042, J1507−4352, J1651−5222 and J1807−0847) had av-

erage single-pulse S/N of greater than 4. Of all the observed and

derived physical properties tested (τ c, B, P, Ṗ , DM, pulse width

and duty cycle), none stood out for these pulsars from the pulsars in

Table 2. Average best-fitting log-normal param-

eters for three subsamples of the pulsars classified

as log-normal or unimodal. Note that the 〈sE〉 > 4

sources provide the fiducial sample values. Vari-

ance of the sample’s values is given in parentheses.

Sample N 〈σ ℓ〉 〈μℓ〉

〈sE〉 > 4 19 0.11 (0.03) 1.18 (0.07)

Non-nulling 6 0.12 (0.03) 1.13 (0.04)

All 105 0.15 (0.07) 1.50 (0.42)

the general population. Furthermore, they seem to share no charac-

teristics in pulse shape or modulation, except that three of the four

objects exhibit peaks in the Rj modulation parameter in the centre

of the profile. However, this is not a characteristic that is unique

to these objects. Both PSRs J0738−4042 and J1651−5222 exhibit

intricate features in Rj, the former showing intensely modulated

emission on the trailing pulse edge, and the latter appearing to ex-

hibit two emission modes of similar energy, and possible subpulse

drift. It is possible that these two objects have been misidentified

as Gaussian, but in fact contain several profile modes whose mean

energy properties share similar values.

4.3 Multimodal energy distributions

A total of 18 pulsars in our sample had energy distributions clas-

sified as multimodal. It appears that the majority of these multi-

modal distributions are caused by mode changes; those with large

relative energy peak differences exhibit mode changes that are vis-

ibly distinguishable in pulse stacks. We show two cases of this in

Fig. 5, in which each pulsar exhibits two profile configurations that

Figure 5. A view of the profile modes and their related energy distribu-

tion for two of our objects whose energy distributions were categorized as

‘multipeaked’. In all panels, the dashed green, solid blue and dotted black

lines correspond to the brighter mode, fainter mode and all combined pulses,

respectively. The left-hand panels show the pulse profile integrated over a

subset of pulses in each mode. The right-hand panels show a mode-divided

energy analysis as well as the integrated analysis. In both cases, two modes

account fully for the multiple peaks identified in the energy distribution, and

the non-zero mean of the off-peak distribution is clear.
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correspond to a change in observed energy.4 It is likely that all

multipeaked objects in our sample are the result of such profile re-

configurations, even if they are not always readily identifiable in our

pulse stacks (e.g. due to faint emission and barely resolved profiles).

For some pulsars, we cannot rule out that a transient component (e.g.

giant bursts) on an otherwise steady profile is causing the second

peak. We find it worthy of explicit mention that the inspection of

energy distributions appears to be a straightforward way to identify

mode changing in many pulsars, in which it might not be obvious

from an inspection of only a pulse stack.

A clear ramification of the energy difference associated with

mode changes is that some nulling pulsars may be exhibiting mode

changes in which either the energy state drops below an obser-

vation’s noise level (distinct from cessation of emission), or the

beam configuration changes sufficiently such that no sub-beams are

aimed at Earth. This has been previously suggested (e.g. Wang,

Manchester & Johnston 2007; Timokhin 2010), and is supported

by the faint emission seen in some pulsars after the integration

of many ‘null’ pulses. For instance, PSR J1900−2600 (Fig. 5b)

was previously identified as a nulling pulsar with a 10–20 per cent

nulling fraction (Ritchings 1976; Mitra & Rankin 2008), which is

approximately the fraction of pulses we observe in the low-energy

mode. There are three contributions of our data to the ‘nulls are

mode changes’ hypothesis: (1) mode changing appears to be fairly

prolific (6 per cent of our whole sample had discernible multiple

non-null energy peaks); (2) we observe a range of changes in mean

integrated energy value, implying that some such pulsars could be

misidentified as nulling or unimodal, thus the mode-changing pop-

ulation is probably larger; and (3) substantial reconfigurations may

be more common than minor ones, given the 69 nulling pulsars

and 18 multimodal objects in our sample. Three of our nulling pul-

sars exhibit multiple non-null peaks, thus may have multiple mode

changes.

5 M O D U L AT I O N STAT I S T I C S O F PU L S A R S

Here, we discuss several distinct topics relating to pulse-to-pulse

modulation in pulsars: Section 5.1 presents the modulation values

across our full sample, characterizing the range of pulse-to-pulse

modulation statistics of the general pulsar population. Section 5.2

discusses the phase-dependent location of modulation relative to

the total intensity shape of the pulsar’s profile in an attempt to un-

derstand if and how bursty (i.e. high-Rj) emission relates to the

underlying pulsar beam shape. Finally, Section 5.3 describes cor-

relation tests between the modulation parameters R and m with

physical pulsar parameters.

In Table 1, we report three indicators of pulsar modulation: the

maximum on-pulse Rj value, the minimum on-pulse mj value and

the S/N of the brightest single pulse detected in the blind single-

pulse search, when these measurements are significant for a pulsar.

We follow the significance threshold for mj used by Weltevrede et al.

(2006a) and Jenet & Gil (2003), in which the S/N of the integrated

pulsar profile must be greater than 100. Because off-pulse values of

Rj reflect the radiometer noise properties of the data, as previously

noted, this statistic is only considered significant when the on-pulse

peak Rj value is more than four times the standard deviation of Rj

4 By visual inspection of the energy distributions of the two modes, it appears

there might also be a change in energy distribution statistics accompanying

the mode change. This would have fascinating implications; however, we

defer discussion on this until a more rigorous analysis can be performed.

values in the off-pulse profile. Note that the maximum single-pulse

search S/N should not necessarily correlate with mj or Rj because

they are calculated at a fixed time sampling, whereas the single-

pulse search utilized a box-car search to fit for ideal pulse width.

5.1 Distribution of modulation parameters

The distribution of pulsars’ minimum modulation index, m, pro-

vides a direct empirical snapshot of the pulsar population’s typical

modulation properties. Fig. 6 shows the distribution of m for our

sample. While we do not distinguish various drift phenomena as

in Weltevrede et al. (2006a), we can compare our results to theirs.

In the Weltevrede et al. study, m was measured using a longitude-

resolved power spectral technique rather than direct computation.

While our distribution agrees in peak value, ours is moderately

broader, and more heavily weighted towards higher m values than

that of Weltevrede et al. This slight difference is possibly attributed

to the difference in technique for mitigation of scintillation’s con-

tribution to m. While the Weltevrede et al. technique removed any

low-frequency modulation (thus in addition to the mISM contribu-

tion, potentially removing some modulation attributable to the pul-

sar itself), our mitigation may have included an erroneous estimate

of mISM due to errors in the Cordes & Lazio (2002) electron den-

sity distribution model. We would expect the former point to most

strongly contribute to the observed effect.

In Fig. 7 we provide the R-parameter distribution. As previously

noted and discussed further in Section 5.3, the R-parameter distri-

bution cannot be taken at face value to be an ‘intrinsic’ modulation

distribution due to its strong dependence on Gaussian statistics and

mean single-pulse flux. However, note that a measured Rj value

represents signal inconsistent with Gaussian variance; thus, these

pulsars exhibit phase-resolved, sporadically varying emission. If

(both integrated and phase-resolved) pulsar energy distributions are

indeed log-normal, this result is not entirely unexpected. We note

that in observations of increasing sensitivity, Rj values particularly

of pulsars where the single-pulse mean is hiding in the noise (e.g.

Figure 6. The distribution of minimum mj value for the 103 pulsars with

S/Nint ≥ 100, as discussed in Section 5.1.

Figure 7. The distribution of maximum Rj value for the 222 pulsars for

which this parameter was significant.
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deep nulling pulsars and RRATs) will increase. Additionally, the

observed maximum Rj will scale with a sample’s observing length,

consistent with the probability distribution of emission energy. We

thus expect that if the σ ℓ and μℓ values presented in Section 4.2 hold

for the full population, the distribution shown in Fig. 7 would shift

to higher values and perhaps broaden slightly, were our observing

length and/or sensitivity increased.

5.2 Profile dependence of modulation

It has been noted in the literature that ‘core’ profiles (as defined

by the profile classification scheme of Rankin 1983) are both less

modulated than ‘conal’ profile components, and do not null. It has

also been reported that giant pulse phenomena occur typically on

the leading or trailing edge of pulsar profiles (certainly, the per-

sistent modulation appears to be higher at pulse edges; mj rises at

the leading and trailing pulse edges for nearly the entirety of our

sample). The R-parameter enables sensitivity to phase-resolved,

sporadic emission behaviours. To explore the typical location of

such emission and its relationship, if any, to integrated intensity

profiles, we inspected each pulsar’s total intensity and Rj profiles

(sample Rj profiles are shown in Fig. 8, and all Rj profiles are shown

in the online figures in the Supporting Information, Appendix A).

Persistent multiphase features in Rj appear to come in two types:

broad, diffuse features that in many cases follow the rise and fall

of the integrated intensity, and narrow features which have no pro-

nounced counterpart in the total intensity profile thus presumably

correspond to very sparse outbursts. The phase dependence of nar-

row R-parameter peaks varies vastly from pulsar to pulsar; however,

in many objects, narrow Rj features appear on the edge of (leading or

trailing) a local maximum in integrated intensity (not necessarily the

brightest beam component). In some, the Rj profile is dual-peaked,

with peaks falling on either side of the integrated profile. Exam-

ples of these are shown in Fig. 8. This is suggestive of a sporadic

sub-beam-edge effect; however, as we do not have sufficient infor-

mation to break down our profiles into conal or core components,

we cannot say whether this effect is distinct to one profile geometry.

Note, however, that in some pulsars the modulation does peak at the

same phase as the integrated profile (in fact, PSR J1852−0636 as

shown in Fig. 8d exhibits contemporaneously peaking modulation

and intensity profiles for the outer sub-beams, but offset modulation

peaks for the centre beam).

Finally, the variation of Rj values across a profile indicates an

important point that will be discussed further in Sections 6.1 and

6.2, which is that the energy distribution (i.e. log-normal, power-

law, Gaussian, etc. classification and distribution parameters) can

be phase-dependent.

5.3 Correlation of modulation parameters with other neutron

star parameters

We performed Kendall’s τ correlation tests for the minimum mj

and maximum Rj against all basic pulsar physical parameters: age,

magnetic field strength, energy loss rate, P, Ṗ and DM. We found

no significant correlations that were not directly accountable by

sample selection effects. m was found to correlate (in some cases,

anticorrelate) with several parameters, most strongly with charac-

teristic age and Ė. However, we attribute all of those correlations to

the strong anticorrelation between m and integrated S/N (Kendall’s

τ statistic: −0.55; probability Pτ < 0.000 001), which can induce

correlations with m due to our fixed observation length (this ‘corre-

lation’, as with the R-parameter/DM correlation below, is thought

Figure 8. An expanded view of various Rj component profiles (thin green line) and their corresponding integrated intensity profile (thick red line). All of these

profiles exhibit leading and/or trailing sporadic pulse components, primarily flanking local maxima in total intensity.
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to be primarily the result of the low-weighted distribution of m and

the few objects with strong integrated signal; the distribution of m at

different signal intervals does not differ). The correlations were not

significant when restricting the tests to pulsars with an integrated

S/N between 100 and 400, indicating that these correlations were

induced by the brightest ∼20 objects.

We measured no significant correlations between mj and any of

the complexity parameters of Jenet & Gil (2003), in agreement with

Weltevrede et al. (2006a). Correlations between m and the com-

plexity parameters are predicted to be stronger when considering m

strictly from core pulse profiles (Jenet & Gil 2003); it is possible

that if any correlations exist within these data, they are diluted by

our lack of information about profile type and beam viewing an-

gle. Potential errors in the NE2001 electron density model, leading

to an incorrect treatment of scintillation’s contribution to m, could

also contribute to weakening a correlation. Thus, with the available

information, our sample is unable to rule out any of the proposed

theories with these correlation tests.

One correlation found with maximum Rj warrants brief discus-

sion; the maximum Rj was weakly anticorrelated with DM (τ =
−0.27; Pτ < 0.000 001). We interpret this primarily as the naturally

low-weighted distribution of maximum Rj (seen in the low-DM pul-

sars) and the fewer number of pulsars at high DM. However, pulse

smearing and scattering may also dampen R-parameter values at

high DM.

6 G ENERAL DISCUSSIONS

Here we address three remaining points of discussion that arose

from our analysis. Section 6.1 discusses physical motivators for

the definition of the ‘giant pulse’ phenomenon in pulsars based

on our energy distribution and pulse-to-pulse modulation measure-

ments. We furthermore indicate how our analysis may indicate giant

pulse activity occurring in several pulsars. Section 6.2 discusses the

implication of our results for the net pulsar energy circuit, pay-

ing particular attention to a discrepancy between the narrow range

in integrated single-pulse energy values versus the large range in

phase-resolved bursty emission. We also draw on the results of inter-

pulse pulsars in this discussion. Finally, in Section 6.3, we point out

peculiar behaviours observed in several pulsars that were identified

in the course of our analysis.

6.1 Giant pulses versus log-normal pulses

The definition of ‘giant pulse’ has varied in previous analyses, with

some authors defining the term as any pulse with a flux more than

10 times the average flux at that phase, and others differentiating

giant pulses by their power-law energy distributions. In our analysis,

the former definition translates directly to the specification R > 10.

This condition is not uncommon in this data set, and furthermore the

R-parameter’s continuous distribution over a broad range indicates

that this differentiation of ‘giant pulse’ is entirely arbitrary. While

it is certainly a convenient definition, if many pulsars are indeed

log-normally distributed, no physical distinction (except for small

variations in σ ℓ) should exist between high- and low-Rj pulsars.

We therefore support the latter definition of ‘giant pulse’, which in

addition denotes a clear difference in underlying plasma processes.

As we have previously noted, a significant measurement of Rj

implies the presence of non-Gaussian statistics in phase bin j, and

does not strictly differentiate between what non-Gaussian distribu-

tion is causing the heightened Rj. For the pulsars with significantly

measured Rj values, we have an insufficient number of pulses in our

data to perform an assessment of whether the phase-resolved en-

ergy distributions are caused by a pure log-normal distribution, or by

the log-normal plus power-law tail that is exhibited at giant-pulsing

phases in some pulsars. However, studies of these high-R-parameter

objects over a longer time-scale could provide the data necessary

to differentiate pulsars with broad phase-resolved log-normal dis-

tributions from power-law-distributed giant pulses as the cause of

the intense modulation (see e.g. Karuppusamy, Stappers & Serylak

2011).

Although the broad time resolution used in our observations

would dampen the intensity and prominence of giant micropulses,

we can check for an indication of such activity by inspecting the data

for very narrow (i.e. unresolved in phase) significant features in Rj.

Several pulsars show clear potential signs of such an effect: PSRs

J0726−2612, J1047−6709 (the small, narrow feature preceding the

main pulse), J1759−1956 and J1801−2920 (see Appendix A).

6.2 Energy budgets and additional insight from interpulse

pulsars

We find it striking that for 〈sE〉 > 4 pulsars, the maximum devia-

tion of integrated pulse energy from E/〈E〉 tends to be fairly low.

Inspecting the maximum integrated energy deviation (ME) in these

pulsars, we find that they lie in the range 1.6 < ME < 6.4, with a

mean of 2.9; that is, the integrated pulse energy tends to not devi-

ate vastly from its mean value. One might expect maximum Rj to

correlate with ME, given the excess energy one would expect to be

provided by a bright, phase-resolved pulse. In Fig. 9, we show a

scatter plot of maximum Rj versus ME for pulsars with 〈sE〉 > 4 and

a significantly measured Rj value. While there is a weak correlation

here (Kendall’s τ test gives τ = 0.29, Pτ = 0.001), the scatter in

both variables is significant.

This scatter and the fact that Rj for some pulsars is large across a

broad phase range indicates that many phases may be emitting large

bursts of energy; as previously noted, phase-resolved changes in Rj

indicate the possibility that the energy distribution is likewise phase-

dependent. Despite this, however, we see only a small range of ME

values, and at least 45 per cent of our sample has an integrated pulse

energy distribution that is well fitted to a unimodal (mostly log-

normal) distribution. What this appears to imply is that despite the

occurrence of sizeable sub-beam variations, a large outburst at one

phase is compensated by a deficit of or weakened emission at other

phases, such that a narrow integrated distribution in energy may be

Figure 9. The R-parameter plotted against the maximum deviation of inte-

grated normalized pulse energy.
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maintained. Thus, there appears to be a self-balancing effect, i.e.

there is a net energy regulation by which the total sub-beam circuit

is governed.

Similarly, previous studies have indicated that pulsars with in-

terpulses show a relationship in the pulses’ emission properties.

Various studies have shown correlations or anticorrelations in the

amplitude of main pulses and interpulses (e.g. Fowler & Wright

1982; Biggs 1990). Furthermore, Weltevrede et al. (2006a) found

the same periodicity of amplitude modulation in the main/interpulse

of PSR J1705−1906.

We identified five interpulse pulsars in our sample; the main

and interpulses for these pulsars (‘interpulse’ here being the fainter

component) have separately reported statistics in Table 1, marked

by (m) and (i), respectively, in addition to the statistics from the

total integrated emission window. We find agreement between max-

imum Rj in the main pulse and interpulse only in the case of

PSR J1705−1906, which despite a factor of ∼7 difference in emis-

sion intensity, the maximum Rj values both peak from 8 to 10. This

is particularly notable as it supports the aforementioned findings of

Weltevrede et al. (2006a, 2007).

In the other interpulse pulsars, all but PSR J0908−4913 exhibit

Rj values significant only in the main pulse. We note that even in

the presence of a pulsar-wide energy regulation, these discrepan-

cies may not be surprising given the strong phase dependence of Rj

and thus its implied dependence on viewing angle. Accordingly, it

may be that we view PSR J1705−1906’s main pulse and interpulse

at an angle such that we see corresponding primary and counter-

beam components; while the other pulsars might share properties

between particular sub-beams, their properties could be masked by

an unfavourable viewing angle.

The energy distribution classification differences between main

pulse, interpulse and net emission are also interesting to consider in

this discussion. However, due to the low 〈sE〉 on all of the interpulses,

the data do not provide clear results on this topic. Most of the classi-

fications are ‘other’, and only the interpulses of PSR J1705−1906,

J1739−2903 and J1825−0935 are well fitted to a log-normal dis-

tribution. While this seems to imply that the main pulse and inter-

pulse energy distributions do not share the same underlying plasma

statistics, higher S/N measurements would be more suitable to ex-

plore the relationship between the main/interpulse integrated energy

distribution.

6.3 Notes on anomalous pulsar properties

In our online figure (see Appendix A), we display the pulse stack,

modulation and intensity profiles, and energy distribution with fits

for each pulsar. These graphics provide a wealth of information,

and upon viewing them, nearly every pulsar appears to have some

unique and fascinating feature. As such, the plots contain far more

features of interest than are relevant for the discussion in this paper.

The reader is encouraged to inspect the data and pursue outstanding

features that catch their interest. Examples of peculiar behaviour

which stood out to us are: the cyclic, phase-dependent nulling

of PSR J1133−6250, the atypically broad energy distributions of

PSRs J1243−6423, J1047−6709, J1401−6357, J1456−6843 and

J1745−3040, and the ordered beating visible in the pulse stack of

PSR J1534−5334.

Below, we do describe unconventional emission discovered in

several pulsars, for cases where the anomalous behaviour is not

recognizable from the displayed data.

6.3.1 Multistate nulling fraction pulsars

Burke-Spolaor & Bailes (2010) reported what appeared to be a

‘part-time RRAT’, PSR J0941−39, which at times is observable as

a nulling pulsar with a null fraction of ∼10 per cent, and at other

times emits single pulses at a rate of ∼2 per minute. Our analysis

has identified several potential further examples of these. The first

is PSR J0828−3417, which was originally noted to have low-level

emission during its ‘nulls’ by Esamdin et al. (2005). We note that

in fact their ‘low-level emission’ appears to be made up of sporadic

single pulses, similar to PSR J0941−39. We furthermore discov-

ered one pulse from PSR J1107−5907, which has been previously

reported as an ‘intermittent pulsar’ whose emission alternates be-

tween states of bright, weak and null emission on a yet-unknown

time-scale (Kramer 2008; O’Brien 2010). Archival data from this

pulsar also reveal erratic changes in nulling fraction, particularly di-

rectly preceding its constant on state. We think it pertinent to point

out that each of these pulsars exhibit changes not only in intensity

(i.e. nulls or mode changes when emission appears to cease), but

also in the relative time spent in on and off configurations.

6.3.2 Wide nulling distribution of PSR J1255−6131

We detected only one pulse from PSR J1255−6131, and no inte-

grated emission. The single pulse was of high significance (S/N

∼ 10), and thus given the apparently large nulling fraction, we

were motivated to explore archival data for this pulsar. We found

∼20 archival pulse stacks at a central frequency of 1.4 GHz. These

observations were collected as follow-up to the Parkes multibeam

survey, and the data format and observing system is as described

in the survey’s paper (Manchester et al. 2001). The data available

to us were each of length 5–30 min, formed into pulse stacks and

often averaged over 1-min intervals so we could not probe single-

pulse behaviour. We found that PSR J1255−6131 displayed a great

range of activity cycle times in these observations. Occasionally

the pulsar appeared to emit without ceasing over lengths of 5–10

min; however, more commonly it exhibited bursts of emission last-

ing up to 3 min. The null fraction from observation to observation

ranged between 10 and 100 per cent. We estimate that the null

fraction for the pulsar is typically around 70–80 per cent; however,

with a broad emission cycle range. This pulsar may be exhibiting

a variation of the null-change behaviour discussed in the above

section. However, the behaviour in this pulsar differs as its nulling

fraction distribution does not appear to be bimodal, but rather is

an unusually broad, and may be either stochastic, or a smoothly

distributed function. The HTRU med-lat survey pointing appears to

have caught PSR J1255−6131 at the sparsest tail of this null fraction

distribution.

6.3.3 Off-pulse emission and PSR J1406−5806

The careful cleaning of interference in our data enabled us sensi-

tivity to short-duration, off-pulse emission (i.e. emission more than

5 per cent in phase from integrated profile components). We found

such emission in only one pulsar, PSR J1406−5806. Pulses were

detected across the full phase range, though its ‘on-pulse’ emis-

sion appears also to be highly sporadic. Upon stacking all available

archival pulse stacks from Parkes telescope (3 h total), the off-pulse

emission contributes weak components to a stable integrated pro-

file. We interpret this object as an aligned rotator with a high nulling

fraction. The lack of off-pulse emission in other pulsars indicates
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no evidence that the emission detected by Basu, Athreya & Mitra

(2011) is made up of sporadic, bursty emission.

7 SU M M A RY A N D C O N C L U S I O N S

We analysed the pulse-to-pulse energy and modulation properties

of all pulsars serendipitously observed in the HTRU med-lat survey

to emit detectable single pulses. This sample was derived from the

702 pulsars redetected by the HTRU med-lat observations, yielding

this survey a single-pulse detection rate of 45 per cent. 16 of these

pulsars were only detected through the single-pulse search.

For our full 315-pulsar sample, we performed energy distribution

fits to determine the suitability of log-normal or Gaussian distribu-

tions to describe integrated pulse-to-pulse energy. This analysis

showed that more than 40 per cent of our sample fits a log-normal

pulse energy distribution, while only a few pulsars were well fit-

ted to a Gaussian distribution. Other pulsars were not fitted by

either distribution; however, this may be due to (a) the influence of

noise on a faint pulsar, (b) unrecognized nulling/mode changing, or

(c) a non-Gaussian, non-log-normal underlying energy distribution.

Because of the large likelihood of (a) and (b) to disrupt our fits,

we suggest that a greater fraction of pulsars may show unimodal

and log-normal pulse energy distributions; however, observations

of higher sensitivity and a greater number of detected pulses will

be required to address this.

Some pulsars were found to have bimodal or multimodal en-

ergy distributions, which we demonstrated to be caused by mode

changes in some pulsars. Energy distribution inspection can thus

be useful for identifying mode changes where they might not be

obvious in a pulse stack. Multi-energy states have implications for

nulling pulsars, supporting the argument of Timokhin (2010) that

some pulsars observed to ‘null’ may simply be reconfigured into

a state where fainter, fewer or no sub-beams are directed at the

observer. Along these lines, we demonstrated that the previously

‘nulling pulsar’ PSR J1900−2600 exhibits faint emission in its low

state. It should be noted that for some multimodal-energy pulsars,

particularly those with short-change time-scales or those with min-

imal differences in mode energies, we cannot distinguish between

mode changing and other longitude-resolved modulation (e.g. a

distinct transient sub-beam).

Mode-changing properties are not to be confused with an-

other state-change effect observed in only a few pulsars. PSRs

J0828−3417 and J1107−5907 appear to have two discrete nulling

fraction states; as with PSR J0941−39 (Burke-Spolaor & Bailes

2010), these objects switch between being pulsars with null frac-

tion <10 per cent, to a separate state where they sporadically emit

single pulses per many rotations. The single-pulse state may have

previously been falsely identified as a low-energy mode change

(Esamdin et al. 2005; O’Brien 2010), as during long integrations

bright single pulses are dampened by the addition of null rotations.

We reported longitude-resolved modulation statistics, quantified

by the modulation index m and the R-parameter, the latter used

to identify non-Gaussian sporadic emission. We found no correla-

tions between m or R and physical parameters (e.g. age, spin-down

energy) or the complexity parameters predicted by various energy

models.

We found that outbursts with distribution significantly deviating

from Gaussianity can occur across a pulsar’s full integrated pro-

file; however, occasionally this modulation intensifies at the rising

and/or falling edge of components in the integrated profile. This may

indicate a conal or core edge modulation effect, and/or the presence

of giant pulses at the corresponding pulse phase. Our analysis sup-

ports the fact that physically distinctive ‘giant pulse’ phenomena

should be defined because they have power-law statistics; however,

we have insufficient data to assess the shape of high-energy tails in

our high-R-parameter pulsars.

Finally, in considering the large phase-resolved deviations seen

in the Rj profiles of some pulsars in conjunction with the distribution

of integrated single-pulse energy in these pulsars, it is striking that

the energy typically deviates only up to three times its average value.

This is suggestive of a beam-wide energy regulation that affects all

angles of the pulsar’s beam, and we broaden our consideration of

this possibility using information from interpulse statistics. Only

one of our five interpulse pulsars exhibits a notable relationship in

modulation properties between the main and interpulse; however,

we cannot make conclusive statements about the main/interpulse

energy distribution relationship due to the low signal from the in-

terpulses in these pulsars.
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A P P E N D I X A : DATA V I E W G R A P H S

Detailed data viewgraphs for each of the 315 pulsars in our sample

are provided as Supporting Information with the online version of

the paper. An example is shown in Fig. A1.

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-

sion of this article.

Appendix A. Data viewgraphs for each of the 315 pulsars in our

sample.

Please note: Wiley-Blackwell are not responsible for the content or

functionality of any supporting materials supplied by the authors.

Any queries (other than missing material) should be directed to the

corresponding author for the article.

Figure A1. One example of a plot from the online Supporting Information. These panels show the data corresponding to pulsar PSR J1727−2739. In addition

to the figures shown here, the Supporting Information also provides the pulsar’s J2000 name, DM and period, and the observation’s start time in Universal

Coordinated Time for reference. See the text for panel descriptions.
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