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The Huighly Collapsed Configurations of a Stellar Mass.
By 8. Chandrasekhar.

(Communicated by Professor E. A. Milne.)

§ 1. Professor Milne in his recent paper * on “ The Analysis of
Stellar Structure ”’ has put forward some essentially new considera-
tions on the possible steady-state configurations of stellar aggregates
of varying mass, luminosity, and opacity. One of the main conse-
quences of the analyms is the explanation not only of the existence of
white dwarfs—his collapsed configurations—but also of the principal
physical characteristics of these configurations. The following is
devoted to the development of Milne’s theory of these collapsed con-
figurations a stage further.

§ 2. Milne’s estimates for the central density and temperature of
these collapsed configurations indicate that in some cases we pass
beyond the range of validity of the degenerate form of the Fermi-Dirac
equation of state (p = Kp3). It can be shown that the pressure of
an electron gas which is highly degenerate and which has a very highly
predominant relativistic-mass variation effect, takes the limiting form }

p=7%kc<%>* N €9

(¢ = velocity of light, 2 = Planck’s constant) if the following two
conditions are satisfied :—

<7;:£> 4’;G = 2-86T8 G =2 . ()
3
-8%%33 = 5-88 x 10¥® | E .ot

(1) replaces Sommerfeld’s degeneracy criterion, and (ii) ensures the
predominance of the relativistic effect. As the condition that con-
figurations are highly collapsed is precisely equivalent to the condition
that in the central regions the electron assembly is degenerate,§ it
would be sufficient to consider whether (ii) is satisfied in order to count
the relativistic effect as highly predominant. Further, as L for these
configurations is very small, T, is normally of the order of 10%,|| and
(ii);then would automatically provide for (i). (See equation (19')).

* M.N., 91, 4~55, 1930, referred to hereafter as loc. ¢it. For a general exposition
of his main ldeas see Nature, 1931 January 3, ““ Stellar Structure and the Origin of
Stellar Energy.”

1 The corresponding expression for the energy E was obtained by E. C. Stoner,
Phil. Mag., 9, 944, 1930. That p=}E is generally true when the relativistic
effect is highly predominant can easily be proved.

i (ii) is given in Stoner’s paper; (i) now replaces Sommerfeld 8 criterion.
These and other inequalities are briefly discussed in my paper on ¢ The Dissociation
Formula according to the Relativistic Statistics,” M.N. (in course of publication).

Milne, loc. cit., § 22. || Milne, loc. cit., p. 39.
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Now the central density of a highly collapsed configuration con-
sidered as an Emden polytrope “n = 2 is given by *

327 GBM2B8

Po T 25K x 7385 &
where K, is the degenerate-gas constant and
kL
B = I_—477-0GM . . . . (3)‘

It is clear then that the relativistic effect will be predominant in the
central regions of those collapsed configurations whose masses satisfy
the inequality
32w (BM2 33 8mm3c?
125K,3 X 7:385 x - 3h3
O

X 7385 [ /mcK,\$ .
Mp >5[5“ 73 5] <méhl> = 04340 (fp = 2:5mm) (4)

‘where u is the mean molecular weight and © denotes the mass of the
Sun ( = 1-985 x 10% gms.).

: The purpose of this paper is to find out the consequences of intro-
. ducing the equation of state p = Kypt. It will be shown that we
can enumerate the complete linear sequence of steady-state config-
urations for an assigned small luminosity as the mass varies, the
opacity and source-strength being constant and uniform (standard
model).

§ 3. The Equations of the Problem.—We base our subsequent dis-
cussion exclusively on the standard model as it is oon31derably easier
to work with.

We have the following set of equations for the standard model
" independent of the equation of state we may adopt. (The notation is
_ identical with that used in Milne’s paper.)

dp dp’ _ GM(r)
dr + r - g P ! ) : (5)
dp’  kL(r) :
dr ~  qmere’ ' ' - 6
Lin _ __L
Mr ~ T W

* "We have also the following relation between the gas kinetic-pressure (p)
- .and the radiation-pressure p’:
B

P=rr=—p - - (7)

. -where § is defined by (3).
Case I. (The Relativistic-degenerate Case).—We have for the gas

* Equation (55), loc. cit.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny oz uo 1s8nb Aq /1 586/95/S/1 6/21011E/seluW/Wwoo dno olwapeoe//:sdiy Wol) papeojumo(


http://adsabs.harvard.edu/abs/1931MNRAS..91..456C

FIOBIVNRAS, . 91C ~456C!

458 Mr. 8. Chandrasekhar, The Highly Collapsed XCL 5,

kinetic-pressure, taking into account only the electronic contribution,
which is certainly by far the most important

nihe/3\¢ )
P = T<7'3;> I O
If we assume the molecular weight u = 2:5mg, then
p = Kyp#. . . . . (1
where
’ I he <3>§ . 14 te
K2 = m 7—7' = 3 619 X I0 . . (I )

With the equation of state given by (1), the equation of mechanical
equilibrium reduces to

K d
‘;Gé AL = - .. @)
Remembering that
S dM(7) 5
o~ e
we have on differentiating (8)
K, d d
L o
Putting
p = Asx*. (10}
(9) reduces to 2
K% 1 d< dx> _
7GB "2\ dr -X - ’ ' (11_)3

Changing r to the variable { given by

K 3 .
7723,3 :l (r2)p
we have finally P
! 20X\ _ 3

which is Emden’s polytropic equation with index 3.
~ From (8), using the values of p and r given by (10) and (12), we have:

. K,\b,,d
M(r) =—7%<G—§> ng’—g‘ Ce ()

It may be noted that, unlike the degenerate non-relativistic case, A; has.
disappeared from (14).

Case II. (The Non-relatwistic-degenerate Case).—We can use the:
equations given by Milne, loc. cit., equations (49), (48), (50), and (47)

respectively : ,
1d < d¢> :
— =\ N5 — . . .1
n® dn Ui dn P (15)
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where p=Axpt . . L. (16)
LA

87TG’BA2 :l ) - 1)

We have also M(r) = I <g’§31> A 2d¢: (18)

K, in (17) and (18) is the degenerate-gas constant.*

§ 4. The Equations of Fit.—Let r = ¢’ be the radius of the surface
of demarcation, 7.e. outside r = 7’ the distribution of density is given
by a solution of Emden’s equatlon n = 2, and inside r = ¢’ by a
solution of Emden 8 equation “n = 3.

Outs1de r =1 the equatlon of state is. p = K;p} and inside
7 = 1" we have p = Kyp$. Let p’ and T’ be the values of pand T at
the interface, so that we have o

Kp't = Ky't = %aT“*—f'B

or ;L &)3. , Kz[KZI-lBi ‘
p = <K1 ’ T Kl %ll . (19)
or, using numerical values,}
p' = 484 x 10° _
or : }>; T = 329 x 109<I ‘8>i . (19)
n' = 1165 x 1030 B :

Let ¢(n) be any solution of

IZdaf?< gf) —i . .. (20

and suppose that it vanishes at 7 = m,. Then B4)(Bx) is also a
solution of (20) and it vanishes at 9 =7,;, where By, = n,. Write
Bn' = b;. By (19) and (16) we have

K,\3 '
o= <E> = At = ABISG)E . . (1)

, d ,
* or, eliminating A;#B? by (21), we have
n o 1 (5K,\8b,%' (b))
M) = = i\ G,3> [;{) 1)]:} - (23)
Also by (17) l: B (24)
87 ) ) -

* K; =2-138 x 101201 317 X 102, according as y = 2:5mg or 2mu. The former
value Wlll be used in the numerical work of this paper.

T Remembering thatforcollapsedconfigurations f~1 wesee thatn =1-165 X 10%0
provides for the condition (i) (§ 2) also.
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or, eliminating BA,} by (21), we have
'’ s f
= el AT SR )
Now let g({) be any solution of the equation
I d :

which has the first zero at { = {,. Then Ag(A{) is also a solution of
(26) which vanishes at- { = {;, where A{; = {,. Write ¢; = A(".
We have

14 [ K 8 /
P = <fj> = Xx® = XA%(cy)® . - (27)
By (12) , ol Ky >% -
r K<WG3 A7
or, eliminating AA;* by (27), we have
. ) 'I % :
r = [;él—g—fj K;ci9(e;) . . . (28)
By (14) we have also . ‘
. Ko\ o
w) = - 4G e . . e

Now our conditions of the fitting of our two configurations are that +
given by (25) and (28) as also M(+) given by (23) and (29) are identical.
Equating the respective sides we find we are simply left with

%
(§> c9(e;) = 131[‘1{’“’1)]i . . . (30)
8\% o b,24'(by)
<§> c1’g'(es) = [—;3@:)]—1% - (31)

which are just Milne’s equations of fit (100) and (101),* for the transition
from a gaseous (Maxwellian) envelope to a degenerate core. We see
therefore that when the conditions do not become so drastic as to
necessitate the introduction of a homogeneous core, the analytical and
the computational difficulties are reduced, as we have to solve the
same set of equations for the two transitions—namely, that from a
gaseous to a degenerate atmosphere, and then that from the degenerate
to the relativistically degenerate atmosphere.

§ 5. A Completely-relativistically Degenerate Configuration. — We
consider now a configuration built entirely on the relativistic-degenerate
equation of state p = Kyp#. This is therefore an Emden polytrope

* Professor Milne has since drawn my attention to the fact that this is just
N1
g+ 1’

what we ought to expect, and that the ( g) occurring in (30) and (31) is just

where n4 and n, are the indices of the two Emden equations.
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“n = 3”7 and is similar to the Emden-Eddington diffuse configura-
tions. But since we assume the validity of the equation of state
p = Kyp# right from the boundary it is clear-that if this configura-
tion is to approximate to anything practically realisable, the central
density must be sufficiently high to make the correction due to the
degenerate fringe negligible. We show later that this Emden poly-
trope has a p, = pmax (the maximum density matter is capable of),
in which case the correction due to the degenerate ‘fringe’ does
become negligible.

We choose Ay such that the value of { at which y vanishes is unity,
i.e. by (12) we choose A; such that

2 __ K2A3_§

7% = —77~G—B— . . . . (32)
where 7, is the radius of the star. Hence

_ Ezf x

Ay = <7TG/3 R (33)
The central density is given by

pe = A3(x)® = Aslo® . . - (34)
or by (33) _ <£2_>v§* y
Pe = WG,B ,,,13 (34")

The central temperature would be given by

B _
1aT, - = Kyp,?

or T, = (%)%I ; BY(;%}TQ)% . f—: . . . (35)

As is well known, for the Emden polytrope “n = 3’ the central
density p, and the mean density p,, are related by

/f_; - _3x’z(0é'o) Tk )

Finally we have a relation connecting the mass and luminosity, which
is merely the condition that the whole mass shall be representable as
a relativistic configuration of Emden type

. ) d
where, since for Emden’s solution &ﬁ((j}—é) = — 2-015, we have,
§=§o
introducing numerical values in (36),

M = o9g17708% =M, . . . (36

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny oz uo 1s8nb Aq /1 586/95/S/1 6/21011E/seluW/Wwoo dno olwapeoe//:sdiy Wol) papeojumo(


http://adsabs.harvard.edu/abs/1931MNRAS..91..456C

FIOBIVNRAS, . 91C ~456C!

462 Mr. S..Chandrasekhar, The Highly Collapsed XCI. 5,
we have also the limiting relation
M . 2:015 X 4(&)% o '
I—>0 ] 7T% G =0 92 O . . (36 )

§ 6. If the white dwarf under consideration could legitimately be
considered as obeying down to its central regions the Emden equation

3
‘n = $,” itis clear that p, so calculated should not exceed p’ [ (%") ]
1

The central density of a hlghly collapsed configuration which is a
complete Emden polytrope “n = £ is

_ 320G3M2B3
Pe ™ 125K X 7385

(2)

We must have therefore

32mGAMEBe (gyt
125K ;% x 7:385 = ‘K;/

Hence for considerations based on Emden’s “n = 3 alone to be valid
we must have the inequality

M < 1-214 X 10%8-% grams = o 61150 ,9"% ( = Mj, say)

satisfied. Hence colla,psed configurations of mass less than M; are
Emden polytropes “n = $.” For M = Mj, p, is just equal to our

“ interfacial dens1ty If M becomes greater than My the relativistic
core spreads and the configurations become composite. We proceed
now to the study of these composite-configurations.

§ 7. The Composite Series I.—In working out the composite series
we again consider only Emden’s solution for the relativistic core, 7.e.
we exclude for the present the possibility of the conditions becommg
so drastic as to necessitate the changing over from p = K,p# equation
of state. (It will be seen that when p, becomes equal to pmax—the
maximum density matter is capable of—the degenerate fringe becomes
negligible, and se we are not required to introduce the relativistic and
the homogeneous core simultaneously.)

We have, since (o) = 1, if y is Emden’s solution for “n = 3,

b

= XA . . ()
b K,\3
or by (27) b, — <_>[g(:1)]3 _ (38)

For the central temperature we have, since

I—IB’

%CZTG4 = /8
_ (KK, 1 — B\E
T, = (f) R‘f( g > POk . - (39)
We have also g_; = [P %_' = gley) . : . (40)
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The radius 7, of the whole configuration is given by
Z.’ = 9_’ = _];)’i: = ?.l : (41
. m By "o ,4 )
or by (25) . ‘
‘ - ___5__1 1
n = Lo, K@k . (2
The effective temperature and the mean density are easily found to be
L>i<8G/3K2>i~ 1 1 |
T, = (= e T i .
( <ac 5 Kyt " nodlg(04)]3 43)
o Q[SWGIQK{I% M I
pm 4 5 A (2] L ' - )

It is not difficult to put the above equations in a form which makes
it clear that as b; — 7, and ¢, - {, these composite configurations con-
tmuously pass over into the complete relativistic Emden polytrope

“m=3" with M = -9208% In maklng the reduction we make
free use of (30), (31), and (42):
P, = <w1(§}/8>tji g—‘l’: . . . . . ,.1(45)
) 5 ‘
NGy b W)
M) = 7jx@fﬁ> & <dl>§ g[ag (C )] .- W

T

@IS w
¢ 30 B/ \nGB/ r by ‘ o
But when b, - 7, and ¢; - {; it is clear from (42) and (38) that simul-
taneously 7, - o and p, -0 .* Thus the completely relativistic model
congsidered as the limit of the composite series is a point-mass with
pe = oo ! The theory gives this result because p = K,yp# allows any
density provided the pressure be sufficiently high. We are bound to
assume therefore that a stage must come beyond which the equation
of state p = K,p# is not valid, for otherwise we are led to the physically
inconceivable result that for M = 0920 %, r, = o, and p = .
As we do not know physically what the next equation of state is that we
are to take, we assume for definiteness the equation for the homogeneous
incompressible material p = pmax, Where pmax is the maximum density of
which matter is capable. The preceding analysis would then break down
when p, given by (38) exceeds pmax- INOW pmax must at the lowest
estimate be of the order of 10!* grams cm.=3, for if the “maximum
density of matter is limited only by the sizes of the electrons and nuclei,
densities of the order 10'4 should not be impossible.” ¥ Our interfacial

* This suggests that when g is Emden 8 solution, @ is of the centrally condensed

type.
1T R. H. Fowler, M.N., 87, 114, 1926, ‘ Dense Matter.”
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density is only 484 x 108 and the ratio of this to the central density

¢ = Pmax 18 of the order of 1078, and a reference to the Emden tables
shows that if for the moment we assume the star as completely relativ-
istically degenerate, before we have proceeded +g5oth of the radius
of the star into the interior, our assumption becomes valid. Hence the
correction due to the degenerate ‘fringe ”” is negligible. We can
therefore to a hlgh degree of apprOlea,tlon conmder as the limit of
these composite series, the Emden polytrope “n = 3 ” with p, = pmax
and M = 0920 B‘% it being understood that pmax is sufficiently high
to make the correction due to the degenerate fringe negligible. (Hence
for highly collapsed configurations of mass greater than o-9z2 © B~% we
can neglect the degenerate fringe.) - Thus the highly collapsed con-
figurations for which 06120 B~%< M < 0:920B~% are composite,
consisting of a degenerate envelope surrounding a relativistic core.
These composite configurations are bordered on either side by two
Acompletely determinable configurations—on the one side by an Emden
polytrope “n = 2,” and on the other by an Emden polytrope “n = 37
with Pe = Pmax

§ 8. Composite "Series II. ——So far we have considered only the

Emden solutions for the relativistic core, and we have been able to
gpecify the steady-state configurations only for M < M,;. Further,
M = M, corresponds to a high degree of approximation to an Emden-
polytrope “n = 3” with p, = pmax. Hence for M > M; we should
expect the homogeneous core to have spread out. We should therefore
consider the fit of a relativistic envelope surrounding a homogeneous
core with p = pmax, the core and the envelope being continuous at the
interface. If r = 7" (where { = (" and y = x”’) is the radius of the
surface of demarcation, the equation of fit is found to reduce to

- @) w

It can easily be shown that if y be an Emden or a centrally condensed
type of solution, then (47) has no roots, except that in the former case we
have the trivial solution {’’ = o. Hence the introduction of the homo-
geneous core compels us to a consideration of only the collapsed-type
solutions for y.

Now by (36) .
| —AR) === .. (48
& dC>s’=s’u 4 <E_z>’f Cot (49)

m\GB

where C, can now be called the ° discriminant” of the relativistic
standard model for M > M;. It may be noted here that C, is primarily
a function only of M, since the hypothesis that the configurations are
highly collapsed provides us with 8 ~ 1 in any case. We can write (48)
differently as

M
— §o? <dg>g LSOO - - )
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where 2-015 is the corresponding boundary value for the Emden
solution. Hence for M > M, we clearly see from (49) that the solutions
for x now belong to the collapsed family. Thus the condition that
M > M, is precisely equivalent to the condition that there is a homo-
geneous core. By methods similar to § 4 we easily obtain

" " Ko\ o
7‘1 = ! CO : ) . . . (SI)

where ¢, = A{" and 7, is the radius of the whole configuration. Com-
paring (50) with (49) we see that as M increases beyond M; the collapse
proceeds further and further till finally, when M —cw, ¢; = o, and
ry = "', and the whole configuration has completely ““collapsed” into
one mass of incompressible matter at the highest density matter is
capable of. We have in the limit, so to say, a * solid star.”

Further, if g(c,) corresponds to the Emden solution there is only
one “trivial ” root for (47), namely, ¢; = o, s.e. the central density of
this completely relativistic Emden polytrope is just equal to pmax and
the radius of the star is then obviously given by

%777"13Pmax
54°36

Thus this Composite Series I1. joins continuously the Composite Series I.
(§ 7) and the Emden polytrope “n = 37 with p, = pmax, and
M = 920 8% is the common limit of both the series. We have
therefore the following complete classification of the highly collapsed
configurations (L << Ly, B ~ 1) for M considered as a variable taking the
whole range of values. .

= 0920 B% . . . (52)

Mass. Description.
Class I.—M <061 O 4 Emden polytropes “n=4."
M;=M=-6108"% An Emden polytrope n=3 with
K,\®.
Pc= (K;)

Class IT.—o-61 OB~ <M <0920 "% Composite I.—Degenerate envelope
surrounding a homogeneous core.

My=M=o0-920 "% Approximately an Emden polytrope
“n=3"" with p;=pmax.
Class ITT.—M> 92O f'-2 Composite II.—relativistic envelope

and homogeneous core.
M—>w Completely homogeneous (p=pmax).

That we are thus able to enumerate definitely the steady-state con-
figurations for the whole range of M appears to be in complete conformity
with the general scheme of Milne’s ideas.

To apply the above classification to the known white dwarfs—
0, Eridani B, Procyon B, and Van Maanen’s star possibly belong
to Class I. That the companion of Sirius is in Class II. is also likely.
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But it appears that no white dwarf has yet been discovered which has
a homogeneous core at the centre. This classification is made with
caution, since, though they are certainly of the collapsed type, they are
by no means “ highly ”’ collapsed, for then L and T, would be so small
that we could not see the stars.

§ 9. Summary.—In this paper Milne’s theory of collapsed con-
figurations is developed a stage further, the essential refinement being
in the introduction of a relativistically degenerate core with the
equation of state p = K,p$%. This enables an enumeration to be made
of the steady-state configurations for the whole range of M considered
as a variable with L ~ 0. The classification arrived at is shown in the
table in § 8. :

In conclusion, I wish to record my best thanks to Professor Milne for
‘much valuable advice and criticism during the course of the work.

- The Possible Solutions Vof the * Equations of Fit” on the
Standard Model. By B. Strémgren, Ph.D.

(Communicated by E. A. Milne.)

I. In a recent paper * Professor E. A. Milne has reconsidered the
problem of determining the structure of the stars. A full treatment is
given of stars built on the standard model, k = constant, ¢ = con-
stant. Professor Milne’s treatment of this model is, however, not yet
completed, as he himself states, so far as the actual fit of “n = 3 -
polytropic solutions (f) on to “n = 3 ”-polytropic solutlons ($) is
concerned. In fact, Professor Mllne awalts the construction of a
complete set of tables of the functions fand ¢.

It is shown in the present note, however, that a discussion of the
point mentioned is possible without these tables, certain general
theorems on polytropic solutions established by Mr. R. H. Fowler }
being sufficient.

2. The discussion is based on the equations of fit derived by
Professor Milne and given in the paper quoted as equations (100) and
(ro1). The line of thought leading to (100) and (1o1) may be briefly
stated as follows. For a given mass M a solution is started from the
boundary inwards ; this solution is an “# = 3 ”-polytropic solution
which is definite for definite values of the radius r, and the discriminant
C depending on M, L, and « (the nature of the solution depends on C,
solutions with the same C and different »; being homologous). At a
"certain definite point pT—# reaches a value where degeneracy sets in.
The value of the radius r,, the remaining mass M(r), and the density p
at this point are definite functions of M, C, and r,. These values,

“which may be denoted by ', M(r'), and p’, now determine the “n = 3 -

2
polytropic solution that fits on to the selected “n = 3 “-solution.

* M.N., 91, 4, 1930. t M.N., 91, 63, 1930.
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