SÉminaire N. Bourbaki

F. Hirzebruch
 The Hilbert modular group, resolution of the singularities at the cusps and related problems

Séminaire N. Bourbaki, 1971, exp. n ${ }^{\circ}$ 396, p. 275-288
http://www.numdam.org/item?id=SB_1970-1971__13__275_0
© Association des collaborateurs de Nicolas Bourbaki, 1971, tous droits réservés.
L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE HILBERT MODULAR GROUP, RESOLUTION OF

THE SINGULARITIES AT THE CUSPS AND RELATED PROBLEMS

by F. HIRZEBRUCH
§ 1. The Hilbert modular group and the cusps.
Let k be a real quadratic field over Q and o the ring of algebraic integers in k. Let $x \mapsto x^{\prime}$ be the non-trivial automorphism of k. The Hilbert modular group

$$
\mathrm{SL}_{2}(\underline{o})=\left\{\left.\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \underline{o}, a d-b c=1\right\}
$$

acts on $H \times H$ where H is the upper half plane of C :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(z_{1}, z_{2}\right)=\left(\frac{a z_{1}+b}{c z_{1}+d}, \frac{a^{\prime} z_{2}+b^{\prime}}{c^{\prime} z_{2}+d^{\prime}}\right) .
$$

The group $\mathrm{G}=\mathrm{SL}_{2}(\underline{0}) /\{1,-1\}$ acts effectively. For a description of a fundamental domain of G, see Siegel [13].

For any point $x \in H \times H$, the isotropy group $G \subset \subset$ is finite cyclic. The singular points of the complex space $H \times H / G$ correspond bijectively to the finitely many conjugacy classes of maximal finite cyclic subgroups in G. Their number has been determined by Prestel [12] (see also Gundlach [7]). If, for example,

$$
D \equiv 1(4), \quad D \neq 0(3), \quad D>5, \quad D \text { square free, } k=Q(\sqrt{D}) \text {, }
$$

then there are $h(-D)$ singular points of order 2 and $h(-3 D)$ singular points of order 3 where $h(a)$ denotes the ideal class number of (\sqrt{a}). (Assume a to be square free.)
G acts on the projective line $k \cup\{\infty\}$ by

$$
x \mapsto \frac{a x+b}{c x+d}
$$

There are finitely many orbit classes. The elements of $(k \cup\{\infty\}) / G$ are called cusps. They correspond bijectively to the ideal classes of ㅇ. If $x=\frac{m}{n}$ (where
$m, n \in O$) belongs to a certain orbit, then (m, n) is a corresponding ideal. We denote by C the group of ideal classes in ㅇ. (The principal ideals represent the unit element of C.) $H \times H / G$ can be compactified by adding finitely many points, namely the cusps. The resulting space

$$
\overline{\mathrm{H} \times \mathrm{H} / \mathrm{G}}=(\mathrm{H} \times \mathrm{H} / \mathrm{G}) \cup \mathrm{C}
$$

is a compact algebraic surface (compare Gundlach [5]) with isolated singularities (the quotient singularities, as explained above, and the finitely many cusps). We wish to resolve the singularities. This is well-known for the quotient singularities (see, for example, [9] § 3.4). Object of this lecture is to do it for the cusps. For this we have to study the neighborhood of a cusp x in $\overline{H \times H / G}$ and the local ring at x.

We sometimes denote a cusp and a representing element $\frac{m}{n}$ ($m, n \in \underline{o}$) by the same symbol x. Let $G_{x}=\{\gamma \mid \gamma \in G, \gamma x=x\}$. We cannot, in general, transform $x=\frac{m}{n}$ to ∞ by an element of G, but it can be done by a matrix A with coefficients in k. Put $\underline{a}=(m, n)$. Then, following Siegel [13], we take

$$
A=\left(\begin{array}{ll}
m & u \tag{2}\\
n & v
\end{array}\right) \in \operatorname{SL}_{2}(k) /\{1,-1\}
$$

where $u, v \in \underline{a}^{-1}$ (fractional ideal) and define

$$
\begin{equation*}
G_{x}^{\infty}=A^{-1} G_{x} A . \tag{3}
\end{equation*}
$$

Then

$$
G_{x}^{\infty}=\left\{\left.\left(\begin{array}{cc}
\varepsilon & w \tag{4}\\
0 & \varepsilon^{-1}
\end{array}\right) \right\rvert\, w \in \underline{a}^{-2}\right\} /\{1,-1\}
$$

where ε is a unit of k. .'If we agree to consider a matrix always as a projective transformation, then

$$
G_{x}^{\infty}=\left\{\left.\left(\begin{array}{cc}
\varepsilon^{2} & w \tag{5}\\
0 & 1
\end{array}\right) \right\rvert\, \varepsilon \text { unit, } w \in \underline{a}^{-2}\right\} .
$$

The group U of positive units of k is infinite cyclic. Let e_{o} be the generator with $e_{o}>1$. It is called the fundamental unit. Let U^{+}be the group of totally positive units, i.e.

$$
U^{+}=\left\{\varepsilon \mid \varepsilon \in U, \varepsilon>0, \varepsilon^{\prime}>0\right\} .
$$

Equation (5) is a motivation to study data (M,V) where :

1) M is a Z-module of rank 2 contained in k;
2) V is a subgroup $\neq\{1\}$ of the group U_{M}^{+}of totally positive units which leave M invariant under multiplication (as is well-known $\left.\mathrm{U}_{\mathrm{M}}^{+} \neq\{1\}\right)$.

Given the data (6) we have a group

$$
\left\{\left.\left(\begin{array}{ll}
\varepsilon & \mathrm{w} \tag{7}\\
0 & 1
\end{array}\right) \right\rvert\, \varepsilon \in \mathrm{V}, \mathrm{w} \in \mathrm{M}\right\}
$$

In analogy to (4) such groups occur for cusps which are singular points of the compactified orbit spaces F of more general discontinuous groups acting on $H \times H$ (subgroups of finite index of certain finite extensions of G). In (4) we have $M=a^{-2}$ and $V=U^{2}$ and $U_{M}^{+}=U^{+}$.

Data (M, V) as in (6) determine a torus bundle X over the circle :

$$
\begin{equation*}
V \simeq \pi_{1}\left(s^{1}\right), \quad\left(M \otimes_{2} R\right) / M=\text { Torus } \tag{8}
\end{equation*}
$$

$\pi_{1}\left(s^{1}\right)$ acts on the torus. X is associated to the universal cover of s^{1}. The following proposition seems to be well-known. I know it from J.-P. Serre. It follows, for example, from the information given in [5].

PROPOSITION.- If a cusp with data (M, V) is singular point of an algebraic sur-
face F (see above), then its neighborhood boundary is the torus bundle X defined by (8). (For "neighborhood boundary" see, for example, [10].)

The local ring for a cusp (M,V) was described by Gundlach [5]. Let $M^{0} \subset R^{2}$ be the Z-module of all $x \in R^{2}$ such that

$$
\begin{equation*}
x_{1} w+x_{2} w^{\prime} \in \mathbf{z} \quad \text { for all } w \in M \tag{9}
\end{equation*}
$$

M° has rank 2 . We have by (9) a bilinear pairing

$$
B: M^{\circ} \times M \quad \rightarrow \quad \mathrm{Z}
$$

V acts on B such that $B(\varepsilon x, w)=B(x, \varepsilon w)$ for $\varepsilon \in V, x \in M^{\circ}, w \in M$.

PROPOSITION.- The local ring for the cusp (M,V) consists of all "convergent" Fourier series

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\sum_{x \in \mathbf{M}^{0}} a_{x} e^{2 \pi i\left(x_{1} z_{1}+x_{2} z_{2}\right)} \tag{10}
\end{equation*}
$$

where $a_{x} \neq 0$ only if both $x_{1}>0$ and $x_{2}>0$ or $x=0$, and where $a_{\varepsilon_{x}}=a_{x}$ for $\varepsilon \in V$. "Convergent" means that f converges for $\operatorname{Im}\left(z_{1}\right) \cdot \operatorname{Im}\left(z_{2}\right)>c$ where c is a constant depending on f.
§ 2. Binary indefinite quadratic forms.

Let M be a \mathbf{Z}-module of rank 2 contained in k. The function

$$
\begin{equation*}
\left.w \longmapsto w w^{\prime}=N(w) \quad \text { (norm of } w\right) \tag{11}
\end{equation*}
$$

is a quadratic form $M \rightarrow$ (Q wich is indefinite and does not represent 0 . We orient M by the basis $\left(\beta_{1}, \beta_{2}\right)$ of M with $\beta_{1} \beta_{2}{ }^{\prime}-\beta_{2} \beta_{1}^{\prime}>0$.

We now study oriented 2-modules M of rank 2 and quadratic forms

$$
f: M \rightarrow \mathbb{Q}
$$

which are indefinite and do not represent 0 . No specific field k is given.

We call $\left(M_{1}, f_{1}\right)$ and $\left(M_{2}, f_{2}\right)$ equivalent if there exists an isomorphism $M_{1} \rightarrow M_{2}$ of oriented Z-modules which carries f_{1} in $t f_{2}$ where t is a positive rational number.

Every (M, f) is equivalent to a quadratic form

$$
\mathrm{g}: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}
$$

where $\mathbf{Z} \times \mathbf{Z}$ is canonically oriented and such that for $(u, v) \in \mathbf{Z} \times \mathbf{Z}$

$$
\begin{equation*}
g(u, v)=a u^{2}+b u v+c v^{2} \tag{12}
\end{equation*}
$$

with $(a, b, c)=1$. Then $b^{2}-4 a c$ is called the discriminant of f. It depends only on the equivalence class of f and is a positive integer which is not a
perfect square. The real number

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad \text { where } \sqrt{b^{2}-4 a c}>0
$$

is called the first root of g.

We take the unique continued fraction

$$
r_{1}=a_{1}-\frac{1}{a_{2}}-\frac{1}{a_{3}}-\frac{1}{a_{4}}-
$$

where $a_{j} \in \mathbb{Z}$ and $a_{j} \geq 2$ for $j>1$. A continued fraction will be denoted by $\left[a_{1}, a_{2}, a_{3}, \ldots\right]$. Since r_{1} is a quadratic irrationality its continued fraction is periodic from a certain point on. Let $\left(b_{1}, \ldots, b_{p}\right)$ be its primitive period $\left(b_{j} \geq 2\right)$. Observe that the period (2) cannot occur because $[2,2, \ldots]=1$ is rational.

A sequence of integers $\left(b_{1}, \ldots, b_{p}\right)$ with $b_{j} \geq 2$ is called a period of length P, two periods are equivalent if they can be obtained from each other by a cyclic permutation. Such an equivalence class is called a cycle. A cycle is primitive if it is not obtainable from another cycle by an "unramified covering" of degree >1. Cycles are denoted by $\left(\left(b_{1}, \ldots, b_{p}\right)\right)$. Thus $((2,3))$ is primitive, but $((2,3,2,3))$ is not. $\left(\left(b_{1}, \ldots, b_{p}\right)\right)^{m}$ means the m-fold cover of $\left(\left(b_{1}, \ldots, b_{p}\right)\right)$. For example $((2,5))^{3}=((2,5,2,5,2,5))$.

THEOREM. - The primitive cycle of the first root depends only on the equivalence class of (M, f) . If we associate to each (M, f) this primitive cycle, we obtain a bijective map from the set of equivalence classes of quadratic forms (M, f) to the set of all primitive cycles (where ((2)) is excluded).

This theorem is a suitable modification of classical results. It is related to Gauss' reduction theory of quadratic forms [3]. The continued fractions had to be modified also, but all relevant theorems in Perron [11] can be taken over.

To simplify notations we shall indicate a cycle by

$$
\left|s_{1}, t_{1}\right| s_{2}, t_{2}\left|s_{3}, t_{3}\right| \ldots,
$$

where s_{j} is the number of two's occuring in the corresponding position and where $t_{j} \geq 3$. For example,

$$
((2,2,2,2,3,3,2,5))=|4,3| 0,3|1,5| .
$$

Let k be a real quadratic field over Q and d its discriminant ; it is the discriminant of the quadratic form (11) defined over the module $o \subset k$. If $a>0$ (square free) and $k=\mathbf{Q}(\sqrt{a})$, then

$$
\begin{array}{ll}
d=4 a & \text { if } a \equiv 2,3 \bmod 4 \\
d=a & \text { if } a \equiv 1 \quad \bmod 4 .
\end{array}
$$

Let C be as before the group of ideal classes of $ㅇ$ and C^{+}the group of ideal classes with respect to strict equivalence (for which an ideal is equivalent 1 if it is principal with a totally positive generator). We have $\left|C^{+}\right|:|C|=2$ or 1 depending on whether the fundamental unit e_{o} is totally positive or not. The order of C is the class number $h(a)$ for $k=\mathbb{Q}(\sqrt{a})$. If the discriminant of k is d, then C^{+}is via (11) in one-to-one correspondence with the set of equivalence classes of quadratic forms (M, f) with discri$\operatorname{minant} d$.

Don Zagier (Bonn) has written a computer program which puts out (the finitely many) primitive cycles for a given discriminant. For $d=257$ the primitive cycles are
a) $\quad|0,3| 14,3|0,17|$
b) $\quad|2,3| 6,5|0,9|$
c) $\quad|0,5| 6,3|2,9|$.

For $d=4.79$ the primitive cycles are
$|0,18| 0,9 \mid$
II
$|15,3| 6,3 \mid$
III
| 2, 7|0,3|0,4|
IV
$|1,5| 4,3|0,3|$
$v \quad|1,3| 0,3|4,5|$
VI
$|2,4| 0,3|0,7|$.

For $k=\mathbb{Q}(\sqrt{257})$ the fundamental unit is not totally positive, the class number $h(257)$ equals 3 . For $k=(\sqrt{79})$ the fundamental unit is totally positive, the class number $h(79)$ equals 3 . The order of C^{+}is 6 . The 6 quadratic forms for $d=4 \cdot 79$ are listed by Gauss [3] Art. 187 and numbered from I to VI corresponding to our table above.

The discriminant $\mathrm{d}=20$, for example, is not the discriminant of a field k. There is one primitive cycle namely $|3,6|$ which belongs to the module $\mathbf{z} \sqrt{5} \oplus \mathrm{z} \cdot 1$ contained in $\mathbb{Q}(\sqrt{5})$ and the quadratic form defined on it by (11).

§ 3. Resolution of the cusps. .

An isolated singular point x of a complex space of complex dimension 2 admits a resolution by which x is blown up into a system of non-singular curves K_{j}. For each K_{j} we have the genus $g\left(K_{j}\right)$ and the self-intersection number K_{j} 。 K_{j} 。

The resolution is minimal (and then uniquely determined) if there is no K_{j} with $g\left(K_{j}\right)=0$ and $K_{j} \circ K_{j}=-1$. The matrix $\left(K_{i} \circ K_{j}\right)$ is negative-definite (compare [10]).

The resolution is called cyclic if all $g\left(K_{j}\right)$ are zero (i.e. all curves are rational) and if j can be assumed to run through the residue classes $\bmod q(q \geq 3)$ such that $K_{j+1} \circ K_{j}=K_{j} \circ K_{j+1}^{\bullet}=1$ for all $j \in \mathbf{Z} / q \mathbf{Z}$ (transversal intersection) and $K_{r} \circ K_{s}=0$ for $r-s \neq 0,1,-1$. Example ($q=8$):

The following result is a consequence of a theorem in $\oint 4$.

THEOREM.- A cusp (M, V), see (6), admits a cyclic resolution. M determines by (11) and the theorem in $\S 2$ a primitive cycle $c=\left(\left(b_{1}, \ldots, b_{p}\right)\right)$. Put $m=\left[U_{M}^{+}: V\right]$. Then $q=p m$ and

$$
\left(\left(-K_{1} \circ K_{1}, \ldots,-K_{q} \circ K_{q}\right)\right)=c^{m}
$$

(Exceptional cases $p m=1$ or 2 . If $c^{m}=((b))$ or $\left(\left(b_{1}, b_{2}\right)\right)$ we have a cycle of 3 curves with self-intersection numbers $-(b+3),-2,-1$ or $-\left(b_{1}+1\right),-1,-\left(b_{2}+1\right)$ respectively. $)$

The cyclic resolution is the minimal one with these exceptions which can be blown down to minimal ones looking like this :

Examples.- For $k=\mathbb{Q}(\sqrt{a})$ with $a>1$ (square free) and G as in $\S 1$ we have $h(a)$ cusps $(h(a)=$ order of the ideal class group C, see § 2). Each cusp has the \mathbf{z}-module \underline{a}^{-2} where the ideal \underline{a} represents an element of \mathbf{C}. If \underline{a} and \underline{b} give the same element in C, then the \mathbf{z}-modules \underline{a}^{-2} and \underline{b}^{-2} are obtainable from each other by multiplication with a totally positive number and (as fractional ideals) represent the same element of C^{+}. Thus we have a homomor-
phism

$$
\rho: C \quad \rightarrow \quad C^{+} .
$$

The resolution of a cusp $x \in C$ is given by the equivalence class of the quadratic form belonging to $\rho(x)$ or rather by its corresponding primitive cycle c (§ 2). The cycle of the resolution is c^{m} where $m=2$ if the fundamental unit e_{o} of k is totally positive, otherwise $m=1$. For $k=\mathbb{Q}(\sqrt{79})$ and G as in § 1 , we have three cusps. We have to analyze what are the squares in C^{+}and their periods. In the list of $\S 2$ the squares are I, IV, V. The cusps IV, V give the same singularity (the periods are just reversed). They go over into each other by the permutation σ of the factors of $H \times H$ (which leaves the cusp I invariant). The resolution of the cusp I looks like :

where we have indicated the self-intersection numbers. The (minimal) resolution of IV has 16 curves.

For $k=\mathbb{Q}(\sqrt{257})$ we have $C=C^{+}$and $m=1$. The resolutions of the three cusps are given by the primitive cycles written down in § 2 .

The permutation σ on $H \times H$ carries the cusp b) into the cusp c) whereas on the cusp a) it carries the curve K with self-intersection number $\mathbf{- 1 7}$
into itself, has the intersection point P of two curves of self-intersection number -2 as fixed point

and otherwise interchanges the curves according to the symmetry of the continued fraction of a quadratic irrationality w, which is equivalent to $-w^{*}$ under $\mathrm{SL}_{2}(\mathbf{Z})$ (Theorem of Galois, see [11] § 23). The corresponding singularity of $(\overline{\mathrm{H} \times \mathrm{H} / \mathrm{G}}) / \sigma \quad$ is a quotient singularity admitting a "linear resolution"

obtained by "dividing" the diagram (14) by σ and using that curves of selfintersection number -1 can be "blown down".
§ 4. Construction of cyclic singularities.
Let $b_{1}, b_{2}, \ldots, b_{q}(q \geq 3)$ be a sequence of integers ≥ 2 not all equal 2 . For $q=3$ also sequences $(a+3,2,1)$ and $\left(a_{1}+1,1, a_{2}+1\right)$ with $a \geq 3$ and $a_{1} \geq 3$ or $a_{2} \geq 3$ are admitted. Let j run through $\mathbf{Z} / q \mathbf{Z}$. Consider the matrix ($c_{r s}$), where $r, s \in \mathbf{Z} / q \mathbf{Z}$, with

$$
c_{j+1, j}=c_{j, j+1}=1, \quad c_{j j}=-b_{j}, \quad c_{r s}=0 \quad \text { otherwise }
$$

LEMMA.- Under the preceding assumptions the matrix $\left(c_{r s}\right)$ is negative-definite.
Let k run through the integers and define b_{k} to be equal to b_{j} above if $k \equiv j \bmod q$. We now do a construction as in [9] §3.4. For each k take a copy R_{k} of C^{2} with coordinates u_{k}, v_{k}. We define R_{k}^{\prime} to be the complement of the line $u_{k}=0$ and $R_{k}^{\prime \prime}$ to be the complement of the line $v_{k}=0$.

The equations

$$
\begin{aligned}
u_{k} & =u_{k-1}^{b_{k}} v_{k-1} \\
v_{k} & =1 / u_{k-1}
\end{aligned}
$$

give a biholomorphic map $\varphi_{k-1}: R_{k-1}^{\prime} \rightarrow R_{k}^{\prime \prime}$. If we make in the disjoint union $U R_{k}$ the identifications given by the φ_{k-1} we get a complex manifold Y in which we have a string of compact rational curves S_{k} non-singularly imbedded. S_{k} is given by $u_{k}=0$ "in the k-th coordinate system" and by $v_{k-1}=0$ in the ($k-1$)-th coordinate system. S_{k}, S_{k+1} intersect in just one point transversally. $S_{i}, S_{k}(i<k)$ do not intersect, if $k-i \neq 1$. The self-intersection number S_{k} o S_{k} equals $-b_{k}$. The complex manifold Y admits a biholomorphic map $T: Y \rightarrow Y$ which sends a point with coordinates u_{k}, v_{k} in the $k-t h$ coordinate system to the point with the same coordinates in the $(k+q)$-th coordinate system, thus $T\left(S_{k}\right)=S_{k+q}$. The main point is the existence of a tubular neighborhood Y^{0} of $U S_{k}$ on which the infinite cyclic group $Z=\left\{\mathrm{T}^{n} \mid \mathrm{n} \in \mathrm{Z}\right\}$ operates freely such that Y° / Z is a complex manifold in which q rational curves
$K_{1} \cup \ldots U K_{q}=U S_{k} / Z$ are embedded. Their intersection behaviour is given by
the negative-definite matrix $c_{r s}$ (see Lemma).
According to Grauert [4] the curves $K_{1} \cup \ldots \cup K_{q}$ can be blown down to a singular point x in a complex space where x has by construction a cyclic resolution as defined in $\S 3$.

THEOREM.- Let $B=\left[\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{q}}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{q}}, \ldots\right]$. Then $\mathrm{M}=\mathrm{ZB} \oplus \mathrm{Z} \cdot 1$ is a z -module contained in $k=\mathbb{Q}(\beta)$. Suppose $\left(\left(b_{1}, \ldots, b_{q}\right)\right)$ is the m-th power of a primitive cycle. Then the local ring at the singular point x constructed above is isomorphic to the local ring described in the second proposition of $\S 1$ provided $\left[U_{M}^{+}: V\right]=m$.

The proof will be published elsewhere.

§ 5. Applications.

The resolution of the cusps can be used to calculate certain numerical invariants of $H \times H / G,(\overline{H \times H / G}) / \sigma$, for example, where $\sigma: H \times H \rightarrow H \times H$ is the permutation of the factors as before. We have to use a result of Harder [8]. Compare the lecture of Serre in this Seminar. We mention two cases.

1. For a cusp $x=(M, V)$ with a resolution as in the theorem of $\S 3$ we put

$$
\varphi(x)=\frac{1}{3}\left(\sum_{j=1}^{q} K_{j} \circ K_{j}\right)+q \cdot
$$

The number $\varphi(x)$ is essentially the value at 1 of a certain L-function. $\varphi(x)$ vanishes if the quadratic form f on M (see (11)) is equivalent to -f (under an automorphism of M which need not be orientation preserving).

THEOREM.- Suppose $a>6$, square free, $a \neq 0$ (3) • Put $k=\Phi(\sqrt{a}) \cdot$ Using the notation of $\S 1$ we have :

The signature of the (non-compact) rational homology manifold $\mathrm{H} \times \mathrm{H} / \mathrm{G}$
equals $\sum_{x \in C} \varphi(x)$.
2. For a prime $p \equiv 1$ mod 4 we shall calculate the arithmetic genus \hat{X}_{p} of the non singular model of the compact algebraic surface $(\overline{H \times H / G}) / \sigma$ for $k=Q(\sqrt{p})$. Information on the fixed points (see § 1) is needed. The following result is closely related to theorems of Freitag [2] and Busam [1], see in particular [1] § 7 .

THEOREM.- Let P be a prime $\equiv 1 \bmod 4$ and $\mathrm{p}>5$. Put $k=\mathbb{Q}(\sqrt{\mathrm{P}})$. The arithmetic genus \hat{X}_{p} is given by

$$
48 \hat{x}_{p}=12 \zeta_{k}(-1)+3 h(-p)+4 h(-3 p)-p+8 \varepsilon+12 \delta+29
$$

where $\varepsilon=1$ for $p \equiv 1 \bmod 3, \varepsilon=0$ for $p \equiv 2 \bmod 3, \delta=1$ for $p \equiv 1 \bmod 8, \delta=0$ for $p \equiv 5 \bmod 8 . \quad\left(\zeta_{k}\right.$ is the Zeta-function of the field k.)

For $\zeta_{\mathrm{k}}(-1)$ we have the following formula [14]

$$
\zeta_{k}(-1)=\frac{1}{30} \sum_{\substack{b \text { odd } \\ 1 \leq b<\sqrt{p}}} \sigma_{1}\left(\frac{p-b^{2}}{4}\right)
$$

where $\sigma_{1}(n)$ is the sum of the divisors of n.
By calculations of R. Lundquist, Don Zagier and myself there are exactly 24 primes $\equiv 1$ mod 4 for which the arithmetic genus equals 1 , namely all such primes smaller than the prime 193 and $197,229,269,293,317$. For $p=5$ the surface $(\overline{\mathrm{H} \times \mathrm{H} / \mathrm{G}}) / \sigma$ is rational (Gundlach [6]). Which of the 23 others are rational ?

Final joke : At the end of my dissertation [9] I claim that there are no cycles in a resolution. This is nonsense, as I know for a long time, and as this talk proves, I hope.

REFERENCES

[1] R. BUSAM - Eine Verallgemeinerung gewisser Dimensionsformeln von Shimizu, Tnventiones math., 11, 110-149 (1970).
[2] E. FREITAG - Die Struktur der Funktionenkorper zu Hilbertschen Modulgruppen (Habilitationsschrift, Heildelberg 1969).
[3] C. F. GAUSS - Untersuchungen uber hohere Arithmetik (Disquisitiones Arithmeticae), deutsch herausgegeben von H. Maser 1889, reprinted Chelsea 1965.
[4] H. GRAUERT - Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146, 331-368 (1962).
[5] K.-B. GUNDLACH - Some new results in the theory of Hilbert's modular group, Contributions to function theory, International Colloquium Bombay 1960, p. 16y-180.
[6] K.-B. GUNDLACH - Die Bestimmung der Funktionen zur Hilbertschen Moldulgruppe des Zahlkurpers $\mathbb{Q}(\sqrt{5})$, Math. Ann. 152, 226-256 (1963).
[7] K.-B. GUNDLACH - Die Fixpunkte einiger Hilbertschen Modulgruppen, Math. Ann. 157, 369-390 (1965).
[8] G. HARDER - Gauss-Bonnet formula for arithmetically defined groups, Ann. Sc. E.N.S., Paris, t. 4, 1971, fasc. 3, p. 409-455.
[9] F. HIRZEBRUCH - Uber vierdimensionale Riemannsche Flachen mehrdeutiger analytischer Funktionen von zwei komplexen Veranderlichen, Math. Ann. 126, 1-22 (1953).
[10] F. HIRZEBRUCH - The topology of normal singularities of an algebraic surface (d'après Mumford), Séminaire Bourbaki, 1962/63, no 250, W.A. Benjamin, Inc., 1966.
[11] O. PERRON - Die Lehre von den Kettenbruchen, B. G. Teubner, Leipzig und Berlin, 1913.
[12] A. PRESTEL - Die elliptischen Fixpunkte der Hilbertschen Modulgruppen, Math. Ann. 177, 181-209 (1968).
[13] C. L. SIEGEL - Lectures on advanced analytic number theory, Tata Institute Bombay 1961 (reissued 1965).
[14] C. L. SIEGEL - Berechnung von Zetafunktionen an ganzzahligen Stellen, Guttinger Nachrichten 10, 87-102 (1969).

