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ABSTRACT. The objective of this study was to assess the impact of hillslope length on Soil and Water Assessment Tool (SWAT) 
streamflow predictions in large basins using three methods for hillslope length calculation (the SWAT method, L1; a 3D analysis 
method, L2; a constant value, L3) combined with two DEMs (pixel size of 25 and 100 m), for a total of six DEML configurations that 
were tested in the Upper Danube (132000 km2). The delineation of subbasins and HRUs were kept unchanged in all configurations, 
thus isolating the DEM impact on streamflow from that of subbasins delineation. The configurations were independently calibrated in 
98 gauged stations located in headwater subbasins (period 1995 ~ 2006), and validated in 150 gauged stations (period 1995 ~ 2009). 
The analysis of streamflow prediction was extended to its components (surface runoff, lateral flow and baseflow) using performance 
criteria and residual analysis, and the comparison of different components of water yield was pursued. Calibration and validation 
showed that all configurations simulated monthly streamflow acceptably (PBIAS < 25% for more than 70% of 150 gauged stations). 
DEM pixel size had negligible effect of streamflow and its components. The default hillslope length (L1) resulted in large 
overestimations of lateral flow. L2 resulted in the best performance as well as L3 method. Given that L2 method takes into account the 
topographic convergence of flow, the configuration of DEM100 and L2 is recommended for SWAT application in large basins in order 
to obtain reliable streamflow predictions. 
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1. Introduction 

A main challenge for distributed hydrological modelling 
at large scale concerns the identification of the best input da- 
tasets in order to predict hydrological processes and water 
quality accurately. Digital elevation models (DEMs) represent 
the topography that drives surface runoff, and are arguably 
one of the most important data input to several hydrological 
models (Wechsler, 2007). With regard to the eco-hydrological 
model Soil and Water Assessment Tool (SWAT; Arnold et al., 
1998), a considerable amount of research has addressed the 
impact of DEM pixel size on model outputs (Cotter et al., 
2003; Chaubey et al., 2005; Chaplot et al., 2005; Di Luzio et 
al., 2005; Dixon and Earls, 2009; Lin et al, 2013; Chaplot, 
2014; Zhang et al., 2014). Generally, research demonstrated 
that streamflow was unaffected by DEM pixel size, nutrients 
were slightly affected, but sediment yield was greatly influ- 
enced by DEM pixel size (see for instance Chaplot 2005; 
Chaplot 2014; and Zhang et al., 2014). In most studies, the 
finer DEM was assumed to be the most representative and the 
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most adequate to represents the streamflow, nutrients and se- 
diment yields. Henceforth, calibration of SWAT was conducted 
on the smaller pixel size and kept unchanged after DEM re- 
sampling to larger sizes. This procedure showed that SWAT 
water quality is sensitive to delineation and number of model 
units (Chaplot, 2005; Zhang et al., 2014). 

Conversely, the impact of DEM derivatives (topographic 
attributes) has been explored less frequently (i.e. Wu et al., 
2008; Yao et al., 2010; Bieger et al., 2015), even tough a pro- 
found understanding of DEM derivatives is essential for 
assessing the relationships between watershed topography and 
hydrologic processes (Wu et al., 2008). Among several DEM 
derivatives, Zhang et al. (2014) showed that streamflow was 
most sensitive to the slope gradient. Sharma et al. (2014) ex- 
plored the impact of DEM pixel size on DEM derivatives and 
on streamflow and sediment outputs. They concluded that DEM 
pixel size had a greater impact on sediment yields than on 
streamflow, but recommended to further investigate the impact of 
derivatives on the shape of hydrograph, peak runoff, and time 
to peak.  

Among DEM derivatives, the hillslope length plays an 
important role in predicting streamflow and sediment yield 
through the peak runoff. Currently, the default method to set 
hillslope length in SWAT is based on a look-up table that re- 
lates hillslope length to the subbasin slope gradient, albeit 
generally the hillslope length is not only dependent on slope 



 A. Malagò et al. / Journal of Environmental Informatics 32(2) 82-97 (2018) 

 

83 

gradient (Hickey, 2000). Often the hillslope length is arbitra- 
rily set to reflect field conditions or calibrated to achieve the 
desired spatial variation of streamflow components within a 
watershed (Bieger et al., 2015), sometimes overcoming the 
recommended range (values below 122 m) by Arnold et al. 
(2012a). For instance, Spruill et al. (2000) calibrated the stream- 
flow in a small watershed (5.5 km2) changing the hillslope 
length from 37 m (basic SWAT calculation) to 500 m as they 
observed a decrease of the absolute deviation between ob- 
served and simulated streamflow by increasing the hillslope 
length. In reviewing 64 SWAT watershed studies, Arnold et al. 
(2012b) pointed out that only in two of them hillslope length 
was adjusted for calibrating directly the sediment yields. At 
large scale, Rouholahnejad et al. (2014) calibrated the stream- 
flow of 144 gauging stations in the Black Sea Basin (2.3 × 
106 km2) adjusting the SWAT hillslope length (derived from a 
90 m DEM pixel size) in a range of 40%, while Abbaspour 
et al. (2015) decreased the SWAT hillslope length and increased 
the slope (based on a resampled 700 m DEM pixel size) in 
order to calibrate the simulated hydrographs. Furthermore, Bonu- 
ma et al. (2014) decreased by 25% the default 50 m hillslope 
length to calibrate the sediment yields of the Arroio Lino water- 
shed (4.8 km2).  

Over the last 20 years several Geographic Information 
System (GIS) procedures have been developed for estimating 
the hillslope length using DEM three-dimensional analysis 
(e.g. Zhang et al., 2013). Concerning the SWAT method, Kim 
et al. (2009) suggested modifying the SWAT GIS pre-analysis 
for assessing hillslope length, especially if average slope in 
the watershed is > 25%. Yao et al. (2010) assessed the effect 
of 10- and 30-m DEM pixel size on hillslope length esti- 
mations using two GIS-methods (Flow Length and Flow accu- 
mulation) to see which of them resulted in hillslope length most 
similar to observed field measures. The authors found out that 
both the DEM pixel size and the GIS-method had an influence 
on hillslope length, but with coarser DEM the Flow accu- 
mulation method produced higher errors than Flow Length 
method. Furthermore, the erosion predictions obtained using 
10 m and 30 m DEMs pixel size with Flow Length method 
were slightly closer to the observations than those obtaining 
using Flow Accumulation method. More recently, Grieve et al. 
(2016) explored three techniques (slope-area analysis, inversion 
of drainage density and hilltop flow routing) for extracting 
hillslope length from high DEM resolution. The authors con- 
cluded that the hilltop flow routing produced more robust 
results (compared to field measurements) than the other inves- 
tigated methods across a wide range of landscape morpho- 
logies. 

However, all these studies were more oriented to define 
which method better reproduced the observed hillslope length 
rather than to assess the impact of hillslope length methods on 
model streamflow outputs and on hydrological processes re- 
presentation.  

Conversely, the aim of this study was to assess the impact 
of hillslope length estimation on streamflow and its com- 
ponents (surface runoff, lateral flow and baseflow). The assess- 

ment comprised three methods (L1, L2 and L3) to estimate 
hillslope length based on two DEMs of different resolution 
(25 and 100 m pixel size) for a total of six model configu- 
rations. The methods consisted of a slope-hillslope empirical 
relation (SWAT method; L1), a GIS-DEM flow accumulation 
algorithm (L2; Zhang et al., 2013), and the application of a 
constant value (50 m; L3). They were selected since they 
differ for complexity of implementation (L3 is the simplest 
one, followed by L1 and L2) and have different level of de- 
pendence with respect to the DEM pixel size (L2 is directly 
dependent, L1 is indirectly dependent, while L3 is indepen- 
dent).  

The Upper Danube Basin (132000 km2) was chosen as a 
study area because of its diversity in land cover and use, topo- 
graphy, and availability of gauging stations. The impact of 
hillslope length and DEM pixel size on streamflow and its 
components was evaluated using numerical, graphical and qua- 
litative methods. With respect to previous studies (i.e. Zhang et 
al., 2014 and Chaplot, 2014), since it was demonstrated that 
the number of subbasins in the watershed remained unchang- 
ed when DEM pixel size is up to 300 m (Zhang et al., 2014), 
the subbasins delineation was kept constant to isolate the 
impact of DEM derivatives rather than on watershed delinea- 
tion. Furthermore, differently from other studies (Chaplot, 
2005; Lin et al., 2010; Zhang et al., 2014; Chaplot, 2014) 
where calibration was based on the finer DEM pixel size or 
even not performed, we considered that independent cali- 
bration of each configuration was essential to assess the 
impact of hillslope length on streamflow predictions: if inde- 
pendent calibration would generate similar predictions of 
streamflow and its components, then we could conclude that 
hillslope length impact was negligible. 

2. Materials and Methods 

2.1. Study Site  

The study area is the Upper Danube Basin, which covers 
about 132000 km2 across Austria, Germany, Czech Republic 
and Slovakia, extending from the Danube source down to the 
Gabcikovo Reservoir near Bratislava (Figure 1). The southern 
part of the Upper Danube Basin includes major parts of the 
Alps up to the watershed in the crystalline Central Alps and 
then the adjoining Swabian-Bavarian-Austrian foothills belt. 
The northern part of the basin is significantly smaller; it is 
confined by the heights of the Swabian and Franconian Alb, 
the Upper Falconian Forest, then parts of the Bavarian-Bohe- 
mian forests down to the Austrian Mühl and Waldviertel and 
the Bohemian-Moravian Upland (Schiller et al., 2010). The 
amount of precipitation in the Upper Danube Basin shows a 
distinct gradient with the altitude. It rises from 650 ~ 900 
mm/y in the lowland areas to more than 3,000 mm/y in the 
high mountain exposed to the west and north (Rank et. al., 
2005). Major land uses within the watershed are forest (38%) 
and pastures (18%) mainly extended in Alpine regions, and 
cropland (34%) in flat areas. 
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The study area can be divided in three main sectors: the 
sector upstream of Passau (about 50000 km2), the Inn river 
basin (about 25900 km2) and the sector between Passau and 
the outlet near Bratislava (56100 km2). The mean annual flow 
rate at Passau is around 670 m3/s (35% of the flow rate at 
Vienna), with a maximum in March (880 m3/s) and a mini- 
mum in October (520 m3/s) (Rank et al., 2005). The mean 
altitude of this sector is relatively low (~ 800 m) compared to 
the Alpine regions (~ 1300 m). Groundwater discharge is the 
main mechanism forming baseflow in this part of the river. The 
period of high water is mainly controlled by precipitation and 
snow melting during late winter and early spring.  

The Inn, which enters the Danube at Passau, has a 
hydrological regime typical of Alpine rivers and exhibits a 
nivo-glacial regime (Sommerwerk et al., 2009). The average 
discharge at its mouth is 732 m3/s doubling the flow rate when 
it merges in the Danube. Maximum flow rates are observed in 
June/July (1200 m3/s) and a minimum in January (400 m3/s). 
In the Inn sector elevation ranges from 310 to 3,800 m; and 
mean annual precipitation ranges from 600 to more than 2000 
mm/y (Parajka et al., 2007; Nester et al., 2011). 

The sector between Passau and Gabcikovo reservoir is 
characterized by the influence of other Alpine rivers, with a 
mean annual flow rate of about 505 m3/s (27% of the flow 
rate at Vienna) and by the Morava river with a mean annual 
discharge of 110 m3/s (Sommerwerk et al., 2009). The Alpine 

rivers are characterized by a hydrological regime similar to 
that of the Inn, with maximum flow rates in May/June (800 
m3/s) and a minimum in January (270 m3/s) (Rank et al., 2005), 
while the Morava is characterized by flow peaks in early 
summer (March/April) (Sommerwerk et al., 2009). Long-term 
mean annual runoff volume of the Danube at Bratislava is 
estimated around 64533 × 106 m3 in the period 1876 ~ 2006 and 
the mean annual discharge is 2048 m3/s (Pekárová et al., 2008). 

 
2.2. SWAT Model  

The Soil and Water Assessment Tool (SWAT; Arnold et 
al., 1998) is a physically-based, watershed-scale model deve- 
loped to predict the impact of land management practices on 
water, sediment, and agricultural chemical yields of a basin. 
The model is supported by online documentation (Neitsch et 
al., 2011; Arnold et al., 2012a), has a user-friendly GIS- 
embedded interface (e.g. Di Luzio et al., 2004; Olivera et al. 
2006; Winchell et al., 2013), and is coupled to a semi-auto- 
matic calibration software (SWAT-CUP; Abbaspour, 2008). 
Some of the advantages of the model include: open access sta- 
tus of the source code, modelling of ungauged catchments and 
prediction of relative impacts of management practices, cli- 
mate and land use change scenarios on water quality and 
quantity. In this study the version SWAT2012 (v.622) was used.  

SWAT uses the DEM to subdivide the watershed into 
multiple subbasins with one main reach for each subbasin. 

 

Figure 1. Overview of the Upper Danube Basin with location of gauging stations used for model calibration and validation. 
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Subbasin topographic attributes, such as area, slope, elevation, 
are derived from DEM and assigned to all Hydrological Res- 
ponse Units (HRUs) within the subbasin. HRUs consist of 
homogeneous land use, management, topographical, and soil 
characteristics, and are the basic calculation unit. While a 
subbasin may be divided into more HRUs, in large basins a 
single HRU per subbasin (characterized by its dominant land 
use, soil type and management) is usually defined in order to 
reduce the computational burden of simulations (Pagliero et 
al., 2014; Malagò et al., 2015). 

The structure of SWAT is divided in two phases: the land 
phase and the in-stream or routing phase. The land phase 
comprises the computation of HRU daily water balance, where- 
as the in-stream phase comprises the routing of water in each 
reach. The HRU daily water balance solves the change in soil 
water storage as a function of daily precipitation, surface run- 
off, evapotranspiration, infiltration in the vadose zone, and 
baseflow.  

The HRU daily water yield is the total amount of water 
leaving the HRU and entering into main channel during the 
time step. It is estimated as:  

 

WYLD SR LF BF TLOSS       (1) 

 

where WYLD is the water yield (mm), SR is the surface runoff 
(mm), LF is the lateral flow contribution to stream flow (mm), 
BF is the baseflow contribution to stream flow from shallow 
aquifers (mm), and TLOSS is the bed transmission losses (mm) 
from the subbasin tributary channel. The accurate estimation 
of these components is of primary importance when assessing 
the impact of pollutant transport and for a sustainable water 
resources use. In the following the flow generated from HRUs 
is referred to as WYLD, whereas the flow routed in the reach 
(streamflow) is referred to as Q. 

In this study, the surface runoff (SR, mm) was estimated 
using the SCS curve number method (USDA Soil Conserva- 
tion Service, 1972) as modified by Williams (1985) to account 
for the impact of slope on the curve number. SWAT calculates 
SR according to the equation: 
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where Ri is the rainfall for the day (mm), Ia is the initial 
abstraction which include surface storage, interception and 
infiltration prior to runoff (mm), and S is the retention pa- 
rameter (mm) which is a function of the curve number (CN) 
for the day. The peak runoff rate (qpeak, m3/s) is calculated 
with the modified rational formula: 
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where Area is the HRU area (km2), tconc is the time of con- 

centration (h), and α is the fraction of daily runoff that occurs 
during the time of concentration. The time of concentration is 
calculated with a modified rational method (Chow et al., 1988) 
as: 
 

conc ov cht t t     (4) 

 
where tov is the overland flow time and tch is the channel flow 
time. Overland flow time is the time that water takes to travel 
from the furthest point in the sub-basin to a stream channel 
and it is computed as: 
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where L is the average subbasin hillslope length (m), slp is the 
average subbasin slope (% or m/m), and n is Manning’s rough- 
ness coefficient. The channel flow time is computed as: 
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where Lch is the channel length (km), n is Manning’s 
roughness coefficient of the channel, and slpch is the channel 
slope (% or m/m). 

The lateral flow (LF, mm) occurs whenever the water 
content of the soil exceeds its water content at field capacity 
and it is calculated as:  
 

,2
0.024 ly excess sat

d

SW K slp
LF

L

   
    

  (7) 

 
where SWly, excess is the drainable volume of water stored in 
saturated zone of the HRU per unit area (mm), Ksat is the 
saturated hydraulic conductivity (mm/h), d  is the drainable 
porosity of the soil (mm/mm), and L is the hillslope length (m). 

Multiplying the Ksat with slp gives the LF velocity at the 
HRU outlet (vlat; Neitsch et al., 2011): 

sin( )

tan( )
lat sat hill

sat hill sat

v K

K K slp




 
   

  (8) 

 
where hill  is the HRU gradient (degree). In SWAT it is assu- 
med sin( ) ~ tan( )hill hill   to simplify the equation, thus slp is 
equivalent to tan( )hill . 

The estimation of the baseflow BF depends on the water 
recharge of shallow aquifers and the baseflow recession 
constant. Transmission losses TLOSS were assumed negligible. 
Equations (1 ~ 8) show that all streamflow components in SWAT 
are affected by DEM derivatives. For instance, lateral flow is 
strongly influenced by slope gradient and hillslope length, and 
the peak runoff rate is a function of hillslope length.  
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2.3. Estimating the Hillslope Length 

According to Wishmeier and Smith (1978), in this study 
the hillslope length was defined as the horizontal distance 
from the point of origin of surface runoff to the point where 
runoff enters a river. The best estimates for hillslope length 
are obtained from field measurements (Yao et al., 2010), but 
these are not always available or practical, especially at water- 
shed scale (Zhang et al., 2013). In a basin the hillslope length 
is very difficult to calculate and it is not solely dependent on 
slope gradient (Bieger et al., 2015).   

In this study three methods for estimating hillslope length 
at basin scale were investigated. The first method (L1) is the 
current SWAT default method that defines the hillslope length 
based on slope gradient using Wishmeier and Smith (1978) 
look-up table. The slope gradient is derived from pre-analyses 
of the Digital Elevation Model (DEM) at subbasin level using 
the ArcSWAT interface (Winchell et al., 2013). L1 takes the 
maximum value of 122 m when the slope gradient is less than 
2%, and decreases to 9 m when the slope gradient is more 
than 25%. However, the original look-up table was proposed 
for setting hillslope length in the case of contour support pra- 
ctices and may not be appropriate in the absence of these. The 
second method (L2) estimates hillslope length from a DEM 
flow accumulation analysis. The freeware LS-TOOL developed 
by Zhang et al. (2013) was used here. LS-TOOL calculates 
hillslope length through a step-process that requires setting an 
accumulated area threshold (As, m2) above which water flow 
is channelized. As is a very sensitive parameter; Zhang et al. 
(2013) demonstrated that when increasing As, the hillslope 
length increases until a maximum value that depends on DEM 
pixel size, after which it remains quite constant. In our study, 
As was defined as the area for which the maximum possible 
hillslope length was 122 m (i.e. the DEM pixel size times 122 
m). Hence, multiplying 122 m times the DEM pixel size, As 
was set to 12200 m2 for the DEM100 and 3050 m2 for the 
DEM25. 

The third method (L3) is that suggested by Arnold et al. 
(2012a) in the presence of coarse or inaccurate DEM, i.e. 
setting hillslope length to 50 m (L3) everywhere. It is note- 
worthy that the representativeness of the values of hillslope 
length derived for the proposed method is not object of this 
study due to the fact that not field data were available for the 
comparison. 

2.4. SWAT Model Setup 

The first two hillslope length methods (L1 and L2) are 
strongly dependent on the accuracy of the DEM, hence in this 
study two DEMs of different resolution were investigated: the 
CCM2 DEM (Vogt et al., 2007) with 100 m pixel size, and the 
EU-DEM (EU-DEM Metadata, 2013) with 25 m pixel size. 
The CCM2 DEM is a pan-European raster derived from the 3 
arc-second digital elevation model from the Shuttle Radar 
Topography Mission (SRTM Version 4.1, about 90 m pixel 
size). Vogt et al. (2007) describe in detail its generation and 
accuracy. The EU-DEM is a continent-wide fusion dataset that 
covers the European Union (Bashfield and Keim, 2011; avai- 
lable online at the European Environmental Agency website 
http://www.eea.europa.eu/data-and-maps/data/eu-dem). The 
EU-DEM is a 25 m pixel size digital elevation model created 
by an automated data fusion of improved ASTER GDEM (Ad- 
vanced Spaceborne Thermal Emission and Reflection Radio- 
meter, ASTER GDEM database) with STRM data. In the fo- 
llowing, the abbreviations DEM100 and DEM25 will be used 
for CCM2 DEM and EU-DEM respectively. 

The combination of three hillslope length methods with 
two DEMs resulted in six model different configurations (called 
DEML configurations; Table 1). The six configurations differ- 
ed only for hillslope length and DEM pixel size, while all 
others input were kept constant, including the subbasins and 
streams delineation and the definition of HRUs. By main- 
taining the same unit definitions in the SWAT configurations, 
the impact of DEM resolution on unit definition was avoided, 
and the impact of hillslope length could be better isolated. 
Subbasins and stream delineation was based on the Catchment 
Characterization Modelling version 2 database (CCM2, Vogt et al., 
2007) for continental Europe, subdividing the basin in 753 sub- 
basins with average area of 180 km2. 

The landuse was defined using a map of 1 × 1 km for 
year 2000, built from the combination of CAPRI (Britz, 2004), 
SAGE (Monfreda et al., 2008), HYDE 3 (Klein Goldewijk and 
Van Drecht, 2006) and GLC2000 (Bartholome and Belward, 
2005) databases. The soil map of 1 × 1 km was obtained from 
the Harmonized World Soil Database (HWSD) (FAO, 2008), 
using top soil layer data. Except for urban areas, the com- 
bination of dominant land use and soil was used to define a 
single HRU per subbasin. Urban areas were considered hydro- 
logical isolated and defined as separate HRUs. In total 822 
HRUs were defined in all DEML configurations.  

Table 1. Characteristics of the Six SWAT Configurations Compared in this Study (DEML configurations) as Generated by the 
Combination of Two Digital Elevation Models (DEM) with Three Hillslope Length Methods 

DEML 
configurations 

DEM pixel 
size (m) 

Hillslope length 
method 

Hillslope length 
range (m) 

Description 

25L1 25 L1 9 - 122 SWAT default method based on slope calculated from DEM 25 m pixel size 
25L2 25 L2 20 - 45 Application of LS-TOOL (Zhang et al., 2013) using a DEM 25 m pixel size 
25L3 25 L3 50 Hillslope length fixed to 50 m 
100L1 100 L1 9 - 122 SWAT default method based on slope calculated from DEM 100 m pixel size 
100L2 100 L2 50 - 64 Application of LS-TOOL (Zhang et al., 2013) using a DEM 100 m pixel size 

1100L3 100 L3 50 Hillslope length fixed to 50 m 

*L1 = SWAT default method based on look-up slope table; L2 = flow accumulation method; L3 = constant hillslope length.   
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Management practices for each crop included planting, 
fertilization, irrigation and harvesting. The timing of mana- 
gement actions was implemented through daily heat unit 
method (Arnold et al., 1998). In this study the heat units for 
each crop were calculated by Bouraoui and Aloe (2007) using 
the PHU (Potential Heat Units) program (PHU, 2007), deve- 
loped at Texas Agricultural Experiment Station, while the 
amount of manure and mineral fertilization applied was re- 
trieved from the CAPRI model (Britz, 2004). The auto-irrigation 
was selected for irrigated areas based on the MIRCA database 
(Portmann et al., 2008). 

Reservoirs and lakes exceeding 20 km2 (Lehner and Döll, 
2004; Vogt et al., 2007) and hydropower plants of large gene- 
ration capacity (> 10MW; ICPDR, 2013) installed on the main 
rivers were included in the model. Reservoir outflow rates 
were modelled using the average release for uncontrolled 
reservoirs method (Neitsch et al., 2011) and their volumes 
were set according to Lehner and Döll (2004) and Vogt et al. 
(2007). 

The climate data including daily precipitation, tempe- 
rature, solar radiation, wind speed and relative humidity were 
obtained from EFAS-METEO at spatial resolution of 5 × 5 
km (Ntegeka et al., 2013). To account for the increase in 
precipitation with elevation that is typically observed in moun- 
tainous regions, four elevation bands were implemented. The 
20-year climate record (1990 ~ 2009) used for the study was 
divided into three parts. The first five years (1990 ~ 1994) 
were used as a model “warm up” period to allow the model 
parameters to adjust to the watershed characteristics. Calibra- 
tion of streamflow was performed for 1995 ~ 2006 in 98 
gauged stations. Validation was performed for the period 1995 
~ 2009 for the entire dataset of gauged stations (150 gauged 
stations; Figure 1).  

 
2.5. Streamflow Calibration and Validation 

Daily streamflow data were collected from different 
sources, including the Global Runoff Data Centre (GRDC, 
2010), and various national environmental agencies. The 
streamflow was calibrated independently for each configura- 
tion following a step-wise calibration procedure that involved 
sensitivity analysis, multi-variable calibration of headwater 
subbasins, and regionalization of the calibrated parameters 
(Pagliero et al., 2014; Malagò et al., 2015). Only gauged sta- 
tions in headwater subbasins were used in the calibration be- 
cause headwater subbasins are more likely to represent natural 
hydrological behaviour (Gudmundsson et al., 2012; Malagò et 
al., 2015) and the streamflow components are more repre- 
sentative than in larger basins where streamflow is often in- 
fluenced by human activities (Döll et al., 2008). The daily 
streamflow of headwaters subbasins was divided into its main 
components (surface runoff SR, lateral flow LF and baseflow 
BF) using the SWAT filter (Lyne and Hollink, 1979).  

The streamflow components of the headwater subbasins 
were calibrated separately using SUFI-2 (Abbaspour, 2008) 
method in four sequential steps that focused on different hy- 

drological processes: snow processes, surface runoff, lateral 
flow, and baseflow. The steps, parameters, and performance 
criteria used at each step are described in detail in Malagò et 
al., (2015). The procedure was slightly modified by including 
the parameter Manning’s roughness for tributary channel (CH 
N1) in the calibration of the surface runoff. In addition, a fifth 
final step of calibration was added by calibrating all hydro- 
logical parameters in a reduced range to account for any cova- 
riance of parameters belonging to different hydrological groups.  

After calibration, subbasins where calibration of monthly 
streamflow reached “acceptable performance” of monthly 
streamflow simulation were selected as donors for use in the 
parameter regionalization. “Acceptable performance” for donors 
was defined if the percent bias (PBIAS, Gupta et al., 1999) 
was in the range 	25% and the Nash-Sutcliffe efficiency 
(NSE; Nash and Sutcliffe, 1970) was > 0. Note that the NSE 
threshold was set low as to keep a sufficient number of well 
distributed donors, which is important to ensure robust re- 
gionalization (Harvey et al., 2012). Instead, in the overall eva- 
luation of the calibration and validation of model perfor- 
mances, the satisfactory performance criteria were set to the 
recommended statistics of PBIAS  25% and NSE > 0.5 
(Moriasi et al., 2007). 

Once the donors were selected, a regionalization tech- 
nique coupled with a classification procedure based on a simi- 
larity approach was applied. The similarity approach is based 
on the assumption that similar catchments behave hydro- 
logically similarly. The regionalization consisted in transfer- 
ring the calibrated parameter sets (Near Optimal Parameter set, 
NOP; Malagò et al. 2015) from donors to their hydrologically 
similar receptor subbasins. 

The definition of the similarity measure is subjective and 
conditions the success of the regionalization (Heuvelmans et 
al., 2006). The regionalization was performed using the Partial 
Least Squares Regression method (PLSR; Wold, 1966; Geladi 
and Kowalski, 1986) that allows identification of similar 
subbasins based on the correlation between the watershed 
characteristics and the streamflow characteristics. In total, 19 
independent variables representing the subbasin character 
istics (“c” matrix of PLRS regressors) and 14 dependent 
streamflow variables (“q” matrix of PLRS responses) were 
used. Malagò et al. (2015) provides a detailed description of 
all the variables. The PLSR analysis defined latent variables 
to identify “hydrological regions” using the Ward’s minimum 
variance linkage method (Ward, 1963) together with the 
Euclidean distance similarity. To find the best number of 
“hydrological regions” two index were used: the corrected 
Rand index (Hubert and Arabie, 1985) and the Meilă index 
(Meilă, 2007). Finally, in each hydrological region a cla- 
ssification procedure based on a supervising clustering app- 
roach (k-NN method; Dettling and Maechler, 2012) was per- 
formed. Each subbasin in a region that was classified hydro- 
logically similar to a given donor pertaining to the same hy- 
drological region received the donor NOP set. The regiona- 
lization and classification analysis were performed using the 
statistical software R (R Development Core Team, 2008), using 



A. Malagò et al. / Journal of Environmental Informatics 32(2) 82-97 (2018) 

 

88 

the packages (collection of mathematical functions) “pls” 
(Mevic and Wehrens 2007), “fpc” (Henning, 2010), and “sup- 
clust” (Dettling and Maechler 2012). 

The accuracy of model performance after calibration and 
regionalization-classification was evaluated by comparing the 
calibrated monthly streamflow with observed data using sta- 
tistic performance criteria. Percent bias (PBIAS %) and Nash 
and Sutcliffe coefficient were calculated using the R package 
“hydroGOF” (Zambrano-Bigiarini, 2012). However, since 
these criteria measures only specific aspects of a model’s 
performance, box and whiskers plots, visual appraisal of time- 
series, and residuals analysis (simulation-observation) were 
also used (Harmel et al., 2014; Bieger et al., 2012).  

The comparative assessment of six DEML configurations 
was conducted on different aspects of the modelling: des- 
criptive analysis of topographic characteristics, assessment of 
models calibration and validation, and evaluation of water 
yield components.  

3. Results and Discussion 

3.1. DEM Derivatives of Six DEML Configurations 

Differences in mean elevation, slope gradient, and hills- 
lope length of the six DEML configurations are presented in 
Figure 2. The two DEMs did not produce significant differ- 
rences in the mean altitude of subbasins (Figure 2a), but pro- 
duced small differences in slope (Figure 2b). The DEM100 re- 
sulted in lower slopes than the DEM25 confirming the results 
of other studies (e.g. Chaplot et al., 2005; Lin et al., 2013). 
The hillslope length L1 (25L1 and 100L1, Figure 2 c) increaseed 
step-wise until 122 m with decreasing slope. L2 markedly 
changed from the finest to the coarsest DEM. In the 25L2 
configuration, hillslope length was around 30 m whereas in 
100L2 it was around 60 m, with no clear relationship with 
slope gradient. Hence, the coarser DEM resulted in lower 
slopes and longer hillslope lengths (Lin et al., 2013). It is 
noteworthy that the constant hillslope length of 50 m (L3) was 
in between of 25L2 and 100L2 hillslope lengths. Furthermore, 
the distribution of hillslope length showed that L1 was also 
strongly correlated with elevation. Figure 2 d shows that L1 
decreased with increasing elevation and at elevation higher 
than 1000 m L1 were shorter (9 m). Conversely, in L2 and L3 
configurations hillslope length was not correlated with ele- 
vation or slope. 

 
3.2. Results of Model Calibration and Validation 

The calibration of monthly streamflow yielded satisfac- 
tory PBIAS (PBIAS in the range of 25%) in more than 50% 
of calibration headwaters in all DEML configurations (Table 
2). The configurations 25L2 and 25L3 reached 61% and 62% 
respectively of calibrated gauged stations with satisfactory PBIAS, 
followed by 100L2 and 100L3 with 59%, while 25L1 and 100L1 
reached the lowest percentage (56% and 57% respectively).  

The median of PBIAS for the satisfactory gauged stations 
was in the range of -4% to -2% for all configurations, indicating 
a negligible underestimation of streamflow, except for 25L1 

for which no bias was observed. NSE was satisfactory (NSE > 
0.5) in 30% of cases; however, the median of NSE of these 30% 
calibrated station was close to 0.7. 

The performances of monthly streamflow for the 150 vali- 
dation gauged stations were better than for the calibration 
dataset. More than 70% of validation gauged stations reached 
satisfactory PBIAS in each configuration, and around 40% of 
the stations had NSE > 0.5 (Table 2). The highest number of 
subbasins with satisfactory streamflow predictions were ob- 
tained for 25L2 (73% of gauged subbasins with median PBIAS 
of -1.7% and 45% of gauged subbasins with median NSE close    

Figure 2. Relationships between the subbasin main DEM 
derivatives in the SWAT configurations. 
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to 0.7) followed by 25L3 and 100L2, while 25L1 had the 
lowest numbers, but with the median PBIAS close to 0. 

The analysis of monthly percentage residuals (simulation- 
observation/observation) confirmed that all configurations pro- 
vide good simulations of streamflow with median residual 
values close to 10% in the calibration (Figure 3a) dataset and 
absence of residuals for 50 percentile of gauging stations in 
the validation dataset (Figure 3b). The interquartile range of 
monthly residuals for all configurations was within the inter- 
val -30% ~ 60% in the calibration dataset, indicating a slight 
tendency to overestimation of streamflow. The interquartile 
ranges were smaller, in the interval -30% ~ 40% in the valida- 
tion dataset, for which the distribution of residuals was 
broadly symmetric around zero.  

Spearman's rank correlation coefficients of the monthly 
streamflow residuals among the six configurations were all 
larger than 0.9, indicating that streamflow of DEML confi- 
gurations were highly correlated. The lowest correlation were 
found between the configurations 100L1 and 25L3 (~ 0.93) 
and 100L1 and 100L3 (~ 0.93) in the calibration dataset, and 
between the configurations 25L1 and 100L3 (~ 0.91) and 25L1 
and 25L3 (~ 0.93) in the validation one. These findings reflect 
the differences in the distributions of hillslope length L1 and 
L3. However, generally DEM pixel size and the hillslope 
length had a negligible impact on streamflow predictions and 
the spatial distribution of streamflow PBIAS showed no 
evident spatial pattern (e.g. Figure S1 for configuration 25L2).  

Generally, low performances were associated with rea- 
ches where the hydrology was strongly influenced by human 
activities, in particular by diversion and regulation of stream- 
flow, which were not accounted in SWAT, and are wide spread 
present in the study area. Mostly, barrages are built as casca- 
des along river courses and more than 33 barrages are located 
along the Danube until Vienna, on the tributary rivers Iller, 
Lech, Isar, Inn, Salzach, and Enns. Additionally, there are a lot 
of deviations, diversions and intakes (Schiller et al., 2010).  

Figure 4 shows the monthly time-series of SWAT simula- 
tions versus observations for two validation dataset stations, at 
the outlet of the Inn River and at the outlet of the entire Upper 
Danube basin, after the Gabcikovo reservoirs (locations are 
indicated in Figure S1). Although some discrepancies could 
be detected, visual appraisal of the time-series indicates good 
correlation between streamflow simulations and observations. 

3.3. Analysis of Behavioural Parameter Sets  

Figure S2 shows the distributions of NOP sets of donors 
for each configuration and indicates the hydrological proce- 
sses upon which they were calibrated in the step-wise calibra- 

tion (snow processes, step [1]; surface runoff, step [2];  lateral flow, 
step [3]; and baseflow, step [4]).  

For the snow process parameters (parameters identified 
with [1] in Figure S2), all DEML configurations were quite 
similar, except for the snowfall (SMTMP, °C), the snowmelt 

Table 2. Summary of Calibration and Validation of Monthly Streamflow Simulations in the Upper Danube Basin for each 
DEML Configuration 

  25L1 25L2 25L3 100L1 100L2 100L3 
Calibration (1995 ~ 2006; 
#98 gauged stations) 

Percentage of gauged stations with satisfactory PBIAS* (%) 56 61 62 57 59 59 
Median PBIAS (%) for satisfactory stations 0 -2.05 -3.6 -3.9 -2.35 -3.4 
Percentage of gauged stations with satisfactory NSE** (%) 31 32 32 31 32 31 
Median of NSE of satisfactory stations 0.68 0.67 0.67 0.66 0.66 0.69 

Validation (1995 ~ 2009; 
#150 gauged stations) 

Percentage of gauged stations with satisfactory PBIAS* (%) 70 73 72 72 72 71 
Median PBIAS (%) for satisfactory stations -0.1 -1.7 -3.75 -2.6 -2.1 -3.3 
Percentage of gauged stations with satisfactory NSE** (%) 42 45 45 37 44 44 
Median of NSE of satisfactory stations 0.64 0.67 0.68 0.67 0.67 0.69 

*Model simulation can be judged as satisfactory if PBIAS  25% for monthly streamflow (Moriasi et al., 2007). 
**Model simulation can be judged as satisfactory if NSE >0.5 for monthly streamflow (Moriasi et al., 2007). 
 

 
Figure 3. Box-and-whisker plots of percentage residuals between 
simulated and observed streamflow (Q) of the six DEML 
configurations for the calibration (a) and validation (b) dataset. 
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temperatures (SFTMP, °C) and the precipitation lapse rate 
(PLAPS). SFTMP and SMTMP were generally lower and had 
a larger range in 25L2 (with a median around -0.3 °C for 
SFTMP and 1.3 °C for SMTMP). The highest median value 
for SFTMP and SMTMP were obtained for 25L3 with 0.63 °C 
and 2 °C respectively. The snow pack temperature lag factor 
(TIMP, adimensional) was slightly different across the six 
configurations, with minimum median values of 0.24 (100L1) 
and maximum of 0.43 (25L2). The temperature lapse rate (TLAPS, °C) 
was used to adjust temperature for elevations band in each 
subbasin; in all DEML configurations the median TLAPS was 
around -5 °C indicating a decrease of temperature around 5 °C 
with a 1 km increment of elevation. The increment of precipi- 
tation per km of elevation (PLAPS, mm/km) was higher for 
configuration 25L2 and 100L1 (around 65 mm/km of median 
value) than the others (around 50 mm/km of median value). 
The median initial snow content (SNOEB) in each elevation 
band ranged between 112 mm for configurations 100L1 and 
160 mm for 100L2.  

The surface runoff parameters (parameters identified with 
[2] in Figure S2) did not greatly differ among the DEML con- 
figurations. However, CN2 adjustment (rate value) had a 
larger range in 100L1 with a median relative increase of 12%, 

whereas in the other configurations CN2 increase was around 
14%. The median of CH N1 slightly increased from L1 to L3 
both for DEM25 (from 0.11 to 0.13), while for DEM100 is 
about 0.12. The melt factor for snow on December (SMFMN) 
was more sensitive than the melt factor on June (SMFMX) 
and configuration 100L1 and 25L2 had the highest and lowest 
median of 4.7 and 2.9 respectively. It is noteworthy that these 
parameters regulate the melt factor at daily time step, so 
should belong to snow processes group. However, their effect 
is to change the position in time of runoff hydrograph, so they 
were included in the “surface runoff step of step-wise cali- 
bration” (see Malagò et al., 2015) because that is the phase 
where runoff hydrograph is calibrated at daily time step. 

In the calibration of lateral flow (see the parameters iden- 
tified with [3] in Figure S2), the soil plant compensation 
factor (EPCO) and soil evaporation compensation factor 
(ESCO) had different ranges between the model configu- 
rations, implying differences in the water balance yield com- 
ponent estimations. The EPCO regulates water uptake by plants 
and it is a function of water required by plant transpiration and 
the amount of available water. If the upper layers in the soil 
profile do not contain enough water to meet the potential 
water uptake, an increase in the EPCO parameter allows water 
uptake to occur from the lower soil layers. EPCO values were 
higher in 25L2 with median values around 0.5, while for the 
others the median values were below 0.5, allowing less water 
uptake from the lower soil layers. The ESCO parameter repre- 
sents the influence of capillarity on soil evaporation in each 
soil layer; it ranges between 0.01 and 1. When ESCO is low, 
the model extracts more water from lower soil layers to meet 
the evaporative demand. The configurations 25L2, 100L1 and 
100L3 had median values around 0.4 and maximum inter- 
quartile between 0.26 and 0.5. Instead, 100L2 and 25L3 had 
respectively the smallest (0.2) and highest median value (0.6). 
The available water capacity (SOL AWC) adjustment (rate 
value) was lower for 25L1 and 100L1 (median value around 
0.1) than other configurations (median values from 0.15 to 
0.2), indicating the necessity for other configurations to in- 
crease of about 15 ~ 20% the water capacity in soil layers. 
The saturated hydraulic conductivity (SOL K) required the 
same adjustment of about 25% in all configurations, excepted 
for 100L1 that required 20% of increment. 

Among the groundwater parameters (see the parameters 
identified with [4] in Figure S2), the recharge of deep aquifer 
(RCHRG DP) had the highest median value of around 0.18 
for configurations 100L1, 100L2, 100L3 and 25L3, while 
25L1 and 25L2 had the smallest median values (around 0.10) 
and interquartile. In addition, the median of the threshold 
depth of water in the shallow aquifer (GWQMN, mm H2O) 
increased from L1 to L3 (both DEM pixel size) from appro- 
ximately 500 to 600 mm, as well as the groundwater revap 
coefficient (GW REVAP) from 0.07 to 1 for DEM25. In addi- 
tion, the median of the threshold depth of water in the shallow 
aquifer for revap was the highest for 100L1 (343 mm). 

 

Figure 4. Comparison of SWAT outputs for 25L2 with 
observations (OBS) at two selected monitoring gauging 
stations (locations A-B shown in Figure S1). 
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The baseflow alpha factor (ALPHA BF) values were 
very similar in each configuration, with median values around 
0.75 indicating a rapid hydrological response of the subbasins. 
About the groundwater delay parameter (GW DELAY, days), 
100L1 reached the lowest median value of about 27 days 
followed by 25L2, 100L2 and 100L3, while 25L1 and 25L3 
reached the highest median values of 43 and 48 days respect- 
tively.  

It may thus be gathered that the calibrated parameters 
were able to reflect the behaviour of the subbasins changing 
the DEML configurations. In particular, quite different para- 
meter values were obtained between the configurations during 
the adjustment of lateral flow (i.e. SOL AWC and ESCO) and 
baseflow processes (i.e. RCHRG DP, GWQMN and GW 
REVAP) indicating that the DEML configurations may have a 
markedly impact on the prediction of the related streamflow 
components. 

 

3.4. Impact of Hillslope Length on Streamflow Components 

While the impact of hillslope length on the total stream- 
flow predictions appeared negligible, the analysis of stream- 
flow components revealed some differences between DEML 
configurations as illustrated in Figure S3. Figure S3 shows the 
comparisons between monthly simulated and observed sur- 
face runoff, SR, (Figure S3a), lateral flow, LF (Figure S3b) 
and baseflow, BF (Figure S3c) for the 98 calibrated gauging 
stations in the period 1995 ~ 2006 (see Table 1), that were 
considered more representative of the natural hydrological be- 
haviour.    

The interquartile of monthly SR ranged from 0.12 to 2.8 
m3/s for all configurations (Figure S3 a), with median values 
around 0.75 m3/s that fell on the observed interquartile (0.24 ~ 
1.54 m3/s). Spearman's rank correlation coefficients of the SR 
monthly residuals (simulation-observation) were all very high 
(ρ > 0.97). These findings indicate that all DEML configu- 
rations simulated monthly SR well and in very similar way, 
thus the impact of DEM pixel size and hillslope length was 
negligible.  

The interquartile range of lateral flow was overestimated 
in all configurations (maximum interquartile range from 0.17 
to 1.3 m3/s) compared to the observations (between 0.05 ~ 0.3 
m3/s) (Figure S3 b). In particular, the median LF ranged from 
0.44 m3/s (100L3) to 0.62 m3/s (100L1), while the median of 
observation was around 0.13 m3/s. The Spearman’s rank 
correlation coefficients ρ between LF monthly residuals of 
lateral flow of the calibration dataset (Table 3) reveal that 
configurations 100L2 and 25L3 were high correlated (ρ = 
0.96), as well as 25L2 ~ 25L3 and 100L2 ~ 100L3 reflecting 
that L3 resulted in lateral flow values similar to L2 method. 
Conversely, configurations 100L1 ~ 100L2 and 100L1 ~ 25L3 
had the lowest ρ coefficients, around 0.40, followed by 100L1 
~ 25L2 (ρ = 0.54) and 100L1 ~ 100L3 (ρ = 0.60), reflecting 
the differences in hillslope length distributions. Furthermore, 
the configurations 25L3, 25L1 and 25L2 were strongly co- 
rrelated to 100L3, 100L1 and 100L2 respectively, indicating 
that the DEM pixel size didn’t affect the lateral flow es- 

timations. 

The maximum interquartile range of baseflow was be- 
tween 0.3 and 3.5 m3/s with a median around 1.5 m3/s, 
slightly lower the median of observation (around 2 m3/s). 
Spearman's rank correlation coefficients ρ of BF residuals 
were all very high (ρ > 0.9), indicating that, as for surface 
runoff, DEM pixel size and hillslope length had negligible 
impact of baseflow estimation.  

While the method used to subdivide the streamflow into 
its components introduced a certain degree of uncertainty 
(Huyck et al., 2005), an explanation of LF overestimation and 
its sensitivity to hillslope length can be found in SWAT 
equations (Equations 7 and 8). The assumption that sin( ) ~hill  
tan( )hill  is not valid in steep slopes for which the difference 
between tangent and sine is not negligible (Bieger et al., 
2015). As a consequence, at steep slopes lateral flow resulted 
overestimated. The overestimation of LF means an underes- 
timation of the amount of soil water that is available for per- 
colation to the groundwater (Bieger et al., 2015), thus leads to 
the underestimation of baseflow. In Figure S3c shows that 
configuration 100L1 produced the highest overestimation of 
lateral flow (median of value around 0.62 m3/s) that corres- 
ponded to a larger underestimation of baseflow compared to 
other configurations (median around 1.4 m3/s, Figure S3b), 
confirming this mechanism.   

In addition, it was observed that the lateral flow monthly 
residuals increased with the elevation as showed in Figure S4.  
This figure shows the monthly residuals for three classes of 
elevation: from 0 to 500 m, from 500 to 1000 m and over 
1000 m. In the class of the highest elevation, 25L1 and 100L1 
reached the highest residuals (median values of around 0.7 
m3/s), indicating that the SWAT default configuration (both 
with finer and courser DEM) was not able to reproduce 
correctly the lateral flow in mountainous and steep subbasins. 

 

3.5. Impact of Hillslope Length on Water Yield Predictions 

at Different Spatial and Temporal Scales 

Figure S5 shows the impact of DEML configurations on 
the HRU water yield and its components (in mm) at annual 
and monthly time scale as mean during the simulation period 
(1995 ~ 2009) compared to the related interquartile of 98 cali- 
brated stations for the same period. Mean annual and monthly 
HRU surface runoff (SR) was very similar across all configu- 

Table 3. Spearman's Rank Correlation Coefficient ρ 
between the Monthly Residuals of Lateral Flow (LF, m3/s) 
of DEML Configurations for the Calibrated Dataset (#98 
gauged stations, 1995-2006) 

 25L1 25L2 25L3 100L1 100L2 100L3 

25L1 1      
25L2 0.79 1     
25L3 0.66 0.93 1    
100L1 0.86 0.54 0.42 1   
100L2 0.64 0.91 0.96 0.41 1  
100L3 0.68 0.86 0.90 0.60 0.90 1 
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rations (Figure S5a and b), confirming that DEM pixel size 
and hillslope length did not impact the generation of surface 
runoff, nor the time of concentration (hr) or peak runoff rate 
(m3/s). The median of time concentration was around 10 hours 
and the median of peak runoff rate was approximately 20 m3/s 
in all configurations. These results concur to Jarihani et al. 
(2015) findings on the impact of DEM-pixel size on hydro- 
dynamic model, which demonstrated that the peak runoff rate 
did not change at DEM pixel size ranging from 30 to 250 m 
and that the time of concentration did not change until a pixel 
size of 120 m. However, the long-term annual and monthly 
mean of SR were close to the 75 percentile of observations, 
highlighting a slightly long-term overestimation of observa- 
tions. 

Differences in HRU lateral flow (LF) and baseflow (BF) 
(Figure S5c, d, e, f) confirmed the sensitivity of LF to hills- 
lope length due to Equations 7 ~ 8 and its linked impact on 
BF already observed with the streamflow analysis. The confi- 
gurations 25L1 and 100L1 produced the highest values of la- 
teral flow, in the range of  60 ~ 85 mm/y dropping out to the 
interquartile of observations (from 9 mm in 2008 to 57 mm in 
2002), while 100L2, 100L3 and 25L3 were within the 
observed range (Figure S5c). The peak of mean monthly LF 
was observed in May; configurations 25L1 and 100L1 
reached the maximum value of 13 mm/month followed by 
25L2 with about 7 mm/month and then the other configu- 
rations with values in the range of 4 ~ 5 mm/month (Figure 
S5d).  

For BF, the impact of DEML configurations was the 
opposite than for LF, with configuration 100L2 generating the 
highest baseflow, from 194 mm/y (year 2004) to 344 mm/y 
(year 2002), while 100L1 generated the lowest, from 160 
mm/y (year 2004) to 306 mm/y (year 2002; Figure S5 e). The 
largest differences in monthly baseflow were from April to 
November, and the maximum difference between 100L1 and 
100L2, about 5 mm/month, was observed in May (Figure S5 
f).  

Mean annual and monthly water yields (WYLD, Figure 
S5 g, h) didn’t show remarkable differences between DEML 
configurations, except for 25L1, which resulted in the highest 
monthly water yield, particularly for the period March-Sep- 
tember (Figure S5h). Figure S5 shows also that BF and 
WYLD were within the observed interquartile in all configu- 
rations both for annual and monthly time step. 

 
3.6. Impact of Hillslope Length on Water Balance 

Figure 5a, c and e shows the influence of DEML con- 
figurations on the proportions of evapotranspiration (ET) and 
water yield (WYLD), while the proportions of water yield 
components (surface runoff, lateral flow and baseflow) are 
shown in Figure 5b, d and f.  

The analysis was limited to the whole Upper Danube and 
two selected main tributaries with comparable drain area, the 
Morava and Inn river basins that however differ in elevation, 
slopes, climate, and land cover. The Inn river basin (25920 
km2) is characterized by a mean elevation of 1300 m, mean of 

precipitation of 1200 mm, median slope of 27% and the forest 
covers more than 50% of total area. Instead, the Morava 
(26628 km2) river basin is characterized by a mean elevation 
of 380 m, precipitation around 600 mm, negligible slope 
(mean value of 5%), and the cropland is dominant covering 
more than 60% of total area. 

The impact of DEML configurations on ET and WYLD 
was negligible. This is not surprising considering that the 
same HRUs were kept in all DEML configurations, therefore 
interception, infiltration and surface runoff generation were 
not affected by the configuration. ET in the Upper Danube the 
ET was 50% of total precipitation (Figure 5a), while in the 
Morava it was about 80% of total precipitation (Figure 5c), 
and in the Inn river only about 30% (Figure 5e).  

Instead, some differences between the DEML configu- 
rations could be observed in the components of the water 
yields (Figure 5b, d, f), namely in the partitioning between 
lateral flow and baseflow, whereas surface runoff was very 
similar across configurations in all instances. For the whole 
Upper Danube (Figure 5b), the surface runoff was approxi- 

 
Figure 5. Bar plots of mean annual partitioning of precipitation 
(PCP) in evapotranspiration (ET) and water yield (WYLD) (a, c, 
e, all in %) and the water yield in surface runoff (SR), lateral flow 
(LF) and baseflow (BF) (b, d, f, all in %) for the entire Upper 
Danube Basin, the Morava and Inn River Basins. 
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mately 42% of total WYLD, while the lateral flow varied 
from 4% for 100L2 to 12% for 100L1. Baseflow volumes 
were higher where lateral flow volumes were lower, and 
varied from 46% (100L1) to 53% (100L2) of total WYLD. 
Differences in lateral flow and baseflow were even more 
noticeable in the Inn (~ 29920 km2, Figure 5 d). In the Inn, the 
surface runoff was around 37% of total WYLD, and the 
lateral flow changed from 8% of 100L2 to 25% 100L1 and 
25L1. Again, the baseflow were higher where the lateral flow 
was lower approximately 38% for configurations 25L1 and 
100L1, while it was 54% for 100L2.  

It is noteworthy that the highest lateral flow of 25L1 and 
100L1 corresponds to very low values of hillslope length 
(median value approximately 15 m) in mountainous and steep- 
er subbasins. Instead, at increasing values of hillslope length, 
lateral flow tended to decrease. Even in the Morava river ba- 
sin, where lateral flow was small due to the high evapo- 
transpiration and the small water yield, differences in LF and 
the impact of hillslope length could still be detected.  The 
median hillslope length was 60 m for configuration 25L1, 
100L1 and 100L2, and the lateral flow was respectively 2.7%, 
3.3% and 1.7% of total water yield. In 25L2, the median 
hillslope length was around 30 m, and lateral flow was higher, 
about 3.5%. However, these differences were negligible. 

 
4. The Recommended DEML Configurations 

The analysis indicated that the streamflow was well 
predicted in all DEML configurations, thus both DEMs and 
the three hillslope length methods could be valid (Figure 3). 
This confirms findings reported in other studies (i.e. Chaplot, 
2005; Lin et al., 2010; Zhang et al, 2014) that focused mainly 
on DEM pixel size. However, the analysis of streamflow and 
water yield components revealed differences between the 
configurations affecting SWAT simulation of the hydrological 
processes.  

Surface runoff was well simulated in all DEML confi- 
gurations (Figure 3a), albeit there was a tendency of overesti- 
mation for all DEML configurations (Figure S5a, b). The 
generated surface runoff was unaffected by changes in DEM, 
hillslope length, or the simulation of lateral flow. An increase 
of lateral flow should lead to a larger amount of surface runoff 
due to higher soil water content in the footslopes, but SWAT 
cannot account for this. The adjustment of the Curve Number 
(CN) in steep slopes as pointed out for instance by Huang et 
al. (2006) and Bieger et al. (2015) could partly account for 
this, and would be recommended. As a consequence, in the 
surface runoff estimations the DEML configuration had a 
secondary role compared to the uncertainty of the model struc- 
ture such as the model inaccuracy due to over-simplification 
of the processes considered in the model (Wagener and Gupta, 
2005; Liu and Gupta, 2007; Clark et al., 2008). 

Instead, DEML configurations impacted lateral flow si- 
mulation, which uses hillslope length and slope (Equation 8). 
When the hillslope length increases, the lateral flow decreases. 
Thus in steep areas, where hillslope length is the lowest when 
using SWAT default method, configurations 25L1 and 100L1 

produced the highest lateral flow, followed by 25L2. Con- 
versely, in flat areas, the differences between the confi- 
gurations were negligible. This could be observed at HRU 
scale: for instance, the highest lateral flow was observed in 
forest and pastures HRUs of the Alpine areas, while in the 
flatter cropland lateral flows was low. The same could be 
observed at basin level: in the Inn river basin, characterized 
by high elevation, steep slopes, high precipitation, the lateral 
flow ranged 8% for 100L2 to around the 25% for 25L1 and 
100L1 (Figure 5).  

The high lateral flow estimations in mountainous areas in 
the 100L1 and 25L1 appear to be excessive (Figure S4). In- 
deed, all DEML configurations overestimated lateral flow in 
the calibrated headwaters (Figure S3), due to approximation 
of the sine of the slope with its tangent in Equation (8), which 
affected lateral flow estimation in steep slopes. Lateral flow in 
configurations 100L2, 100L3 and 25L3 appear more reason- 
able. Instead 25L2 slightly overestimated lateral flow albeit 
less than 25L1 and 100L1.  

The overestimation of later lateral flow lead to an under- 
estimation of baseflow (Figures S3c and 5). The configure- 
tions 100L2, 25L3 and 100L3 appeared to predict reasonable 
baseflow, partly overcoming the lateral flow issue (Figures S3 
and S5).  

In conclusion, configuration 100L2 best suited for a 
spatially distributed hydrological model. Configuration 25L3 
and 100L3 were comparable to 100L2, and could be consi- 
derate as simple alternatives, that however should be eva- 
luated in each specific case study. 

5. Conclusions 

 Hillslope length plays an important role in controlling 
the hydrological response of a basin, since it exerts a primary 
control on the fluxes transported towards the river network 
through the soils and hillslopes. In this study the impact of 
hillslope length on SWAT streamflow predictions was inves- 
tigated using three hillslope length methods (L1, L2, L3) and 
two DEMs of 25- and 100-m pixel size given a complete over- 
view of possible impacts of hillslope length estimations on 
SWAT simulated hydrological processes. These methods lead 
to different hillslope length distributions, but only L2 method 
(the three-dimensional DEM flow accumulation method) was 
sensitive to DEM resolution, resulting in longer hillslope leng- 
th with the 100 m DEM pixel size (~ 60 m) than with the 25 
m DEM (~ 30 m). Conversely, the SWAT default method (L1) 
was not affected by DEM pixel size. 

While all configurations reached satisfactory simulation 
of monthly streamflow, the analysis of streamflow compo- 
nents (surface runoff, lateral flow, baseflow) highlighted 
differences in configuration outputs. The DEM resolution did 
not impact SWAT streamflow simulations; both DEMs were 
sufficient for streamflow modelling at this scale, confirming 
literature findings that a finer resolution DEM may not neces- 
sarily improve model simulations. Rather, the optimal DEM 
pixel size depends on the environmental characteristics, the 
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desired level of prediction, and the model output of interest 
(Chaplot, 2014; Zhang et al., 2014).  

The hillslope length method had no impact on total 
streamflow and surface runoff, but had an important impact 
on the partition between lateral flow and baseflow. This bears 
important consequences in the simulation of pollutant move- 
ments, like nitrates, in the landscape. The current default 
method L1 was shown to produce larger errors in the simu- 
lation of streamflow components in steep areas. In particular, 
the lateral flow always yields higher residuals where slopes 
are higher and the associated hillslope lengths smaller. This 
reflects the reported inverse power relationship between hill- 
slope length and lateral flow estimation (Equation 7). How- 
ever, it seems that this inverse power relationship does not 
hold for larger catchments, where estimated values of hill- 
slopes length lower than 10 meters might not be realistic (Fig- 
ure 2 d). 

The hillslope length method based on DEM analysis of 
flow accumulation (L2) resulted in the most adequate esti- 
mations of lateral flow and baseflow in steep regions. The L2 
method is conceptually more consistent for application in 
spatially distributed models than the current method, since it 
provides a more reliable description of the landscape morpho- 
logies throughout a 3D analysis. Furthermore, the L2 method 
is sensitive to DEM resolution, since the use of different DEM 
pixel size produces different hillslope lengths, while the 
default ArcSWAT method returns the same values of hillslope 
lengths. For future SWAT development, we believe that the 
LS-TOOL (Zhang et al., 2013) should be integrated in Arc- 
SWAT (interface GIS of SWAT) in order to replace the current 
hillslope length calculation. However, further efforts should 
be done for improving the representativeness of surface runoff 
according to the lateral flow estimations. 

The combination of DEM100 m and L2 was the optimal 
configuration to predict streamflow in the Upper Danube and 
is recommended in general in large basins given that the use 
of DEM100 reduces the computational burden for SWAT 
application at large scale (i.e. time of calculation of topogra- 
phic characteristics in the phase of “Automatic Watershed De- 
lineation”). 

Choosing a constant hillslope length of 50 m (L3) how- 
ever was a good second alternative to be considered when 
DEM resolution is of 25 m or coarser, especially if the DEM 
accuracy is low. Furthermore, given the importance of hill- 
slope length on sediment outputs reported in literature (Cha- 
plot, 2014; Zhang et al., 2014) the impact of hillslope length 
on sediment predictions was explored in Vigiak et al. (2015), 
in a study that confirmed the suitability of L2 method for 
prediction of sediment yields. 

These results can be considered as representative for a 
wide range of landscapes since the Upper Danube is cha- 
racterized by heterogeneous topography, large climate varia- 
tions, several land covers/uses and soil types. They can also 
be considered valid for any catchment hydrological model 
that shares a structure for runoff and lateral flow partitioning 
similar to the SWAT (Equation 2 and 7). In such models, a 

proper representation of DEM derivatives (such as hillslope 
length) commensurate to DEM pixel size is thus fundamental 
for a correct representation of hydrological processes. 
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