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This paper provides a global picture of the bifurcation scenario of the Hindmarsh–Rose model. A

combination between simulations and numerical continuations is used to unfold the complex bifur-

cation structure. The bifurcation analysis is carried out by varying two bifurcation parameters and

evidence is given that the structure that is found is universal and appears for all combinations of

bifurcation parameters. The information about the organizing principles and bifurcation diagrams

are then used to compare the dynamics of the model with that of a piecewise-linear approximation,

customized for circuit implementation. A good match between the dynamical behaviors of the

models is found. These results can be used both to design a circuit implementation of the

Hindmarsh–Rose model mimicking the diversity of neural response and as guidelines to predict the

behavior of the model as well as its circuit implementation as a function of parameters. © 2008
American Institute of Physics. �DOI: 10.1063/1.2975967�

The fundamental building block of every nervous system

is the neuron. There is an increasing trend towards study-

ing the behavior of relatively large networks (e.g., mil-

lions) of neurons and modeling/emulating such networks.

To do that, a significant common effort is necessary,

which involves several disciplines, such as biology, neuro-

science, physics, mathematics, computer science, and

electronics. One of the main reasons of this trend is

strictly connected with the research effort in understand-

ing how the brain works. In this kind of research activity,

it is necessary to combine experimental studies of animal

and human nervous systems with numerical simulation of

mathematical models. From a biophysical-mathematical

point of view, to model the electrical behavior of a bio-

logical neuron is one of the main problems. In developing

such models, a compromise must be found between two

seemingly mutually exclusive requirements: the model

for a single neuron must be computationally simple and,

at the same time, capable of mimicking almost all the

behaviors exhibited by real biological neurons (in par-

ticular the rich firing patterns). Understanding the dy-

namics of single neurons and their role within larger neu-

ral networks is therefore at the core of neuroscience.

There exists biologically plausible models that allow one

to simulate large size neuron networks. Brain function,

however, relies on the interplay of hundreds to billions of

neurons that are arranged in specialized modules on mul-

tiple anatomical hierarchies. Up to now, the simulation of

large networks of single- or multicompartment neural

models is still unrealistic if not hardware implemented.

On the other hand, the actual circuit implementations of

neurons exhibit behaviors only partially similar to those

of the corresponding models. The aim of this paper is

twofold. The first is a two-parameter bifurcation analysis

of the Hindmarsh–Rose model, carried out by combining

simulations with continuation methods. Also the influence

of two further bifurcation parameters on the model dy-

namics is investigated. The analysis provides a global bi-

furcation scenario where the bifurcation curves are orga-

nized by codimension-two bifurcation points. The

scenario outlining the organizing structure of the model

can be used in modeling studies, for instance to facilitate

the choice of a region of search and initial values for

parameter fitting. The second aim is to apply a recently

proposed method (based on piecewise-linear approxima-

tions) for the circuit implementations of ordinary differ-

ential equations (ODEs) to the Hindmarsh–Rose model.

Also, the approximate models are analyzed and the com-

parisons with the bifurcation scenario of the Hindmarsh–

Rose model exhibit good matchings. The approximate

models will correspond to circuits with two control pa-

rameters, allowing one to obtain rather different spike-

train patterns as responses to identical input currents,

i.e., diversity of the neural response.

I. INTRODUCTION

The phenomenological neuron model proposed by Hind-

marsh and Rose �HR� �Refs. 1 and 2� may be seen either as

a generalization of the Fitzhugh equations
3

or as a simplifi-

cation of the physiologically realistic model proposed by

Hodgkin and Huxley.
4

It has proven to be a single-

compartment model providing a good compromise between

two seemingly mutually exclusive requirements: The model

for a single neuron must be both computationally simple, and
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capable of mimicking almost all the behaviors exhibited by

real biological neurons �in particular the rich firing

patterns�.
5

Real neurons show a variety of dynamical behaviors,

according to the values of biophysical parameters.
6

Among

the most important ones, one may find �for examples, see

Fig. 8, gray lines�:

• Quiescence: the input to the neuron is below a certain

threshold and the output reaches a stationary regime.

• Spiking: the output is made up of a regular series of

equally spaced spikes.

• Bursting: the output is made up of groups of two or more

spikes �called bursts� separated by periods of inactivity.

• Irregular spiking: the output is made up of an aperiodic

series of spikes.

• Irregular bursting: the output is made up of an aperiodic

series of bursts.

The HR model is able to reproduce all these dynamical

behaviors and has been analyzed in the past, with respect to

one or two bifurcation parameters.
7–13

In the bifurcation

analysis carried out in the cited references, particular atten-

tion has been devoted to study the transitions between stable

bursting solutions and continuous spiking regimes and the

fold of cycles bifurcations cascade leading, through a period-

adding mechanism, to the transitions between quiescent

asymptotic behaviors and bursting regimes. The first goal of

this paper is to provide a global picture of the bifurcation

scenario with respect to two parameters �i.e., the input cur-

rent and the other parameter of the fast subsystem, control-

ling the transition between spiking and bursting�, with an

insight to the effects of two further parameters. The bifurca-

tion scenario is analyzed by combining simulations with con-

tinuation methods, showing that the bifurcation curves are

organized by few codimension-two bifurcation points. We

used the continuation packages MATCONT �Ref. 14� and

AUTO2000 �Ref. 15� for the continuation of equilibria and

limit cycles and of their codimension-one bifurcations. More

in particular, we used the package HOMCONT �Ref. 16� �in-

cluded in AUTO2000� to continue homoclinic bifurcations and

detect their codimension-two degeneracies.
17

The combined

method of analysis we use is very general and can be applied

to a large class of continuous-time smooth dynamical

systems.
18

The global bifurcation scenario provides concrete

information about the HR model, that may be useful in more

biophysically oriented studies, for instance, in modeling

studies as a guide to choose the parameters for fitting the

model to qualitatively different types of electrophysiological

behaviors.
19,20

The second goal is to apply to the HR model a method

for the circuit synthesis of nonlinear dynamical systems

based on the following main tools: a technique for the

piecewise-linear �PWL� approximation and circuit synthesis

of multivariate nonlinear functions;
21–25

optimization meth-

ods, and in particular genetic algorithms;
26

bifurcation analy-

sis through numerical methods, using both simulations and

continuation techniques.
27,28

In particular, the focus of the

second part of the paper will be on finding a reliable PWL

approximation of the HR model. To check the reliability of

the PWL approximations, a two-dimensional bifurcation dia-

gram is obtained also for properly smoothed versions of the

PWL models. The results show a good matching with respect

to the bifurcation diagram of the HR model.

We point out that the main advantages in choosing the

HR model are two: �i� its vector field exhibits only two non-

linear �polynomial� terms and �ii� there already exist circuit

syntheses,
29,30

where the only control parameter is the bias

current. Therefore this model is a good benchmark to test the

proposed method, in view of both a circuit implementation

of the HR model as a component of a network and, if useful,

the application of the whole approximation/synthesis proce-

dure to more complex �and physiologically realistic� neuron

models, such as the Hodgkin–Huxley one.
4

The rest of this contribution is organized as follows: Sec.

II briefly introduces the HR model, whose bifurcation analy-

sis with respect to two parameters is carried out in Secs. III

and IV. The main PWL approximation results are shown in

Sec. V.

II. THE HR MODEL

The HR model
2

is able to reproduce all the dynamical

behaviors listed in the Introduction and is described by the

following set of ODEs:

ẋ = y − x3 + bx2 + I − z ,

ẏ = 1 − 5x2 − y , �1�

ż = ��s�x − xrest� − z� .

Roughly, the roles played by the system parameters are the

following: I mimics the membrane input current for biologi-

cal neurons; b allows one to switch between bursting and

spiking behaviors and to control the spiking frequency; �

controls the speed of variation of the slow variable z in Eq.

�1� �i.e., the efficiency of the slow channels in exchanging

ions� and, in the presence of spiking behaviors, it governs the

spiking frequency, whereas in the case of bursting, it affects

the number of spikes per burst; s governs adaptation: a uni-

tary value of s determines spiking behavior without accom-

modation and subthreshold adaptation, whereas values

around s=4 give strong accommodation and subthreshold

overshoot, or even oscillations; xrest sets the resting potential

of the system.

In the following, we will present a bifurcation analysis

of the HR model with respect to b, I and, to a lesser extent,

� and s. The remaining parameter is xrest=−1.6.

III. BRUTE-FORCE BIFURCATION ANALYSIS

In this section we propose the first bifurcation analysis

results, i.e., a description of the overall bifurcation scenario

and the results of a brute-force bifurcation analysis, for �

=0.01 and s=4.
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A. Overall bifurcation scenario

A qualitative bifurcation diagram of the HR model is

sketched in Fig. 1. The overall bifurcation diagram is

roughly divided into eight regions, characterized by qualita-

tively different asymptotic �stable� behaviors. Some regions

have been represented larger than in reality. The meaning of

the colors is as follows:

• in the pale cyan region, the HR neuron is quiescent �only

one stable equilibrium�;

• in the light blue region, the HR neuron is quiescent �two

coexisting stable equilibria�;

• in the green region, the HR neuron is spiking regularly;

• in the yellow region, the HR neuron is bursting regularly;

• in the pink region, the system admits two coexisting stable

invariant sets, i.e., one stable limit cycle �either spiking or

bursting� and one stable equilibrium;

• in the pale red region, the system admits two stable

“simple” �spiking� limit cycles;

• in the brown region, the system admits three coexisting

stable invariant sets, i.e., one stable limit cycle and two

stable equilibria;

• in the gray regions, the system admits “nontrivial” periodic

and nonperiodic �either stable or unstable� solutions, then

periodic and/or nonperiodic solutions �irregular spiking or

bursting� can be observed.

Examples of asymptotic trajectories, corresponding to

the dots labeled from �a� to �h� in Figs. 2�a�, are shown in

Fig. 8 �gray lines�.

The parameter space is partitioned into the seven regions

by the following bifurcation curves: T1 and T2 fold of equi-

libria �red�; H1 and H2 Hopf �green�, either supercritical

�solid lines� or subcritical �dashed lines�; t1, t
1,l
�1�

, t
1,r
�1�

, and t
2,1

�1�

fold of cycles �blue�; f
0,1

�1�
period doubling �cyan�; h1 and h2

homoclinic �black�. We conjecture that the fold curve t1 ends

on a codimension-two point on the homoclinic curve h1, but

there is no numerical evidence of this fact. In any case, this

kind of analysis is of negligible practical interest, since in

reality the curves t1 and H1 are almost overlapping.

B. Brute-force bifurcation diagram

The brute-force bifurcation diagram shown in Fig. 2�a�

has been obtained by means of extensive simulations �nu-

merical integrations of system �1��. As a first step, a regular

grid of points has been defined in the parameter plane �b , I�.
Then, we have defined the Poincaré section y−x3+bx2+ I
−z=0, that corresponds to the maxima of x. For each pair of

parameter values belonging to the grid, after having dis-

carded the transient evolution, at most 200 consecutive one-

directional intersections of each trajectory with the Poincaré

section have been recorded looking for periodicity in the

evolution of the system. The classification is based on the

number of different values of z corresponding to these inter-

section points. In synthesis, when the z value is unique, the

neuron is spiking, whereas multiple values of z may corre-

spond to either bursting or chaotic �i.e., irregular� behaviors.

In the absence of periodicity, the behavior has been classified

as “chaotic.” The quiescence is checked during the transient

evolution. Eventually, the bifurcation diagram has been ob-

tained by associating a different color to different asymptotic

dynamical behaviors of the system. The diagram points out

that the HR model exhibits all the above mentioned dynami-

cal behaviors: cyan represents quiescence, green is for spik-

ing, yellow is for bursting, and black is for chaos. Moreover,

yellow changes to red as the number of spikes per burst

increases, while green tends to become darker as the spiking

frequency increases.

FIG. 1. �Color� Qualitative sketch of the overall bifurcation scenario.
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FIG. 2. �Color� �a� Brute-force bifurcation diagram. �b� Continuation analysis bifurcation diagram.
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The presence of regions admitting coexisting asymptotic

behaviors cannot be directly inferred from the colors.

IV. CONTINUATION ANALYSIS AND SPECIFIC
BIFURCATIONS

The �qualitative� borders of the regions described in the

previous section are actually induced by �quantitative� bifur-

cation lines. The invariant sets involved in these bifurcations

may be both stable and unstable, or only unstable. In this

section, we consider continuation techniques, instead of

simulation, to perform bifurcation analysis. Continuation

methods allow one to translate the bifurcation analysis of

equilibria and cycles into the solution of an implicit algebraic

equation which can be computed systematically. Hence, the

bifurcation analysis is reduced to locating the zeroes of some

functions, which can be found, with the desired precision, by

using Newton-based algorithms.

There are several advantages to using continuation meth-

ods as opposed to simulation in systems analysis:

• The solutions can be followed in the parameter space even

if they are unstable: by contrast, simulation allows the ob-

servation of stable solutions only. In this regard, it should

be noted that unstable periodic orbits, and in particular

saddles, are involved in many bifurcation phenomena. Fur-

thermore, the saddles’ invariants separate the basins of at-

traction of different attractors.

• There is no need to wait for transients to settle before

studying the invariants.

• The results are independent of the choice of Poincaré

section.

• Numerical problems associated with sensitivity to the ini-

tial conditions are avoided.

• Continuation makes it possible to detect hysteretic phe-

nomena due to coexisting attractors. This is difficult to

achieve by simulation methods.

The sketch in Fig. 1 has been obtained by reducing and

interpreting a thorough bifurcation analysis performed by

combining “brute-force” simulations with numerical continu-

ation analysis. The most significant part of the quantitative

bifurcation diagram corresponding to the aforesaid sketch is

shown in Fig. 2�b�.

The details of the different parts making up the bifurca-

tion diagram and its link to the qualitative analysis/partition

described in the previous section are discussed in the follow-

ing. In the scenarios sketched in the next figures, the bifur-

cating invariant sets are represented according to the follow-

ing code: stable �unstable� equilibria are represented as dots

�crosses�, whereas the presence of m stable �unstable� limit

cycles is pointed out by the label ms �mu�.

A. Bifurcations of equilibria

The most external bifurcation lines bordering the simple

oscillatory regimes and the coexistence of simple oscillatory

solutions are related to bifurcations of equilibria.

The system �1� can have at most three equilibria. The

three equilibria exist within the regions bordered by the

curves T1 and T2, marking fold bifurcations of equilibria. Out

of these regions, only one equilibrium �say, E3� exists. On

the curves H1 and H2, the equilibrium E3 undergoes a Hopf

bifurcation �either supercritical or subcritical�, thus generat-

ing a �spiking� limit cycle.

The bifurcation curves for equilibria are sketched in Fig.

3, where only the equilibria are shown.

B. Bogdanov–Takens: Existence of a global
bifurcation

At the upper intersection between H1 and T1, E1 and E2

undergo a Bogdanov–Takens �double zero� bifurcation �point

BT in Fig. 1�. Hence, in the intersection point BT a global

bifurcation curve h1 is rooted, on which an unstable cycle

degenerates, through a taming approach �E2 is a saddle with

real eigenvalues and two-dimensional stable manifold�, to a

homoclinic orbit to E2.

Despite the global bifurcation, BT still organizes only

simple behaviors, though degeneracies of h1 are good candi-

dates for justifying other more complex behaviors.

C. Noncentral saddle-node degeneracy

By numerically continuing the homoclinic bifurcation

curve h1 far away from BT, a first global degeneracy is de-

tected at the point SNH �see Fig. 1�, where the homoclinic

bifurcation undergoes a noncentral saddle-node
degeneracy.

17
This codimension-two bifurcation point acts as

an organizing center for excitability in many dynamical

systems.
31

D. Generalized-Hopf points

As shown in Fig. 1, both H1 and H2 contain generalized-

Hopf degeneracies �GH1 on H1, GH2, and GH3 on H2�,

where the numerically calculated first Lyapunov coefficient

changes its sign, thus changing the supercritical/subcritical

nature of the bifurcation.

The system unfolding around the generalized-Hopf bi-

furcation points is standard, even at a nonlocal scale.

E. Inclination flip degeneracy

The fold bifurcation of cycles t
0

�1�
rooted in GH2 ends in

an inclination flip degeneracy IF,
17,32,33

detected numerically

with HOMCONT on h2. The eigenvalues of E3 �saddle-node

with two-dimensional unstable manifold� at IF are approxi-

FIG. 3. �Color online� Bifurcation curves for equilibria.
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mately −4.5125, 0.3302, and 0.0159. The codimension-two

bifurcation point IF splits h2 into two homoclinic bifurcation

branches h2,o and h
2,t
�1�

, where the homoclinic orbit is oriented

and twisted, respectively. Moreover, an infinite series of

period-doubling bifurcations and an infinite series of �sec-

ondary� homoclinic doubling bifurcation curves are rooted in

IF, as qualitatively sketched in Fig. 4�a� �only the simplest

bifurcating invariant sets are shown�. Some of the corre-

sponding quantitative curves obtained by numerical continu-

ation and superimposed to the brute-force bifurcation dia-

gram are shown in Fig. 4�b�. The curves of the homoclinic

doubling cascade are not distinguishable.

Henceforth, we shall label as t j,k
�n�

the fold curves origi-

nating from the jth codimension-two bifurcation point �j
=0,1 ,2 corresponding to IF, B1, and B2, respectively� lo-

cated on a homoclinic curve whose originating cycle has n
turns. Furthermore, k indicates the number of turns of the

cycles colliding on the curve. Analogously, the flip curves

have been labeled as f j,k
�n�

. In this case, k indicates the kth flip

bifurcation in a Feigenbaum cascade.

The family of homoclinic bifurcations rooting in IF or-

ganizes the structure of the so-called chaotic region. This

region is fractionalized in subregions of chaotic and/or peri-

odic behavior, and the attractors �cycles and strange attrac-

tors� are characterized by different geometries, namely, by a

different number of oscillations. The series of Feigenbaum-

type cascades that exists on the right-hand side of the chaotic

region is also organized by the same bifurcation structure.

Indeed, the curves t
0,k
�n+1�

and f
0,k
�n�

on the right-hand side of

Fig. 4�b� form the skeleton of the series of Feigenbaum’s

cascades described in Refs. 11 and 12. In fact, the curve t
0,k
�n+1�

is the fold bifurcation that opens the periodic window of

period-�n+1�, and the curve f
0,k
�n�

is the first flip of the

period-�n+1� cycle.

F. Belyakov degeneracies

The homoclinic bifurcation curve h2,o undergoes a Be-

lyakov degeneracy �see the point B
1

�1�
in Fig. 1�, where the

equilibrium E3 changes from saddle �real� to saddle-focus.

This degeneracy has been detected numerically with

HOMCONT. Theory predicts several families �of infinite car-

dinality� of bifurcation curves rooting in this point and accu-

mulating exponentially on h2,o.
17,34–36

The outer curves de-

limit a region where wild �chaotic� trajectories can be

observed.
37

The quantitative bifurcation curves obtained by

numerical continuation are shown in Fig. 5�a�.

Actually, the homoclinic bifurcation curve h2,o is

U-shaped, but with a very sharp U-turn. For sufficiently low

values of both b and I, the right branch of h2,o corresponds to

homoclinic orbits to a saddle with a single maximum of x.

Going up along the right branch we pass a first Belyakov

point B
1

�1�
, and above that point we have homoclinic orbits to

a saddle-focus. Proceeding further, after the turning point we

encounter a second Belyakov point B
1

�2�
�in Fig. 5�a� B

1

�1�
and

B
1

�2�
are indistinguishable�, after which we have again ho-

moclinic orbits to a saddle. While making the U-turn, the

geometry of the homoclinic orbit changes significantly be-

cause a second maximum of x appears; the homoclinic orbit

then makes two global turns. The U-turn is very sharp, and

the two homoclinic branches, as well as the two Belyakov

points, almost coincide in the �b , I�-plane, so that we were

unable to resolve them. It is very difficult to numerically

produce more than a few of the subsidiary curves that accu-

mulate exponentially on the primary homoclinic curve h2,o

and have infinite-order tangency to it at the Belyakov point.

In the present case we were able to compute �through con-

tinuation� only the first fold of cycles and the first flip bifur-

cation curves of the corresponding families, as shown in Fig.

5�a�. The tangent bifurcation t
1,1

�1�
starts from B

1

�1�
and, after

two cusps, another tangent bifurcation t
1,2

�1�
returns to B

1

�2�
. The

flip bifurcation f
1,1

�1�
starts and returns to the same Belyakov

point B
1

�1�
.

The same observations can be applied, mutatis mutandis,

to the homoclinic bifurcation curve h
2,t
�1�

, that in turn under-

goes a Belyakov degeneracy �see the point B
2

�1�
in Fig. 1�.

The bifurcation curves obtained by numerical continuation

are shown in Fig. 5�b�. The labels GF1 and GF2 mark the

presence of two generalized-flip points.

G. Orbit flip degeneracies

Any homoclinic bifurcation curve h
2,t
�k�

rooting in IF has

an orbit flip �or orbit switch� degeneracy OF�k�. At this de-

generacy point, the homoclinic orbit departs from the saddle
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FIG. 4. �Color online� System unfolding around the codimension-two bifurcation point IF. �a� Qualitative bifurcation diagram. �b� Corresponding quantitative

curves obtained by numerical continuation.

033128-5 HR model and its PWL approximations Chaos 18, 033128 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



E3 along its unstable nonleading eigenvector.
17,33,38

Conse-

quently, while crossing OF�k�, the departure direction along

the unstable leading eigenvector switches.

The unfolding in the parameter space around an orbit flip

point depends on the relative arrangement of the saddle

eigenvalues.
33

For a relative arrangement of the saddles ei-

genvalues equivalent to ours, where �in absolute value� the

stable eigenvalue is larger than the two unstable ones, the

local bifurcation scenario �not completely known� contains a

fold of cycles and a flip curve, besides an infinite series of

secondary homoclinic bifurcation curves originating at

OF�k�.
33

Figure 5�c� shows the arrangement around OF�1� of the

bifurcation curves obtained by numerical continuation. The

fold of cycles t
2,1

�1�
and the flip curve f

0,1

�1�
are clearly visible

even at this scale. The secondary homoclinic bifurcation

curves are indistinguishable with respect to h
2,t
�1�

. Only the

simplest stable bifurcating invariant sets are shown; m stable

limit cycles with ni �i=1, . . . ,m� turns are labeled as

mn1,. . .,nm

s .

This figure points out the period-adding mechanism

leading to bursting behaviors. Below the curve t
2,2

�1�
there is

only a stable 1-turn cycle, which collides with an unstable

2-turn cycle on the curve t
2,1

�1�
. The unstable cycle, in turn,

collides with a stable 2-turn cycle on the curve t
2,2

�1�
. Then,

between t
2,2

�1�
and t

2,1

�1�
�more precisely, in the subregion above

the flip curves f
0,1

�1�
and f1� there coexist two stable cycles

�with one and two turns�, whereas above t
2,1

�1�
there is only a

stable 2-turn cycle.

Owing to this period-adding mechanism, that replicates

for cycles with higher numbers of turns �the local scenario

around OF�2� is shown in Fig. 5�d��, we obtain cycles corre-

sponding to bursting behaviors.

H. Bifurcation scenarios in other parameter planes

The bifurcation scenarios of � as a function of the input

current I are extensively studied in Ref. 12 as are, to a lesser

extent, the ones with respect to s. An essential point is that

the scenario is similar for any nontrivial combination of bi-

furcation parameters; the razor-shaped area with chaotic

lobes observed in Fig. 2 and magnified in Fig. 4�b� can also

be identified in the case when � or s is the second bifurcation

parameter, as shown in Fig. 6 �upper panels�. Since � is a

parameter of the third �slow� equation, increasing � from

values close to 0 will in essence smear out details in the

bifurcation plot of b vs I, as is shown in Fig. 6 �lower panel�,

where rough brute-force bifurcation diagrams on the param-

eter plane �b , I� are displayed, together with the Hopf bifur-

cation curves H1, for different values of �. As � increases,

the razor-shaped region becomes larger and has fewer differ-

ent lobes, until, for values of � approaching 0.1, no chaos

can be observed anymore; similarly, the active region of the

model bounded by the Hopf bifurcation curve becomes

smaller and smaller, until, for � just below 0.4 it disappears

altogether. A similar compressing behavior can be observed

for parameter s, which also modulates the slow equation �see

Fig. 6�.
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In the next sections, a PWL approximation of the HR

model will be obtained, and the dynamical behaviors of the

approximated system will be compared to the original ones.

V. PWL APPROXIMATION OF THE HR MODEL:
RESULTS AND DISCUSSION

We provide some basic elements of the PWL approxima-

tion method we apply to the HR model. The reader may refer

to Refs. 21–23, 27, and 28 for a detailed description of the

techniques used here. Many PWL models belong to the class

of function expansion models,

f iPWL�y;N� = �
k=1

N

wk
i �N��k�y;N� , �2�

where f iPWL is a component of the vector of functions

fPWL ,y= �xT ;pT�T is a generic �real� input vector, and N is the

�integer� number of basis functions �k�y ;N� whose sum

�weighted by the coefficients wk
i �N�� provides an approxima-

tion of a given scalar function f i �which, in our case, is the

ith component of the vector field f�. This is a very broad-

spectrum class of models, including, for instance, kernel es-

timators based on Bayesian methods
39

or on regularization

methods,
40

splines
41

and, in the PWL framework, wavelets

and prewavelets
42

and fuzzy models.
43

Since we are interested in implementing the single HR

neuron model as an electronic circuit, to be used as a com-

ponent of a network, we will refer to the technique �simpli-
cial PWL approach� proposed in Refs. 21–23, 27, and 28.

Generally speaking, a realistic circuit synthesis should be

based on a finite set of simple building blocks and, possibly,

on �parallel� architectures where identical structures are re-

peated modularly. The simplified PWL approach satisfies

both these requirements.
24,25,44

In the chosen technique, the PWL functions that approxi-

mate the vector field over a given compact domain are based

on a priori domain partitions through simple type-1 triangu-

lations �or simplicial partitions�. The simplices �or sim-

plexes� are obtained by subdividing each domain component

into a fixed number of identical segments, and each PWL

function is affine over each simplex. We remark that a crucial

point in the approximation procedure is the choice of the

basis functions �k�y ;N� whose weighted sum provides the

PWL functions. From a circuit implementation standpoint,

the most useful bases are the so-called �-basis, which is

suitable for mixed-signal circuit implementations,
44,45

and

�-basis, which is suitable for analog circuit

implementations.
24

In the first case, the number of domain subdivisions

along each dimensional component is fixed by the circuit

architecture. For instance, in the implementations proposed
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FIG. 6. �Color� Brute-force bifurcation diagrams on the planes �s , I� �upper-left panel� and �� , I� �upper-right panel, where the � axis is logarithmically

spaced�. Influence of � on the b vs I bifurcation scenario �lower panel�.
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in Refs. 44 and 45, this number is equal to 15 for any dimen-

sional component.

In the latter case, on the contrary, it is convenient to

reduce as much as possible the number of subdivisions. To

this end, it is possible to use mixed-integer optimization pro-

cedures based on evolutionary algorithms.
26

As can be easily seen by Eqs. �1�, the nonlinearities of

the model are polynomial and are confined in the first and

second equations. As a consequence, to attain a PWL ap-

proximation of the model it is sufficient to approximate the

nonlinear vector field with a piecewise-linear vector field de-

fined over a two-dimensional domain.

We defined two different cost functions, thus obtaining

two different PWL models. Going into details concerning the

adopted optimization approaches is beyond the scope of this

paper; we refer the interested reader to Ref. 26. Roughly

speaking, the first model, henceforth called � model, is ob-

tained by minimizing a cost function that depends on the

weights of the basis functions only �the domain partition is

fixed a priori� and measures the L2 distance between the

original and PWL functions all over the domain, i.e., a C0

distance between the dynamical systems. The second model

�henceforth referred to as � model�, is obtained by solving

�through the minimization of both a cost function and a qual-

ity factor� a mixed-integer problem that depends on both the

weights of the basis functions �real variables� and the num-

bers of subdivisions along each domain component �integer

variables�. Both the cost function and the quality factor take

into account some dynamical features of the system to be

approximated. In particular, for the approximation of the HR

model, we focused on the Hopf bifurcation curve H1 and on

the C1 distance between the dynamical systems all over the

domain. The � model provides a better tradeoff between ap-

proximation accuracy and model complexity, at the cost of a

heavier optimization approach.

Figure 7 shows the brute-force bifurcation diagrams ob-

tained by using �a� the � model; with seven subdivisions

along x� �−2.5,3.5� and one along b� �2.5,3.5�; and �b� the

� model, by fixing 15 subdivisions along both components

of the domain �x� �−4.5,5� and b� �0,5��. The � model is

suitable for mixed-signal circuit implementations, whereas

the � model �also due to its simplicity, since the number of

basis functions is N=16� is suitable for analog circuit imple-

mentations.

A continuation analysis requires a smoothing of the vec-

tor field.
27

In order to meet the smoothness requirements

imposed by the continuation methods, we used the following

smoothed version of the absolute value function: g�u�

=2u /� arctan�au�, where the parameter a controls the degree

of smoothness. In our continuations, we fixed a=40, which

guarantees a good tradeoff between smoothness and shape

preservation of the PWL vector field. The obtained bifurca-

tion curves are superimposed to the brute-force bifurcation

diagrams.

Figure 7�a� shows the fold of cycles bifurcation curve t1,

the �subcritical� Hopf curve H1, the flip curve f
0,1

�1�
, and the

homoclinic curve h
2,t
�1�

. A direct comparison with Fig. 2 shows

evidence that the bifurcation scenario is preserved and all the

dynamical behaviors are maintained by the approximated

model.

The bifurcation diagram shown in Fig. 7�b� �where the

vertical lines mark the subdivisions of the domain along the

b component� qualitatively matches the original model, even

if, from a quantitative standpoint, the result is less accurate.

This is evident also by looking at the bifurcation curve H1.

The fold of equilibria bifurcation curve T1 is quite accurate.

In order to find a better approximation also from a quan-

titative standpoint, one should obtain the model parameters

by minimizing the same cost function as for the � model.

Some examples of asymptotic trajectories are shown in

Fig. 8, where the black �gray� trajectories are generated by

the � PWL �HR� model for parameter pairs �b , I� corre-

sponding to the dots labeled from �a� to �h� in Figs. 2�a� and

7�b�. The eight parameter pairs correspond to the eight quali-

tatively different regions �see Sec. III A� of the original HR

model. For the equilibria �light-gray dots�, also the transient

trajectories �starting from the gray squares� are shown. It is

evident the good matching between the trajectories of the HR

and � PWL models, obtained for the same parameter pairs.
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This is another element that reinforces our claim that the

PWL approximation can provide circuits whose dynamical

behaviors are very faithful to the HR ones and can be se-

lected by acting on two control parameters.

VI. CONCLUSIONS

This paper outlined the bifurcation structure of the HR

model using a two-parameter analysis and derived a PWL

approximation of the HR neuron model. Both original and

approximate models have been analyzed by combining ex-

tensive simulations �exploring the parameter space� with nu-

merical continuation methods �by using AUTO2000 and

MATCONT�. The use of continuation techniques in addition to

extensive simulations allows us to obtain both a global pic-

ture of the bifurcation scenario and detailed information

about specific bifurcation curves, e.g., the families of ho-

moclinic bifurcation curves.

We focused on a previously reported combination of bi-

furcation parameters �b , I�, showing that the organizing prin-

ciples we found are in fact typical for the model �and not

specific for this combination of parameters�. Our results thus

summarize and extend those previously reported in the lit-

erature and give an overview of the general organizing struc-

ture of the model, rather than focusing on certain specific

features, thus providing a global picture of the bifurcation

scenario to be reproduced by the PWL models. We found a

good match between the dynamical behaviors exhibited by

the HR model and by its PWL approximations.

The PWL approximations have been obtained by resort-

ing to two different optimization techniques and lead to two

different circuit implementations. In both cases, the results

show the possibility of obtaining diversity of neural response

by properly controlling the two bifurcation parameters. The

next step will be the implementation �according to available

techniques� of a circuit with two control parameters �b and

I�, allowing one to obtain qualitatively different spike-train

patterns as responses to identical input currents, mimicking

the natural diversity of neural response.

The general bifurcation scenario of the HR model re-

ported in this paper can be also used as a guideline in neu-

ronal modeling studies to fit the HR model to different elec-

trical response patterns observed in real neurons.

In summary, the main contributions of this paper are

three:

• Application of a general method of bifurcation analysis to

the HR model provides a global bifurcation scenario over

the parameter plane �b , I�;
• the bifurcation scenario, in turn, gives concrete informa-

tion about the HR model and its organizing principles, that

are useful in more biophysically oriented studies;

• the obtained PWL approximations turn out to be reliable,
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showing a good matching of their dynamics with respect to

the HR model all over the �b , I� plane. This provides a

road-map for the subsequent circuit implementation of the

model and, consequently, to the use of the circuit as the

elementary component of a network of neurons with dif-

ferent behaviors.
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