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THE HIRONAKA THEOREM ON RESOLUTION OF

SINGULARITIES

(Or: A proof we always wanted to understand)

HERWIG HAUSER

Abstract. This paper is a handyman’s manual for learning how to resolve
the singularities of algebraic varieties defined over a field of characteristic zero
by sequences of blowups.

Three objectives: Pleasant writing, easy reading, good understanding.

One topic: How to prove resolution of singularities in characteristic zero.

Statement to be proven (No-Tech): The solutions of a system of polynomial equa-
tions can be parametrized by the points of a manifold.

Statement to be proven (Low-Tech): The zero-set X of finitely many real or complex
polynomials in n variables admits a resolution of its singularities (we understand by
singularities the points where X fails to be smooth). The resolution is a surjective

differentiable map ε from a manifold X̃ to X which is almost everywhere a diffeo-
morphism, and which has in addition some nice properties (e.g., it is a composition
of especially simple maps which can be explicitly constructed). Said differently, ε
parametrizes the zero-set X (see Figure 1).

Figure 1. Singular surface Ding-dong: The zero-set of the equa-
tion x2 + y2 = (1 − z)z2 in R3 can be parametrized by R2 via
(s, t) → (s(1− s2) · cos t, s(1− s2) · sin t, 1− s2). The picture shows
the intersection of the Ding-dong with a ball of radius 3.
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You will agree that such a parametrization is particularly useful, either to pro-
duce pictures of X (at least in small dimensions), or to determine geometric and
topological properties of X . The huge number of places where resolutions are
applied to prove theorems about all types of objects (algebraic varieties, compact-
ifications, diophantine equations, cohomology groups, foliations, separatrices, dif-
ferential equations, D-modules, distributions, dynamical systems, etc.) shows that
the existence of resolutions is really basic to many questions. But it is by no means
an easy matter to construct a resolution for a given X .

Puzzle: Here is an elementary problem in combinatorics — the polyhedral game of
Hironaka. Finding a winning startegy for it is instrumental for the way singular-
ities will be resolved. Each solution to the game can yield a different method of
resolution. The formulation is simple.

Given are a finite set of points A in Nn, with positive convex hull N in Rn (see
Figure 2),

N = conv(A) + Rn
≥0.
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Figure 2. Convex hull of points in Nn.

There are two players, P1 and P2. They compete in the following game. Player
P1 starts by choosing a non-empty subset J of {1, . . . , n}. Player P2 then picks a
number j in J .

After these “moves”, the set A is replaced by the set A′ obtained from A by
substituting the j-th component of vectors α in A by the sum of the components
αi with index i in J , say αj → α′

j =
∑

i∈J αi. The other components remain

untouched, α′
k = αk for k 6= j (see Figure 3). Then set N ′ = conv(A′) + Rn

≥0.
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Figure 3. Movement of points.

The next round starts over again, with N replaced by N ′: P1 chooses a subset
J ′ of {1, . . . , n}, and player P2 picks j′ in J ′ as before. The polyhedron N ′ is
replaced by the corresponding polyhedron N ′′. In this way, the game continues.
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Player P1 wins if, after finitely many moves, the polyhedron N has become an
orthant, N = α + Rn

≥0, for some α ∈ Nn. If this never occurs, player P2 has won.

Problem: Show that player P1 always possesses a winning strategy, no matter how
P2 chooses his moves.

To get a feeling for the problem, let us check what happens in two variables,
n = 2. If P1 always chooses J = {1} or {2}, the transformation on vectors α ∈ N2

is the identity, the polyhedron N ′ equals N and she loses. So she is forced to
eventually choose J = {1, 2}, and P2 may hence choose j = 1 or j = 2 at his taste.
Here is the evolution of N in the case P2 chooses first j = 1 (the dotted segments
correspond to vertices of N which move under the transformation to the interior of
N ′; see Figure 4).
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N N'

x11

Figure 4. Transform of polyhedron N .

If P2 chooses in the next move again j = 1, we get a polyhedron N ′′ with just
one (small) compact edge (see Figure 5).
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Figure 5. Transform of polyhedron N ′.

Then let P2 choose j = 2. The vertices move vertically and yield a polyhedron
N ′′′ which is already a quadrant (see Figure 6).

From this sequence of pictures it seems clear that N always gets sharper and
sharper until all but one vertex have become interior, in which case N is an orthant.
So we ask you: Can you prove this rigorously?

Should be easy, shouldn’t it? So why not try the case n = 3. Surprisingly
enough, this case is already a real challenge — though maybe not for you. Note
that P1 now has four options for how to choose the set J in {1, 2, 3}, and not all of
them will work in all situations.
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Figure 6. Transform of polyhedron N ′′ has become a quadrant.

What is all this about? Take a polynomial in seven variables of degree twenty-
three, for example

P =
√

π · x23 + y2z − cos 2 · u17v4w2 +
1 +

√
5i

2
· xt20 + Γ(

3

2
) · yuvt + 7ee.

If you wish to locate the zeroes of a polynomial equation, you will have, aside from
a few cases, a pretty hard time (and also computers and their graphics programs will
have trouble). If at one zero you know already (by chance or by experimentation)
a partial derivative of the polynomial does not vanish, you may solve the equation,
at least approximately, nearby this zero by the implicit function theorem, getting
an expression of the respective variable in terms of the others. Otherwise, if all
derivatives vanish, the geometric description of the zeroes will be difficult.

The best you can hope for is to construct a (possibly only local) parametrization
of the zero-set of the polynomial by the points of a manifold of the same dimension.
The obstruction for finding such a parametrization sits in the points where the
zero-set is not smooth, its singular points. There, the geometric situation can be
quite mysterious.

Suppose you have a hopeless tangle of wool — in any case you will know that
originally this was a smooth and well educated string — and that pulling now at
one of its ends will only increase the disaster. You have learned to try to loosen
the knot, pulling gently here and there, until you see some hope coming up.

Why not do the same here with our zero-set: Let us try to loosen its singularities.
If we believe that they admit a parametrization (and we will), we may also believe
that the singularities arose by squeezing the zero-set into a too narrow ambient
space, or by fooling carelessly around with them. So we will try to pull the zero-set
apart, and possibly the singularities will become more lucid.

Here is an example (too simple to be a serious candidate, but instructive). Take
the curve in R2 of equation x2 = y3, the famous cusp. Its singularity sits at the
origin, and we will have no effort to find a parametrization: t → (t3, t2). But
remember that, in general, it won’t be possible to guess a parametrization, so we
better rely on a systematic method to construct it. What happens if we start to
drag the two branches of the cusp? As we need space to move freely, we pull them
vertically into three-space rather than staying in the plane. See the comic strip in
Figure 7.

At the beginning, the curve will persist to have a singularity at 0, but as the
vertical slopes of the branches increase, the singularity may suddenly stretch and
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Figure 7. The cusp x2 = y3: It can be resolved by vertical dragging.

become smooth. In this case, we have obtained a space curve, which maps to our
original curve in the plane (by vertical projection). There appears an interesting
feature: Above the origin, the space curve will be tangent to the direction of the
projection (and this, in turn, is necessary to produce the singularity below). We
end up with an almost philosophical speculation:

Singular curves are the shadow of smooth curves in higher dimensional space.

Of course, the preceding reasoning is purely geometric and thus heuristic (it
would certainly have pleased the ancient Greeks). To give it a more solid foundation,
let’s work algebraically. The problem is to reconstruct the space curve from its
shadow in the plane. There is a standard procedure for doing this: Interpret it
as a graph. In our case, take the graph (over the plane curve) of the function
(x, y) → x/y (to take precisely this function and not another one will only be
justified a posteriori). For simplicity, we discard here the problem which arises at
0. Any point (x, y) of the plane curve is lifted to the point (x, y, z) = (x, y, x/y) in
three-space, yielding a space curve with parametrization (t3, t2, t3/t2) = (t3, t2, t).
As its derivative is nowhere zero, this is a smooth curve. And indeed, it is the curve
appearing at the right end of our comic strip.

You will protest — and you are right do so. Nobody told us why to choose the
function (x, y) → x/y which made the vehicle run. Instead of looking for reasons,
let’s try it out on another (still trivial) example, the cone x2 +y2 = z2. Now we are
already in three-space, which limits somewhat our graphics facilities for presenting
higher dimensions. So let’s get started from the algebraic side. Take the graph over
the cone of the map (x, y, z) → (x/z, y/z). It lives in five-space, and the equations
will be x2 + y2 = z2, u = x/z, v = y/z (you will accept that we refrain from any
illustration). Now, reminding our classes of differential geometry, we may visualize
this surface by elimination of variables (which corresponds to the projection to the
(z, u, v)-space). We get the surface (uz)2 +(vz)2 = z2. Factoring z2, it follows that
it has two components, the plane z = 0 and the cylinder u2 +v2 = 1 in three-space,
which, of course, is smooth. See Figure 8.

Composing the graph with this last projection (and throwing away the plane
z = 0), we have found a smooth surface which parametrizes the cone, via the map
(z, u, v) → (uz, vz, z). Isn’t this convincing?

The two examples were very simple, and the parametrizing manifold was found
in one step. In reality, for more serious examples, it takes many steps, but —



328 HERWIG HAUSER

Figure 8. The cone parametrized by the cylinder.

surprise! — the technique always works (at least in characteristic zero; in positive
characteristic there is still a big question mark).

Showing that one finds by the method of (iterated) graphs a parametrization of
the zero-set of polynomials constitutes the theme of the paper.

Here is the semantic upshot of our (virtual) dialogue: Associating to the zero-set
of the polynomial the graph of a function of the above type (ratios of the variables)
conceptualizes in what is called the blowup of a manifold in smooth centers; the
resulting parametrization of the zero-set through a manifold is expressed by saying
that we resolve the singularities of X by a finite sequence of blowups.

We conclude this appetizer with a zero-set for which a parametrization cannot
be guessed offhand (see Figure 9).

Figure 9. The surface x2 = z2 (z − y2) has its singularities along
the y-axis {x = z = 0}. Outside 0, we perceive, locally along the
y-axis, two planes meeting transversally. At the origin, two con-
tracting hoppers meet from opposite sides. This is truly a rather
singular point.

IQ: Can you make out which blowups produce a resolution of this surface?

Straight into High-Tech. There is no way to describe fluently resolutions without
appropriate language. The most natural context to communicate here are schemes,
with the unavoidable drawback that many interested readers get discouraged. We
are aware of this common behaviour — and the next to last paragraph will for
sure succeed in producing annoyance outside the algebraic geometers’ world. But



THE HIRONAKA THEOREM ON RESOLUTION OF SINGULARITIES 329

outside, resolution of singularities is also used and recognized, far beyond algebraic
geometry. Mathematicians may wish to learn about it.

We propose a compromise: In the section “High-Tech Low-Tech”, we will list
down-to-earth interpretations of the main objects we are using. This dictionary
shall show (as well as the example section towards the end of the paper) that the
central problems in this field are not problems on abstract schemes but problems on
concrete polynomials, namely their behaviour under certain well-specified coordinate
changes — a topic which is familiar to all of us. So don’t be shocked by the
next dozen lines or so; it is just a fancy (though very concise) way to talk about
polynomials. Relief is to come afterwards.

Statement to be proven (High-Tech): Any reduced singular scheme X of finite type
over a field of characteristic zero admits a strong resolution of its singularities. This
is, for every closed embedding of X into a regular ambient scheme W , a proper
birational morphism ε from a regular scheme W ′ onto W subject to the following
conditions.

Explicitness. ε is a composition of blowups of W in regular closed centers
Z transversal to the exceptional loci.
Embeddedness. The strict transform X ′ of X is regular and transversal to
the exceptional locus in W ′.
Excision. The morphism X ′ → X does not depend on the embedding of
X in W .
Equivariance. ε commutes with smooth morphisms W− → W , embeddings
W → W+, and field extensions.
Effectiveness (optional). The centers of blowup are given as the top locus
of a local upper semicontinuous invariant of X .

The induced morphism δ : X ′ → X is called a strong desingularization of X .

Credits: Existence with E1 and E2 proven by Hironaka [Hi 1]. Constructive proofs
satisfying E1 to E5 given by Villamayor [Vi 1], [Vi 2], Bierstone-Milman [BM1],
Encinas-Villamayor [EV 1], [EV 2], Encinas-Hauser [EH], and Bravo-Villamayor
[BV 2]. Further references are in the first part of the bibliography. Implementation
by Bodnár-Schicho [BS1]. Existence of weak resolutions by Abramovich-de Jong,
Abramovich-Wang and Bogomolov-Pantev [AJ], [AW], [BP], based on the work of
de Jong on alterations [dJ].

Avertissement. We shall follow the opposite démarche of a usual mathematical
research paper. Instead of formulating a theorem and then giving its proof in the
shortest and clearest possible fashion, the reader will be concerned with finding
and developing the proof of the result on her/his own. Thus we will first try to
localize and extract the key problem which has to be cracked. Starting from this
problem we shall make various attempts and reflections on how to solve it. In the
course of this inquiry, we will be able to make many observations on phenomena
and properties related to the problem. This in turn will allow us to specify even
more the main difficulties and to get a list of possible ways of attack.

In a next step we shall try out these approaches in reality. Some of them may
fail; others will look more prospective. The job of the author of this article will
be to prevent the reader from falling into traps or pursuing paths which lead to
nowhereland.
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In this way, the reader will learn peu à peu the rules of the game and get a
feeling for the relevant constructions and reasonings. All together, the proof shall
be natural and follow from a good understanding of the difficulties, rather than to
fall like a shooting star from the sky.

Occasionally, some help will be needed. Accepting (or neglecting) certain tech-
nical complications, the reader will see that there is a rather canonical approach for
proving resolution of singularities in characteristic zero. Only at a few places one
really needs a trick, and the author is willing to provide these gently and tacitly.

For the convenience of the reader, the precise definitions of all con-
cepts appearing in the text are given in appendix D at the end of
the paper; a table of notations appears in appendix E. Nevertheless,
a certain familiarity with blowups will be supposed. A very instruc-
tive exercise for getting acquainted is to compute the blowup of the
Whitney umbrella x2 − y2z = 0 in A3 with center once the origin
and once the z-axis; cf. the section on blowups in the appendix.

Our exposition follows the proof given in the recent paper [EH] of Santiago
Encinas and the author, where many more details and specifications can be found
(cf. also the paper [BS1] of Bodnár and Schicho). Here we are more interested
in motivating the various constructions. The paper [EH], in turn, relies on the
techniques of [Hi 1], [Vi 1], [Vi 2], [BM1], [EV 1]; see the appendix of [EH] for
many precise references to these articles. Basic to all of them are the ideas and
concepts proposed and developed by Hironaka. It should not be forgotten that
Abhyankar also has strongly influenced the research in this field, contributing many
substantial ideas and constructions. And, of course, Zariski has to be considered
as the grandfather of resolution of singularities.

La démonstration se fait par une récurrence subtile.
(J. Giraud, Math. Reviews 1967)

Le rapporteur avoue n’en avoir pas fait entièrement le tour.
(A. Grothendieck, ICM 1970)

The article has accomplished its goal if the reader starts to suspect — after
having gone through the complex and beautiful building Hironaka proposes —
that he himself could have proven the result, if only he had known that he was
capable of it. This intention is possibly too optimistic; nevertheless, it’s time to
start understanding the proof of a result which is one of the most widely used in
algebraic geometry.

Caveat: The proof we shall go through is by no means simple, and trying to capture
its flavour requires patience and stamina.1

Thanks: To Orlando Villamayor for introducing the author to the subject and
sharing many insights; to Santiago Encinas for providing substantial information
on the tricky technical machinery; to Ana Bravo, Gábor Bodnár and Hironobu
Maeda for many valuable comments on an earlier draft of the article; to Sebastian
Gann from the graphics department (the pictures were created with Adobe Illu-
strator and POV-Ray); to an anonymous referee for her/his precise suggestions
for improving the readability of the paper; to the authors mentioned above for
transmitting in their papers and conferences fascinating features of resolution of

1“Der Bergsteiger”, op. nasc.
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singularities; to many other mathematicians for discussing the subject with the
author.

The present manuscript is an extended version of lectures delivered at the Re-
search Institute for Mathematical Sciences of the University of Kyoto and at the
Mathematics Department of the University of Michigan at Ann Arbor. The author
is grateful for the kind hospitality offered by the people at these institutions.
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CHAPTER 0: OVERVIEW
−2. High-Tech  Low-Tech
−1. Explanation of result

0. Quick info on proof (end of paper for very busy people)

CHAPTER I: MAIN PROBLEMS
1. Choice of center of blowup
2. Equiconstant points
3. Improvement of singularities under blowup
4. Obstructions (end of paper for moderately interested readers)

CHAPTER II: CONSTRUCTIONS AND PROOFS
5. Mobiles
6. Setups
7. Shortcuts
8. Commutativity
9. Independence
10. Transversality
11. Cartesian induction
12. Examples
13. Resolution of schemes
14. Problems in positive characteristic

APPENDIX
A: Order of ideals
B: Computation of top loci
C: Local coordinates for blowups
D: Résumé of definitions
E: Table of notations

CHAPTER 0: OVERVIEW

−2. High-Tech  Low-Tech. Some readers may not be so familiar with the
language of modern algebraic geometry. The concepts of schemes, sheaves and
ideals are useful to handle zero-sets of polynomials which are defined locally in
affine space and which are glued together to produce global objects similar to
abstract differentiable manifolds. If the reader confines her/himself to affine or
local geometry, there is no harm to communicate in more concrete terms. For this
translation, we provide below a (very rough) dictionary from technical termini to
everyday concepts and examples (the expert reader may excuse the clumsiness).
But let us first say two words about blowups.
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Blowups are the basic device for constructing resolutions of singularities. They
constitute a certain type of transformation of a regular scheme (manifold) W yield-
ing a new regular scheme W ′ above W , the blowup of W , together with a projection
map π : W ′ → W , the blowup map. The role of blowups is to untie the singularities
of a given zero-set X in W by looking at its inverse image X ′ in W ′. The scheme
W ′ offers X ′ more “space” to spread out than W (despite the fact that W and
W ′ are of the same dimension), because W ′ sits (in a funny way) inside a higher
dimensional ambient scheme. The process is repeated until, after finitely many
blowups, the final inverse image X̃ of X has been resolved (in a sense that will be
laid down with precision).

Each blowup is completely specified by its center Z. This is a regular closed
subscheme (submanifold) of W which is chosen according to a prescribed rule (de-
pending on the zero-set X we wish to resolve). The center is the locus of points of
W above which the map π is not an isomorphism. The construction of π : W ′ → W
from the knowledge of Z as a subscheme of W is best described locally. So let us
restrict ourselves to a neighborhood of a point a in Z. There, we may view W as
affine space An with a = 0 the origin. The center Z can be interpreted, locally
at a, as a coordinate subspace of An, for example, as the d-dimensional subspace
Ad × 0n−d ⊂ An defined by xd+1 = . . . = xn = 0.

Let U be a submanifold of W at a, transversal to Z and of complementary
dimension n − d. For convenience, we take for U the coordinate subspace U =
0d ×An−d and fix the local product decomposition W = Z ×U of W . Write points
w ∈ W as pairs w = (w1, w2) with w1 ∈ Z and w2 ∈ U . The projectivization P(U)
of U = 0d × An−d is the (n − d − 1)-dimensional projective space Pn−d−1 of lines
through 0 in U . These ingredients already suffice to describe the blowup of W with
center Z.

Namely, consider the graph of the map λ : W \ Z → Pn−d−1 sending a point
w = (w1, w2) of W \Z = Z×(U \0) to the line ℓw in Pn−d−1 passing through w and
its projection w1 in Z. The graph of λ is a closed regular subscheme (submanifold)
Λ of (W \ Z) × Pn−d−1, say Λ = {(w, ℓw), w ∈ W \ Z}. With this setting, the
blowup W ′ of W is defined as the closure of Λ in W × Pn−d−1,

W ′ = {(w, ℓw), w ∈ W \ Z} ⊂ W × Pn−d−1.

It is easy to see that W ′ is again a regular scheme. The standard affine charts of
Pn−d−1 induce a covering of W ′ by affine schemes. The blowup map π : W ′ → W is
given as the restriction to W ′ of the projection W×Pn−d−1 → W on the first factor.
The exceptional locus of the blowup is the inverse image Y ′ = π−1(Z) = Z×Pn−d−1

of the center Z. It is the locus of points of W ′ where π fails to be an isomorphism.
Along the exceptional locus, π contracts the second factor Pn−d−1 of Y ′ to a point.
See Figure 10.

This resumes the geometric description of blowups locally at a point of Z. The
algebraic formulae and more details can be found in appendix C and in the section
“Examples”. The papers [BS 2], [BS 3] of Bodnár and Schicho exhibit how to
implement the computation of blowups efficiently, illustrated nicely by the blowup
of W = A3 with center Z a circle.

Here now is the promised brief guide on how to translate some notions from
algebraic geometry to commonplace mathematical language.
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Figure 10. Blowup: The picture shows (part of) the surface W ′ =
{xz − y = 0} in R3, which can be identified with the affine portion
of the graph of the map R2 → P1 sending (x, y) to (x : y). This
surface is the blowup of the real plane W = R2 with center Z = {0}
the origin. Inside W ′ we see the transforms V ′ and X ′ of the circle
V = {x2 +y2 = 1} and of the singular plane curve X = {x2 = y3}.
The surface W ′ has to be glued along the dotted lines.

Algebraic geometry Intuition / examples

affine scheme zero-set given by an ideal of polynomials

(global) scheme zero-sets glued together suitably

hypersurface / divisor zero-set of one single polynomial

regular point point where zero-set is manifold

singular point the remaining points

reduced scheme zero-set given by a radical ideal of polynomials

excellent scheme scheme which behaves well under passage to formal power series

ambient scheme affine space Rn or Cn where zero-set lives
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embedded scheme zero-set considered as a subset of Rn or Cn

blowup of scheme modification of scheme by pulling apart certain portions

example of blowup vertical projection from the corkscrew to the plane

blowup of ambient scheme higher dimensional analog of the corkscrew

center of blowup locus above which the blowup is not an isomorphism

exceptional locus of blowup locus where blowup morphism is not isomorphism

total transform of scheme inverse image under ambient blowup morphism

strict transform of scheme (closure of) total transform minus exceptional locus

transversal schemes manifolds whose tangent spaces meet transversally

normal crossings scheme transversal manifolds meeting like coordinate subspaces

morphism polynomial map

birational morphism map which is almost everywhere an isomorphism

proper morphism map with compact inverse images of compacta

top locus points where a given function has its maxima

order of polynomial at point order of Taylor expansion at point

−1. Explanation of the result. The properties required in the definition of a
strong resolution of a singular scheme deserve some further specifications. First
some general remarks.

Observe that the singular scheme X may not possess a global embedding X ⊂ W
into a regular ambient scheme W . In this case, one can cover X by affine pieces,
embed these, and construct local morphisms ε there. By the excision property,
their restrictions to the pullback of X patch and give a birational proper morphism
X ′ → X with X ′ regular. Of course, embeddedness can then be asked only locally.

The result holds for reduced excellent schemes whose residue fields are of charac-
teristic zero. The main property needed is that the singular locus of X is a proper
closed subscheme of X (which would not hold for non-reduced schemes), and that
several constructions extend to the completions of the local rings. The proof gives
also a certain resolution for non-reduced schemes (expressed as the monomialization
of ideals).

It should be emphasized that strong resolutions of schemes are by no means
unique, and many birational morphisms ε will fulfill the required properties. The
sometimes misinterpreted notion of canonical resolution appearing in the literature
does not refer to uniqueness but rather to equivariance.

In the first chapter of Hironaka’s paper [Hi 1], several further specifications and
variations of the result are described. We are not going to discuss these here.
Neither do we plan to list the many differences between Hironaka’s proof and the
subsequent ones. We restrict ourselves here to as simple a proof as available at the
current stage of the field.

Let us now comment more specifically on the five properties of a strong reso-
lution. The first two properties, explicitness and embeddedness, were proven by
Hironaka; equivariance appears for the first time in [Vi 2]; excision in [BM1] and
[EV 3].

Explicitness. The morphism ε : W ′ → W is given as a composition W ′ = W (r) →
W (r−1) → . . . → W (1) → W (0) = W where each W (i+1) → W (i) is the blowup
of W (i) in a closed regular center Z(i) in W (i). Transversality of Z(i) with the
exceptional locus Y (i) in W (i) shall mean here that the union Z(i) ∪ Y (i) is a
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normal crossings scheme, where Y (i) denotes the inverse image in W (i) of the first i
centers Z(0), . . . , Z(i−1) under the preceding blowups. By induction, we can assume
that Z(j) is transversal to Y (j) for j < i. This implies that Y (i) is again a normal
crossings divisor; hence it makes sense to demand that Z(i) ∪ Y (i) be a normal
crossings scheme.

By the general properties of blowups, ε is a proper birational morphism W ′ → W ,
and induces an isomorphism W ′ \ Y ′ → W \ Y outside the final exceptional locus
Y ′ ⊂ W ′, where Y ⊂ W denotes the image of Y ′ under ε, i.e., the image of all
intermediate centers Z(i).

Embeddedness. The strict transform of X is defined as follows. The restriction ε̃ of
ε to W ′\Y ′ being an isomorphism, consider the pullback X̃ of X under ε̃ in W ′\Y ′.
It coincides with the pullback of X \ Y in W ′ under ε. The strict transform X ′ of

X is defined as the Zariski-closure of X̃ in W ′. If Z is contained in X , it coincides
with the blowup of X with center Z. In terms of ideals, the strict transform is
defined locally in the following way: If J defines X in W and has pullback J∗ in
W ′, let J ′ be the ideal generated by all I(Y ′)−kf f∗, where f∗ ranges in J∗ and
I(Y ′)kf is the maximal power of the (monomial) ideal defining Y ′ in W ′ which can
be factored from f∗.

The strict transform J ′ of J can also be calculated in terms of gen-
erator systems f1, . . . , fm of J , but not any system will do the job.
However, if the tangent cones of fi (i.e., the homogeneous forms
of lowest degree) generate the tangent cone of J , the transforms
f ′

i = I(Y ′)−kif∗
i with ki = kfi

will generate J ′.
Such generator systems were called by Hironaka standard bases

[Hi 1, chap. III], and are nowadays also known by the name of
Macaulay bases. In order to compute and control invariants associ-
ated to J , Hironaka was led to introduce reduced standard bases (in
the sense of reduced Gröbner bases). Only later [Hi 6] did Hironaka
consider monomial orders on Nn with the corresponding standard
bases, initial monomials and division theorems.

Embeddedness requires two properties to hold. First, the strict transform X ′ has
to be regular, and, secondly, it should meet the exceptional locus Y ′ in W ′ transver-
sally (in fact, it is even stipulated that X ′ ∪ Y ′ be a normal crossings scheme). In
general, regularity of X ′ will be achieved earlier in the resolution process, and
transversality requires some additional blowups. Example: Blowing up the origin
in A2 desingularizes the curve X = {x2 = y3}, but its strict transform is tangent to
the exceptional locus (see Figure 7). One further blowup yields transversality (i.e.,
transversal tangents), and a third blowup normal crossings (i.e., no three curves
meet in a point).

Excision. If X ⊂ W and X ⊂ W̃ are two closed embeddings with resolutions
ε : W ′ → W and ε̃ : W̃ ′ → W̃ , it could happen that the restrictions δ and δ̃ to X ′

and X̃ ′ are different. Excision says that this is not the case: There is an algorithm
which constructs for any embedding X ⊂ W the sequence of blowups ε : W ′ → W ,
and for two different embeddings of X the algorithm produces the same restrictions
over X .

Of course, one could choose many other proper birational morphisms W ′ → W
inducing a desingularization of X . We will see in later sections what is meant by
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algorithm here. Essentially it is the construction of a center Z ⊂ X at each stage of
the resolution process, and it will be shown that this construction can be realized
independently of the choice of the embedding of X .

Equivariance. This is a property with many facets. The commutativity of ε with
smooth morphisms W− → W means that for any embedding X ⊂ W , the morphism
ε− : (W−)′ → W− induced by ε : W ′ → W (as a fiber product) is a strong
resolution of the pullback X− of X in W−.

Equivariance contains as special cases the following assertions: ε commutes with
the restriction to open subschemes of W , and hence induces also local resolutions.
It commutes with automorphisms of W which stabilize X : Any symmetry of X
will be preserved by the desingularization; i.e., X ′ will have the same symmetry.
This is often expressed by saying that group actions on X lift to a group action on
X ′ (equivariance of operation of groups). As this holds also for local symmetries,
it follows that X ′ → X is an isomorphism outside the singular points of X . In
particular, all centers will lie over Sing(X) — and their images in X must fill up
Sing(X) since X ′ is regular and hence any singular point of X must belong at least
once to a center. The property that X ′ → X is an isomorphism outside Sing(X) is
called the economy of the desingularization (and is not fulfilled for weak resolutions
by alterations as proposed by de Jong): regular points of X are not touched by the
resolution process.

Another consequence of equivariance is that the desingularization of X com-
mutes with passing to a cartesian product X × L with L a regular scheme. Said
differently, if X is trivial along a regular stratum S in X (locally or globally), then
the desingularization δ of X is a (local or global) cartesian product along S (you
may consult the literature on equiresolution problems for this topic).

Commutativity with smooth morphisms also implies that the desingularization
δ commutes with passage to completions. The proof shows that the result holds for
formal schemes as well as for real or complex analytic spaces (with some natural
finiteness conditions with respect to coverings to be imposed). In [Hi 1], resolution
was proven for schemes of finite type over a field and real analytic spaces. The case
of complex analytic spaces was done in [AHV1], [AHV2].

Commutativity with embeddings W → W+ simply means that the morphism
ε+ : (W+)′ → W+ restricts to ε over W ; the assertion for field extensions is similar.

All equivariance properties are deduced from the respective properties of the
resolution invariant defining the centers of blowup. This is a vector of integers whose
components are essentially orders of certain ideals in regular ambient schemes. As
long as these ideals behave well with respect to the operations listed in equivariance,
their orders will also.

Effectiveness. This is a property which refers more to the actual construction of
ε and which need not be imposed on a strong resolution. For implementations it
is essential to have the centers given as the top locus of an invariant, i.e., as the
locus of points where the invariant takes its maximal value. A prerequisite is that
the invariant and the induced stratification of W can actually be computed (cf.
the papers of Bodnár and Schicho). There appears a serious complexity problem,
since the number of charts tends to explode when iterating blowups, and the chart
transformation maps and the local coordinate changes quickly exceed the available
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capacities. Moreover, the stratifications defined by the invariant have to be com-
puted (up to now) via Gröbner bases, causing the well known troubles when the
number of variables increases.

For the future it can be expected (or hoped) that the centers of blowup allow
a direct description from the singular scheme. Optimal would be the explicit con-
struction of a non-reduced structure on the singular locus of X which yields, when
taken as the center of blowup, the desingularization of X in one blowup. At the
moment, it seems that nobody has the slightest idea of how this structure should
look (but cf. [Bo2] for a first step in this context).

The five properties discussed here are the most natural and relevant conditions to
impose on a desingularization of X . There exist further properties one may ask for,
either concerning the monomialization of the defining ideal J of X in W ′ (see e.g.
[BV 1], [BV 2]) or minimality conditions on the resolution (as can be completely
established for surfaces and is developed for three-folds in Mori’s minimal model
program). Other conditions as well as generalizations can be found in the articles of
the first list of references. In any case, the most intricate question seems to be the
existence of strong resolution for positive characteristics or for arithmetic schemes,
both in arbitrary dimension. We shall have a glance at positive characteristics
towards the end of the paper.

0. Quick info on proof. For readers in a hurry we quickly describe the rough
outline of Hironaka’s argument. This, of course, contradicts the strategy of presen-
tation agreed on at the beginning. In addition, several relevant details will have
to be skipped. But as not everybody wants to know these, though still wishing
to get a general impression on how the proof goes, we annul for a short while our
agreement and sketch the main steps.

The patient reader who wishes to explore and develop the proof on her/his own
and in chronological order is advised to skip this section and go directly to section 1
for meeting the travel guide.

The question is:
How can I understand in one hour the main aspects of a proof which originally

covered two hundred pages?
Here is an attempt at this: You will (have to) believe that resolving a singular

scheme is more or less equivalent to monomializing a polynomial ideal by a sequence
of blowups. So let us fix an ideal J in a regular scheme W , for simplicity a principal
ideal J = (f).

Your personal favorite could be the polynomial f = x2 − z3(z − y2) in W = R3.
The zero-set X of f looks as follows. The two “components” of the surface meet
tangentially at the origin of the y-axis. This point is the only singularity of the
upper component. The lower component looks like a cylinder (along the y-axis)
over the cusp given by its section with the plane y = const (see Figure 11).

Blow up a (still to be specified) center Z in W and consider the pullback J ′ of
J under the induced blowup morphism π : W ′ → W . Let Y ′ = π−1(Z) ⊂ W ′ be
the exceptional component.

The singular locus of X in the example is the y-axis {x = z = 0}. If we take it
as the center Z of the blowup, the pullback f ′ of f under π equals the polynomial
f ′ = x2z2 − z3(z − y2) (the computation is done in the z-chart of W ′, which is the
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Figure 11. Zero-set of f = x2 − z3(z − y2).

chart where the interesting things happen). The pullback in this chart is given by
replacing in f the variable x by xz

Define the order of f at a point of W as the order of the Taylor expansion of f at
this point. If the order of f at all points of Z was the same, an exercise shows that
J ′ factorizes into J ′ = M ′ · I ′ where M ′ is a power of the exceptional component
Y ′ (and thus a monomial) and where I ′ = (g′) is an ideal which has at each point
of Y ′ order less than or equal to the order of J along Z (you may either do the
exercise or trust that it is easy). The ideal I ′ is called the weak transform of J .

Figure 12. Zero-set of g′ = x2 − z(z − y2).

In the example, the order of f = x2−z3(z−y2) at the points of Z = {x = z = 0}
is everywhere equal to 2. The pullback f ′ of f factorizes into f ′ = z2 · (x2 − z(z −
y2)) = z2 · g′ with exceptional factor z2 and weak transform g′ = x2 − z(z − y2)
of f (see Figure 12). Note that g′ has at all points order ≤ 2, so the order did not
increase. The zero-set of g′ looks like this.

The factorization J ′ = M ′ · I ′ is necessary because the order of J ′ — in contrast
to that of I ′ — will in general increase. As M ′ is just a monomial, the interesting
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information lies in I ′. For symmetry reasons we shall write J = M · I with M = 1
and I = J , so that the factorization J ′ = M ′ ·I ′ can be interpreted as the transform
of the factorization J = M · I, with certain transformation rules for M and I (they
are not the same for M and for I). With this notation, I ′ becomes the weak
transform of I.

In the example, we factorize f = 1 · (x2 − z3(z − y2)) = 1 · g and
f ′ = z2 · (x2 − z(z − y2)) = z2 · g′, with g′ the weak transform of g.

If we succeed in lowering stepwise the order of I until it reaches 0, the monomial
factor M of J will take over more and more of J until it coincides with J . At this
final stage, J will have been monomialized, J = M · 1.

If the order of I ′ has dropped at each point of W ′, we are done, because by
induction we may assume to know how to resolve singularities of smaller order.
Here we are leaving aside that we cannot specify the center yet (and omitting also
some transversality questions which will appear in the further blowups). If the
order has remained constant at a point a′ of W ′, we have a problem, because there
we have no measure which tells us that the singularity has improved.

For the transform g′ = x2 − z(z − y2) of g, there is only one point
a′ of the same order, namely the origin of the z-chart. There, the
order of g′ is again 2. In all other points, the order of g′ is 1 or 0.

The points where the order has remained constant are rare, since it can be shown
that they live in a (regular) hypersurface inside the exceptional component. They
will be called equiconstant points. We may choose a regular hypersurface V ′ in W ′

whose intersection with the exceptional component Y ′ contains all the points where
the order of I ′ has remained constant. This is always possible (at least locally) and
not hard to prove.

It turns out that — by a fluke — appropriate choices of V ′ stem from regular
hypersurfaces below: The image V of V ′ in W is a regular hypersurface containing
Z (again locally). So V ′ can be considered as the transform of V under the blowup
W ′ → W . In the neighborhood of points a of Z we get the following diagram:

J ′ = M ′ · I ′ in W ′ ⊃ V ′ ⊃ V ′ ∩ Y ′ ∋ a′

↓ ↓ ↓
J = M · I in W ⊃ V ⊃ Z ∋ a

By construction, all equiconstant points a′ above a point a of Z lie inside V ′.
Let us resume these objects in the situation of the example, where we can pick

V ′ = {x = 0} in W ′ with image V = {x = 0} in W .

f ′ = z2 · (x2 − z(z − y2)) in (R3)′ ⊃ {x = 0} ⊃ {x = z = 0} ∋ 0

↓ ↓ ↓
f = 1 · (x2 − z3(z − y2)) in R3 ⊃ {x = 0} ⊃ {x = z = 0} ∋ 0

Now comes the decisive idea.

[[: In order to measure at equiconstant points of W ′ the improvement of the singu-
larities when passing from J to J ′, descend to lower dimension and compare the
singularities in V and V ′. :]]

To this end, associate to the ideal J = M ·I in W an ideal J− in V (this is hence
an ideal in fewer variables), and in the same manner associate to J ′ = M ′ · I ′ an
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ideal (J ′)− in V ′. These subordinate ideals shall then reflect a possible improvement
of the singularities between W and W ′. Such an improvement can only be detected
if it is possible to relate J− and (J ′)− and to find a numerical invariant associated
to J− and (J ′)− which drops. This condition restricts our choices of J−.

How could we compare the two (still unknown) ideals J− and (J ′)−? We have
already observed that the hypersurface V of W can be chosen to contain (at least
locally) the center Z of the blowup W ′ → W . Therefore, Z defines also a blowup of
V , and by the commutativity of blowups with restriction to subschemes, the blowup
of V with center Z coincides with our hypersurface V ′. We thus obtain a blowup
map also in smaller dimension, namely V ′ → V . To compare the ideals J− in V
and (J ′)− in V ′ it is natural to expect (or postulate) that (J ′)− is some transform
of J− under this blowup. This is indeed possible, but will require a well-adjusted
definition of the ideal J−. In addition, the type of transformation which occurs
when passing from J− to (J ′)− has to be specified.

Our procedure here is typical for our ongoing search of a resolution
proof: We first collect properties which our objects have to satisfy,
thus reducing the number of possible candidates. Then we indicate
one type of construction for the object — often there are several
options — so that all these requirements are met.

We recapitulate the sine-qua-non for the construction of J−: At any equiconstant
point a′ of Y ′ a certain transform (J−)′ of the ideal J− in V ′ associated to J shall
coincide with the ideal (J ′)− associated to the transform J ′ of J . This is nothing
else but saying that two operations on ideals commute, i.e., have the following
commutative diagram

J ′ → (J ′)− = (J−)′

↓ ↓
J → J−

Expressis verbis: The descent in dimension before and after blowup commutes at
all equiconstant points with the blowup in the actual and in the smaller dimension.

The descent in dimension has spectacular implications, for it allows us to apply
induction on the dimension to the entire resolution problem defined by J− in V :
Once we have defined J− in V , we may assume that we know how to associate to
J− a suitable center of blowup Z− and an invariant ia(J−) so that blowing up V
in Z− and passing to the transform (J ′)− = (J−)′ of J− makes this invariant drop.

It remains to construct for J the subordinate ideal J− in V with the appropriate
properties. This works only locally. Choose a local equation x = 0 for V in W
and expand the elements f of I with respect to x, say f =

∑
k fkxk. Note here

that we take elements from I, not from J ; this does not matter at the beginning
where J = I, but after the first blowup it does (the reason for doing so is of rather
a technical nature and need not interest us at the moment). The coefficients fk

of this expansion will be polynomials on V . Those with index k smaller than the
order of I generate an ideal in V , which will be the correct choice for the ideal J−.
It is called the coefficient ideal of J = M · I in V .

Let us look at what this means for our example f = x2−z3(z−y2).
At the origin, we may choose for V the hypersurface {x = 0} (for
reasons to be explained later). The expansion of f with respect to x
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has only one coefficient with index k < 2 = ord0 f , viz −z3(z− y2),
the coefficient of 1 = x0. So J− = (z3(z− y2)) (it is only accidental
here that J− is the restriction of J to x = 0).

The transform (J−)′ of J− is defined by a suitable transformation rule for J−

under the blowup V ′ → V (the usual pullback would be too rude). The clue is that
if J− has constant order along Z, its pullback in V ′ will factorize similarly as J ′

factorized in W ′, and deleting a suitable exceptional factor from this pullback gives
the correct transform of J− (i.e., the controlled transform of J−).

The transform f ′ of f was f ′ = z2(x2−z(z−y2). Throwing away the
exceptional factor z2, we get the coefficient ideal (J ′)− = (z(z−y2))
in V ′ = {x = 0}. It can be checked that it is an appropriate
transform of J− under the blowup V ′ → V of V with center Z.

So let us assume that with our definitions, the commutativity relation (J−)′ =
(J ′)− holds. We may therefore write without ambiguity J ′

− for this ideal (only
at equiconstant points of W ′). As happened for J and J ′, the ideals J− and J ′

−

admit again factorizations J− = M− · I− and J ′
− = M ′

− · I ′−, where M− and M ′
−

are exceptional factors in V and V ′ (at the beginning, M− will again be trivial and
equal to 1). So the correlation between the ideals in W and W ′ repeats in smaller
dimension for their coefficient ideals in V and V ′.

Once all this is settled we are almost done.
The center Z is defined by induction on the dimension by setting Z = Z−, with

Z− the center associated to J−. The improvement from J to J ′ is measured at the
equiconstant points by comparing J− with J ′

−. As before, the relevant invariant is
not the order of J− or J ′

− (which may increase), but the order of the factors I− or
I ′−. It turns out that I ′− is the weak transform of I− whose order never increases.
Either the order of I ′− has dropped, and induction applies, or it remained constant,
in which case the whole argument of choosing local hypersurfaces can be repeated,
producing a second descent in dimension.

In this way, aligning the orders of the various ideals I, I−, . . . obtained by
successive descent to a vector ia(J) = (orda I, orda I−, . . .) of non-negative integers,
we obtain a local invariant, the resolution invariant of J = M ·I at a. The preceding
observations show that it satisfies under blowup the inequality ia′(J ′) ≤ ia(J) for
points a′ above a with respect to the lexicographic ordering: The first component
of ia(J), the order of I, does not increase, because I ′ is the weak transform of I.
In the case where it remains constant, the second component of ia(J), the order
of I−, does not increase, because we are at an equiconstant point in W ′ where
commutativity holds, in particular, where I ′− is the weak transform of I− and has
order ≤ the order of I−. If this order remains constant, the argument repeats in
the next smaller dimension. This establishes ia′(J ′) ≤ ia(J). But in dimension 1,
it can be shown that the order of I always drops to 0 (if some earlier component
has not dropped), so that the inequality is in fact a strict inequality,

ia′(J ′) < ia(J),

for all points a ∈ Z and a′ ∈ Y ′ above a. So our resolution invariant has dropped.
This establishes the necessary induction.

Again, we test what was said in the concrete situation of the ex-
ample, looking at the origins a = 0 ∈ W = R3 and a′ = 0
in the z-chart of W ′ = (R3)′. We have J = (f) = 1 · I with
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f = g = x2 − z3(z − y2) and ord0 I = ord0 g = 2 in R3. The coef-
ficient ideal is J− = (f−) = 1 · I− with f− = g− = z3(z − y2) and
ord0 I− = ord0 g− = 4 in R2. Blowing up Z = {x = z = 0} in R3

we get transforms J ′ = (f ′) = M ′ · I ′ with f ′ = z2(x2 − z(z − y2)),
g′ = x2 − z(z − y2) and ord0 I ′ = ord0 g′ = 2 in (R3)′. The co-
efficient ideal of I ′ is J ′

− = (f ′
−) = M ′

− · I ′− with f ′
− = z(z − y2),

g′− = z − y2 and ord0 I ′− = ord0 g′− = 1 in V ′ = (R2)′. We see that
the first component of ia(J) has remained constant equal to 2 at
a′ = 0 ∈ W ′, and that the second component has dropped from 4
to 1. Therefore ia′(J ′) < ia(J) at these points.

Of course, there are many technical complications we have omitted (and which
will be discussed in the sequel). But the brief résumé of the proof should at least
give you enough information to respond to questions like: “Do you have any idea
how to prove resolution of singularities in characteristic zero?” Instead of saying,
“Indeed, that’s a very good question! It is something I always wanted to know,” you
may start to talk about intricate inductions which are built on each other (actually,
you may even mention that a proof as in [EH] requires fourteen such inductions,
and that at the moment this is the best one can hope for).

If you wish to clarify the many doubts and questions which may have occurred
to you while browsing this quick-info-section, just go on reading.

CHAPTER 1: MAIN PROBLEMS

1. Choice of center of blowup. We now start our journey through the jungle
of singularities, blowups and strict, weak and total transforms of ideals. Our first
steps will consist of trying to get an overview on the possible paths which could
lead us towards a solution to the problem. The centers of blowup constitute our
primary object of interest.

Given X , choose a closed embedding of X in a regular ambient scheme W with
defining ideal J of the structure sheaf OW . Resolving X is essentially equivalent
to resolving J (in a sense specified later; roughly speaking it means to monomialize
J). The problem is to choose the first center Z of blowup. This is a regular closed
subscheme of W yielding the blowup π : W ′ → W and the transforms of X and J
in W ′. Call Y ′ = π−1(Z) the exceptional component in W ′.

Here it has to be decided which kind of transforms of X and J will be considered.
Denote by J∗ = π−1(J) the total transform of J , and let Jst be the strict transform
as defined earlier. It is generated by the elements π−1(f)·I(Y ′)− ordZ f for f varying
in J , where I(Y ′) denotes the ideal defining Y ′ in W ′ and ordZ f is the maximal
power of the ideal I(Z) defining Z in W to which f belongs in the localization
OW,Z of OW along Z (without passing to the localization it would be the maximal
symbolic power of I(Z) containing f). It can be shown that ordZ f equals the
minimal value of the orders orda f of f for a varying in Z.

We shall also consider the weak transform Jg = J∗ · I(Y ′)− ordZ J of J in W ′.
Here ordZ J denotes the minimum of the orders ordZ f over all f in J . The fact
that I(Y ′) can be factored from J∗ to the power ordZ J , i.e., the existence of a
factorization J∗ = Jg · I(Y ′)ordZ J , is proven by a computation in local coordinates
(cf. the appendix). The weak transform Jg is an ideal contained in Jst whose
associated scheme Xg in W ′ may have some components in the exceptional divisor
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Y ′ (and need not be reduced). Algebraically, it is easier to work with weak than
with strict transforms (cf. example 6 in the section “Examples”). For hypersurfaces,
both notions coincide. We shall always have to do with the weak transform of ideals.
A sufficiently explicit and powerful resolution process for weak transforms will allow
us to deduce then the desired assertions about strict transforms (or you may restrict
to hypersurfaces, which suffices to understand the main argument of the proof).

Before getting stuck at the first steps through the jumble of the jungle, take care
to keep apart the three transforms of ideals under blowups π : W ′ → W :

J∗ = π−1(J) total transform of J ,

Jst = (π−1(f) · I(Y ′)− ordZ f , f ∈ J) strict transform of J ,

Jg = J∗ · I(Y ′)− ordZ J weak transform of J .

Now, given X in W with ideal J , how shall we decide on the center Z? There is
no immediate candidate running around. As we wish to remove the singularities
from X , we could take in a first attempt the whole singular locus as center. This
works well for curves, because their singularities are isolated points. Once in a
while each of them has to be blown up (otherwise the singularity sitting there will
never disappear), so we can take them all together as center. Resolution of curves
says that these blowups eventually yield a regular curve (but possibly still tangent
to some exceptional component), and some further blowups (in the intersection
points of the regular curve with the exceptional divisor) allow us to make this
curve transversal to the exceptional divisor.

For surfaces, the situation is more complicated, but the idea of taking the singular
locus as center still works — provided some cautions are taken. The singular locus
of a surface consists of a finite number of isolated points and irreducible curves,
which may even be singular.

These curves are not allowed as centers in a strong resolution if they are not
regular or if they intersect. But one could try to make them first regular by some
auxiliary blowups, separate them from each other by further blowups and then take
their union as center. Of course, the singular curves of the singular locus of X can
be resolved by point blowups. But it is not clear that their transforms again fill
up the whole singular locus of the transform X ′ of X . And indeed, the singular
locus of X ′ may have new components which lie outside the (strict) transform of
the singular locus of X . But, as Zariski observed [Za 4], these new components do
not bother us too much since they are regular curves (a fact which fails in higher
dimensions, actually already for three-folds; cf. [Ha 2], [Ha 4]). For surfaces it is
thus possible to transform the singular locus of X by preliminary blowups into a
union of isolated points and regular curves transversal to each other and to the
exceptional locus. Further blowups allow us to separate these curves from each
other. Taking the resulting union is then a permitted choice of center. By choosing
a suitable resolution invariant (for example, as in [Ha 4]) it is shown that blowing
up X in this union improves the singularities of X . The invariant drops when
passing from X to X ′. Now induction applies to show that a resolution of X is
achieved in finitely many steps.

For three-folds and higher dimensional schemes, the preceding construction of an
admissible center falls short, mostly, because the passage to the singular locus does
not commute with blowup: The singular locus of X ′ may have singular components
(inside the exceptional locus) which have nothing to do with the singular locus of
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X [Ha 2]. Therefore it seems difficult or even impossible to make the singular locus
regular by auxiliary blowups as we did in the case of surfaces.

After this deception, we shall refrain from constructing the center Z directly.
Up to now, no ad hoc definition of Z which works in any dimension has been
discovered. Instead, we shall proceed in the opposite direction: We shall take any
regular subscheme of the singular locus of X as center. We blow it up and then
observe what effects on X will follow. Certain centers will have better consequences
on X and will be thus preferred. This in turn shall lead us to conditions on Z which
may help to determine a suitable class of admissible centers Z.

So assume that we have given a closed regular subscheme Z of W which we take
as the center of our first blowup, π : W ′ → W . As we have no exceptional locus
yet, no transversality conditions will be imposed on Z. But we will assume that Z
sits inside the singular locus of X (since at regular points we won’t touch X). For
hypersurfaces, this is the locus of points where the ideal J has at least order 2 in W ,
i.e., of points a with maximal ideal ma in the local ring OW,a such that the stalk of
J at a is contained in the square of ma. For non-hypersurfaces, this description of
the singular locus only holds if the scheme X is minimally embedded. Let J∗ and
Jg denote the total and weak transform of J in W ′. As we have seen above, we
may write J∗ = M ′ · Jg with M ′ = I(Y ′)ordZ J . As Z is regular, Y ′ is also regular,
and M ′ is a monomial factor of J∗ which should not cause any trouble. The ideal
Jg is more interesting and contains all the information on the singularities of the
scheme defined by J∗. Clearly, at points a′ outside Y ′, its stalks are isomorphic to
the stalks of J at the projection point a = π(a′) (which lies outside Z). So nothing
will have changed there. Let us hence look at points a′ in Y ′ above a in Z. There,
two interesting things can be observed:

Observation 1. If orda J = ordZ J , then orda′ Jg ≤ orda J . Thus the order of the
weak transform Jg does not increase if the order of J was constant along Z.

As the order of an ideal at a point is an upper semicontinuous
function, the order orda J will be generically constant along Z.
Only at points a of a closed subscheme of Z can the order of J be
larger than the generic order along Z.

Observation 2. The locus of points a′ in Y ′ with orda′ Jg = orda J lies inside a
regular hypersurface of Y ′.

We will discuss the second observation in the next section. As for the first we
shall ask that the center Z lie inside the locus of points where the order of J is
maximal, according to the philosophy that the worst points of X should be attacked
first. We thus define top(J) = {a ∈ W, orda J is maximal}, the top locus of J in W .
This is a closed subscheme of W , by the semicontinuity of the order, but possibly
singular. We agree to postulate:

Requirement. The center Z shall be contained in top(J).

This condition — which will be imposed in the sequel of the paper on all centers
which appear — still leaves a lot of freedom how to choose Z. As a general rule,
large centers tend to improve the singularities faster than small centers. This would
suggest taking for Z a regular closed subscheme of top(J) of maximal possible di-
mension. Such a center will not be unique, e.g., if top(J) consists of two transversal
lines, and one of them has to be chosen as the center. In this case it may happen
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that the scheme X has a symmetry, obtained e.g. by interchanging two variables,
and yielding a permutation of the two lines (i.e., the permutation group S2 acts on
X). You may not want to destroy this symmetry by an asymmetric choice of the
center, so none of the lines is a good candidate. Instead you may prefer to take
the only subscheme which is S2-invariant, namely the intersection point, which in
turn may be a too small center. So there is some ambiguity about how to choose a
regular subscheme of maximal dimension of top(J).

Also, Z has to be chosen globally: If top(J) is the node x2 − y2 − y3 = 0 in
the plane, locally at the origin 0 one could choose one of its branches as center.
Globally, this branch will return to the origin yielding a normal crossings singularity
in the intersection point. Therefore the origin 0 is the only possible choice for Z
here.

It is a good moment to prove now that the inclusion Z ⊂ top(J)
indeed implies the stated inequality orda′ Jg ≤ orda J . This is a
local statement at a and a′, which allows us to restrict to the local
blowup π : (W ′, a′) → (W, a) given by the inclusion of local rings
OW,a ⊂ OW ′,a′ . By the upper semicontinuity of the order of ideals,
it suffices to check the inequality at closed points. For simplicity,
we assume that the ground field is algebraically closed.

We may then choose local coordinates x1, . . . , xn at a (i.e., a
regular system of parameters of OW,a) such that OW,a ⊂ OW ′,a′

is given by a monomial substitution of the coordinates, say xi →
xi · xk for 1 ≤ i ≤ k − 1, and xi → xi for k ≤ i ≤ n, where
k ≤ n is such that x1, . . . , xk define Z in W locally at a. Passing
to the completions ÔW,a ⊂ ÔW ′,a′ does not alter the order of J .
Expand elements f of OW,a as a power series in x1, . . . , xk, say
f =

∑
α∈Nn cαxα. Then orda f = min{|α|, cα 6= 0}. Set o =

orda J = minf∈J orda f .
By assumption, Z ⊂ top(J); hence ordZ f ≥ o for all f ∈ J .

As I(Z) = (x1, . . . , xk) we get, setting |α|k = α1 + · · · + αk, that
|α|k ≥ o for all α with cα 6= 0. The total transform f∗ has expansion

f∗ =
∑

cαxα∗

with α∗ ∈ Nn given by α∗
i = αi for i 6= k and

α∗
k = αk + α1 + · · · + αk−1 = |α|k. Factoring I(Y ′)ordZ J from J∗

yields f∗ · x−o
k =

∑
cαxα∗−oek where ek is the k-th standard basis

vector of Nn.
But o = min{|α|, cα 6= 0} = min{|α|k, cα 6= 0}; hence for any α

realizing this minimum, we will have |α∗ − oek| = |α| + α1 + · · · +
αk−1 − o ≤ |α|, with equality if and only if α1 + · · · + αk−1 = o,
say ak = 0. This shows that orda′(f∗ · x−o

k ) ≤ o, from which
orda′ Jg ≤ o = orda J is immediate. The claim is proven.

What we have learned in this section will form our point of attack for proving
resolution. We therefore repeat: The inequality orda′ Jg ≤ orda J between the
orders of an ideal and its weak transform will hold for a′ ∈ Y ′ above a ∈ Z for
any regular center Z ⊂ top(J), independently of its dimension or location inside
top(J). This suggests considering the maximal value of orda J on X (or W ) as the
invariant which should improve under blowup. We have seen at least that it cannot
increase. However, at certain points a′ it may remain constant. If this happens,
either the choice of our center was not a good one or we need some extra measure
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besides the maximal value of the order of J to show that the situation has also
improved at these points, though in a less evident way. This leads us to take a
closer look at these points.

2. Equiconstant points. Given an ideal J in W , let π : W ′ → W be the blowup
with center Z ⊂ top(J). Let a be a point of Z, and set o = orda J = ordZ J . Points
a′ in the exceptional locus Y ′ will be called equiconstant points if the order of the
weak transform Jg of J has remained constant at a′:

orda′ Jg = orda J.

Classically, these points were called very infinitely near points. Let us first check
that such points actually may occur. In example 1, they could be avoided by a
different choice of the center; in example 2, only one center is possible, and for this
center, an equiconstant point appears in the blowup.

Example 1. Blowing up the origin of the Whitney umbrella X defined in A3 by
x2−y2z = 0 produces at the origin of the z-chart the same singularity, x2−y2z = 0.
Indeed, J∗ is generated by x2z2 − y2z3 = z2(x2 − y2z), yielding weak transform
Jg generated by x2 − y2z. (As we have a hypersurface, the strict and the weak
transforms coincide.) Hence the origin of the z-chart is an equiconstant point. But
as the singularity of X ′ is exactly the same there, no other invariant besides the
order can have improved. Therefore the choice of our center was wrong. Taking
for Z the origin yields a center which is too small. Observe that the top locus of
X is the z-axis and could have equally been taken as center (this is the only other
option). Doing so, the computation of Jg in the two charts shows that this larger
center does improve the singularities. Actually, the singularities of X are resolved
when blowing up the z-axis.

For the reader’s convenience, we include the computation: As I(Z)
= (x, y), we have two charts to consider, the x- and the y-chart. The
total transform J∗ is generated there by x2 − x2y2z = x2(1 − y2z)
and x2y2 − y2z = y2(x2 − z) respectively. The polynomials in
parentheses define the weak transform of J . They are both regular,
say of order ≤ 1 at any point of Y ′.

This suggests again that the center should better be chosen large (and then, in
this example, no equiconstant point will appear). In any case, we conclude that
we cannot choose for the center just any closed regular subscheme of top(J). Some
(still unknown) precautions will have to be taken.

Let us now look at an example where also equiconstant points occur in the
exceptional locus, but where only one choice of center is possible.

Example 2. Consider x3 − y2z2 = 0 in A3. It can be checked that the top locus
consists of one point, the origin, and that J has order 3 there (for more information
on the order and how to compute top loci, see the appendix). We must therefore
choose Z = {0} as our center. The total transforms in the three charts are as
follows: x3 − x4y2z2 = x3(1 − xy2z2) in the x-chart, x3y3 − y4z2 = y3(x3 − yz2)
in the y-chart, and symmetrically in the z-chart (using that J is invariant under
exchanging y and z). The polynomials in parentheses define the weak transform
of J . In the x-chart, Jg has order 0 along the exceptional divisor x = 0 (i.e.,
the scheme Xg does not intersect Y ′ there). In the y-chart, the origin is the
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only equiconstant point, and the singularity there is x3 − yz2 = 0. An analogous
statement applies in the z-chart. As the center was prescribed by top(J), these two
equiconstant points cannot be avoided by choosing another center.

At the origins of the y- and z-chart, the order of Jg remains constantly equal to
3. However, there seems to be some finer improvement at this point with respect
to the initial singularity x3 − y2z2 = 0: The exponent of y in the second monomial
has dropped from 2 to 1. But this decrease is coordinate dependent and therefore
not an intrinsic measure of improvement. We will investigate in the section “Inde-
pendence” how to measure the improvement here in a coordinate free and intrinsic
way.

Example 3. Consider x3−y3z3 = 0 in A3. The top locus consists of two transversal
lines, the y- and the z-axis, and J is S2-invariant by interchanging y and z. The
symmetric choice of center would be the origin Z = {0}, because none of the
lines can have a preference, and we wish to choose Z as symmetrically as possible.
Blowing up 0 in A3 yields total transforms x3 −x6y3z3 = x3(1−x3y3z3) regular in
the x-chart, and x3y3−y6z3 = y3(x3−y3z3) in the y-chart (again we may omit the
z-chart by symmetry). In the y-chart we definitely have a problem: Our choice of
center was the only natural one, but the singularity has remained the same, namely
x3 − y3z3. We will discuss at the end of the section “Setups” how to overcome this
impasse.

Taking instead of x3 −y3z3 the polynomial x3−y4z4, we get in the
y-chart the weak transform x3 − y5z4, and the singularity seems to
have become worse.

The next natural question, based on the preceding observations, is to locate the
equiconstant points inside the exceptional divisor and to describe criteria when they
appear. The proof of orda′ Jg ≤ orda J shows that the homogeneous part of the
lowest degree of the elements of J plays a decisive role. The ideal generated by
these homogeneous polynomials is the tangent cone tc(J) of J at a, say tc(J) =
(
∑

|α|=of
faxα, f ∈ J) where of denotes the order of f at a, and x1, . . . , xn are

some local coordinates. Let xα be a monomial of degree o with non-zero coefficient
fα in the expansion of f ∈ J with orda f = o = orda J . We saw above that if
αk > 0, then α1 + · · ·+αk−1 < o and hence orda′ f ′ < orda f , setting f ′ = f∗ ·x−o

k .
Here, a′ is the origin of the xk-chart in W ′ induced by the choice of coordinates
x1, . . . , xn in W at a.

We can now specify observation 2 from the preceding section.

Observation 2. If x1, . . . , xn are coordinates of W at a with I(Z) = (x1, . . . , xk)
and such that the coordinate xi appears in the tangent cone tc(J) of J , for some
i ≤ k, then the equiconstant points a′ above a lie in the hyperplane xi = 0 of W ′.
More precisely, let V ∈ W be the regular hypersurface xi = 0, and let V ′ ⊂ W ′ be
its strict transform. Then all equiconstant points of J lie in V ′.

We need here that the coordinates are chosen so that the number
of coordinates appearing in the tangent cone of J is minimal.

Here, by slight abuse of notation, x1, . . . , xn denote also the induced coordinates
of W ′ at a′ (see the appendix for more details on how to choose local coordinates
for blowups). This notation is justified by the fact that the local blowup (W ′, a′) →
(W, a) has an expression in affine charts going from An to An. Said differently, the
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observation can be expressed as follows: The equiconstant points are contained in
the strict transform V ′ of any local hypersurface V in W at a which contains Z
locally at a and whose equation appears as a variable in the tangent cone of J when
it is written in the minimal number of variables.

Let us compute such hypersurfaces V in some examples.

Example 4. Let us start with a plane curve of equation xo + yq = 0 in A2 with
q ≥ o. The order at 0 is o, and the origin is the only point of this order, thus top(J)
is the origin. The blowup W ′ of W = A2 is covered by two affine charts, the x-
chart and the y-chart, with respective total transforms xo + xqyq = xo(1 + xq−oyq)
and xoyo + yq = yo(xo + yq−o). The polynomials in parentheses are the weak
transforms. We are only interested in points a′ ∈ Y ′ (where Y ′ is isomorphic to
projective space P1). It is useful here to partition Y ′ into two sets, the entire x-
chart and the origin of the y-chart. In the first set, the order of Jg is everywhere
0 as is checked by inspection, so we need not consider these points. We are left
with the origin of the y-chart with weak transform defined by xo + yq−o = 0. Note
that the origin lies in the hypersurface x = 0 in the y-chart of W ′, which agrees
with our second observation, since x appears in the tangent cone of J (which is xo).
Whether the order has dropped or not depends on the value of q − o. If q ≥ 2o,
the order has remained constant, else it has decreased. For later reference we note
that the order of the restriction J|V comes into play, where V is the hypersurface
{x = 0}. The strict transform V ′ of V contains the only possible equiconstant point.
Moreover, if the origin of the y-chart is an equiconstant point, the improvement of
Jg seems to be captured by Jg

|V ′ = (yq−o), whose order is strictly smaller than
J|V = (yq). Of course, these observations are coordinate dependent and as such
not very meaningful or intrinsic. But they already give a feeling for the phenomena
we are going to study later on.

Example 5. We consider now a surface, e.g. xo + yrzs with r + s ≥ o. Here, the
order o at 0 is the maximal value of the local orders at points of A3. The Whitney
umbrella from above is a special case, with o = r = 2 and s = 1. Let us first
determine top(J). Apparently, it depends on the values of o, r and s. If r, s < o,
it is reduced to the origin. If r < o ≤ s, it is the y-axis, and symmetrically for
s < o ≤ r. If r, s ≥ o, then top(J) is the union of the y- and the z-axis, and three
choices for Z are possible: the origin or one of these axes (we do not study the
interesting question of normal crossings center here; see [Ha 4]).

In all cases, the tangent cone of J consists of the monomial xo, except if r+s = o,
in which case it is xo + yrzs. The hypersurface V = {x = 0} is always a good
candidate for finding equiconstant points, because x appears in the tangent cone
(we could also take x + a(y, z) with a any polynomial in y and z of order at least
2). From what we have seen earlier, we know that its strict transform V ′ in W ′

contains all equiconstant points of Y ′ (outside Y ′, all points will be equiconstant,
but have no relevant interest). Let us assume that we have chosen Z = {0} the
origin in A3, because r, s < o. As V ′ ∩ Y ′ lies entirely in the complement of the
x-chart, we may omit the x-chart from our considerations and look only at the y-
and the z-chart. Up to interchanging y and z we may place ourselves in the y-chart,
where the total transform J∗ equals xoyo +yr+szs = yo(xo +yr+s−ozs). The origin
of this chart is an equiconstant point if and only if r + 2s− o ≥ o, say r + 2s ≥ 2o.
As s < o, the y-exponent has decreased from r to r−(o−s). If s ≥ 0, we could have
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chosen a larger center, namely the y-axis (in which case we would have to look at
the z-chart, observing that there the z-exponent drops at the equiconstant point).

The various computations in local coordinates ask for giving a more geometric
description of regular hypersurfaces of W ′ containing the set O′ ⊂ Y ′ of equicon-
stant points a′ of Jg, i.e., points where o′ = o, denoting by o′ the order of Jg at
a′ in W ′. Recall that, by definition, equiconstant points lie inside the exceptional
locus Y ′, so that there is a lot of flexibility in choosing regular hypersurfaces V ′

of W ′ containing O′. In any case we may choose them transversal to Y ′. This
does not imply yet that their image V in W under π is regular. But if V in W
is also a regular hypersurface, then V ′ appears as the strict transform of V . The
computation in the proof of o′ ≤ o has shown that such V exist in W , at least
locally at any point a ∈ Z. They are characterized as follows: Choose local coor-
dinates x1, . . . , xn in W at a so that x1, . . . , xm appear in the tangent cone of J
and such that m ≤ n is minimal with this property. Then any V defined by an
equation in which no xm+1, . . . , xn appears in the linear term will do the job. If
some xm+1, . . . , xn appears linearly, the strict transform V ′ of V may not catch
all equiconstant points. Of course, any higher order terms are permitted in the
expansion of the defining equation of V , because they do not alter the intersection
of V ′ with Y ′ in which we are interested.

This property can be expressed by saying that V has reasonably good contact
with the subscheme tc(X) of W defined by the tangent cone tc(J) of J . In particu-
lar, any such regular V must be tangent to the coordinate plane x1 = . . . = xm = 0.
This condition can be made coordinate independent. Let U be (locally at a, or,
say, in the completion of the local ring) the regular subscheme of W of maximal
dimension contained in tc(X). Then any regular V containing U will work.

Our attempts to nail down possible hypersurfaces V is not efficient as long as
the approach remains computational and the improvement of the singularities at
equiconstant points is measured by ad-hoc and coordinate dependent objects. Nev-
ertheless we emphasize:

Conclusion. For any ideal J in W , not necessarily reduced, and any a ∈ W there
exists locally at a a regular hypersurface V in W whose strict transform V ′ contains
all equiconstant points a′ in W ′ above a. We call such hypersurfaces adjacent for
J .

At this point, an apparently unmotivated but natural question will be highly
instructive and significant:

If V is adjacent to J , is its strict transform V st again adjacent to Jg?

This question is surprisingly subtle, and its investigation (which we will give
in the section “Obstructions”) will split the world into a characteristic zero and
characteristic p hemisphere. A positive answer to it would allow us to choose
locally in W regular hypersurfaces whose successive strict transforms contain, for
any sequence of blowups with regular centers inside the top loci of J and its weak
transforms, all equiconstant points above a. If such hypersurfaces exist — and
we will show that they do in characteristic zero, whereas they need not exist in
positive characteristic — they would accompany the whole resolution process until
eventually the maximal value of the order of J in W drops. Such hypersurfaces will
be said to have permanent contact with J .
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3. Improvement of singularities under blowup. This section contains the
gist of Hironaka’s argument, so take your time. It is inspired by Jung’s method of
projecting surfaces to the plane. If you understand this section, you will be in good
shape to be considered an ‘insider’.

In the last section we realized that at equiconstant points a′ the ideal Jg need
not be obviously simpler than J at a. The order is the same, and exponents of
the Taylor expansions of elements of J may have decreased, increased or remained
constant. As a consequence, we suspect that the order is not sufficiently fine to
detect an improvement, and we should look for other invariants. On the other hand,
the order is the first and simplest invariant associated to an ideal.

In order to confront this irritating quandary, let us return to the curve singularity
xo + yq = 0 in A2 with q ≥ o. If q = o and the characteristic is different from o,
the order of Jg has decreased everywhere and there are no equiconstant points in
Y ′. If q = o and the characteristic is equal to o, replacing x by x + y transforms
xo + yo into xo, which is a monomial and cannot be improved under blowup. So
we may assume that q > o. There then appears at most one equiconstant point,
the origin of the y-chart, and Jg is defined by xo + yq−o. If q ≥ 2o, this is an
equiconstant point; otherwise the order has dropped. So let us assume for the
sequel that q ≥ 2o. In the given coordinates, the improvement of the singularity at
a′ appears in the change from yq to yq−o. This is a coordinate dependent description
of the improvement. But working with fixed local coordinates, although useful for
computations, is not appropriate if we wish to argue globally and with intrinsic
objects defined for singularities in any dimensions. Therefore we would like to give
the monomial yq in xo + yq a coordinate-free meaning, hopefully independent of
the dimension.

We proceed as follows. The line V = {x = 0} will be adjacent to J at the origin
a = 0. The first thing to think of is the restriction of xo +yq to the hypersurface V .
Accordingly, at a′, we would take the restriction of Jg to V ′ = V st. The resulting
polynomials depend on the choice of V , and there is no immediate candidate for V
which would make them intrinsic. Actually, this might be asking too much, but at
least the orders of the resulting polynomials should be intrinsic. In our example,
if o does not divide q or the characteristic is different from o, the orders q and
q − o of J|V and Jg

|V ′ are not intrinsic. Replacing V by Ṽ = {x + y2 = 0} gives
another adjacent hypersurface with orda(J|V ) = 2o (since we assumed q ≥ 2o) and
orda′(Jg

|V ′) = o.
Among the many possible values of orda(J|V ) for varying hypersurfaces V , only

two play a special role: the minimal and maximal values. It is easy to see that
the minimal value is not a good choice, since it is always equal to o (though the
corresponding V need no longer be adjacent, as is seen in the example above, where
V = {x + y = 0} realizes the minimum but is not adjacent). The maximal value
is more interesting. It is certainly intrinsic, and — as we will show later — can be
realized by an adjacent hypersurface (mainly this holds because changing higher
order terms in the equation of V preserves adjacency). So let us look more closely
at this maximal order (see [Ab 8] for a detailed discussion of it in the curve case).

The maximal value of orda(J|V ) provides an intrinsic measure of the complexity
of the singularity of curves, subordinate to the order itself. We denote it by

o− = max
V

{orda(J|V )},
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Figure 13. Transformation of Newton polygon under blowup: In
the picture, the x-axis is drawn vertically.

the maximum being taken over all regular local hypersurfaces V of W at a, and
call it the secondary order of J . The minus sign in the index refers to the decrease
in the embedding dimension. What we get is a local invariant of J at a.

Our definition of o− has an immediate and unpleasant defect which will force
us to modify the definition a little bit. In many cases, the restriction J|V of J
to V will be the zero ideal and then carries no information at all. The simplest
example is xo + xyq. Of course, the defining equation of V could be factored from
the polynomial, but this is not of much use, because the factor will again depend
on the choice of V . In this situation it helps to look at a slightly more general
example.

Example 6. Let J be generated by f = xo +
∑

i<o fi(y)xi with polynomials fi(y)
in one variable y of order ≥ o − i at 0. By this assumption on the fi, the order of
J at 0 is o. For simplicity, let us assume that fi(y) = ciy

(o−i)d for some d ∈ N and
constants ci. The preceding example, xo +yq = 0, had fi = 0 for i > 0 and f0 = yq.
Let us observe how the coefficients of f transform at an equiconstant point. The
coordinates are chosen so that the only equiconstant point can appear at the origin
of the y-chart. The corresponding substitution of the variables for the blowup is
x → xy and y → y. It gives the total and weak transform (in parentheses) of f as

f∗ = xoyo +
∑

i<o

ciy
(o−i)dxiyi

= yo(xo +
∑

i<o

ciy
(o−i)d−(o−i)xi)

= yo(xo +
∑

i<o

ciy
(o−i)(d−1)xi).

We see that the change of the exponents of y inside the parentheses is given
by replacing the factor d by d − 1. This is nicely illustrated by the change of the
Newton polygon, which, by definition, is the convex hull in R2 of the exponents of
the monomials appearing in a polynomial (see Figure 13.)

It is now clear which number will reflect the improvement in this case. It is
precisely the slope d of the segment between the points (o, 0) and (0, od) of the
Newton polygon. Instead, we may as well take the projection of the Newton polygon
from the point (o, 0) to the y-axis given for (i, j) ∈ N2 with j < o by (i, j) →
(0, oj

o−j ). This projection of integral points of N2 can also be reflected by associating
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to f the ideal generated by all equilibrated powers of its coefficients fi(y), defined
by

coeffx(f) = (fi(y)
o

o−i ).

There appears the inconvenience of having rational exponents, so we should better
take

coeffx(f) = (fi(y)
o!

o−i ).

But we prefer to stick to the geometric picture of the projection in N2 and keep the
first definition. We call this “ideal” the coefficient ideal of f with respect to V . To
avoid confusion with rational exponents of ideals, we can define orda(fi(y)

o
o−i ) =

o
o−i · orda fi to make things well defined. This order may still depend on the choice
of coordinates x and y, but the maximal value over all choices of coordinates is
per definition intrinsic. It is thus a good measure of complexity subordinate to the
order of f .

The passage to the coefficient ideal explains why many articles
on resolution of singularities start with singularities of type f =
xo + g(y) without any monomials of form xi with i > 0. As for
the coefficient ideal, such polynomials yield the same amount of
difficulty as arbitrary ones. So their study is representative for the
general situation.

Conclusion. We have associated to f and given coordinates x, y an ideal coeffx(f) in
V = {x = 0} whose order measures the improvement at equiconstant points of f in
W ′. This order is independent of any choices if V is chosen so that orda(coeffx(f))
is maximal.

We shall say that such a hypersurface V has weak maximal contact with f .
Obviously, coeffx(f) makes sense also when y is a vector of coordinates, though it
is not clear (and actually not true) that its order drops at equiconstant points if y
has more than one component.

This approach to finding finer complexity invariants looks too simple to be of
any value, and indeed it is, as we can already see in the case of surfaces.

Example 7. Consider f = xo + yrzs with r, s > o, and blow up the origin of
A3. The secondary order of f at the origin is ord0 yrzs = r + s. We look at the
origin a′ of the y-chart. The weak transform equals fg = xo + yr+s−ozs; hence
a′ is an equiconstant point and the secondary order has increased from r + s to
r + s + (s − o). So the singularity has gotten worse.

This is bad news. But it is easy for the attentive reader to protest, since the
assumption r, s > o implies that the top locus, top(f), consists of the y- and z-axis,
which could also have been taken as the center (except, possibly, if r = s, in which
case we wish to preserve the symmetry of the singularity). So you could claim
that we have taken the wrong center. The protest is immediately rejected by the
following, slightly more complicated, singularity.

Example 8. Consider f = xo + yrzs + y3(r+s) + z3(r+s) with r, s > o. Here the top
locus is reduced to the origin, which has to be chosen as our center of blowup. At the
origin of A3, the secondary order of f is again r+s. We look at the origin a′ of the y-
chart. The weak transform equals fg = xo+yr+s−ozs+y3(r+s)−o+y3(r+s)−oz3(r+s);
hence a′ is an equiconstant point. The secondary order of f has again increased
from r + s to r + s + (s − o).
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This is really embarassing. The argument which worked so nicely for plane
curves completely breaks down for surfaces: the secondary order may increase at
equiconstant points. So instead of an improvement, the singularities seem to get
worse.

As mentioned in the introduction, we will proceed in this article by entering
without fear into dead-end streets, convinced that we will be able to struggle our
way out by carefully investigating the congestion.

In this spirit, let us look more closely at the transformation law the coefficient
ideal undergoes at an equiconstant point and why its order may increase. For
simplicity we assume that J is generated by a polynomial f = xo + g(y) with
y = (y1, . . . , ym) and orda g ≥ o. We may assume that the center is the origin a = 0
and that a′ is the origin of the y1-chart. The coefficient ideal of f in V = {x = 0} is
generated by g(y). We get total transform f∗ = xoyo

1 + g∗(y), where g∗ denotes the
total transform of g ∈ OV,a under the induced blowup V ′ → V of center Z = {a},
say g∗(y) = g(y1, y2y1, . . . , ymy1). Let q be the order of g at 0, q ≥ o. We now
compute the weak transform fg of f in W ′ and get

fg = y−o
1 f∗ = xo + y−o

1 g∗(y)

= xo + y−o
1 yq

1g
g(y)

= xo + yq−o
1 gg(y)

with gg the weak transform of g under V ′ → V . But the coefficient ideal of fg

in V ′ is y−o
1 g∗(y) = yq−o

1 gg(y), which is different from gg(y) whenever q > o.
Hence (g) = coeffV (f) has a law of transformation different from that of f , because
its transform equals the weak transform multiplied by a power of the exceptional
monomial y1. This is a transform (g)! = (coeffV (f))! in between the weak and the
total transform which depends on o; it is defined by (g)! = y−o

1 (g)∗ (hence depends
on the order o of f at a) and is called the controlled transform of (g) with respect
to the control o (the number o does not appear in the notation (g)!, but whenever
you see a ! in the exponent you should be reminded to watch out for the respective
control).

As in general the order of the weak transform of an ideal may remain constant,
the order of the coefficient ideal of fg may really increase, as we have seen in
example 8 above. In contrast, the order of the weak transform of the coefficient
ideal coeffV f of f won’t increase at a′, because the center was included in its top
locus. Put together, the problem is that the coefficient ideal of the weak transform
fg of f need not coincide with the weak transform of the coefficient ideal of f .
This is a failure of commutativity between our two basic operations: the passage
to the coefficient ideal and the passage to the weak transform.

We get at equiconstant points the following commutative diagrams of local
blowups:

(W ′, a′)  (V ′, a′)
↓ ↓

(W, a)  (V, a)
and ideals:

J ′ = Jg
 C′ = C!

↓ ↓
J  C
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where a′ ∈ W ′ is an equiconstant point of J (i.e., orda′(Jg) = orda J) under the
blowup W ′ → W with center Z ⊂ V , the hypersurface V is adjacent to J (i.e., its
strict transform V ′ = V st contains all equiconstant a′ above a), C and C′ denote
the coefficient ideals of J and J ′ with respect to V and V ′ and C! is the controlled
transform of C with respect to o = orda J .

This illustrates quite explicitly that the transformation laws for J and its coeffi-
cient ideal are different when passing to an equiconstant point of J . So there is no
hope of having the order of C decrease (or at least not increase).

The decrease in the curve case was just a lucky circumstance which is not rep-
resentative for the more general situation of arbitrary dimension. The natural con-
clusion is that our choice of the coefficient ideal of an ideal as a secondary measure
of the complexity of a singularity (after the order of the ideal) is not appropriate.
We have to look for a better candidate. That’s a good point at which to get stuck
and to give up trying to prove resolution of singularities (or reading this paper).

Before doing so we should at least look back and see what we have done so far.
So let us contemplate again the difference between examples 7 and 8. In the

latter, f equals xo + yrzs + y3(r+s) + z3(r+s) and the monomials y3(r+s) and z3(r+s)

appearing in the expansion of f prohibited us choosing as center a coordinate axis.
In contrast, in example 7, we could choose a line as center. We had f = xo + yrzs

there so that its coefficient ideal in V = {x = 0} is a monomial, namely yrzs. No
matter how large its exponents r and s are, blowing up one of the coordinate axes
will make them decrease (putting aside the symmetry problem for the moment). It
is reasonable to expect that this works also in more variables — and it does: For any
f = xo +yr1

1 · · · yrm
m there exists a choice of a coordinate plane inside top(f) so that

blowing it up makes some exponent ri decrease at a chosen equiconstant point of f .
It suffices to take a minimal subset i1, . . . , ik of {1, . . . , m} so that ri1 + . . .+rik

≥ o
and to set Z = {x = yi1 = . . . yik

= 0}. It is clear that Z ⊂ top(f). We leave it as
an exercise to show that some ri drops under blowup (this is obligatory homework).

What have we learnt from this? If the coefficient ideal is a principal monomial
ideal, we will have no (say, almost no) problems choosing a suitable center and
measuring the improvement of f . On the other hand, if it is not a monomial, it
seems impossible to lower the order of the coefficient ideal by blowup.

This suggests changing our strategy drastically:

Instead of trying to lower the order of the coefficient ideal of f , try to transform
the coefficient ideal into a principal monomial ideal.

We have already seen that the coefficient ideal of the weak transform fg of f
factors into an exceptional monomial part and a remaining ideal, which is the weak
transform of the coefficient ideal of f , a simple observation which will allow us to
overcome the recent depression and to attack the problem of resolution with new
impetus.

This change of strategy perfectly fits into the classical idea of principalization of
ideals: to transform ab initio the ideal J into a principal monomial ideal, taking
after each blowup the total transform (or, if you prefer, the controlled transform,
but not the weak or strict transform). Let us formulate our new objective:

Monomialization of ideals. Given an ideal J in a regular ambient scheme W ,
construct a sequence of blowups W ′ → . . . → W in regular centers transversal to
the exceptional loci so that the pullback of J in W ′ (i.e., the total transform) is a
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principal monomial ideal. In addition, we may require that the normal crossings
divisor defined by the pullback of J is supported by the exceptional locus, i.e.,
consists of an exceptional component raised to a certain power.

This clarification and precision of what we are aiming at will be of crucial impor-
tance. It will allow a quite systematic approach to the before mentioned descent in
dimension via coefficient ideals.

As a first consequence of our new orientation, we will have to adapt the notation.
We shall write the ideal J as a product J = M · I where M is a principal monomial
ideal supported by exceptional components and where I is the ideal whose order
we wish to drop successively until J = M · 1. At the beginning, M will be 1 and
J = I. After each blowup, we will collect in M as much of the new exceptional
component as possible. Hence, denoting by J ′, M ′ and I ′ the corresponding objects
after blowup, we will have:

J ′ = M ′ · I ′ with

J ′ = J∗ or J ′ = J !J∗ · I(Y ′)−c the total or controlled transform of J ,

I ′ = Ig = I∗ · I(Y ′)− ordZ I the weak transform of I,

M ′ = M∗ · I(Y ′)ordZ I for J ′ = J∗ the total transform,

M ′ = M∗ · I(Y ′)ordZ I−c for J ′ = J ! the controlled transform.

Here, M ′ is defined precisely so that J ′ admits again a product decomposition
J ′ = M ′ · I ′ analogous to J = M · I.

The next considerations can be seen, in one version or other, as the core of most
proofs on resolution of singularities in characteristic zero.

Let V ⊂ W be a local hypersurface at a which is adjacent for I. Hence V ′ ⊂ W ′

will contain all points a′ where orda′ I ′ = orda I. Observe that we will now assume
that Z ⊂ top(I) instead of Z ⊂ top(J) so that orda I = ordZ I for all a ∈ Z. To
observe the improvement of I at equiconstant points we shall consider the coefficient
ideal coeffV (I) of I in V (and not that of J). As it will play in V the same role as
J in W , we shall call it J− (the minus sign referring to the decreasing dimension
of V = W− compared with W ). Assume that J− = M− · I− is a factorization with
M− a principal monomial ideal in V (again, before any blowup, M− will be 1 and
J− = I−). Let us now look at our commutative diagrams from above. The upper
right hand corner admits two candidates as ideals to appear there: The coefficient
ideal (J ′)− of I ′ in V ′ and the transform (J−)′ of J−. It is not clear in general
which transform of J− has to be taken, and if it is possible to choose it so that the
equality (J ′)− = (J−)′ holds in V ′ (the controlled ideal will be a good candidate),

(W ′, a′)  (V ′, a′)
↓ ↓

(W, a)  (V, a)
As for the ideals we get

J ′ = M ′ · I ′  (J ′)− ! (J−)′

↓ ↓
J = M · I  J−

To establish the commutativity of the diagram with ideals, we shall choose,
guided by the curve case, for the transform (J−)′ of J− the controlled transform
(J−)! of J− with respect to o = orda I, say (J−)′ = (J−)! = (J−)∗ · I(Y ′)−o. With
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this choice, the equality (J ′)− = (J−)′ holds, and the proof is the same as for
curves:

We choose local coordinates x, y1, . . . , yn in W at a so that V = {x = 0}, the
ideal I(Z) of Z is given as (x, y1, . . . , yk) and a′ is the origin of the y1-chart (such
a choice exists; cf. appendix C). Expand f ∈ I into f =

∑
i<o af,i(y)xi modulo xo

locally at a with coefficients af,i ∈ OV,a. For arbitrary ideals (i.e., not necessarily
principal) the coefficient ideal J− of I in V is defined as

J− = coeffV I =
∑

i<o

(af,i(y), f ∈ J)
o

o−i .

Observe here that the ideals generated by the i-th coefficients are raised to a
certain power, and not the coefficients themselves. This has technical reasons we
are not going to explain any further. Using afg,i = (af,i)

∗ · I(Y ′ ∩ V ′)i−o and
o′ = orda′ I ′ = orda I = o, we compute as follows:

coeffV ′(I ′) = coeffV ′(Ig)

= coeffV ′(
∑

i<o′

afg,i · xi, fg ∈ Ig)

= coeffV ′(
∑

i<o′

aI(Y ′∩V ′)−o·f∗,i · xi, fg ∈ Ig)

= coeffV ′(
∑

i<o

(af,i · xi)∗ · I(Y ′ ∩ V ′)−o, f ∈ I)

=
∑

i<o

(a∗
f,i, f ∈ I)o/(o−i) · I(Y ′ ∩ V ′)−o

= (
∑

i<o

(af,i, f ∈ I)o/(o−i))∗ · I(Y ′ ∩ V ′)−o

= I(Y ′ ∩ V ′)−o · (coeffV I)∗ = (coeffV I)!.

This proves the desired equality.
Let us write down explicitly the main ingredient of the local descent in dimension.

Commutativity for coefficient ideals. Given an ideal J = M · I in W , we may
associate to the local blowup (W ′, a′) → (W, a) of W in Z ⊂ top(I) an adjacent
hypersurface V = W− of W at a and an ideal J− = M− · I− in V , the coefficient
ideal of I in V , so that if a′ is an equiconstant point for I and hence a′ ∈ V ′,
the total transform J ′ = M ′ · I ′ admits a coefficient ideal (J ′)− = (M ′)− · (I ′)−
in V ′ = (W ′)− = (W−)′ at a′ which is the controlled transform (J−)′ of J− with
respect to the control orda I.

As the descent in dimension commutes with the local blowup at equiconstant
points, we may write

(J ′)− = (J−)′ = J ′
− = M ′

− · I ′−.

This is a significamt advance in reaching our objective. The statement of commuta-
tivity implies that the monomialization problem for J = M ·I can be transferred to
lower dimension and expressed there by the analogous problem for J− = M− ·I−. In
particular, both the search for a suitable center of blowup Z in W and the measure
of improvement of the singularities in W ′ at a′ can be expressed as problems in
lower dimension. In V we may apply induction on the local embedding dimension
to solve both problems:
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For the center Z in W we can choose the center Z− in V associated to J− =
M− · I−, yielding a commutative diagram of local blowups:

Y ′
− ⊂ (V ′, a′) ⊂ (W ′, a′) ⊃ Y ′

↓ ↓ ↓ ↓
Z− ⊂ (V, a) ⊂ (W, a) ⊃ Z

For the resolution invariant ia(J) of J we can take the vector

ia(J) = (orda(I), ia(J−)),

where ia(J−) is the invariant associated to J− in V = W−; it exists by induction on
the dimension. This vector is considered with respect to the lexicographic ordering.
If its first component orda(I) drops under blowup, we have ia′(J ′) < ia(J) and we
are done. If it remains constant, we look at the remaining components of ia(J).
As we are in this case at an equiconstant point a′ of I, commutativity holds, say
(J ′)− = (J−)′. Hence

ia′(J ′) = (orda′(I ′), ia′((J ′)−)) = (orda(I), ia′((J−)′)).

By induction on the dimension we know that ia′((J−)′) < ia(J−) holds lexicograph-
ically. Hence ia′(J ′) < ia(J). In both cases, the resolution invariant has dropped.

Unfortunately, this elegant reasoning does not go through as smoothly as we
might have dared to hope. Before seeing this, the reader may wish to recapitulate
the large amount of information packed into the last section.

4. Obstructions. The preceding constructions and the ensuing descent in dimen-
sion produce a natural and efficient setting for proving resolution of singularities.
There are, however, several obstructions which prevent us from applying the method
directly without further modifications.

(1) It has to be verified that the induction basis where W has dimension 1 is
valid.

(2) The controlled transform (J−)! of J− in W ′ at a′ is defined with respect to
the order of J at the image a of a′ in W . It hence depends on the stratum of ord J
in which a lies. In this way, (J−)! is only coherent in W ′ along the inverse image
of each stratum where ord J is constant, but not on the whole W ′.

(3) The coefficient ideal depends on the choice of the local hypersurface V , and
different choices of V may yield different invariants and a center which is only
locally defined. We have to specify a class of hypersurfaces V so that the invariant
and the center do not depend on the special choice of V within this class and so
that the local definitions coincide on overlaps of charts.

(4) The center Z− associated to J− = M− · I− will be contained in top(I−) but
maybe not in top(I). As we plan to set Z = Z−, the inclusion of Z− in top(I) will
become mandatory so that the order of the weak transform I ′ = Ig of I does not
increase. Therefore we have to adjust the construction of J− so that Z− ⊂ top(I).
Actually, we could also choose Z differently from Z−, but this would yield new
complications.

(5) The center Z− may not be transversal to already existing exceptional compo-
nents in W . This would destroy the monomiality of the exceptional factors M and
M− of J and J− and produce an exceptional locus which is not a normal crossings
divisor.
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(6) In some cases, namely when I = (xo), the coefficient ideal of I is zero and
the descent in dimension breaks down. Some substitute for coefficient ideals has to
be found in this case.

(7) When J− is already resolved and thus a principal monomial ideal, viz J− =
M− · 1, the inequality ia′((J−)′) < ia(J−) used above will no longer hold, since
the invariant of a resolved ideal should be the minimal possible value which cannot
drop again. Some other argument has to be found to show that ia(J) drops. In
particular, a suitable center for J has to be defined directly.

(8) It has to be shown that the invariant is upper semicontinuous and that its
top locus is regular.

(9) The hypersurface V of W is chosen adjacent to I at a. Its transform V ′ in
W ′ need no longer be adjacent to I ′ at a′. Thus commutativity as stated in the last
section may fail for the next blowup if V ′ is not replaced by a hypersurface which
is adjacent for I ′.

In the next sections we shall show how to overcome all these difficulties. Only
the last problem (9) will require us to assume that the characteristic of the ground
field is zero. The other problems are solved without reference to the ground field.

Let us first comment on the above list. Problems (1) and (2) are easy: In
dimension 1, the ideal J is locally at a just the power of a coordinate (xo) supported
on the point. Blowing it up yields J ′ = (xo) · 1 with M ′ = (xo) and I ′ = 1, so that
J ′ is resolved. As I was not 1 (else, already J would have been resolved), its order
orda I drops from o > 0 to 0.

Problem (2) is handled by allowing stratified ideals. Equipping W with a suit-
able stratification (given by the constancy of the order of the relevant ideals), we
require only that the stalks of our ideals are the stalks of a coherent ideal along the
respective strata.

The other difficulties are much more serious. (3) is overcome by allowing only
hypersurfaces V which have weak maximal contact with I, i.e., which maximize
the order of coeffV (I). Then the order of coeffV (I) is by definition independent of
the choice of V . It has to be shown that when a varies, this order defines an upper
semicontinuous function along top(I). This is done by showing that locally along
top(I), the same V can be chosen for all stalks of I.

As for (4), note that when passing to the coefficient ideal of I at a, we have the
local inclusion top(coeffV (I), o) ⊂ top(I) where o = orda I and top(coeffV (I), o)
denotes the locus of points in V where J− = coeffV (I) has order ≥ o. This is
immediately verified from the definition of coefficient ideals and is left as an exercise.
If J− factorizes into J− = M− ·I−, then top(I−) need not be contained in top(J−, o)
if the order of I− is small (in particular, this happens if I− = 1). But the inclusion
top(I−) ⊂ top(J−, o) is the only way to get the inclusion top(I−) ⊂ top(I), which
in turn is necessary to know that the center Z− associated to J− = M− ·I− satisfies
not only Z− ⊂ top(I−) but also Z− ⊂ top(I). Recall that these inclusions are used
when showing that the order of the weak transforms of I and I− do not increase.

This trouble is overcome by replacing I by a modified ideal P before passing
to the coefficient ideal J−. This companion ideal P of I equals I if the order of
I is sufficiently large and is the sum of I with a convenient power of M if this
order is small (the analogous construction will be applied for I−; see “Setups” and
the appendix). The companion ideal is modelled so that top(P−) ⊂ top(J−, o)
if J− = M− · I−. Moreover, the commutativity relation shall be preserved: At
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equiconstant points of I the weak transform of P equals the companion ideal of
the weak transform Ig of I. The passage to the companion ideal before taking the
coefficient ideal is a technical complication which has no deeper reason other than
guaranteeing the inclusion top(I−) ⊂ top(I) without losing commutativity.

Let us now discuss problem (5), the transversality of Z with the exceptional
locus. This is a delicate point which has caused many troubles in the past. The
idea for how to attack it nowadays appears for the first time in [Vi 1]. Let F
denote the exceptional locus at the current stage of the resolution process. Let
Z be the subscheme Z− of W associated to J− neglecting in its construction the
transversality problem. If Z = Z− is not transversal to F , we could formulate a new
resolution problem by considering the ideal IV (Z− ∩F ) defining the intersection of
Z− with F in V . Resolving it would yield a total transform which is a principal
monomial ideal (supported by the new exceptional components which arise during
its resolution process); hence the weak transform would be equal to 1. This signifies
that the corresponding blowups separate Z− from F , i.e., achieve Z− ∩ F = ∅.

We see here that the separation of schemes can be easier formulated as a reso-
lution problem (the order of the ideal defining the intersection should become 0)
than the transversality of schemes (there is no intrinsic invariant known which is
able to measure in a reasonable way the distance of a scheme from being a normal
crossings scheme). Therefore we prefer to separate Z− from F in order to solve the
transversality problem.

There is one notational inconvenience with this. While separating Z− from F ,
new exceptional components will appear, and these should not be separated from
Z−, since separating them will create new components meeting Z−, and so on.
Therefore it is necessary to put the new exceptional exponents in a bag and to
distinguish them from the old ones, which constitute F . The new components will
a priori be transversal to Z− and its transforms, since the centers chosen to separate
Z− from F lie inside Z−.

Again we encounter a technical complication: We must record the exceptional
components which may fail to be transversal to the foreseen center. Moreover, we
should solve permanently the transversality problem for these dangerous compo-
nents. Once separation is established, the anticipated virtual center can really be
chosen as actual center, and blowing it up should improve the original singularities.

Instead of treating the resolution of J and the separation of the virtual center
from the exceptional locus alternately, both problems are taken care of simultane-
ously. The trick is to multiply the companion ideal P of I by a suitable transver-
sality ideal Q before passing to the coefficient ideal J−. So we set K = P ·Q where
Q = IW (E) is the ideal defining the dangerous exceptional components of F in W .
This ideal K is called the “composition ideal”. In this way, the virtual center will
automatically be contained in top(K) = top(P ) ∩ top(Q), hence in top(Q) (here,
the equality top(K) = top(P )∩top(Q) is understood for the local top loci at points
a of W ). It thus lies by construction inside all dangerous exceptional components
of F (which will then no longer be dangerous).

We thus get the following sequence of ideals:

J  J = M · I  P  K = P · Q J−

= coeffV (K) J− = M− · I−  P−  K− = P− · Q−  . . .
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We have to ensure here for all ideals the correct commutativity relations with re-
spect to blowup, the appropriate inclusions of the various top loci and the transver-
sality of the resulting center with the exceptional locus. The burdening of the no-
tation caused by the introduction of the ideals P , Q and K is considerable. There
is no apparent way to avoid these. In addition, we have to know in each dimension
the multiplicities (= exponents) of the monomial factors M , M−, . . . and the col-
lection of dangerous exceptional components E, E−, . . . of F . A crucial point is to
distinguish carefully between objects which are globally defined and intrinsic, i.e.,
do not depend on the choice of the local hypersurfaces, and those which depend on
these choices, are only defined locally, and just play an auxiliary role.

The global and intrinsic objects are collected in the resolution datum, which
will be called “singular mobile”. A mobile consists of the ideal J ; a number c, the
control, which prescribes the law of transformation for J ; and two sets D and E of
exceptional components. Both are strings (Dn, . . . , D1) and (En, . . . , E1) of normal
crossings divisors supported by the exceptional locus, where the index i refers to
the embedding dimension where the divisor will be used. The first divisors Di

define in each dimension i the monomial factor Mi of the ideal Ji (here, Jn = J
and Jn−1 = J−). We have to know this factor in order to be able to split from
Ji the singular factor Ii we are interested in. Only a posteriori will Ii appear as
the weak transform of some ideal from the previous stage of the resolution process.
The second divisors Ei collect precisely the dangerous exceptional components with
regard to the virtual center. Again, these appear in each dimension.

The local and non-intrinsic objects associated to a singular mobile are collected
in its “punctual setup”. A setup is given by the choice of local flags Wn ⊃ Wn−1 ⊃
· · · ⊃ W1 of regular i-dimensional subschemes Wi of W at a given point a (here,
Wn = W and Wn−1 = W− = V ). These local hypersurfaces Wi−1 of Wi are chosen
adjacent to the respective ideals Ii (more precisely, to their companion ideals Pi).
They allow us to define and construct all the ideals mentioned above. These depend
on the choice of the flag, but their orders, which will constitute the components
of our local resolution invariant, will be shown to be independent of this choice.
In this way the invariant is again intrinsic and an honest measure of the singular
complexity of the mobile.

Let us return to our list of obstructions. The next one is number (6) and relates
to the problem that the coefficient ideal of an ideal of form K = (xo) is zero. This
problem is easily settled. If K = (xo), then its support is regular and defined by
{x = 0}. It may therefore be taken as the center (provided it is transversal to the
exceptional locus, as we shall assume in this discussion temporarily). Blowing it
up transforms K into 1 (since the composition ideal K passes as I under blowup
to its weak transform). Thus the ideal can easily be resolved. For notational
reasons it is however convenient to pursue the descent in dimension also in this
case, so as to have always the same length of the setup and the invariant. As the
zero ideal would produce infinite orders and unpleasant terminology, we prefer to
define J− in this case as the ideal 1, with trivial factorization J− = M− · I−. In
particular, the companion ideal P− will also be 1. As for the transversality ideal
Q−, it can be shown that once K equals (xo) the transversality problem has already
disappeared in the respective dimension, so that Q− can also be taken equal to 1
(say E− = ∅). Hence K− = 1. Now the descent to the next smaller dimension
continues in precisely the same way.
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A similar reasoning applies to problem (7), which concerns the case where J =
M · 1 is already resolved. All subsequent ideals in lower dimension will be set equal
to 1. However, one has to show that a center can be chosen which decreases the
order of the controlled transform of J (in order to lower eventually the order of
the ideals in one dimension higher). The choice of the center in this case (again
a priori transversal to the exceptional locus) is of a combinatorial nature and was
sketched in the hypersurface case xo + yr1

1 · · · yrk

k above. The procedure works in
general. However, the improvement is captured through the transformation of M
instead of I and requires us to insert a combinatorial component in between the
components of the resolution invariant in order to reflect the improvement of an
already resolved ideal Ji = Mi · 1 in some dimension i < dim W .

We come to problem (8), the upper semicontinuity of the invariant and the
regularity of the center. The first has already been discussed above and relies on
the fact that the constructions of punctual setups can be done locally in an entire
neighborhood of a point. Here it is important to know that the construction of
the various ideals commutes with specialization at points. For this, the notion of
“tunedness” is useful: Stalks of ideals associated to other stalks of ideals are tuned
if both admit coherent representatives such that the correspondence is valid for
the stalks of these representatives at all points of suitably small neighborhoods. A
minor technical complication due to the consideration of stratified ideals consists
in defining tunedness with respect to the strata of an underlying stratification of
the ambient scheme. We refer to [EH] for more details.

The last problem (9) is the persistency of adjacent hypersurfaces under blowup.
Historically, this was the main obstacle to overcome in the fifties, when Hironaka
and Abhyankar studied resolution of singularities under the guidance of Zariski.
Nowadays its solution is known by the name of hypersurfaces of maximal contact
(in the terminology of Hironaka) or of Tschirnhaus coordinate transformation (in
the terminology of Abhyankar). Both only work in characteristic zero (or a charac-
teristic prime to the order of the ideal considered). In positive characteristic, the
failure of maximal contact could not yet be replaced by some other concept.

Recall that we call a local regular hypersurface V in W at a adjacent to an ideal
I if under blowing up a regular center Z inside V , the locus of equiconstant points
a′ in W ′ above a is contained in the weak transform V ′ of V . This notion refers
to one blowup. In order to make the induction on the local embedding dimension
work along several blowups, we have to ensure that a hypersurface V can be chosen
in W at a whose successive transforms contain all equiconstant points above a for
any sequence of blowups of W in regular centers contained in V and its transforms.
This property of V will be called permanent maximal contact with I at a. In the
literature, such hypersurfaces are simply called hypersurfaces of maximal contact.
As we will have to treat several concepts of contact simultaneously, it is better to
emphasize in the naming the key property (in this case permanence). Permanent
maximal contact guarantees that after each blowup, if the order of the ideal has
remained constant, the transforms of the same hypersurface of W can be chosen to
perform the descent in dimension. As a consequence, commutativity holds along
the whole sequence of local blowups until the order of I eventually drops (and not
just for one blowup).

This is a crucial and delicate point in the whole story, so the reader
may want to contemplate this last paragraph.
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Two things have to be distinguished here. The existence of hypersurfaces of per-
manent contact is a property of the series of equiconstant points under a sequence
of blowups. It may hold or fail, depending on how the world decides to be. Once
the abstract existence is confirmed it remains to realize such hypersurfaces through
a special choice or construction. This is human labour. In characteristic zero, a
miraculously simple trick produces an explicit selection of hypersurfaces of perma-
nent maximal contact (not for all of them). This construction cannot be carried
out in positive characteristic, and one may ask for alternative constructions.

But, hélas, there are none: It can be shown by examples that in positive char-
acteristic the series of equiconstant points above a given point a may leave at
some instant the transforms of any regular (or even singular) hypersurface through
a. The characteristic p world decided not to admit hypersurfaces of permanent
contact. In fact, the departure of equiconstant points from accompanying hyper-
surfaces happens only after several blowups (see the section “Problems in positive
characteristic”). So characteristic p is not harder because our techniques are not
appropriate or too limited; it is per se more difficult.

Let us now explain how one can find hypersurfaces of permanent maximal contact
in characteristic zero. Suppose that given an ideal I in W at a and assuming
for simplicity that I is principal, I = (f) for some polynomial f . Choose local
coordinates x, y1, . . . , yn so that V = {x = 0} is adjacent to f . Let o = orda f . As
x appears in the tangent cone of f by adjacency, a generic linear coordinate change
(or simply replacing yi by yi +cix with generic constants ci) will allow us to assume
that xo appears in the expansion of f with non-zero coefficient, say equal to 1. We
may write f = xo +

∑
i<o fi(y)xi modulo xo+1 with coefficients fi ∈ OV,a.

As seen earlier, the coordinates may in addition be chosen so that Z = {x =
y1 = . . . = yk = 0} and that the equiconstant point a′ is the origin of the y1-chart.
Thus the substitution of variables for the blowup is given by x → xy1, y1 → y1 and
yi → yiy1 for 2 ≤ i ≤ k, respectively yi → yiy1 for k < i. It yields at a′ the weak
transform

f ′ = xo + y−o
1

∑

i<o

fi(y1, y2y1, . . . , yky1, yk+1, . . . , yn)yi
1x

i

modulo xo+1. We wish to find criteria on V = {x = 0} so that its transform
V ′ = {x = 0} at a′ is again adjacent to f ′. This signifies that we have to ensure
that x appears in the tangent cone of f ′ provided that the order of f ′ has remained
constant at a′ (i.e., equal to the order o of f at a). Now the key idea — and this
is not obvious (but has been explained many times in the literature) — is to look
at the coefficient fo−1(y) of the monomial xo−1 of f . If it is identically zero, also
the coefficient f ′

o−1(y) of the monomial xo−1 of f ′ will be identically zero, by the
special choice of our coordinates and the induced coordinate substitution. This
is immediate. So this property, though coordinate dependent, is persistent under
blowup at equiconstant points. In addition, fo−1(y) = 0 implies that V = {x = 0}
is adjacent to f in W at a. Accordingly, also V ′ = {x = 0} is adjacent to f ′ in
W ′ at a′. We have found a stronger condition which automatically persists under
blowup.

It remains to show that the coordinates x, y1, . . . , yn can always be chosen so that
fo−1(y) is identically zero. Here, characteristic zero appears on the scene, and the
proof is then very short. Assume that fo−1(y) is non-zero. Replace x by x− 1

ofo−1(y)
in f (this is not possible in characteristic p dividing o). It is immediately checked
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that, in the new coordinates, the coefficient of xo−1 has become zero. This change
of coordinates may a priori alter the generators of I(Z). But as f has order o along
Z, the polynomial fo−1(y) belongs to I(Z), so that replacing x by x − fo−1(y)
stabilizes I(Z).

We say that the hypersurface V = {x = 0} is osculating for I = (f) at a if
the coefficient of xo−1 in the expansion of f is identically zero. For ideals I which
are not principal, it is required that there is at least one element f in I of order
o = orda I with this property.

We have seen before that osculating to I implies adjacent to I. As we have just
shown that osculating persists at equiconstant points under blowup, we conclude
that osculating also implies permanent maximal contact, and that’s what we were
looking for.

This is one of the rare instances in mathematical research where reality produces
a truly favorable coincidence. The existence of hypersurfaces of permanent maximal
contact in characteristic zero is a coup de chance, which, presumably, has no deeper
reason than a simple computation on Taylor expansions and blowups. Once you
have made the right guess by looking at the xo−1-coefficient, the proofs are really
an exercise, as we saw above. All this breaks down in positive characteristic, and
no substitute for permanent maximal contact has been found up to now.

This concludes our discussion of the various obstructions which have to be han-
dled before setting up the strategy for the proof of resolution of singularities in
characteristic zero. In the next sections, we shall describe the respective solutions
to the problems in more technical detail. After this we will compute a few explicit
examples from scratch.

The busy or moderately interested reader is advised to conclude here the lecture
of the article.

CHAPTER 2: CONSTRUCTIONS AND PROOFS

5. Mobiles. With this section we start to formalize the ideas and concepts de-
scribed heuristically up to now. This will require us to read the next paragraphs
more carefully and to carry out occasionally private computations. At first sight,
the concept and use of mobiles is not easy to grasp. A concrete example run-
ning with the definitions will help to capture their flavour. Nevertheless, mobiles
can only be understood together with their setups, which will be explained in the
section thereafter. The reader is advised to go through this and the next section
concurrently with the section “Examples”.

The resolution of singular schemes and the monomialization of ideals will be
deduced from the resolution of a more complicated object called singular mobile.
A mobile consists of data which allow us to describe at each stage of the reso-
lution process the portion of a given ideal and of its successive coefficient ideals
which has already been monomialized and which keeps track of the dangerous ex-
ceptional components which may fail to be transversal to the local flags. Such
objects appear in various disguises in the literature, e.g. by the name of resolution
datum or idealistic exponent (Hironaka), trio, quartet and quintet (Abhyankar), ba-
sic object (Encinas-Villamayor) and infinitesimal presentation (Bierstone-Milman).
They are all differently defined—sometimes local, sometimes global, intrinsic or not
intrinsic—and do not necessarily gather the key information, so they have either to
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be completed by additional information (viz the knowledge of the prior sequence of
blowups) or to be considered modulo equivalence relations.

The advantage of mobiles in comparison to these other resolution objects is that
they collect precisely the intrinsic global information which we wish to know at
each stage of the resolution process and that they allow a local surgery (through
the construction of setups) which produces the local resolution invariant defining
the center and yielding the required induction. As such, we can define the transform
of a mobile under blowup without needing any additional ingredient, which in turn
allows us to speak of the resolution of a mobile. So let us define them.

A singular mobile in a regular ambient scheme W is a quadruple M = (J , c, D, E)
where J is a coherent ideal sheaf in a regular locally closed subscheme V of W , c
is a positive number, the control, and D = (Dn, . . . , D1) and E = (En, . . . , E1) are
strings of (stratified) normal crossings divisors Di and Ei in W (here, the index n
denotes the dimension of V ).

In most cases, J is the ideal we wish to resolve or to monomialize and is an ideal
of W , so that V = W in this case. Ideals living in locally closed regular subschemes
of W appear during the descent in dimension; thus in the definition, the ambient
scheme of the ideal J is V instead of W . The control c prescribes the transformation
rule for J : Under blowup, J will pass to the controlled transform J ! = J∗ · I(Y ′)−c

of J with respect to c. For J itself one could take c = 0 so that J passes to the
total transform, but when descending in dimension the coefficient ideals will have
to pass under blowup — as we have seen earlier — to the controlled transform
in order to ensure commutativity. Therefore it is convenient to consider from the
beginning controlled transforms. In addition, the control fixes the objective of the
resolution process: When the order of J drops below c, we declare our goal to be
achieved.

The control c should actually carry an index +, say c = c+, to indi-
cate that it comes from a dimension one higher than the dimension
of V . When constructing the setups of a mobile, the ideals Ji will
have controls ci+1 given as the orders of the ideals Ki+1.

As a general policy, we will try to treat each dimension in pre-
cisely the same fashion. This makes things more systematic and
helps to produce automatized proofs. In particular, the restriction
of a mobile to some regular smaller dimensional subscheme should
again be a mobile.

The divisors Di and Ei of a mobile will be supported by the exceptional compo-
nents produced so far by the resolution process. So, for instance, at the beginning
of the resolution process, all Di and Ei are empty. Under blowup they obey a
precise law of transformation, prescribed by the resolution invariant. The divisors
Di will carry multiplicities; their restriction to the member Wi of the local flag of
a setup indicates the monomial factor Mi which will be taken off the ideal Ji of a
punctual setup of the mobile, say Ji = Mi · Ii with Mi = IWi

(Di ∩ Wi) a principal
monomial ideal. (See the next section for the precise definition of a punctual setup
of a mobile and of local flags; here and in the sequel, IV (X) denotes the ideal defin-
ing a subscheme X of V .) The string D = (Dn, . . . , D1) is called the combinatorial
handicap of M.

Observe that the Di are divisors in W , whereas the monomials Mi live in Wi

(as said earlier, the index i of Di refers to the dimension where Di will operate).
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The reason is that, as such, the Di can be defined intrinsically, i.e., independently
of the chosen flag, whereas the monomials Mi will depend on Wi. In order to know
that Mi is really a principal monomial ideal it has to be shown that Wi meets Di

transversally. This is one of the transversality assertions which has to be established
in the course of the proof.

In practice, the Di carry some small additional combinatorial in-
formation, their label (cf. [EH] for the precise definition). The
label of Di is a pair of natural numbers. It serves only in case the
ideal Ji = Mi · Ii is resolved, say Ji = Mi and Ii = 1, in which
case the various components of Di have to be ordered in some way
to enable one to choose systematically one of their intersections as
center. The label induces such an ordering.

The divisors E = (En, . . . , E1) are reduced and will be called the transversal
handicap of the mobile. Once a local flag Wn ⊃ . . . ⊃ W1 is chosen (there are
certain rules for doing this), the divisor Ei collects those exceptional components
which may fail to be transversal to Wi−1.

The shift by 1 in the indices is due to the fact that the transversality
ideal Qi = IWi

(Ei ∩ Wi) associated to Ei lives in dimension i but
operates in dimension i − 1. As Wi will be transversal to Ei, Qi is
a principal monomial ideal in Wi. By the choice of Ei, its top locus
top(Qi) lies inside the components of the exceptional locus F to
which the next hypersurface Wi−1 may not be transversal. This is
a clever device to achieve the transversality of the center Z (which
will lie inside top(Qi)) with F without introducing a singular ideal
of possibly large order (as IWi−1

(Ei ∩ Wi−1) would be).
A thorough investigation of the transversality problem shows

that it is more practicable to treat in each dimension the transver-
sality problem of Wi with the exceptional locus rather than to for-
mulate only one transversality problem for the center Z at the end
of the descent in dimension. Thus transversality ideals appear in
each dimension.

To summarize, the ingredients of a mobile M = (J , c, D, E) prescribe for the
ideal J a transformation law under blowup, given by the control c; a factorization
law for the successive coefficient ideals Ji of a setup of M with monomial factor
Mi, given by the combinatorial handicaps Di; and a partition of the exceptional
components of F for transversality records, given by the transversal handicaps Ei.

Let us look at a concrete example: Consider the ideal J generated
by the polynomial f = x5+y7+zd with d ≥ 7. The ambient scheme
is V = W = A3. Assume we wish to resolve the scheme X defined
by J in W . It has only one singularity, at the origin 0 of A3, and
there the order of J is 5. By induction, it is certainly sufficient to
make the order of f drop below 5. So we will set the control c of
our mobile equal to 5. In W there are no exceptional components
yet; hence the combinatorial and transversal handicaps are trivial,
D3 = D2 = D1 = ∅ and E3 = E2 = E1 = ∅. The mobile M we
associate to J is

M = (J, 5, (∅, ∅, ∅), (∅, ∅, ∅)).
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The next steps will be to define the transform of a mobile under blowup and to
formulate what we mean by a resolution of a mobile. The transform of M is only
defined for a specific blowup of the ambient scheme W , the one given by the center
Z constructed from the mobile as the top locus of the local invariant associated to
it. To prove that mobiles admit a resolution we will have to show that the transform
M′ of the mobile M under the blowup of W with this center has improved, which
will be reflected by the decrease of the local invariant when passing from M to M′.

Everything relies on constructing an appropriate local upper semicontinuous
invariant of mobiles which stratifies W and measures the local complexity of M.
It should not depend on any choices but just on the mobile. This invariant has to
satisfy two conditions. The locus of points where it attains its maximal value on
W , its top locus, shall define a permitted center Z of blowup. And when blowing
up this center, the invariant of the transformed mobile shall decrease at all points
of the new exceptional component Y ′.

This conceptually simple program requires us to develop an adequate definition
of the local invariant — which is a truly subtle task. It is much harder to find a
suitable invariant than to prove afterwards that it actually works. It’s the same as
with differential equations: Once you guess a solution correctly, it is almost trivial
to verify that it is indeed a solution. For the invariant the verification is not as
easy, but rather because of the technical complexity than for other reasons. Most
proofs are straightforward. However, it will be instrumental to set up all objects
and the relations between them very systematically (although this may create some
objects which only play the role of a stowaway). Otherwise the proofer would be
quickly lost in the thicket.

The resolution invariant we shall associate to a mobile is a local numerical object
for each point a of W . It should live in a well ordered set so as to allow induction.
In our case it will be a vector of non-negative numbers in N4n (equipped with
the lexicographic ordering), each component being the order of an ideal (with the
exception of the components mi, which are pairs of numbers always equal to (0, 0),
except once, when oi is for the first time zero, in which case mi is a label),

ia(M) = (on, kn, mn, on−1, kn−1, mn−1, . . . , o1, k1, m1).

The definition of ia(M) requires the concept of a punctual setup of a mobile at
a point (described in the next section). For the moment it suffices to know that
each mobile we shall meet admits punctual setups and that a setup at a is given by
a flag Wn ⊃ . . . ⊃ W1 of locally closed regular i-dimensional subschemes Wi of W
at a. To such a flag we shall associate strings of ideals (Jn, . . . , J1), (In, . . . , I1) and
(Kn, . . . , K1), the indices referring to the scheme Wi where the respective ideals
live. They are related to each other as follows: Jn is the stalk of J at a. Each
Ji factors into Ji = Mi · Ii with Mi = IWi

(Di ∩ Wi) the exceptional monomial
prescribed by the combinatorial handicap Di. The ideals Ki are products Pi · Qi

where Pi is the companion ideal of Ji (if you have forgotten the definition, you may
as well think of Pi as being Ii), and where Qi = IWi

(Ei ∩ Wi) is the transversality
ideal prescribed by the transversal handicap Ei. Finally, Ji−1 is the coefficient ideal
of Ki in Wi−1.

We accept and perfectly understand that the reader may consider this bulk of
ideals hopelessly confusing. To comfort him, let us see to what they boil down at
the beginning of the resolution process where all Di and Ei are empty. Then the
ideals Ji = Ii = Ki are equal for each i and Ji−1 = coeffWi−1

(Ji) since Pi = Ii
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and Qi = 1. So there is just one string of ideals (Jn, . . . , J1) appearing in the
flag Wn ⊃ . . . ⊃ W1 at a, and Ji−1 is the coefficient ideal of Ji in Wi−1. In the
general case, we shall denote a setup also by (Jn, . . . , J1), though the flag and the
other ideals are part of the structure. It can be checked that the flag determines
all the remaining ingredients of a setup. Not all mobiles admit punctual setups
(because the factorization Ji = Mi · Ii need not hold if Di is not appropriate),
but those arising under blowup as the transforms of a mobile with initially empty
combinatorial handicap will do. These are the only ones we shall consider.

We illustrate these objects in our current example. At a = 0, the
punctual setup and the local flag W3 ⊃ W2 ⊃ W1 for M will be
defined as follows (see the next section for the justification): We
set W3 = W = A3 and J3 = J = (x5 + y7 + zd). There are no
factorizations yet; hence J3 = I3 = M3 · I3 with M3 = IW3

(D3) =
1. For the same reason, all companion ideals Pi equal Ii, and,
since Ei = ∅, the transversality ideals are trivial Qi = 1, so that
Ki = Ii. The first descent in dimension goes via the coefficient
ideal J2 of K3 = I3 in W2 = {x = 0}, say J2 = (y7 + zd). Again,
J2 = I2 = M2 · I2 with M2 = IW2

(D2) = 1. The second descent
is similar, W1 = {x = y = 0} and J1 = (zd) = I1 = M1 · I1 with
M1 = IW1

(D1) = 1.

The components oi and ki of the invariant are defined as the orders oi = orda Ii

and ki = orda Ki of the ideals Ii and Ki. At the beginning of the resolution process
we have oi = ki = orda Ji since Ji = Ii = Ki. The combinatorial components
mi will be explained later. All of the mi except one play no role at all. We just
write them in order to keep the components of the invariant systematic in each
dimension. The only relevant mi occurs for the maximal index i so that oi = 0.
This signifies that Ii = 1 locally at a; hence Ji = Mi is already monomialized (say
resolved). As we have seen in the last section, it is necessary in this case to choose
the center combinatorially and to build up a separate induction. The nontrivial
component mi is precisely the combinatorial resolution invariant which takes care
of a monomial principal ideal Ji supported by exceptional components.

In the example, we have o3 = k3 = 5, o2 = k2 = 7, o1 = k1 = d
and all mi = (0, 0).

The critical point in the definition of the invariant is to specify a class of local
flags Wn ⊃ . . . ⊃ W1 so that the resulting invariant does not depend on the choice
of the flag within this class. This will be achieved by requiring that the hypersurface
Wi−1 of Wi is osculating for the companion ideal Pi of Ji. Then all components of
the invariant become automatically intrinsic, and one can show that ia(M) defines
an upper semicontinuous function on W .

Once we dispose of the local invariant, we set

Z = {a ∈ W, ia(M) is maximal lexicographically} = top(ia(M)).

This is a closed subscheme of W . By induction on the dimension it is shown
that it is regular and transversal to the current exceptional locus. Let W ′ → W
denote the induced blowup with new exceptional component Y ′. We are going
to define the transform M′ of the mobile M = (J , c, D, E) in W ′. After this is
done it has to be shown that M′ admits again punctual setups at each point. So
its invariant ia′(M′) is well defined and can be compared with ia(M). Using the
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various commutativity relations (they carry on the ideals of the setups; see the
section “Commutativity”), one can then simply show that ia′(M′) ≤ ia(M) holds
with respect to the lexicographic order. Indeed, the components of the invariant
are orders of ideals which pass under blowup by “Commutativity” to their weak
transform (so their order does not increase, since the center lies in their top locus),
provided that the earlier components of the invariant have remained constant. This
yields ia′(M′) ≤ ia(M).

In order to show that the invariant actually drops, say

ia′(M′) < ia(M),

we are confronted with two scenarios. Assume that ia′(M′) = ia(M) has remained
constant. If all components oi of ia(M) are positive, we get a contradiction, because
the weak transform of I1 will be 1 (this always happens for ideals in one dimensional
ambient spaces), so o′1 = 0 < o1. Otherwise, let d be the maximal index so that
od = 0. Hence Id = 1 and Jd = Md is a monomial. A computational argument
shows that the combinatorial component md of ia(M) drops, m′

d < md; see the
section “Shortcuts” for details. We conclude that for any point a′ above a ∈ Z the
invariant drops, ia′(M′) < ia(M). This establishes the required induction step for
the resolution of mobiles.

So let us indicate briefly how the transform M′ is defined. The rules are pre-
scribed by the desired transformation laws for the respective ideals of a punctual
setup of M. The ideals Ii — which yield the components oi of the invariant —
shall pass to their weak transforms at a′ as long as the higher indexed components
of the invariant have remained constant at a′ (otherwise oi = orda Ii and the lower
indexed components are irrelevant, by definition of the lexicographic order). As
Ji = Mi · Ii, this gives the transformation formula for the transversal handicap
Di, depending on the value of the truncated invariant (on, . . . , oi+1, ki+1, mi+1)
at a′. Namely, if (o′n, . . . , o′i+1, k

′
i+1, m

′
i+1) = (on, . . . , oi+1, ki+1, mi+1), we shall set

D′
i = D∗

i +(oi−ci+1)·Y ′ where ci+1 is the control defining J ′
i = J !

i = J∗
i ·I(Y ′)−ci+1 .

As Ji is the coefficient ideal of Ki+1 at a, ci+1 will equal orda Ki+1 in order to
have J ′

i the coefficient ideal of K ′
i+1 = Kg

i+1 in W ′
i . If (o′n, . . . , o′i+1, k

′
i+1, m

′
i+1) <

(on, . . . , oi+1, ki+1, mi+1) at a′, then D′
i is set equal to 1 (because otherwise the

factorization J ′
i = M ′

i · I ′i may fail, and since the components of the invariant in
dimension i are irrelevant in this case).

This is a bit technical. The computation of transforms of mobiles will be exten-
sively practiced in the example section. In the example from above the transform
M′ of M is defined as follows.

The center of the blowup is the origin Z = {0} of W = A3. As we chose the
control c = 5 = orda J , we have as controlled transform J ′ = J∗ · I(Y ′)−5 of J the
weak transform J ′ = Jg of J . The transversal and the combinatorial handicaps are
stratified divisors, so their definition depends on the points of W ′ we are looking
at. We shall only pick one point a′, the origin of the z-chart, which is the most
interesting point.

In the induced coordinates in the z-chart, the exceptional component Y ′ is de-
fined by {z = 0}, and the total transform J∗ of J equals J∗ = (x5z5 + y7z7 + zd)
(replace x and y by xz and yz). Therefore, J ′ = J∗ ·z−5 = (x5+y7z2+zd−5), which
we may write as the first ideal J ′

3 = J ′ of our punctual setup of M′. As this ideal
equals the weak transform of I3 = J3, we have the factorization J ′

3 = I ′3 = M ′
3 · I ′3
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with I ′3 = (x5 + y7z2 + zd−5) and M ′
3 = 1. It follows that the first component D′

3

of the combinatorial handicap D′ of M′ equals ∅.
If d < 10, the order of I ′3 has dropped at a′ from 5 to d − 5. In this case, our

objective to lower the order of J is already achieved. If d ≥ 10, the order has
remained constant and we have to look at further components of the setup and
the invariant. As the order of I ′3 has remained constant at a′, we may take for
the local hypersurface W ′

2 the transform Wg

2 of W2 = {x = 0} (see again the next
section for justification). In the z-chart, W ′

2 is given as {x = 0}. As Z is transversal
to W2 (because it is contained in it), Y ′ and W ′

2 will be transversal. This means
that Y ′ will pose no transversality problems with respect to W ′

2; hence we set the
transversal handicap E′

3 equal to E′
3 = ∅ (recall that the transversal handicap Ei+1

takes care of the member Wi of the flag in one dimension less, which may cause
transversality problems).

As D′
3 = E′

3 = ∅, the companion ideal P ′
3 equals I ′3 and the transversality

ideal Q′
3 equals 1, so that K ′

3 = I ′3 = (x5 + y7z2 + zd−5). Its coefficient ideal in
W ′

2 = {x = 0} is J ′
2 = (y7z2+zd−5). It factorizes into J ′

2 = (z2)·(y7+zd−7) = M ′
2·I ′2

with M ′
2 = (z2) and I ′2 = Ig

2 = (y7 + zd−7) the weak transform of I2 = (y7 + zd).
Therefore the second component D′

2 of the combinatorial handicap D′ of M′ equals
at a′ the divisor D′

2 = 2 · Y ′.
At this stage, we have to distinguish two cases. If d < 14, the order of I ′2 has

dropped at a′ from 7 to d − 7, and a new hypersurface W ′
1 has to be chosen to

complete the construction of the setup (which, in any case, is irrelevant, since we
know already that the invariant ia′(M′) has dropped lexicographically at a′).

We shall concentrate on the more delicate situation where d ≥ 14, so that
orda′ I ′2 = orda I2 = 7. As before, we may conclude that E′

2 = ∅, so that Q′
2 = 1

and K ′
2 = P ′

2 = I ′2. Accordingly, we choose for the next member W ′
1 of the local

flag the transform W ′
1 = Wg

1 of W1 = {x = y = 0}, which, in the z-chart we are
considering, has the same equation W ′

1 = {x = y = 0}. The resulting coefficient
ideal of K ′

2 = I ′2 equals J ′
1 = (zd) = (zd) · 1 with M ′

1 = (zd) and I ′1 = Ig

1 = 1.
We see that the order o′1 of I ′1 has dropped at a′ from o1 = d to o′1 = 0, and that
D′

1 = d · Y ′.
The transformed mobile M′ will be, on the stratum of the local invariant through

a′ and in case d ≥ 14, of form

M′ = (J ′, 5, (∅, 2 · Y ′, d · Y ′), (∅, ∅, Y ′)).

Recall that the various divisors of the handicaps are stratified, so that they may
look differently at other points of W ′. The components of the invariant of M′ at
a′ are

o′3 = k′
3 = 5,

o′2 = k′
2 = 7,

o′1 = k′
1 = 0,

m′
3 = m′

2 = (0, 0),

m′
1 = (d, ∗).

The combinatorial invariant m′
1 in dimension 1 has as its first component the

order of M ′
1; the second ∗ is part of the label of M ′

1 which we need not specify here.
You may believe that the next center Z ′ of blowup is the origin a′ of the chosen
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z-chart in W ′. We leave it as a lengthy but worthwhile exercise to compute the
next transform M′′ of the mobile and its punctual setups at all points of W ′′.

We return to the general framework of mobiles and setups. Similar to the ideals
Ii, the ideals Ki — which yield the components ki of the invariant — shall pass
under blowup to their weak transforms at a′ as long as the earlier components
(on, . . . , oi+1, ki+1, mi+1, oi) of the invariant have remained constant at a′, by the
same reasoning as before. As Ki = Pi · Qi and P ′

i = Pg

i at a′, we conclude that
Q′

i = IW ′
i
(E′

i∩W ′
i ) should be the weak transform of Qi. This is fine, because it turns

out that we can choose for W ′
i the weak transform Wg

i of Wi at a′. Setting E′
i = Eg

i

is the correct choice for the transversal handicap, because the new exceptional
component Y ′ will a priori be transversal to W ′

i−1 = Wg

i−1.
A detailed explanation may be helpful here to make things more explicit: The

hypersurface Wi−1 of Wi is chosen osculating for Pi, and P ′
i will equal Pg

i at
points a′ where the truncated invariant (o′n, . . . , o′i+1, k

′
i+1, m

′
i+1, o

′
i) of M′ equals

the truncation (on, . . . , oi+1, ki+1, mi+1, oi) of the invariant of M′. By the persis-
tence of osculating hypersurfaces at equiconstant points, W ′

i−1 = Wg

i−1 will again
be osculating for P ′

i (since o′i = orda′ Pg

i = orda Pi = oi at a′).
As the center Z was contained locally in Wi−1, the new exceptional component Y ′

is automatically transversal to Wg

i−1. Hence it need not be added to the transversal
handicap E′

i. Only if a new osculating hypersurface W ′
i−1 has to be chosen (because

the order of P ′
i = Pg

i has dropped or because P ′
i 6= Pg

i ), E′
i must contain in addition

to the transform of Ei also the component Y ′.
At points a′ where (on, . . . , oi+1, ki+1, mi+1, oi) has dropped we set E′

i equal to
the whole exceptional locus minus the components belonging to E′

n, . . . , E′
i+1 which

have already been taken care of by the transversal handicaps in higher dimensions.
We see here clearly why both D′

i and E′
i will be stratified normal crossings divisors

in W ′.
We are left to define the control c′ of M′. It is simply c except if the maximal

order of J ′ on W ′ has dropped below c, in which case this maximum is chosen. This
gives a rough idea how a mobile transforms under blowup. The important thing
is that M′ does not depend on any choices (i.e., not on the flags chosen for M),
because the components of the invariant are independent. In conclusion, mobiles
are a somewhat heavy and slowly moving vehicle, but they run and run and run
. . . until they are resolved.

6. Setups. To motivate the definition of setups of mobiles, let us assume that we
have already blown up several times and have thus arrived at an ideal J in W . It
will be the controlled transform of the ideal we started with — with respect to a
given control c (you may just as well think of J as being the total transform). The
exceptional components in W produced by the prior blowups will be denoted by F .
The ideal J factorizes into J = M · I where I denotes the weak transform of the
ideal we started with, and where M is a locally principal monomial ideal supported
by F .

The mobile M for which we wish to construct a punctual setup will be of the
form M = (J, c+, D, E) where we assume for simplicity that J is an ideal in W
(and not in a regular subscheme). The control c+ carries now an index +. This
is for notational reasons, because the ideals Ji will be governed by controls ci+1

associated to ideals Ki+1 in one dimension higher. So c+ shall suggest cn+1 with
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n = dim W . We shall assume that the handicaps D and E have been constructed
as certain transforms of the handicaps of the initial mobile.

Recall that we wish to transform the entire ideal J into a principal monomial
ideal. We measure the distance of J from being a principal monomial ideal by
factorizing J into J = M · I and by considering the order o of I. The smaller o is,
the closer we are to the final goal. Observe here that this kind of measurement is
relatively dull. For instance, if J is from the beginning a principal monomial ideal,
our invariant is not able to capture this. Instead it is necessary to blow up several
times until all factors of J appear as exceptional components (with multiplicities),
i.e., J = M ·1. It’s only then that the invariant will tell us that the ideal is resolved.

There have been several attempts to measure directly the distance of an ideal
from being a principal monomial ideal or, said geometrically, of a scheme from
being a normal crossings divisor. None of them succeeded in building up a general
induction argument for resolution. The problem is that the natural invariants one
could think of are related to the Newton polyhedron of the ideal and are therefore
very much coordinate dependent. This would not matter too much if the coordinate
choices were compatible with the coordinate substitutions occurring in blowups.
There are two types.

The monomial substitutions of the coordinates do not pose problems, but the
translations which are necessary in the exceptional divisor to compute Taylor ex-
pansions do. These translations can also be applied before blowing up and then
correspond to Borel linear coordinate changes, i.e., changes given in suitable coor-
dinates by upper or lower triangular matrices. Such changes affect considerably the
shape of the Newton polyhedron.

However, some characteristics of the Newton polyhedron remain unchanged, e.g.
its (integral) distance from the origin (which is just the order of the ideal at the
origin) or certain projections of the Newton polyhedron to coordinate planes (which
correspond to passing to the coefficient ideal of the ideal). It is certainly worth
searching for further measures of monomiality.

The ideal I is the part of J we are mainly interested in and whose order shall
decrease. Our center Z for the next blowup will be chosen in its top locus top(I).
As we already explained (and this is particularly relevant in the next smaller di-
mensions), the center should also be contained in top(J, c+) of points where j has
order at least c+. Namely, if J is the coefficient ideal of some ideal K+ of order c+

at a, as will occur in lower dimensions, we have top(J, c+) ⊂ top(K+) and wish to
ensure that the center lies inside top(K+). The simplest way to achieve this is to
require that the center lies in top(J, c+).

As top(I) may fall outside top(J, c+), we replace I by an ideal which is sufficiently
close to it and which ensures the inclusion of top loci. This substitute for I is the
companion ideal P of J = M · I and the control c+. It shall satisfy top(P ) ⊂
top(I)∩ top(J, c+), have the same order as I and behave under blowup similarly as
I. A suitable definition of P is as follows:

P = I + M
o

c+−o if 0 < o = orda I < c+,

P = I otherwise.

The rational exponent could be avoided by placing P = Ic+−o + Mo if 0 < o <
c+. But then I and P would have different orders, thus burdening the notation
and complicating the transformation laws. We leave it to the reader to define
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ideals with rational exponents as equivalence classes of pairs consisting of an ideal
and a number. The companion ideal satisfies top(P ) ⊂ top(I) ∩ top(J, c+) as
desired. Moreover, it behaves well with respect to taking weak transforms. Indeed,
if c′+ = c+ and J ′ = J ! = M ′ · I ′ with I ′ = Ig, and if o′ = o holds for the orders
of I and I ′, then the companion ideal P ′ of J ′ with respect to J ′ = M ′ · I ′ and c′+
equals the weak transform Pg of P .

We give the proof of this commutativity relation: If o′ ≥ c′+, the assertion is
clear since P = I and P ′ = I ′ in this case. So assume that o′ < c′+. From

M ′ = M∗ · I(Y ′)o−c+ we get P ′ = I ′ + (M ′)
o′

c′
+

−o′ = Ig + (M∗)
o

c+−o · I(Y ′)−o =

(I∗ + (M∗)
o

c+−o ) · I(Y ′)−o = Pg.
We now choose, locally at a, a regular hypersurface V = W− in W which is

osculating for P . Such hypersurfaces exist locally in characteristic zero, though need
not patch globally. We shall use V to define the coefficient ideal which performs
the descent in dimension. Before doing so, notice that V need not be transversal
to the exceptional locus F . As the center will be locally included in V , it may
neither be transversal. However, if we knew that it is contained in the intersection
of V with F , transversality would be guaranteed. This inclusion can be achieved by
multiplying P with the ideal Q defining F in W . The composition ideal K = P ·Q
will then satisfy top(K) ⊂ top(P )∩ top(Q), which in turn lies in all components of
F it meets.

Other choices of K are possible, for instance the equilibrated sum
of powers of P and Q; cf. [EV 1]. The exponents have to be chosen
so that top(K) ⊂ top(P )∩ top(Q) and the definition is compatible
with passage to weak transforms under blowup. The definition
K = P ·Q used here and in [EH] is simpler than in [EV 1], but less
efficient for implementations of the algorithm.

The center of blowup will lie inside top(K) and hence in all components of F
it meets. Therefore it would be appropriate to set Q = I(F ). It turns out that
with this choice of Q the corresponding centers would be too small, and actually a
resolution would never be achieved (essentially, because V can never be separated
by blowups from the whole exceptional locus F , since the new components which
appear during the separation process will again meet V ). So we take for Q instead
of I(F ) the ideal I(E) where E collects only the “dangerous” components of F
with respect to V , i.e., those which may fail to be transversal to V . These can be
determined easily and have been described in “Mobiles”. The ideal Q is called the
transversality ideal of J = M · I. It depends on J because E depends on J .

Let us pause to summarize what we are up to: First we decompose J into J =
M ·I and agree to take o = orda I as the first component of the resolution invariant
ia(M). As the center will be defined as top(ia(M)), it will lie in top(o) = top(I).
Next we associate to I the companion ideal P and an osculating hypersurface V for
P . We specify a (reduced) divisor E of exceptional components and set Q = I(E)
and K = P · Q. We do this for two reasons: first to force the center inside all
components of F it intersects (with the drawback of getting possibly a relatively
small center); second, because resolving K instead of I will separate F from V , and
then the center will and can be chosen sufficiently large. To include the resolution
(= monomialization) of K to our program, we define the second component of the
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invariant ia(M) as the order k of K at a,

ia(M) = (o, k, . . .) = (orda I, orda K, . . .).

In this way, the center Z = top(ia(M)) will lie inside top(I) and top(K), the latter
being included in top(P ) and top(Q), hence in the intersection of the components
of E. As orda K = orda P + orda Q = orda I + orda Q, the second component k
measures the order of Q, i.e., how far Q is from being resolved. Under blowup, all
four ideals—I, P , Q and K—will pass at equiconstant points (here equiconstant
is meant with respect to the prior components of the invariant) to their respective
weak transforms.

It could be suspected that it is easier to postpone the transversality
problem until the moment a virtual center C is found via I, P and
their successive coefficient ideals. If C is already transversal to the
entire exceptional locus F , it is taken as the actual center Z; if not,
the ideal I(C ∩ F ) is added to the resolution problem.

This quite natural approach leads to an unpleasant situation
which is due to the combinatorial invariant associated to a resolved
ideal Ji = Mi ·1 in a certain dimension i. It appears as a component
mi in the resolution invariant and is the only component which may
increase when the center is too small. As resolving the ideal I(C∩F )
by auxiliary blowups requires small centers, the component mi will
indeed increase, and the induction breaks down. The invariant mi

and the combinatorial resolution problem will be described later
on.

Let us continue on our way through the setup of a mobile. The next step is the
descent in dimension. Let J− be the coefficient ideal of K in V at a (recall that V
is a local hypersurface of W at a which is osculating for P ). If K is bold regular,
i.e., generated by a power of a coordinate, K = P · Q = (x)k, and consequently
V = {x = 0}, then the coefficient ideal of K in V would be zero, so we set instead
J− = 1 in this case. Otherwise we may really take for J− the coefficient ideal of K
as defined earlier, since it will be non-zero.

When passing to the coefficient ideal, a certain coherence property is required.
The local hypersurface V of W is chosen for each a ∈ W , and different a may
yield quite different hypersurfaces and coefficient ideals. This in turn may destroy
the upper semicontinuity of the order of the coefficient ideal (which will form a
component of the resolution invariant), and also the (local) coherence of the setup
in lower dimensions.

To confront this problem, the easiest and most efficient solution is to choose the
same hypersurface V for all points a of the top locus top(P ) of P , at least locally
along top(P ). This is possible in characteristic zero, since the construction of V
via derivatives extends along top(P ) to a neighborhood of the given point a (in
positive characteristic, some detour has to be taken by stratifying top(P ) further,
but the construction still works). It is checked that V contains top(P ) locally at a
and that V is osculating for P at all points of top(P ) sufficiently close to a. Thus
we could really work in the open subschemes of a sufficiently fine open covering of
W instead of working in local rings. As all constructions extend to neighborhoods,
we shall stick for simplicity to the punctual setting via local rings. That’s why
setups are called punctual. It is shown that punctual setups can be defined as the
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specializations of setups at points in entire neigborhoods and are therefore in a
suitable sense “coherent” (with respect to the underlying stratification).

In positive characteristic, the top locus of P has to be stratified
by its local embedding dimension to find hypersurfaces which work
for whole neighborhoods of points on a stratum. Osculation with
P cannot be realized and has to be replaced by weak maximal
contact, with the drawback that this property is not persistent
under blowup.

We shall not discuss the aspects of coherence any further, and content ourselves
to state that all constructions involved in a punctual setup of a mobile (factoriza-
tions, companion, transversality and composition ideals as well as coefficient ideals)
are sufficiently coherent. The coherence always refers to the strata of the stratifi-
cation given by the earlier components of the invariant and is encapsulated in [EH]
by the concept of tunedness.

So let J− be the coefficient ideal of K in V at a, locally along top(K). This
is by definition the local top locus of K, i.e., the top locus of K restricted to a
sufficiently small neighborhood of a in W . Thus along top(K) the order of K is
constant and equal to orda K. We denote by c this value and associate it to J−

as its control on V = W−. This signifies that under blowup, J− will pass to the
controlled transform J ′

− = J !
− = J∗ · I(Y ′)−c with respect to c. This ensures that

the coefficient ideal of K ′ = Kg in V ′ = V g equals J ′
− at points a′ where the order

of K has remained constant (K-equiconstant points).

We should briefly indicate the difference between the order k =
orda K of K at a point a of W and the control c of J− in V .
The first will vary along W and form the second component of the
invariant ia(M). The second is given for each a in W as the value
of k along the local stratum top(K) and will be considered as a
constant associated to the local hypersurface V of W at a. As the
same V can be chosen locally for all points a of top(K) and as
k is constant along top(K), this choice for the control c of J− is
justified.

The definition of c and the construction of J− conclude the descent in dimension,
which started with J . It is carried out locally along the stratum of the first two
components o and k of the invariant. The local hypersurface V = W− will contain
an open set of this stratum, and there all stalks of J pass to the respective stalks
of J− at points of W−.

It remains to indicate how J− factorizes. This is prescribed by the second compo-
nent D− = Dn−1 of the transversal handicap D of the mobile. Before any blowup,
D− = ∅ and J− = I−. After a sequence of blowups, D− will be the normal cross-
ings divisor which yields J− = M− · I− with M− = IW−(D− ∩ W−) and I− the
weak transform of the ideal preceding it before the last blowup. This description
of D− only holds if the first two components (o, k) of the invariant have remained
constant during this blowup. If they have dropped lexicographically, we set D− = ∅
and J− = I−. This is justified by the fact that it does not matter lexicographi-
cally that the component o− = orda I− of the invariant may have increased, if one
of the earlier components has dropped. Recall here that commutativity for I− is
only needed at equiconstant points, say, if (o, k) has remained constant, and that
otherwise I− need not be the weak transform of its predecessor.
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Once we know that J− factorizes (and this will be proven in more detail in
“Commutativity”), we can start over again, associating to J− the ideals P−, Q−

and K−, a local hypersurface (W−)− in W− = V with control c− and the coefficient
ideal (J−)− of K− in (W−)−. We can continue like this down to ambient dimension
equal to 1, getting a local flag W = Wn ⊃ W− = Wn−1 ⊃ . . . ⊃ W1 and a string
of ideals (J = Jn, J− = Jn−1, . . . , J1). It may happen that from some index d on,
all Ji are equal to 1 (this occurs if Kd+1 is bold regular or 1). If d denotes the
maximal index with Id = 1, then oi = 0 for i ≤ d and also ki = 0 (since it turns
out that Ed = ∅ and therefore Qd = Kd = 1 in this case). The remaining members
Wd−1, . . . , W1 of the flag are irrelevant. The top locus of (on, kn, . . . , o1, k1) equals
the support Wd of Kd+1, which would then be the center — leaving aside the
combinatorial components mi of the resolution invariant which may reduce the
center further. Let us investigate this combinatorial situation more closely.

7. Shortcuts. What happens under blowup if Id = 1 for some d ≥ 1 (if Ii 6= 1 for
all i, we set d = 0)? What should be the correct choice of center?

We then have Jd = Md a principal monomial ideal, and the component od = 0
of the invariant cannot improve further. But it may happen that the vector
(on, kn, , . . . , od+1, kd+1) remains constant at some point a′ of Y ′, and then no im-
provement will be observed. At this stage the size of the center comes into play.
Up to now it only mattered that the center be included in the various top loci,
independently of how large it was chosen. In all cases the orders oi and ki did not
increase, and, by induction, at least one of them would decrease if all oi > 0. If
Jd = Md in Wd, the companion ideal Pd of Id is 1 and its top locus equals the
whole ambient scheme Wd. Choosing as center Wd will not be permitted, since it
is not contained in top(Jd, cd+1), and hence not in top(Kd+1), except if Kd+1 was
bold regular of support Wd and Jd = 1.

Let us look at example 7 of the section “Improvement of singularities” and its
generalization. It was given by xp + yr1

1 · · · yrd

d in Wd+1 = Ad+1 at a = 0. Here the
polynomial generates Kd+1, Wd is given by x = 0, and Jd = (yr1

1 · · · yrd

d ) consists of
exceptional components. Assume that Jd = Md and Id = 1. We have seen that any
center Z = {x = yi1 = . . . yim

= 0} with indices i1, . . . , im ranging in a minimal
subset of {1, . . . , d} so that ri1 + . . . + rim

≥ p will make the order r1 + . . . + rm of
Md = (yr1

1 · · · yrd

d ) drop when passing to the controlled transform with respect to
cd+1 = orda Kd+1.

This example is representative for our problem and anticipates what has to be
done. The center Z should be an intersection of some components of Md along
which Md has order ≥ orda Kd+1 and should have maximal possible dimension.
Then the order of the controlled transform of Jd = Md with respect to cd+1 will
drop. At a′, either the earlier components of the invariant have dropped or, if
they have remained constant, the ideal M ′

d of the setup of J ′ will be precisely the
controlled transform of Md with respect to the control cd+1 (since Jd = Md and
J ′

d = M ′
d). This suggests adding the order of Md as the last nontrivial component

of our invariant (this will be the first component of the combinatorial invariant
md). A computation shows that it only drops when the center is really maximal
with the above property; smaller centers will make the order increase.

There is another problem with the choice of the center. There can appear sev-
eral maximal candidates among the respective intersections of components of Md.
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We cannot just choose one of them ad hoc, since our construction is local and the
choice of the center at some other point may not be compatible and would hence
prohibit getting a globally defined center. Therefore we have to choose the center
everywhere subject to the same rule. In example 3 we have seen that we might run
into symmetry problems, because several candidates are permuted by a symmetry
of Kd+1. There is a nice escape button in our case, using that Md consists of excep-
tional components. These components have appeared in the preceding resolution
process one after the other, so they are naturally ordered, for instance by the mo-
ment of their respective appearance. The rule to select a center among the possible
candidates could then be to take the intersection of components whose total age
(= sum of individual ages of the components) is the largest (or the smallest).

The precise choice of the center is a little bit involved. Let us call a shortcut of a
divisor F any divisor obtained from F by deleting some of its components. As just
explained, the center will be the intersection of the components of a certain shortcut
of Md. This intersection is the top locus of the shortcut. We will put different labels
on all shortcuts of the combinatorial handicaps Di in order to distinguish them and
to make the choice of the center systematic. Labels are simply positive integers, and
weak transforms of shortcuts will get the same label as their preimage. The center
is then chosen as the top locus of a shortcut Nd of Md whose order is ≥ orda Kd+1

and which has no proper shortcuts Ñd of order ≥ orda Kd+1 (this guarantees that
the center is maximal). If there are several such shortcuts available, take the one
with maximal order. There may still be several of them. In this case take the one
with maximal label. This one is then unique, since no two shortcuts will have the
same label. Even though defined locally, the local pieces of the center will patch
on overlaps (since defined through the order of the shortcuts of Md and the labels
of the shortcuts of the global divisors Dd inducing labels on the shortcuts of Md)
and give a globally defined subscheme of W .

All this is incorporated in the combinatorial component md of the invariant; see
[EH] for more details. It is a pair whose first number is the order of the unique
shortcut Nd specified before and whose second number is the label of Nd. Thus

md = (orda Nd, laba Nd).

The combinatorial component md is only needed in dimension d. To smoothen the
invariant we set mi = (0, 0) for i 6= d (i.e., if Ii 6= 1 or i < d) and set

ia(M) = (on, kn, mn, . . . , o1, k1, m1) ∈ N4n.

This is the final definition of the invariant through a punctual setup of the mobile
M at a. In each dimension it consists of a quadruple (oi, ki, mi) associated to the
ideals Ii, Ki and Mi of a setup of M at a. Once we know that the invariant
does not depend on the choice of the local hypersurfaces Wi and that the required
commutativity and transversality relations hold, the preceding discussion applies
and shows that ia(M) decreases lexicographically under blowup of M in Z =
top(ia(M)).

There is a small delicacy in the decrease of md at points where the
earlier components of the invariant have remained constant. By
definition, m′

d equals (orda′ N ′
d, laba′ N ′

d) where N ′
d is the shortcut

of M ′
d = M !

d defined analogously to Nd for Md. If N ′
d is the weak

transform of Nd, its order will have decreased, so that m′
d < md.
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If not, N ′
d will be a newly chosen shortcut of M ′

d, hence the

weak transform of a shortcut Ñd of Md. As orda Nd was maximal
among all considered shortcuts of Md, we get orda′ N ′

d ≤ orda Ñd ≤
orda N . Thus the first component of md does not increase. If it
remains constant, which can only occur if N ′

d is a newly chosen

shortcut of M ′
d, the label of N ′

d = Ñg

d will be the label of Ñd

and hence strictly smaller than the label of Nd. This shows that
m′

d < md holds lexicographically in all cases.

8. Commutativity. The idea of commutativity has appeared several times up to
now, and often with different meanings. We shall now give a precise description of
what is meant by commutativity in each context.

Let M = (J , c, D, E) be a mobile in W , and let M′ be the transform of M under
the blowup W ′ → W with center Z = top(ia(M)). Let (Jn, . . . , J1) be a punctual
setup of M at a, and let a′ be a point above a. Roughly speaking, commutativity
shall express the property that the ideals of the setup of M have transforms in
W ′ (weak or controlled transform, according to the ideal) which define the ideals
of a truncated setup (J ′

n, . . . , J ′
j) of M′ at a′ down to the index j until which the

truncated invariant has remained constant at a.
This is used in two ways. First, to show that M′ admits again punctual setups

at all points a′ of W ′ (the remaining components J ′
j−1, . . . , J

′
1 are easily determined

since all M ′
j−1, . . . , M

′
1 and Q′

j−1, . . . , Q
′
1 will be trivial equal to 1, so that J ′

i =

I ′i = P ′
i = K ′

i for i < j; hence J ′
i−1 = coeffW ′

i−1
J ′

i). Second, to be able to compare

the invariant ia′(M′) of M′ with ia(M): The components of ia′(M′) will be the
orders of the weak transforms of the ideals defining the components of ia(M) as
long as the earlier components have remained constant.

More explicitly, commutativity means that, for each n ≥ j ≥ 1,
we have W ′

i = Wg

i for n ≥ i ≥ j if (on, . . . , oj+1) has remained
constant at a′; J ′

i = J !
i and I ′i = Ig

i for n ≥ i ≥ j if (on, . . . , mj+1)
has remained constant at a′; P ′

i = Pg

i , Q′
i = Qg

i and K ′
i = Kg

i for
n ≥ i ≥ j if (on, . . . , oj) has remained constant at a′. Observe the
inductive nature of these conditions, with j decreasing from n to 1.

Quite generally, we can introduce the following concept of commutativity: Let
♯ : R → R♯ be a map sending ideals R in W at a to ideals R♯ at a in a regular locally
closed subscheme V of W . Let Z be a regular closed subscheme W contained locally
at a in V . Denote by W ′ → W and V ′ → V the induced blowups with center Z
(observe that the blowup V ′ of V in Z equals the weak = strict transform of V under
the blowup W ′ → W ). Assume given prescribed transformation rules R → R′ and
S → S′′ for ideals R of W and ideals S of V with respect to the blowups of W
and V with center Z. We say that ♯ : R → R♯ commutes with blowup if for any
choice of Z the following diagram commutes (exceptionally we write here the arrow
of blowups in the opposite direction, which, in any case, is a matter of taste)

R′ → (R′)♯
! (R♯)′′

↑ ր
R → R♯

This is equivalent to saying that

(R′)♯ = (R♯)′′.
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Obviously we may require this commutativity relation to hold only at specific
points a′ above a, usually those where the prior components of the invariant have
remained constant (where the adjective “prior” has to be interpreted correctly).

Let us list what kind of maps ♯ : R → R♯ we have met in the definition and
construction of setups: Associating to J the factors M and I of J in the product
J = M · I, the companion ideal P of I associated to J = M · I and the control c+,
the transversality ideal Q given by an exceptional divisor E associated to P , the
composition ideal K = P · Q, and the coefficient ideal J− of K. Analogously to
ideals, we may also say that the passage to the osculating hypersurface V = W−

for P commutes with blowup, i.e., (W ′)− = (W−)g if P ′ = Pg and the order of P
has remained constant.

Almost all commutativity relations for these ideals have already been established.
The factorization J ′ = M ′ · I ′ for J ′ = J ! the controlled transform with respect
to c+ with I ′ = Ig and M ′ = M∗ · I(Y ′)o−c+ for o = ordZ I holds because the
passage to the total transform is multiplicative. Commutativity of the companion
ideal P is due to the special choice of the exponents in P (and requires J ′ = J !

and that the control c+ and the order of I have remained constant at a′), and
that of Q holds by definition of E and E′. Commutativity for K = P · Q is then
trivial, and that of coefficient ideals has been proven by an explicit calculation on
the Taylor expansions, provided that (W ′)− = (W−)g. All these local ideals are
actually determined by the choice of the local flags in W and W ′.

As for W−, the situation is more delicate, because various W− and (W ′)− could
be chosen. So the commutativity assertion says in this case that if orda′ P ′ =
orda P , then the weak transform of an osculating hypersurface W− for P is again
osculating for P ′ = Pg (which was also expressed as the persistence of osculating
hypersurfaces under blowup). We have proven this by a computation in local coor-
dinates. Note that commutativity need not hold for the weaker condition that W−

has weak maximal contact with P (see the section “Problems in positive character-
istic” below).

We conclude that commutativity relations are almost automatic to verify, pro-
vided all ideals are correctly defined (which is not obvious to do when constructing
them).

9. Independence. We shall describe now why the invariant ia(M) of a mobile
M does not depend on the choice of the local flags. This is needed in three regards.
First, it implies that our local definition of the center will yield a globally defined
center. Second, the transform of a mobile under a blowup W ′ → W , being defined
through the truncated invariants in W and W ′, will not depend on the local flags.
And finally, if the invariant would depend on some choices its decrease under blowup
may not be significant for the actual resolution of the mobile, because another choice
may produce an increase.

Recall that given a mobile M in W , its invariant ia(M) at a ∈ W was defined
and constructed through the choice of a local flag Wn ⊃ . . . ⊃ W1 and the resulting
punctual setup (Jn, . . . , J1) of M at a. Here, the hypersurfaces Wi−1 of Wi were
subject to be osculating for the companion ideals Pi of Ji = Mi · Ii. We have seen
earlier that if V is osculating for P , then it has weak maximal contact with P , i.e.,
maximizes the order of coeffV (P ). Therefore this order does not depend on the
choice of V .
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In a punctual setup, we take the coefficient ideal not of P but of the product
K = P · Q with Q the transversality ideal. So we need an extra argument to show
that the order of coeffV (K) is independent of V . One possible way to see this is to
observe that if V has weak maximal contact with P , then it has also weak maximal
contact with any product P · Q (provided P 6= 0, 1). We will sketch the proof of
this for principal ideals; for the general case and more details we refer to the paper
[EH].

So let P and Q be generated by f = xp +
∑

i<p fix
i and g = xq +

∑
i<q gix

i

modulo xp+1 respectively xq+1, with coefficients fi and gi in the local ring of the
hypersurface V = {x = 0}. Assume that V has weak maximal contact with P , i.e.,

maximizes mini(orda f
p/(p−i)
i ). Let N(f) and N(g) denote the Newton polyhedra

of f and g in Nn with respect to local coordinates x, y1, . . . , yn−1. The order of the
coefficient ideals of f and g in V is given by the projections π : (i, α) → p

p−i ·α and

τ : (i, α) → q
q−i · α from Nn to Qn−1 as minα∈supp f π(|α|) and minα∈supp g τ(|α|).

Now let h = f ·g = xp+q+
∑

i<p+q hix
i and consider the corresponding projection

σ : (i, α) → p+q
p+q−i · α. Denote by ef , eg and eh the respective orders of the

coefficient ideals of f , g and h in V . Using the three projections and the expression
of the coefficients hi of h through fi and gi, it follows from a computation that
eh

p+q = min{ ef

p ,
eg

q }.
Assume now that V maximizes ef . If ef/p ≤ eg/q, then eh

p+q = ef/p is already

maximal. Otherwise, assume that eh

p+q = eg/q is not maximal. Then a coordinate

change (x, y) → ϕ(x, y) = (x+b(y), y) with ord b = eg/q would allow us to increase
eh

p+q . From ef/p > eg/q it follows that the order of the coefficient ideal of f with

respect to ϕ(V ) would be eg/q; hence eh

p+q = eg/q would remain constant, i.e., was

already maximal.
This gives an idea of why the order of the coefficient ideal Ji−1 of Ki = Pi · Qi

does not depend on the choice of Wi−1. On the other hand, the handicaps Di−1

and Ei−1 do not depend on any choices (when constructing the transform of a
mobile, they were defined by the values of the earlier components of the invariant,
which, by decreasing induction on the dimension, can already be assumed to be
independent of any choices). It will be shown in “Transversality” that Wi−1 is
transversal to Di−1 and Ei−1. Hence the orders of Mi−1 = IWi−1

(Di−1 ∩ Wi−1)
and Qi−1 = IWi−1

(Ei−1 ∩ Wi−1) equal the orders of Di−1 and Ei−1. This in turn
shows that the orders of Ii−1, Pi−1, Qi−1 and Ki−1 do not depend on the choice of
the local flag. Actually, Wi−1 maximizes all these orders.

The difference ki − oi = orda Qi could be taken in the invariant
instead of the component ki, since it carries the same amount of
information, and since it is preceded by oi in the invariant.

We have seen that Ki = Pi · Qi and an osculating Wi−1 for Pi induce intrinsic
values of oi−1 = orda Ii−1 and ki−1 = orda Ki−1. This is not sufficient yet, since the
next components of the invariants oi−2, . . . and ki−2, . . . could in principle depend
on the choice of Wi−1.

In order to show that they do not depend, there are three options: either to
show as above via Newton polyhedra and iterated projections to lower dimensions
that the respective orders are indeed maximal or to allow only flags Wn ⊃ . . . ⊃ W1

which maximize the whole vector (on, kn, mn, . . . , o1, k1, m1) lexicographically (not
just component by component), with the drawback of having to show that the weak
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transform of such a flag maximizes the vector (o′n, k′
n, m′

n, . . . , o′1, k
′
1, m

′
1) of the

transformed mobile M′. Finally, one can also use a trick of Hironaka which shows
that the truncated invariant depends only on the top loci and their behaviour under
certain auxiliary blowups; cf. [EH]. All three possibilities are mostly computational,
and we do not intend to explain these details here.

10. Transversality. There are several transversality conditions we have met up
to now. The handicaps D and E of a mobile shall be normal crossings divisors. The
hypersurfaces Wi shall be transversal to Di and Ei (meaning that the unions Wi∪Di

and Wi ∪ Ei are normal crossings schemes). The center Z shall be transversal to
the exceptional locus F .

The clue to establish all these conditions is the easy fact that when blowing up
a regular center Z in W , any normal crossings divisor to which Z is transversal
will remain a normal crossings divisor in W ′ and will be transversal to the new
exceptional component Y ′. This is best proven in local coordinates for which the
blowup is given by a monomial substitution of the coordinates.

Let us briefly indicate how this applies in our situation. Assume that Wi is
transversal to Di and Ei. We shall use that the center Z is locally contained in Wi

(for i ≥ d, where d is maximal with od = 0) and transversal to the exceptional locus
F . As Di and Ei are supported by exceptional components, Z is also transversal to
them. This implies that Wg

i is transversal to Dg

i and Eg

i and to Y ′. By definition
of D′

i and E′
i and the choice of W ′

i as in “Commutativity”, either W ′
i is a newly

chosen hypersurface, in which case D′
i and E′

i are chosen to be empty, or W ′
i = Wg

i ,
in which case D′

i and E′
i are composed by Dg

i and Y ′, respectively Eg

i and Y ′. In
all cases, the same transversality property holds again in W ′. The argument uses
part of “Commutativity”, which in turn uses the transversality conditions in W ;
cf. the next section, “Cartesian induction”, for the respective implications between
the various arguments.

There is one more property needed in the proofs here, namely that the support
of En ∪ . . .∪E1 fills up the the whole exceptional locus F . This again follows from
the transformation rule for the transversal handicap. The rule is defined through
the loci where the truncated invariants remain constant. It uses that the entire
invariant always drops, so the locus where all truncated invariants remain constant
is empty.

It should be emphasized that Wi−1 need not be transversal to Ei. Indeed, by
multiplying the ideal Qi of Ei to Pi when defining the composition ideal Ki, we
ensure that the center is contained in all components of F which could possibly be
non-transversal to Wi−1. These are just the components of Ei. This is a subtle
point of the construction of setups, which, in particular, allows us to interpret the
center as the top locus of the invariant. Otherwise we would have to intersect this
top locus with the intersection of the dangerous components of F (getting possibly
a singular intersection), making the setting much less systematic.

11. Cartesian induction. We come to the end of our search for a proof of reso-
lution of singularities. It is a good moment to resume the overall outset and to pin
down the internal logical structure of the argument. Its basis is a cartesian induc-
tion: The horizontal induction on the local embedding dimension is amalgamated
with the vertical induction on the resolution invariant. The interested reader may
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compare this with Hironaka’s original induction argument [Hi 1, chap. I.2, p. 170],
where four (relatively complicated) inductive statements are interwoven.

We start from a mobile M, associate to it local setups (Jn, . . . , J1) which in
turn define the local invariant ia(M). Its top locus Z defines the first center
and the blowup W ′ → W . Looking at the truncated setup and the truncated
invariant, we define the transform of the mobile M′ in W ′ by descending induction
on the dimension (i.e., D′

i and E′
i are defined for descending index i). For this

construction we need the transversality properties of D, E and Z in W and the
commutativity relations for all diagrams appearing for the ideals of the truncated
setups with respect to the blowup W ′ → W . Again, these diagrams are run through
by descending dimension.

Once we have defined the transform of the mobile, we have simultaneously shown
that it admits punctual setups, hence an invariant. The commutativity relations
show that the invariant does not increase under the blowup. By induction on the
dimension and/or by the combinatorial component of the invariant and the blowup
of the top locus of shortcuts, it is shown that the invariant actually decreases.
This in turn is used together with the commutativity relations to establish the
transversality properties for D′, E′ and Z ′ in W ′.

We see here that the implications spiral up along the resolution process. This
can be schematized as follows:

↓ commutativity’ −→ . . .
տ

W ′ transversality’
տ

↓ commutativity −→ decrease of invariant
տ

W transversality
տ

↓ . . .

From this it is clear why this type of reasoning is a cartesian induction: The prop-
erties commutativity and decrease are proven by descending horizontal induction on
the embedding dimension and refer to the vertical map given by the blowup; the
property transversality is proven by vertical induction on the sequence of blowups
and refers to the horizontal structure in W .

12. Examples. To see whether we have really understood the preceding construc-
tions, let us carry them out in concrete examples. You are invited to sharpen your
pencil. More examples can be found in [EV 2], [BM3], [BM5], [BS1], [BS 3]. As
the number of charts increases quickly after each blowup, we shall restrict ourselves
sometimes to the most interesting points of the exceptional divisor and thus com-
pute only local resolutions (more precisely, the local data of the resolution along
a certain valuation). The first two examples are rather trivial but a good testing
ground to become familiar with the whole story of mobiles and their setups.

Example 1. Plane curve. Let us return to example 1 from the beginning and see
what the invariant comes up to. The mobile consists of the ideal J = (xp +yq) with
p ≤ q, control c+ = 1 and empty handicaps D and E. The setup at a = 0 is given
by the flag W2 = W = A2 and W1 = {x = 0} with ideals J2 = I2 = P2 = K2 = J
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and J1 = I1 = P1 = K1 = (yq) (since it was assumed that q ≥ p). The invariant
ia(M) = (o2, k2, m2, o1, k1, m1) at the origin is

ia(M) = (p, p, (0, 0), q, q, (0, 0))

with (0, 0) the two trivial combinatorial invariants. Its top locus is the origin,
so that Z will be set equal to {0} yielding the point blowup W ′ → W of the
plane. At the origin of the x-chart the order of I2 drops to 0 and the ideal J ′ is
monomialized there. The complement of the origin of the x-chart lies entirely in the
y-chart, to which we may therefore restrict. There, the total transform is given by
xpyp + yq = yp(xp + yq−p) with M ′

2 = (yp) and I ′2 = (xp + yq−p). The equiconstant
points for I2 lie in {x = 0}. Hence the origin a′ of the y-chart is the only possible
candidate for an equiconstant point. If q < 2p, the order of I ′2 will have dropped
at a′, and we put, similarly to points outside the origin, D′

1 = ∅, E′
2 = Y ′ and

E′
1 = ∅. The hypersurface W ′

2 at a′ has been newly chosen (and will be {y = 0}).
If q ≥ 2p, the origin is an equiconstant point for I2 and we can take W ′

1 = Wg

1 . We
get D′

1 = {yq−p = 0} and E′
2 = E′

1 = ∅. Therefore J ′
1 = M ′

1 ·1 = (yq−p) is resolved,
and the invariant will be

ia(M) = (p, p, (0, 0), 0, 0, (q − p, ∗))
with (q − p, ∗) the combinatorial invariant of M ′

1 = (yq−p) (we do not specify the
label here). The next center is the origin a′ of the y-chart, and this continues in
the same fashion until the order of I2 at the origin of the respective y-charts has
dropped below p.

Example 2. Cylinder over plane curve in A3. As a variant of the preceding exam-
ple, consider the surface in W = A3 defined by xp +yq. The same considerations as
before apply, except that the invariant has four more zero components and that the
center is always the z-axis. The resolution is the cartesian product of the resolution
of example 1 with the z-axis.

Example 3. Plane curve embedded in A3. The mobile consists of J = (xp +yq, z),
c+ = 1 and D and E empty. The invariant ia(M) at the origin is

ia(M) = (1, 1, (0, 0), p, p, (0, 0), q, q, (0, 0))

with (0, 0) the two trivial combinatorial invariants. Its restriction to {z = 0} equals
the invariant of the mobile of example 1. The resolution is induced by the resolution
of example 1, taking the same centers, but embedded in three-space.

Example 4. Whitney umbrella. Let us now consider the surface x2 + yz2 in
W = A3 (for notational reasons, we have replaced here y2z by yz2). It is imme-
diately checked that blowing up its singular locus, which is the y-axis, removes all
singularities and yields a regular scheme. This is, however, not the way our invari-
ant will proceed, because it is confined to a completely systematic treatment of the
singularities and cannot recognize advantageous ad hoc centers.

The mobile is defined similarly as before, with J = (x2 + yz2), control c+ = 1
and empty handicaps D and E. At the origin a = 0 of W the hypersurfaces W2 =
{x = 0} of W3 = W and W1 = {y = 0} of W2 will define osculating hypersurfaces
for P3 = I3 = J3 = K3 = J = (x2 + yz2) and P2 = I2 = J2 = K2 = (yz2). We
have J1 = I1 = P1 = K1 = (z3). The invariant ia(M) = (o3, k3, m3, . . . , o1, k1, m1)
equals at a = 0 the vector

ia(M) = (2, 2, (0, 0), 3, 3, (0, 0), 3, 3, (0, 0))
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with trivial combinatorial components (0, 0). For a 6= 0 but inside the y-axis (which
is the top locus of J3 = I3), we have

ia(M) = (2, 2, (0, 0), 2, 2, (0, 0), 0, 0, (0, 0)).

The top locus of the invariant and hence the first center of blowup is the origin of
A3. Let W ′ → W be the corresponding blowup with exceptional component Y ′ iso-
morphic to P2. The scheme W ′ is covered by three affine charts. The equiconstant
points of I3 lie in the weak transform Wg

2 of W2.
In points where the order of I3 has decreased we set E′

3 = Y ′ because we will
have to choose there a new osculating hypersurface W ′

2 for P ′
3 = I ′3, and it may fail

to be transversal to Y ′ (thus, Y ′ is a ‘dangerous’ component). Then E′
2 = E′

1 = ∅
since no further transversality problem occurs. The combinatorial handicaps D′

i

defining M ′
i are given by the transformation rules for Ji and Ii.

So let us determine the equiconstant points for I3. If there are some, the top
locus of M′ will be contained in the locus of equiconstant points for I3. So it
is reasonable to look for these first. As any equiconstant point must lie in Wg

2

and since W2 = {x = 0}, there are no equiconstant points in the x-chart. At the
origin of the z-chart we have weak transform I ′3 = Ig

3 = (x2 + yz). This is hence
an equiconstant point, and W ′

2 = Wg

2 = {x = 0} is osculating for P ′
3 = I ′3. As

E′
3 = ∅ at points which are equiconstant for I3, we have Q′

3 = 1 and K ′
3 = P ′

3 = I ′3.
The coefficient ideal J ′

2 of K ′
3 in W ′

2 is (yz) = (z) · (y) with factors M ′
2 = (z)

and I ′2 = Ig

2 = (y). Hence the order of I ′2 has dropped at this point. The first
components of the invariant will be

ia′(M′) = (2, 2, (0, 0), 1, . . .)

which implies — as we will see in a moment — that the origin of the z-chart does
not lie in the top locus of M′. As we are only interested in finding this top locus
in order to know the next center, we need not compute the further components of
the invariant at this point. The points outside the origin of the z-chart lie all in
the y-chart, so we may restrict ourselves from now on to this chart.

In the y-chart, the weak transform of I3 equals I ′3 = Ig

3 = P ′
3 = (x2 + yz2).

The origin is the only point of Y ′ in this chart where the order of I3 has remained
constant (the other points lie on the line {x = z = 0} and are thus outside Y ′).
Let us therefore compute the invariant at the origin a′ of this chart. We have
W ′

2 = Wg

2 = {x = 0} osculating for P ′
3 = I ′3, and as E′

3 = ∅ and Q′
3 = 1 we get

K ′
3 = P ′

3 = (x2 +yz2). The coefficient ideal J ′
2 of K ′

3 in W ′
2 equals (yz2) = (y) · (z2)

with factors M ′
2 = (y) and I ′2 = Ig

2 = P ′
2 = (z2). As the order of I2 has decreased

at a′, we will have E′
2 = Y ′ = {y = 0}, so that Q′

2 = (y) and K ′
2 = (yz2). A new

osculating hypersurface W ′
1 of W ′

2 has to be chosen for P ′
2 (and therefore E′

2 had
to be chosen equal to Y ′). We will take of course W ′

1 = {z = 0} (which is only by
chance transversal to Y ′). The coefficient ideal J ′

1 of K ′
2 in W ′

1 equals (y3) = (y3) ·1
with factors M ′

1 = (y3) and I ′1 = 1. The invariant of M′ at the origin a′ of the
y-chart thus equals

ia(M) = (2, 2, (0, 0), 2, 3, (0, 0), 0, 0, (3, ∗))
where (3, ∗) denotes the combinatorial invariant of M ′

1. Outside the exceptional
component the invariant of M′ equals along the line {x = z = 0} the value of the
invariant of M at points in the y-axis of W outside the origin, say

ia(M) = (2, 2, (0, 0), 2, 2, (0, 0), 0, 0, (0, 0)).
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This shows that the top locus of M′ consists of one point, the origin a′ of the
y-chart. It will be the next center Z ′.

Here, the center is so small because — as Q′
2 = (y) appears as a

factor in K ′
2 — we will have to separate Y ′ and W ′

1 first, according
to our strategy for how to treat transversality problems. Once this
is done, a larger center will be chosen.

Let W ′′ → W ′ be the induced blowup. For simplicity, we shall only compute
the value of the invariant of M′′ at the origin a′′ of the y-chart. It will turn out to
be locally at a′′ a line, the y-axis {x = z = 0}; hence it will globally be a regular
curve.

At the origin of the y-chart we will have I ′′3 = P ′′
3 = (x2 + yz2) with osculating

hypersurface W ′′
2 = (W ′

2)
g = {x = 0}. As E′′

3 = ∅ we get K ′′
3 = P ′′

3 with coefficient
ideal J ′′

2 = (yz2) = (y)(z2) in W ′′
2 . The factors are M ′′

2 = (y) and I ′′2 = (I ′2)
g = (z2).

As the order of I ′2 has remained constant, we will have E′′
2 = (E′

2)
g = (Y ′)g. As

Y ′ was given at Z ′ = {a′} by y = 0, this divisor does not pass through a′′. Hence
Q′′

2 = 1 at a′′ (in contrast to what has happened in W and W ′), which implies that
K ′′

2 = P ′′
2 = (z2) is bold regular. The order of K ′

2 (and hence the complexity of the
transversality problem) has improved. Actually, Y ′ and W ′

1 have been separated
by the last blowup W ′′ → W ′. Taking W ′′

1 = {z = 0} we get that J ′′
1 = 1 (by

definition of the descent in dimension and since the coefficient ideal of K ′′
2 would

be zero). This gives for the invariant

ia′′(M′′) = (2, 2, (0, 0), 2, 2, (0, 0), 0, 0, (0, 0)).

Now the invariant is constant along the line {x = z = 0}, which will therefore
form our next center Z ′′ (which coincides with the top locus of I ′′3 ). So it took
us two auxiliary blowups to arrive at a situation where the invariant chooses the
desired line as center. In the next blowup, the order of I ′′′3 will be at most one
at all points, so there will be no more equiconstant points for I ′′3 . The underlying
scheme will be regular. We leave it to the reader to compute the whole invariant
at the points of W ′′′ and to complete the monomialization of I3.

Example 5. More general surface singularity. Let J be the ideal in W = A3

generated by the polynomial f = x3 − 3x2y + (y2 + z3)2. This is already quite
complicated. The mobile M we associate to J will consist of the ideal J , the
control c+ = 1 and empty handicaps D and E. The factorization J = M · I = 1 · I
of J is trivial with I = J . In order to determine the first center of blowup we
have to compute a punctual setup for M. As before, we add indices to distinguish
ideals in various dimensions. Thus J3 = I3 = J = I, M3 = 1 and W = W3. We
place ourselves at the origin of A3. The first thing to do is choose an osculating
hypersurface for f . The order of f at 0 is 3, and its tangent cone equals x3+6x2y in
the given coordinates. The minimal number of variables appearing in the tangent
cone is 2, because terms involving y cannot be eliminated. Both x = 0 and y = 0
are adjacent hypersurfaces, but {x = 0} is not osculating.

Expanding f with respect to x, we wish to eliminate the coefficient of x3−1 =
x2 by a coordinate change (recall here the definition of osculating hypersurfaces).
Clearly the change x → x + y will do the job. In the new coordinates we have
f = x3 + 3xy2 + y3 + (y2 + z3)2 and V = W2 = {x = 0} is osculating. The
companion ideal P3 of I3 equals I3, and the transversality ideal Q3 is trivial equal
to 1, so that K3 = P3 · Q3 = I3. We now have to take the coefficient ideal J2 of
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K3 in W2. It is generated by y3/1 and y3 + (y2 + z3)2, hence by y3 and 2y2z3 + z6.
Thus J2 = (y3, 2y2z2 + z6) = I2 = P2 = K2. The tangent cone of P2 is generated
by y3, and W1 = {y = 0} is osculating for P2. The next coefficient ideal J1 of P2 is
generated by z4. The invariant at a = 0 will be

ia(M) = (3, 3, (0, 0), 3, 3, (0, 0), 4, 4, (0, 0)),

because all combinatorial components will be (0, 0). It is checked that the top
locus of ia(M) will be the origin, which is hence our first center. Let W ′ → W
be the corresponding blowup. The exceptional component Y ′ is isomorphic to
projective space P2. Among the many points to consider in Y ′, we pick up the
most interesting ones, namely the equiconstant points with respect to I3. These lie
in the weak transform V ′ = W ′

2 of our hypersurface V = W2; hence we may restrict
ourselves to the y- and z-charts.

Outside W ′
2, the order o3 has dropped. There D′

2 and D′
1 will be set

empty, and D′
3 will be chosen equal to Y ′ so that J ′

3 = J∗
3 · I(Y ′)−1

factors into J ′
3 = M ′

3 · I ′3 with I ′ = Ig

3 and M ′ = IW (D′
3). The

transversal handicap E′ is given by E′
3 = Y ′ (since a new W ′

2 has to
be chosen and it may not be transversal to W ′

3) and E′
2 = E′

1 = ∅.
In the y-chart we get total transform f∗ = x3y3 + 3xy3 + y3 + (y2 + y3z3)2 =

y3(x3 +3x+1+ y(1+ yz3)2). The order of the weak transform fg = (x3 +3x+1+
y(1 + yz3)3) at the origin of this chart has dropped from 3 to 0; hence it is not an
equiconstant point (though it lies in W ′

2 = {x = 0}). The handicaps are therefore
defined analogously as before.

The complement of the origin of the y-chart in W ′
2∩Y ′ lies entirely in the z-chart,

and we may restrict w.l.o.g. to points of these charts. The total transform of f
equals there f∗ = x3z3+3xy2z3+y3z3+(y2z2+z3)2 = z3(x3+3xy2+y3+z(y2+z)2).
The weak transform f ′ = x3 + 3xy2 + y3 + z(y2 + z)2 has order 3 at the origin of
this chart, and only there. This is the only equiconstant point for J3. Outside we
set D′

3 = {z3 = 0}, E′
3 = Y ′ and the remaining handicaps equal to ∅.

At the origin of the z-chart the hypersurface W ′
2 = {x = 0} is osculating for

I ′3 = P ′
3. We set D′

3 = {z3 = 0} and E′
3 = ∅, because W ′

2 is the weak transform of
W2 and hence automatically transversal to Y ′ (note here that this coincides with
the definition E′

3 = Eg

3 of E′
3 at equiconstant points). For the remaining handicaps

we have to compute the coefficient ideal J ′
2 of K ′

3 in W ′
2. We have J ′

3 = I(y′)3 · I ′3,
and as o′3 = 3 and the controls are 1, the companion ideal P ′

3 equals Pg

3 = I ′3 (cf.
“Commutativity”). From Q′

3 = 1 we get K ′
3 = P ′

3 = I ′3 = (x3+3xy2+y3+z(y2+z)2)
of order k′

3 = k3 = 3. The control for J ′
2 is therefore 3. The coefficient ideal of K ′

3

in W ′
2 is J ′

2 = J !
2 = J∗

2 · IW ′
2
(Y ′ ∩ W ′

2)
−3 = (y3, 2y2z2 + z3)∗ · z−3 = (y3z3, 2y2z4 +

z6) · z−3 = (y3, 2y2z + z3). We see that J ′
2 = I ′2 = Ig

2 with M ′
2 = 1 according to the

definition D′
2 = D∗

2 · IW ′
2
(Y ′ ∩W ′

2)
o2−c3 = ∅ at points where k′

3 = k3. The order o′2
of I ′2 has remained constant equal to 3, and P ′

2 = K ′
2 = I ′2. The control for J ′

1 is
3, and W ′

1 = Wg

1 yields coefficient ideal J ′
1 = z3 · 1 with I ′1 = Ig

1 = 1. Thus the
invariant has dropped to

ia′(M′) = (3, 3, (0, 0), 3, 3, (0, 0), 0, 0, (3, ∗)).

Here the components (3, ∗) indicate the combinatorial invariant in dimension 1,
given by the order of M ′

1 = (z3) and its label (which we do not specify). The
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remaining handicaps are D′
1 = {z3 = 0} and E′

2 = E′
1 = ∅. The center will be the

origin of the z-chart.
The reader will realize that even though systematic, the computation of the

invariant becomes rather involved. We leave it as an exercise (tedious, as we admit,
but instructive) to complete the resolution for this mobile on a blank sheet. Some
reader will complain that the author was too lazy to type the details; at any rate,
it is better to do the computation on his own.

Example 6 (Centers outside strict transform). While resolving mobiles, the cen-
ters are always chosen inside the support of the ideal J and its weak transforms.
However, they need not lie inside the support of the strict transforms of the ideal,
and the intersection may even be singular, as shown in the following example of
S. Encinas. Nevertheless, the centers always map to the singular locus of the orig-
inal ideal.

Take the ideal J = J3 = I3 = (x2 + y3, z3 − w3) in W = A4 and the control
c+ = 1. The first center will be the origin. Let W ′ → W be the induced blowup, and
let us look at the origin of the y-chart. The weak transform of I3 equals I ′3 = Ig

3 =
(x2 + y, y(z3 −w3)), whereas the strict transform would be Ist

3 = (x2 + y, z3 −w3).
We have P3 = J3. As the order of I3 has dropped, we have E′

3 = Y ′ and Q′
3 = (y),

so that K ′
3 = I ′3 · Q′

3 = (x2y). The next center will be the plane {x = y = 0} in
W ′. It does not lie in the support of the strict transform Ist

3 , and the intersection
is even singular, defined in {x = y = 0} by z3 − w3 = 0.

13. Resolution of schemes. Now that we have discussed in detail the construc-
tion of mobiles and their setups, we shall return to our original object of interest,
singularities of schemes. The resolution of mobiles can be used in various ways
to construct a strong resolution of reduced singular subschemes X of W . One
possibility goes as follows (for a somewhat different reasoning, see [EV 3]).

We may assume that X is different from W and that W is equidimensional. Let
J be the ideal of X in W . Associate to it the mobile M = (J , c, D, E) with control
c = 1 and empty handicaps D and E (we omit here the index + in c). We shall
look closely at the various stages of the resolution process for M. Its final goal
will be to monomialize the total transform of J . At any stage W ′ of the resolution
of M the controlled transform J ′ of J defines a subscheme of W ′ formed by the
strict transform X ′ of X and some components inside the exceptional locus.

As the final controlled transform of J equals 1 (since we will decrease the order of
the controlled transforms of J below c = 1), there corresponds to each component
of X a (uniquely determined) stage where the strict transform of this component
has become regular and has been taken locally as the center of the next blowup.
Let X1 denote the union of those components of X which reach this stage first.
The corresponding strict transform X ′

1 of X1 at the indicated stage is regular and
transversal to the exceptional locus.

Write X ′ = X ′
1∪X ′

2 with X ′
2 the strict transform of the remaining components of

X . We stop here the resolution process of the mobile (J , c, D, E) and define a new
mobile whose resolution will be given by a sequence of blowups which separates X ′

2

from X ′
1. Omitting primes, let K be the ideal of X2 in W . Let J be the coefficient

ideal of K in X1 with control c set equal to the maximum on X1 of the order of K in
W . Set all handicaps Di and Ei empty with the exception of the first member En
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of E (n is the dimension of X1) for which we take the exceptional locus produced
so far.

Resolve the mobile (J , c, D, E). The controlled transforms of J are the coeffi-
cient ideals of the weak transforms of K as long as the maximum of the order of K
in W along X1 remains constant. Therefore the resolution of (J , c, D, E) will make
this maximum drop. Hence also the maximum of the order of the strict transform
of K in W along X1 drops. Iterating this process the final strict transform X ′

2 of X2

will be separated from the weak transform X ′
1 of X1. Now induction on the number

of components applies to construct a sequence of blowups which makes X ′
2 regular

and transversal to the exceptional locus. Thus X has become a regular scheme.
The properties embeddedness and equivariance of a strong resolution of schemes

follow from the specific resolution of mobiles we have constructed. The reader is
invited to prove this with all details. The restriction to X of the resolution W ′ → W
of X does not depend on the embedding of X in W since, under embeddings of W
into some W+, the restriction of i(M+) to W equals i(M) (cf. this with example 3
from above). This proves excision.

The sequence of blowups W ′ → W we have constructed for the singular scheme
X via well chosen mobiles thus satisfies all properties of a strong resolution of X .
The proof of the Hironaka Theorem on Resolution of Singularities is now completed.

This concludes the main body of the paper. Readers who have gotten this far
may judge whether at least two of the three objectives mentioned in the introduction
were met: Easy reading and good understanding. If so, the reader should now be
in perfect shape to answer affirmatively his neighbour’s question:

Do you know how to prove resolution of singularities in characteristic zero?

14. Problems in positive characteristic. To emphasize the limitations of the
induction argument used to establish resolution in characteristic zero, we now ad-
dress the difficulties in positive characteristic which prevent extending the above
proof to this case. We will describe two examples. The first exhibits a sequence
of equiconstant points which leaves any regular hypersurface accompanying the
resolution process. This shows that hypersurfaces of permanent contact need not
exist in positive characteristic and that the accompanying hypersurfaces have to be
changed from time to time.

The second example illustrates what can happen if one has to replace the ac-
companying hypersurface at a certain stage so as to contain after the next blowup
the subsequent equiconstant points or so that weak maximal contact is ensured.
As a matter of fact, the invariant we have constructed may increase when choosing
instead of osculating hypersurfaces (which may not exist but would persist under
blowup) hypersurfaces of weak maximal contact (which always exist but need not
persist under blowup and therefore have to be changed in the course of the reso-
lution). This increase destroys the vertical induction on the resolution invariant.
It is not a counterexample to the existence of resolution of singularities in positive
characteristic; it only shows that the proof of characteristic 0 does not go through
without applying substantial modifications.

Example 1 (Narasimhan [Na 1], [Na 2], [Mu]). In positive characteristic, the top
locus of an ideal may not be contained locally in a regular hypersurface. Take
K of characteristic 2 and f = x2 + yz3 + zw3 + y7w of order 2 at 0. Check
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that top(f) = V (f, z3 + y6w, yz2 + w3, zw2 + y7) and that the parametrized curve
(t32, t7, t19, t15) in A4 has image equal to top(f). From this it follows that there
cannot exist locally at 0 a regular hypersurface V of A4 which contains top(f).

Take now a regular hypersurface V passing through a = 0. We claim that
for any sequence of point blowups whose first center is the origin, the sequence of
equiconstant points above a will leave eventually the strict transforms of V . Indeed,
as the point blowups keep top(f) unchanged outside 0, the order of the transforms
of f will remain constant equal to 2 at points above points of top(f) outside 0. The
strict transform of the locus top(f) will therefore consist of points of order 2 for f ,
by the upper semicontinuity of the order. In particular, the points above 0 which
lie in these strict transforms will all be equiconstant points above 0.

Y Y' Y''

U U' U''

V V' V''

a a'

b''

a''

Figure 14. Failure of permanent contact : Any regular hypersur-
face V may lose equiconstant points such as b′′. A new hypersurface
U ′′ has to be chosen. Its image in W may be singular.

But by a sequence of point blowups, the curve top(f) will always be separated
from the hypersurface V and its strict transforms (since it is not contained in V ).
Combining both observations we conclude that the equiconstant points above 0 will
eventually leave the strict transforms of V (see Figure 14).

We complement the discussion of positive characteristic by the example of an
ideal and a sequence of blowups in centers contained in its top locus such that the
characteristic zero invariant associated to mobiles increases.

Moh was the first to give an example where the maximum of the order of the first
coefficient ideal with respect to local hypersurfaces increases at an equiconstant
point of the original ideal [Mo 2, ex. 3.2], [Ha 2, ex. 16]. For a comprehensive
description of how to construct such examples in positive characteristic, see [Ha 5].

Example 2 (Hauser, [Ha 5]). Consider a sequence of three local blowups W 3 →
W 2 → W 1 → W at points ai in W i with W = W 0 a regular scheme of dimension
three. All blowups are point blowups and will be considered locally at specified
points. For given local coordinates x, y, z in W at a = 0, the first map W 1 → W is
the blowup of W with center the origin, considered at the origin a1 of the y-chart.

The second W 2 → W 1 is the blowup of W 1 with center a1, considered at the
origin a2 of the z-chart. Hence, a1 and a2 will be the origins of the respective
charts, and a2 lies in the intersection of the two exceptional components in W 2

having occurred so far.
The third blowup W 3 → W 2 is no longer monomial and involves also a transla-

tion. Its center is the origin a2 of the z-chart of W 2, but the blowup is considered
in the z-chart of W 3 at the point a3 with coordinates (0, 1, 0). Said differently, this
blowup is the composition of the monomial point blowup at the origin of the z-chart
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kangaroo
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0 1 2

3
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Figure 15. The picture shows the configuration of the exceptional
components inside the hypersurface V = {x = 0} ⊂ W through
the sequence of blowups. For the notions of oasis, antelope and
kangaroo point, see [Ha 5].

followed by the translation y → y + 1. Hence a3 belongs to the new exceptional
component Y 3 in W 3, but lies outside the strict transforms of the two exceptional
components through a3 (see Figure 15).

We choose now a specific principal ideal J in W at 0 and look at its various
transforms together with the respective coefficient ideals. Take for J the ideal in
W generated by the polynomial f = f0 = x2+y7+yz4 and let V be the hypersurface
of W defined by x = 0. The resulting sequence of strict transforms f i of f and V i

of V is

f0 = x2 + 1 · (y7 + yz4), V 0 : x = 0,

f1 = x2 + y3 · (y2 + z4), V 1 : x = 0,

f2 = x2 + y3z3 · (y2 + z2), V 2 : x = 0,

f3 = x2 + z6(y + 1)3 · ((y + 1)2 + 1)

= x2 + z6 · ((y2 + 1)(y + 1)y2), V 3 : x = 0.

Here, the monomial factors in front of the parentheses denote exceptional com-
ponents of the restriction of f i to V i (more precisely, of the coefficient ideal of
f i in V i). The order of f i at ai has remained constant equal to 2 for all i. The
hypersurface V = {x = 0} has weak maximal contact with f at 0, and the same
holds for its strict transforms V 1 and V 2.

But the hypersurface V 3 no longer has weak maximal contact with f3: The
coefficient ideal of f3 in V 3 equals z6 · ((y2 +1)(y + 1)y2) = z6 · (y5 + y4 + y3 + y2).
After deleting the exceptional factor z6, its order at a3 = 0 is 2. In characteristic 2,
this is not the maximal possible value. Indeed, the hypersurface U3 = {x+yz3 = 0}
in W 3 yields coefficient ideal z6 · (y5 + y4 + y3), which, after deletion of z6, has
order 3 at 0.

We compute the first two components (on, on−1) = (o, o−) of our invariant (we
neglect here the transversality problem and the other components ki and mi of the
invariant) along the sequence of local blowups. Let oi be the order of f i at ai,
and let oi

− denote the maximal value of the order of the coefficient ideal of f i in a
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regular hypersurface through ai, diminished by the exceptional multiplicity. Then

(o0, o0
−) = (2, 5),

(o1, o1
−) = (2, 4),

(o2, o2
−) = (2, 2),

(o3, o3
−) = (2, 3).

Hence the invariant has increased in the last blowup. Moreover, the hypersurface V 0

of weak maximal contact with f0 at a0 preserved weak maximal contact only until
a2. In W 3, its transform V 3 had no longer weak maximal contact, and therefore
V 3 had to be replaced by a new hypersurface U3 to ensure weak maximal contact
with f3 (see Figure 16).

Let us look at whether U3 stems from a regular hypersurface U0 in W . Blowing
it down to W 2 and W 1 yields U2 = {x+yz3+z4 = 0} and U1 = {x+yz3+z5 = 0}.
This last has singular image U0 = {xy4 + y3z3 + z5 = 0} in W . Therefore U3 is
not the strict transform of a regular hypersurface in W .

V

a

3

3

3

U

Y

3

x

z

old old

Figure 16. The picture shows the configuration of exceptional
components at a3 and the position of the new hypersurface U3.

But possibly we can modify U3 slightly to a hypersurface Ũ3 which still has weak
maximal contact with f3 and which does stem from a regular hypersurface Ũ0 in
W . It is easy to see that the linear term of the equation of Ũ0 must be x (up to a

constant factor). So let us write g0 = x +
∑

gjkyjzk for the equation of Ũ0 in W .
We get

g0 = x +
∑

gjkyjzk,

g1 = x +
∑

gjkyj+k−1zk,

g2 = x +
∑

gjkyj+k−1zj+2k−2,

g3 = x +
∑

gjk(y + 1)j+k−1z2j+3k−4.

This yields a monomial yz3 (which is the monomial of f3 which has to be eliminated

by the local isomorphism mapping V 3 onto Ũ3 in order to increase the order of the
coefficient ideal) in its expansion if and only if, for some j, k, the sum j + k is even
(recall that we are in characteristic 2) and 2j + 3k = 7. From the last equality

follows k = 1 and j = 2, for which j + k is odd. Hence no regular Ũ0 exists in W
whose transform Ũ3 in W 3 has weak maximal contact with f3 at a3.
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On first view, the example above looks quite artificial, having no internal struc-
ture or general pattern. But there is some “rule” behind it. The first two monomial
blowups in opposite charts are needed to produce two exceptional components and
a point a2 in their intersection. The third and last blowup is characterized by the
“disappearance of the two exceptional components” when passing from a2 to a3.
It is here that the key phenomenon occurs, namely the increase of the order of
the coefficient ideal y3z3 · (y2 + z2) of f2 in V 2 (after having factored from it the
exceptional monomial y3z3).

It seems that this type of construction is necessary to produce an example for
the failure of the persistence of weak maximal contact in positive characteristic. It
turns out that the above construction produces counterexamples with increasing
invariant if and only if the exponents and the coefficients of f are chosen in a very
specific manner. The necessary conditions are as follows:
• The residues modulo p of the exceptional multiplicities of f2, i.e., of the ex-

ponents of the monomial factors in front of the parentheses, must satisfy a
prescribed arithmetic inequality (for surfaces, both must be positive and their
sum must not exceed p).

• The order of the coefficient ideal of f2 in V 2 must be a multiple of the charac-
teristic.

• The coefficients of the weighted tangent cone of f2 must satisfy precise linear
relations. They are uniquely determined up to coordinate changes and explicitly
related to the position of the point a3 on the exceptional divisor.
The given example is the simplest one with these properties. For higher order

examples, the coefficients of the weighted tangent cone of f are also unique up to
coordinate changes. The actual values of the coefficients of the defining equations
of the singularity seem to play a decisive role in positive characteristic. All this and
more is explained in the forthcoming paper [Ha 5].

APPENDIX

Appendix A: Order of ideals. In the five sections of the appendix we collect
some basic facts from commutative algebra and the theory of blowups which are
constantly used in the article. In addition, all concepts of this paper will be properly
defined and the notations will be listed for quick reference. For further reading we
refer to [Hi 1], [ZS], [EV 2], [BM1].

Let I be a coherent ideal sheaf on a regular ambient scheme W of finite type
over a field K. For a ∈ W a closed point let Ia denote the stalk of I at a, and ma

the maximal ideal of a in the stalk of the structure sheaf OW,a of W . Let Z be
a closed subscheme of W with defining ideal I(Z). The order of I along Z is the
maximal power of I(Z) containing I in the localization OW,Z ,

ordZ = max {k, I ⊂ I(Z)k in OW,Z}.
The order of I at a coincides with the maximal power of ma containing the stalk

Ia. The zero ideal has infinite order. We have

ordZ = min
a∈Z

orda I

where it suffices to take the minimum over the closed points a of Z. Denote by
ord I : W → N ∪ {∞}, a → orda I the order function on W . It satisfies various
functorial properties.
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The order is invariant with respect to field extensions, passage to the completion
and local isomorphisms, more generally, with respect to smooth morphisms W− →
W . It does not increase under localization. This has been proven by Zariski-Nagata
using resolution of curves [Hi 1, Thm. 1, p. 218]. It does not increase under blowup
when passing from I to the weak transform Ig, provided the order of I is constant
along the center [Hi 1, Lemma 8, p. 217]. It is upper semicontinuous , so that the
locus of points top(I, c) = {a ∈ W, orda I ≥ c} is closed in W for any constant
c ∈ N. This can be seen as follows.

By the transitivity of the Zariski-topology under field extensions, we may assume
that K is algebraically closed. Let x1, . . . , xn be a regular system of parameters
of OW,a. By Cohen’s structure theorem, the completion ÔW,a is isomorphic to the
formal power series ring K[[x]].

We assume for simplicity that W = An and place ourselves at the origin of An.
If I is a principal ideal generated by some f with expansion f(x) =

∑
α∈Nn cαxα in

ÔW,a, the expansion at a is given by f(x) =
∑

α∈Nn dα(a)(x−a)α where f(x+a) =∑
dα(a)xα. Then orda f ≥ c if and only if all dα(a) with |α| < c are zero. By

binomial expansion of f(x + a), the dα are polynomials in a whose coefficients are
Z-linear combinations of the cα’s. This shows that the locus of points a where
orda f ≥ c is closed in An. For arbitrary ideals I, the locus of order ≥ c is the
intersection of the corresponding loci of a generator system of I. The assertion
follows. You may also consult [BM1, p. 233], [EV 1, p. 208] and [EV 2].

As all our schemes will be assumed to be noetherian, the order of I takes only
finitely many values on W .

If X is a subscheme of W of ideal I, we call orda X = orda I the order of X at
a. It clearly depends on the embedding of X in W . To see this, just embed X into
another ambient scheme W+ via an inclusion W ⊂ W+, and the new order of X
at a will be 1 if dim W+ > dim W .

Exercise 1. Show that orda I coincides for algebraically closed fields with the
minimum of the orders of the Taylor expansion of elements of I at a. Use this to
prove that the ideal I of K[[x]] generated by an ideal I of K[x] has the same order
at 0 as I. Moreover, the order of an ideal does not depend on the choice of affine
or formal coordinates.

Exercise 2. Show that for Z ⊂ An a closed and reduced subscheme, the order of
I along Z is the minimum of the orders of I at points a of Z.

Appendix B: Computation of top loci. The upper semicontinuity of the order
of an ideal implies that any closed subscheme X of W admits a finite stratification
given by the order of its defining ideal. More precisely, there exist finitely many
locally closed subschemes Xi of X which form a partition of X and such that
the order of the defining ideal I of X in W equals i at each point of Xi. The
stratum Xo with o the maximal value of the order of X on W is closed and will
be called the top locus of X (or of I) in W . The closure Xi of Xi decomposes into
Xi = Xi ∪ Xi+1 ∪ . . . ∪ Xo = top(X, i).

Exercise 3. Let f(x, y, z) = x3 + ykzm. Determine according to the values of k
and m the locus of points a ∈ A3 where f has order ≥ 2 respectively equal to 3.

Exercise 4. Let X be the union of the four coordinate hyperplanes in A4. De-
termine the strata of constant order of X . Do the same for Y defined in A4 by
xkylzmwn with k, l, m, n ∈ N.
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Exercise 5. Let K be algebraically closed. Show that the support of a (not
necessarily reduced) hypersurface X = V (f) equals top(f) if and only if f = xk is
locally at each point a of X a (positive) power of a coordinate x. Moreover, the
number k is locally constant along X .

If the order of f ∈ K[x] at a is o, the local top locus topa(f) is the zero-set of
all derivatives of f up to order o − 1 (including the 0-th derivative).

Example 1. Let f = x2p + y3p = (x2 + y3)p be given in characteristic p > 3. Then
f has order 2p at 0 and top(f) = V (∂α

x f, |α| ≤ 2p − 1) = V (f) is the cusp.

Example 2. Let f = 0 define a hypersurface X in An. If K has characteristic
zero, top(X) = top(f) is contained locally at each point in a regular hypersurface
H of An. To see this, let o be the order of f at a = 0. Then the Taylor expansion
of f at 0 has order o; hence there is a higher order derivative ∂α

x with |α| = o such
that ∂α

x f(0) 6= 0. Let γ ∈ Nn be obtained from α by decreasing one positive entry
by 1. Then ∂γ

x has order o − 1 and ∂γ
xf has order 1 at 0. Thus ∂γ

xf is regular at 0
and its zero-set contains top0(f).

Exercise 6. Let f(x, y) =
∑

i ai(y)xi be the Taylor expansion of f at 0 with
respect to one coordinate, say x = x1, of a regular system of parameters (x, y) =
(x1, x2, . . . , xn) of OW,a, where the coefficients ai(y) live in OV,a with V = {x = 0}.
Let o be the order of f at 0, and assume that the characteristic is zero. Then
top0(f) is the locus of points in {x = 0} where the coefficients ai(y) have order
≥ o − i for all i.

Appendix C: Local coordinates for blowups. Let W be a regular scheme of
dimension n, and let Z be a closed regular subscheme of dimension d (both schemes
will be assumed for simplicity to be equidimensional). Let π : W ′ → W be the
induced blowup with center Z and exceptional component Y ′, and let (W ′, a′) →
(W, a) denote the corresponding local blowup for any pair of points a ∈ Z and
a′ ∈ Y ′ above a. We shall assume that the ground field is algebraically closed. As
the resolution invariant associated to a mobile is upper semicontinuous, we may
and will restrict to closed points a and a′. Let V be a local regular hypersurface of
W at a containing Z locally.

Any choice of local coordinates in W at a induces local coordinates in W ′ at a′

and n− d affine charts for W ′. We order the coordinates by decreasing indices and
thus write xn, . . . , x1.

Assume we are given an ideal K in W at a, with coefficient ideal J = coeffV K in
V , with given factorization J = M · I, where M defines a normal crossings divisor
in V at a. Let c = orda K and c′ = orda′ K ′ with K ′ = Kg the weak transform
of K in W ′. Assume that V has weak maximal contact with K (i.e., maximizes
the order of J), and that Z is transversal to the divisor D of V defined by M . For
many proofs on the transfom of ideals under blowups it is useful to work in local
coordinates for which the blowup has particularly simple form. This is ensured by
the following assertions.

There exist local coordinates x = (xn, . . . , x1) of W at a, i.e., a regular system
of parameters of OW,a, such that

(1) a = (0, . . . , 0) with respect to x in W at a.
(2) V is defined in W by xn = 0.
(3) Z is defined in W by xn = . . . = xd+1 = 0.
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(4) M is defined in V by x
qn−1

n−1 · · · xq1

1 for some q ∈ Nn−1.
(5) The weak transform V ′ of V is given in the coordinates in W ′ by xn = 0.
(6) The points a′ of W ′ where the order of the weak transform Kg of K has

remained constant, c′ = c, are contained in V ′.
(7) a′ lies in the xn−1-chart of W ′ with components (0, 0, a′

n−2, . . . , a
′
j+1, 0, . . . , 0)

with respect to the induced coordinates x in W ′ at a′, where j − d is the number
of components of D whose transforms pass through a′.

(8) The blowup (W ′, a′) → (W, a) is the composition of the linear map ℓt :
x → (x+ txn−1) in W at a where t = (0, 0, tn−2, . . . , tj+1, 0, . . . , 0) has components
ti = a′

i and the monomial blowup π of W in Z considered in the xn−1-chart which
maps (xn, . . . , x1) to (xn, xn−1, xn−2xn−1, . . . , xd+1xn−1, xd, . . . , x1). Thus ti 6= 0
for n− 2 ≥ i ≥ j + 1 and ti = 0 for j ≥ i ≥ 1 and i = n − 1. The map ℓt preserves
Z and V and the factorization J = M · I, but destroys the monomiality of M as in
(4) with respect to the given coordinates.

(9) If condition (4) is not required, the coordinates can be chosen so that a′ is
the origin of the xn−1-chart and that (W ′, a′) → (W, a) is the monomial blowup
given by (xn, . . . , x1) mapping to (xn, xn−1, xn−2xn−1, . . . , xd+1xn−1, xd, . . . , x1).

The assertions can be proven as follows. It is clear that (xn, . . . , x1) can be
chosen satisfying (1) to (3), and (4) follows immediately from the fact that D and
Z are transversal. As for (7), we know by (3) that the exceptional component
Y ′ is covered by the charts corresponding to xn, . . . , xd+1. As c′ = c and xn is
supposed to appear in the tangent cone of K, we conclude that a′ cannot lie in
the xn-chart. Hence a′ lies in the other charts and satisfies there a′

n = 0. A
permutation of ym, . . . , yd+1 allows us to assume that a′ lies in the xn−1-chart.
This permutation does not alter (2) and (3). As Y ′ is given in the xn−1-chart by
xn−1 = 0 and as a′ ∈ Y ′, we get a′

m = 0. From ad = . . . = a1 = 0 it follows that
a′

d = . . . = a′
1 = 0. After a permutation of xn−2, . . . , xd+1 we may assume that

a′
i 6= 0 for n−2 ≥ i ≥ j +1 and a′

i = 0 for j ≥ i ≥ 1 and i = n − 1 with n−1− j−1
the number of non-zero components of a′. This establishes (7).

Properties (8), (9) and (5) are immediate. As for (6), let f be an element of K
of order c at a which lies in the weighted tangent cone of K. As V = {xn = 0}
maximizes the order of the coefficient ideal of K in V , xn appears as a variable in
the homogeneous tangent cone of f . Computing K ′ in the affine coordinates of the
various charts shows that its order drops at all points of the xn-chart. Hence the
points of W ′ with c′ = c are contained in the hypersurface xn = 0. This proves the
claimed assertions.

Appendix D: Résumé of definitions. We fix a regular ambient scheme W and
a regular locally closed n-dimensional subscheme V of W . A divisor in W is an
effective Weil divisor. A closed subscheme D of W has normal crossings if it can
be defined locally by a monomial ideal. The subscheme V meets D transversally if
the product of the defining ideals of V and D defines a normal crossings scheme.

A local flag in V at a is a decreasing sequence Wn ⊃ . . . ⊃ W1 of closed
i-dimensional regular subschemes Wi of a neighborhood U of a in V . An ideal
K in V is bold regular if it is a power of a regular principal ideal in V . A strati-
fied ideal in V is a collection of coherent ideal sheaves, each of them defined on a
stratum of a stratification of V by locally closed subschemes. A stratified divisor is
defined by a stratified principal ideal.
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A map Qb → (Qb)
♯ associating to stalks of ideals Qb in an open subscheme U of

W stalks of ideals (Qb)
♯ in V is tuned along the stratum S of a stratification of V

through a point b of V if Qb and (Qb)
♯ admit locally at any point b of V coherent

representatives Qb on U and (Qb)♯ on V so that the stalks ((Qb)a)♯ and ((Qb)♯)a

at a coincide along S. This is abridged by saying that the ideals (Qb)
♯ are tuned

along S.
A shortcut of a (stratified) normal crossings divisor M in W is a divisor N ob-

tained from M by deleting on each stratum of the underlying stratification strat(M)
of M some components of M . The divisor M is labelled if each shortcut N comes
with a different non-negative integer lab N , its label. The empty shortcut has label
0. A shortcut N of a normal crossings divisor M is tight at a of order ≥ c if it has
order ≥ c at a and if any proper shortcut of N has order < c at a. It is maximal
tight at a if M is labelled and if (orda N, lab N) is lexicographically maximal among
the tight shortcuts of M of order ≥ c at a.

A handicap on W is a sequence D = (Dn, . . . , D1) of stratified normal crossings
divisors Di of W . The truncation of D at index i is iD = (Dn, . . . , Di).

A singular mobile in W is a quadruple M = (J , c, D, E) with J a coherent
nowhere zero ideal sheaf on V , c a non-negative constant associated to V , and D
and E handicaps in W with D labelled and E reduced. The number c is the control
of J , and D and E form the combinatorial and transversal handicap of M. The
truncation iM at index i of M is (J , c, iD, iE).

A strong resolution of a mobile M = (J , c, D, E) in W with J a nowhere zero
ideal in V is a sequence of blowups of W in regular closed centers Z such that the
ideal J ′ of the final transform M′ = (J ′, c′, D′, E′) of M has order < c. We require
that the centers are transversal to the exceptional loci and that the resolution is
equivariant.

The top locus of an upper semicontinuous function t on V is the reduced closed
subscheme top(t) of points of V where t attains its maximum. The order at a of an
ideal J of V is the largest power o = orda J of the maximal ideal of OV,a containing
the stalk of J at a. We set top(J) = top(ord J) and denote by top(J, c) the locus
of points in V where the order of J is at least c. For closed subschemes of V ,
the analogous loci are associated to the defining ideals. When working locally at a
point a, top(t) also denotes the local top locus of t in a neighborhood of a.

Let W ′ → W be the blowup of W with center Z inside V and exceptional
component Y ′. The total and weak transform of an ideal J of V are the inverse image
J∗ of J under the induced blowup V ′ → V and the ideal Jg = J∗ · I(Y ′ ∩ V ′)−o

with o = ordZ J . The controlled transform of J with respect to c ≤ o is the ideal
J ! = J∗ · I(Y ′ ∩ V ′)−c in V ′. The strict transform of a closed subscheme X of V
in V ′ is the closure Xst of the pullback of X \ Z in V ′. It is defined by the ideal
Jst in V ′ generated by all f∗ · I(Y ′ ∩ V ′)− ordZ f with f in the ideal J of X in V .

The companion ideal P of a product J = M · I of ideals in V at a with respect
to a control c ≤ orda J on V is the ideal P in V at a given by

P = I + M
o

c−o if 0 < o = orda I < c,

P = I otherwise.

The transversality ideal Q in V of a normal crossings divisor E of W is the ideal

Q = IV (E ∩ V )
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defining E ∩V in V . The composition ideal K in V of a product J = M · I of ideals
in V with respect to a control c and a normal crossings divisor E in W is

K = P · Q if I 6= 1,

K = 1 if I = 1,

with P the companion ideal of J and c, and Q the transversality ideal of E in V .
The tag of an ideal J in V at a with control c and normal crossings divisors D

and E in W such that J = M ·I for M = IV (D∩V ) with D labelled and transversal
to V is the vector

ta(J) = (o, k, m) ∈ N4,

equipped with the lexicographic order. Here, o = orda I and k = orda K with
K = P · Q the composition ideal of (J, c, E, D). We set m = (0, 0) if o > 0, and
m = (orda N, lab N) otherwise with N the maximal tight shortcut of M at a of
order ≥ c.

The coefficient ideal of an ideal K of W at a with respect to V is defined as
follows. Let x, y and y be regular systems of parameters of OW,a and OV,a so that
x = 0 defines V in W . For f in K denote by af,α the elements of OV,a so that
f =

∑
α af,α · xα holds after passage to the completion. Then set

coeffV K =
∑

|α|<c

(af,α, f ∈ K)
c

c−|α| .

The junior ideal J in V of an ideal K of W at a is the coefficient ideal coeffV K
of K in V if K is not bold regular or 1, and is set equal to 1 otherwise.

A point a′ of the blowup W ′ of W with center Z is an equiconstant point for an
ideal I in W at a if a′ maps to a and if the order of the weak transform Ig of I at
a′ equals the order of I at a.

The subscheme V of W is adjacent to I at a if its strict transform V st in W ′

contains all equiconstant points a′ of I above a. It has permanent contact with I at
a if the successive strict transforms of V under any sequence of blowups with centers
inside the top loci of I and of its weak transforms contain all successive equiconstant
points of I above a. We say that V has weak maximal contact with I at a if V
maximizes the order of the coefficient ideal coeffV I of I in V at a. It is osculating
for I if there is an f ∈ I with orda f = orda I and orda coeffV f = orda coeffV I
such that af,α = 0 for all α with |α| = orda I − 1.

Let M = (J , c, D, E) be a singular mobile in W with J a coherent ideal in a
locally closed regular n-dimensional subscheme V . Write Jn for the stalk of J at
a point a of V . A punctual setup of M at a is a sequence (Jn, . . . , J1) of stalks of
ideals Ji in a local flag (Wn, . . . , W1) of V at a satisfying for all i ≤ n:

– Ji = Mi · Ii with Mi = IWi
(Di ∩ Wi) and Ii an ideal in Wi at a.

– Mi defines a normal crossings divisor in Wi at a.
– Wi−1 has weak maximal contact at a with the composition ideal Ki in Wi of

(Ji, ci+1, Di, Ei). Here, ci+1 is the control of Ji on Wi. It is given for i < n as the
order of Ki+1 in Wi+1 at a, and cn+1 = c.

– Ji−1 is the junior ideal of Ki in Wi−1.
The invariant ia(M) of a mobile M = (J , c, D, E) in W admitting locally on V

setups (Jn, . . . , J1) is the vector

ia(M) = (tn, . . . , t1) ∈ N4n

with ti = (oi, ki, mi) the tag of (Ji, ci+1, Di, Ei) at a.
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Appendix E: Table of notations. Script capitals M, J denote stratified global
objects or sheaves; roman capitals J , I, M , P , Q, K stalks of ideals or sufficiently
small representatives of them. Subscripts refer to the embedding dimension or,
for handicaps, to the relevant dimension; left superscripts to truncations. Primes
denote objects after blowup, analogous to their sisters below. Minus sign subscripts
denote objects in one dimension less, analogous to their cousins without subscript.

M = (J , c, D, E) singular mobile in regular ambient scheme W
J coherent ideal sheaf in n-dimensional regular subscheme V of W
c positive integer constant, the control
D = (Dn, . . . , D1) combinatorial handicap with Di normal crossings divisor in W
E = (En, . . . , E1) transversal handicap with Ei normal crossings divisor in W
(Jn, . . . , J1) punctual setup of M at a with Ji coherent ideal in Wi at a
iM = (J , c, iD, iE) truncated mobile with iD = (Dn, . . . , Di),

iE = (En, . . . , Ei)
(Jn, . . . , Ji) truncated punctual setup of iM at a
J , Jn stalk of J at a
Ji = Mi · Ii factorization of Ji with Mi = IWi

(Di ∩ Wi)
Ii factor of Ji which passes under blowup to weak transform
J−, M−, I− ideals in one lower dimension playing the same role as J , M , and I
Wn, . . . , W1 local flag of i-dimensional regular subschemes Wi of W at a
Wi osculating hypersurface for Pi+1 in Wi+1

ci+1 control for Ji in Wi at a, equal to the order of Ki+1 in Wi+1 at a

Pi = Ii + M
ci+1/(ci+1−oi)
i , resp. Pi = Ii companion ideal of Ji = Mi · Ii

Qi = IWi
(Ei ∩ Wi) transversality ideal of Ei in Wi

Ki = Pi · Qi composition ideal of Ji = Mi · Ii, ci+1 and Ei

Ji−1 = coeffWi−1
(Ki) coefficient ideal of Ki in Wi−1

Ni maximal tight shortcut of Mi of order ≥ ci+1

top(Ii) top locus of Ii of points where Ii has maximal order in Wi

top(Ji, ci+1) locus of Ji of points where Ji has order ≥ ci+1 in Wi

oi order of Ii at a in Wi

ki order of Ki at a in Wi

mi = (orda Ni, labNi) combinatorial tag of Mi

ti = (oi, ki, mi) tag of Ji = Mi · Ii, ci+1, Ei at a
ia(M) = (tn, . . . , t1) local invariant of mobile M at a
Z center of blowup in W
W ′ blowup of W in Z
Y ′ new exceptional component in W ′

V g, Jg weak transform of V , resp. J in W ′

V st, Jst strict transform of V , resp. J in W ′

J∗ total transform (= pullback) of J in W ′

J ! controlled transform of J in W ′ w.r.t. a control c
W ′

i weak transform of Wi at equiconstant points of P ′
i+1

W ′
i newly chosen osculating hypersurface for P ′

i+1 outside equiconstant points
J∗

i total transform of Ji under blowup of Wi in Z
J !

i = J∗
i · I(Y ′)−ci+1 controlled transform of Ji w.r.t. ci+1

Ig

i = I∗i · I(Y ′)− ordZ Ii weak transform of Ii under blowup of Wi in Z
D′

i, E′
i transforms of Di and Ei

M ′
i = IW ′

i
(D′

i ∩ W ′
i ) exceptional monomial factor of J ′

i

M′ = (J ′, c′, D′, E′) transform of M under blowup
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Math. Ann. 166 (1966), 76-102. MR 34:6789

[Br 2] Brieskorn, E.: Die Auflösung der rationalen Singularitäten holomorpher Abbildungen.
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[LT] Lejeune, M., Teissier, B.: Contribution à l’étude des singularités du point de vue du
polygone de Newton. Thèse d’Etat, Paris, 1973.
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Proc. Conf. on Singularities, La Rábida. Birkhäuser, 1996. MR 97d:14025
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