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The histone methyltransferase MLL1/KMT2A in
monocytes drives coronavirus-associated
coagulopathy and inflammation
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•Monocyte/macrophage
MLL1 promotes the
expression of
coagulopathy-related
factors and
proinflammatory
cytokines after
coronavirus infection.

• Loss of monocyte/
macrophage MLL1
attenuates the
profibrinolytic and
thrombophilic
phenotype observed
upon coronavirus
infection in vivo.
ain
Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed
balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated
activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively
govern this phenotype seen in CAC remain unclear. Here, using experimental models that
use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2
infection, we identify that the histone methyltransferase mixed lineage leukemia 1
(MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and
profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase
receptor (PLAUR) (herein, “coagulopathy-related factors”) in noninfected and infected
cells. We show that MLL1 concurrently promotes the expression of the proinflammatory
cytokines while suppressing the expression of interferon alfa (IFN-α), a well-known
inducer of TF and PLAUR. Using in vitro models, we identify MLL1-dependent NF-κB/
RelA–mediated transcription of these coagulation-related factors and identify a context-
dependent, MLL1-independent role for RelA in the expression of these factors in vivo.
As functional correlates for these findings, we demonstrate that the inflammatory, pro-
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coagulant, and profibrinolytic phenotypes seen in vivo after coronavirus infection were MLL1-dependent despite
blunted Ifna induction in MO/Mφs. Finally, in an analysis of SARS-CoV-2 positive human samples, we identify differ-
ential upregulation of MLL1 and coagulopathy-related factor expression and activity in CD14+ MO/Mφs relative to
noninfected and healthy controls. We also observed elevated plasma PLAU and TF activity in COVID-positive samples.
Collectively, these findings highlight an important role for MO/Mφ MLL1 in promoting CAC and inflammation.
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Introduction
Infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) results in physiologic derangements that stem
from both the direct action of viral infection and ensuing host-
immune response.1,2 Among these sequelae is coronavirus-
associated coagulopathy (CAC), which results in increased
thrombotic complications and mortality and features low-grade
disseminated intravascular coagulopathy and thrombotic
microangiopathy.3-5 The underlying pathophysiology is related
in part to the combined actions of opposing processes,
including thromboinflammation6,7 and altered fibrinolysis,
because of the activity of urokinase (PLAU) and urokinase
receptor (PLAUR), which results in D-dimer elevation that cor-
relates with disease severity.3,8-11 The concurrent increased risk
of arterial and venous micro/macrothrombosis represents a
major unaddressed cause of SARS-CoV-2 morbidity and
mortality.2,12

The pathophysiology of CAC involves exaggerated activation of
leukocytes (including monocytes/macrophages [MO/Mφs]),
endothelial cells, and platelets.2,13-16 MO/Mφs affect local and
systemic coagulation and fibrinolysis via expression of tissue
factor (F3; TF), PLAU, and PLAUR (“coagulopathy-related
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factors”) in response to various stimuli, including coronavirus
infection and inflammatory cytokine and interferon/interferon
receptor (IFN/IFNR) stimulation.17-24 The stimuli that govern
MO/Mφ responsiveness to SARS-CoV-2 infection are not well
understood but may be related to patient factors,25 alterations
in IFN response,26,27 or epigenetic regulation by chromatin-
modifying enzymes (CMEs) and associated proteins.28,29

CMEs alter MO/Mφ function and are implicated in a variety of
disease contexts, including wound healing,30-32 atheroscle-
rosis,33,34 and aneurysm development,35 and affect cytokine
response in patients with diabetes after SARS-CoV-2 infec-
tion.29 Importantly, epigenetic changes may induce long-lasting
alterations in gene expression (“epigenetic memory”) after
acute infection and may facilitate the long-term sequelae seen
after coronavirus infection.28,36

A candidate CME in altering MO/Mφ function is the histone
methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A),
which is ubiquitously expressed in human tissues,37 functions in
core complexes containing accessory proteins such as
WDR538,39 and Menin,40 catalyzes the addition of methyl
groups to lysine-4 residues on histone 3 proteins, and facilitates
a chromatin conformation conducive for gene transcription.41

Initially recognized for its role in leukemogenesis,42 MLL1 has
recently emerged as an important driver of the MO/Mφ
response in many disease states.30,31,36,43,44 Previous work
demonstrates MLL1-dependent interleukin 1β (IL-1β) expression
and implicates epigenetic changes secondary to MLL1 sup-
pression in MO/Mφs after recovery from sepsis that affect
wound healing.36 MLL1 plays critical roles in facilitating immune
responses downstream of proinflammatory and type I IFN
signaling pathways involving IL-6, tumor necrosis factor α
(TNFα), and STAT4.45,46 MLL1 is also important in orchestrating
signaling involving NF-κB activation,47 which occurs through
RelA activation and is induced by SARS-CoV-2 infection.
Because RelA and IFN signaling regulate inflammatory cytokine
and coagulopathy-related factor expression,24,26,48-50 we
postulated that MLL1 may affect the expression of these factors
in MO/Mφs to promote coagulopathy and systemic
inflammation.

To this end, we used the murine betacoronavirus MHVA59 (a
well-established model of SARS-CoV-2 infection29,51) to across
in vitro and in vivo models to study the role of MLL1 in regu-
lating the expression of CAC-related factors, inflammatory
cytokines, and IFN/IFNRs. We found that infection of MO/Mφs
yielded induction of MLL1, coagulopathy-related factors, and
cytokines. Through loss-of-function models, we identified that
the transcription of MLL1, these factors, and cytokines was
directly regulated by MLL1. Next, we demonstrated that MLL1
is required for RelA-dependent transcription of coagulopathy-
related factors in vitro. We showed that MLL1 is critical in
inducing MO/Mφ and plasma expression of these factors and
cytokines in response to coronavirus infection and in promoting
a prothrombotic/profibrinolytic phenotype in vivo. Interestingly,
loss of MO/Mφ MLL1 derepressed expression of Ifna, a medi-
ator of coagulopathy in other contexts,26 despite attenuating
coronavirus-induced coagulopathy. Finally, we observed upre-
gulated MO/Mφ MLL1, coagulopathy-related factors, and
inflammatory cytokine expression in CD14+ MO/Mφs and
plasma derived from patients diagnosed as COVID-positive,
who also displayed a concurrent induction of plasma PLAU
726 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
and TF activity. Collectively, these results implicate MLL1 as a
driver of MO/Mφ signaling, which is critical for CAC and
inflammation.

Materials and methods
Animals and MHVA59 inoculation
C57BL6/J mice were obtained from The Jackson Laboratory
and Kmt2afl/flLyz2Cre+/− and Kmt2afl/flLyz2Cre−/− mice were
generated as previously described.36 MHVA59 was generated
as described previously.29 Mice underwent intranasal inocula-
tion with 2 × 105 plaque-forming units of MHVA59 or with
phosphate-buffered saline. Animal studies were performed with
the approval of the University of Michigan institutional animal
care and use committee.

Tail bleeding assays and thromboelastography
(TEG)
Mice were anesthetized using ketamine/xylazine and placed on
a heating pad. Five millimeters of the tail tip was sharply
excised, and the tail was immersed in saline at 37◦C. Bleeding
time was defined as cessation of bleeding for 1 minute.
Rebleeds were identified if bleeding occurred within the 10-
minute observation period for each animal. For TEG, whole
blood was drawn from the inferior vena cava and citrate-
anticoagulated (1:9; 3.2% sodium citrate: whole blood). Three
hundred forty microliters of anticoagulated blood was mixed
with 20 μL of 0.2 N CaCl2, and viscoelastic properties were
analyzed using the Haemoscope TEG 5000 Thrombelastograph
Hemostasis Analyzer (Haemonetics Corp). Where indicated,
corn trypsin inhibitor (Prolytix) or TF-inhibiting antibody (TFI;
rat-anti-mouse IgG2a/κ clone 1H1; Genentech) was incubated
with anticoagulated whole blood for 15 minutes at 37◦C before
TEG. Plasma was obtained by centrifugation of whole blood at
2000g for 10 minutes for 2 sequential spins.

Human samples
Plasma/buffy coats were isolated from peripheral blood sam-
ples collected from hospitalized patients with and without
COVID and from healthy controls by centrifugation of citrate-
anticoagulated whole blood specimens for 2 sequential spins
at 2000g for 15 minutes at room temperature. Patient charac-
teristics are listed in supplemental Table 8, available on the
Blood website. CD14+ MO/Mφs were isolated using the Easy-
Sep Human CD14 Positive Selection Kit (Stemcell Technolo-
gies). All samples were collected under approved protocols
from the University of Michigan institutional review board.

Supplemental methods
A detailed description of other methods is provided in the
supplement.

Results
Coronavirus infection of MO/Mφs induces MLL1,
coagulopathy-related factors, inflammatory
cytokines, and type I-III IFN/IFNRs
Previous studies demonstrate that inflammatory MO/Mφ acti-
vation occurs in an MLL1-dependent fashion.30,31,34,36 There-
fore, we chose to investigate whether MLL1 expression
increased in Mφs in response to coronavirus infection. We
SHARMA et al
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Figure 1. Coronavirus infection of MO/Mφs induces
expression of MLL1, coagulopathy-related factors, and
inflammatory cytokines. BMDMs were harvested from C57Bl6/
J mice (wild-type-BMDMs) and were infected with 1 MOI of the
murine coronavirus MHVA59 for the indicated times, and mRNA
(A) and protein levels (B; representative blot shown [β-actin
served as loading control]) of Kmt2a/MLL1 were assayed by
qRT-PCR and immunoblotting, respectively. (C) mRNA levels of
factors important in CAC (Plau, Plaur, and F3) were measured in
infected BMDMs. (D) mRNA levels of proinflammatory cytokines
identified in the inflammatory signature resulting from acute
SARS-CoV-2 (IL-6 and TNFα) and the MLL1-regulated cytokine
IL-1β were measured in infected BMDMs. (E-F) Protein levels of
coagulopathy-related factors (E) and proinflammatory cytokines
(F) were assayed by ELISA. Bar graphs represent mean values
from at least n = 5 independent experiments assayed in tripli-
cate, and individual data points represent independent exper-
iments. Errors bars represent SE. Statistical testing was
performed using Kruskal-Wallis tests with corrections for mul-
tiple comparisons. *P < .05; **P < .01; ***P < .001; ****P < .0001.
ELISA, enzyme-linked immunosorbent assay; MOI, multiplicity
of infection; qRT, quantitative reverse transcription; SE, stan-
dard error.

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/141/7/725/2079726/blood_bld-2022-015917-m

ain.pdf by guest on 23 Septem
ber 2023
performed infection of bone marrow–derived Mφs (BMDMs)
derived from C57BL6/J mice with murine coronavirus MHVA59.
Infected BMDMs displayed induction of MLL1 expression rela-
tive to noninfected cells (Figure 1A-B). We observed similar
upregulation of coagulopathy-related factors and inflammatory
MONOCYTE MLL1 DRIVES COVID-ASSOCIATED COAGULOPATHY
cytokine expression (Figure 1C-F) in BMDMs and in a second
context that utilized immortalized murine Mφs (RAW264.7;
supplemental Figure 1). In addition, we observed induction of
messenger RNA (mRNA) levels of type I-III IFNs and IFNRs in
BMDMs (supplemental Figure 2) in response to coronavirus
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 727



D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/141/7/725/2079726/blood_bld-2022-015917-m

ain.pdf by guest on 23 Septem
ber 2023
infection. These results identify MLL1, the coagulopathy-related
factors PLAU, PLAUR, and F3, the inflammatory cytokines IL-6,
IL-1β, and TNFα, and type I-III IFNs as coronavirus-inducible
factors in vitro.

MLL1 regulates basal expression of coagulopathy-
related factors, inflammatory cytokines, and
type I IFNs and type III IFNRs in MO/Mφs
As MLL1 has been described to regulate inflammatory gene
and type I IFN–dependent responses after toll-like receptor
ligand and/or cytokine stimulation,31,45 we queried whether
MLL1 was responsible for the expression of coagulopathy-
related factors, inflammatory cytokines, and IFN/IFNR genes
in MO/Mφs in the noninfected state. We analyzed expression of
these genes in BMDMs from mice with myeloid-specific MLL1
knockout (Kmt2afl/flLyz2Cre+/−; denoted Cre+) and littermate
controls (Kmt2afl/flLyz2Cre−/−; denoted Cre−). We confirmed
the loss of MLL1 in harvested BMDMs (Figure 2A-B) and
observed attenuated expression (Figure 2C,F) of coagulopathy-
related factors and inflammatory cytokines in Cre+ BMDMs
relative to Cre− cells. Furthermore, we observed MLL1-
dependent H3K4me3 abundance on the promoters of
coagulopathy-related factors (Figure 2G). Interestingly, denot-
ing MLL1 self-regulation, MLL1 loss resulted in attenuated
H3K4me3 abundance at its own promoter (Figure 2G). More-
over, baseline MLL1 promoter occupancy at candidate pro-
moters in Cre− cells was observed, and as expected, this
occupancy was lost in Cre+ cells (supplemental Figure 3A).
Finally, we observed MLL1-dependent occupancy of phos-
phorylated RNA polymerase II β-subunit (Ser5; phospho-Rpb1),
a marker of active transcription, at the promoters of
coagulopathy-related factors (supplemental Figure 3B). These
results indicate that MLL1 promotes the transcription of
coagulopathy-related factors and itself.

We observed an induction of type I IFN (Ifna and Ifnb1) and
type III IFNR levels in Cre+ cells compared with Cre− cells
(supplemental Figure 4), and these results indicated a role for
MLL1 in regulating basal IFN signaling and responsiveness
in vitro. We observed similar MLL1-dependent regulation after
siRNA-mediated MLL1 silencing in wild-type BMDMs
(supplemental Figures 5-6) and RAW264.7 cells (supplemental
Figure 7). Collectively, these results identify basal MLL1-
dependent regulation of coagulopathy-related factors and
inflammatory cytokines in MO/Mφs.

MLL1 regulates coronavirus and inflammatory
cytokine-dependent induction of coagulopathy-
related factors and inflammatory cytokines
In contrast to SARS-CoV-2, MHVA59 uses CEACAM152,53

(found on murine MO/Mφs) as a coreceptor for cell entry.
Therefore, we sought to determine whether MLL1 mediated
either MHVA59-initiated or MHVA59-independent induction of
coagulopathy-related factors and inflammatory cytokines. We
stimulated Cre− and Cre+ BMDMs with either cytokines
induced in the post-coronavirus hyperimmune state54-56 or with
MHVA59. We observed robust induction of coagulopathy-
related factors and inflammatory cytokines after stimulation
with each cytokine and MHVA59 infection in Cre− cells
(Figure 3A-D). A notable exception was that the PLAU levels
were suppressed by IL-6 stimulation, and this finding indicated
728 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
the heterogeneity of cellular responses to inflammatory stimuli.
We also observed MLL1-dependent enrichment of H3K4me3,
MLL1, and phospho-Rpb1 on the promoters of MLL1 and
coagulopathy-related factors after cytokine/coronavirus stimu-
lation (Figure 3E; supplemental Figure 8A-B). Collectively, these
results highlight an important role for MLL1 in cytokine/
coronavirus-mediated induction of coagulopathy-related fac-
tors and inflammatory cytokines. We confirmed our findings in
MLL1-silenced BMDMs (supplemental Figure 9) and RAW264.7
cells (supplemental Figure 10).

MLL1 alters IFN production and IFN-dependent
coagulopathy-related factor expression in BMDMs
We chose to determine the role of MLL1 in mediating IFN
production and responsiveness after coronavirus infection
because type I IFNs such as IFN-α have been described to
promote coagulopathy through the expression PLAUR24 and
F3,57 and the dysregulation of IFN signaling has been impli-
cated in the pathogenesis of SARS-CoV-2 sequelae.26,58,59 We
observed that Cre+ BMDMs displayed an induction of Ifna,
Ifnar1, Ifngr1, and type III IFN/IFNR mRNA expression but also a
suppression of Ifng levels after coronavirus infection
(supplemental Figure 11). Interestingly, though only IFN-α1 and
IFN-γ stimulation induced Kmt2a expression (supplemental
Figure 12A), only IFN-α1 stimulation yielded enhanced
expression of coagulopathy-related factors, and this induction
was blunted in Cre+ cells (supplemental Figure 12B-D). These
results highlight a dominant role for MLL1 in regulating IFN-
α/coagulopathy-related factor signaling after coronavirus
infection in vitro.

MLL1 is required for RelA-dependent transcription
of coronavirus-responsive factors
We chose to investigate collaborative gene regulation by MLL1
and RelA in MO/Mφs because MLL1 function has been previ-
ously shown to be influenced by NF-κB signaling.47 We did not
observe altered levels of RelA mRNA or protein levels in Cre+
BMDMs relative to Cre− BMDMs (Figure 4A-B). Because acti-
vated RelA (phosphorylated on Ser276 or Ser536) protein levels
were not readily detectable in BMDMs in the basal state, we
analyzed RAW264.7 cells and did not observe any differences in
phospho-RelA levels upon MLL1 knockdown (Figure 4C).
Conversely, we did not observe RelA-mediated regulation of
MLL1 expression in siRelA-treated BMDMs (Figure 4D-E).
However, MHVA59 infection of RelA-silenced BMDMs yielded
attenuated induction of MLL1 (Figure 4F), though RelA levels
were not induced in either Cre− or Cre+ cells (Figure 4G).
Collectively, these results identify that RelA is needed for
maximal induction of MLL1 levels after coronavirus infection
and that RelA and MLL1 do not participate in reciprocal regu-
lation of each other’s expression in MO/Mφs in the basal state.

After coronavirus infection, we observed increased time-
dependent RelA occupancy at the Kmt2a promoter
(Figure 4H). The ability of RelA to occupy the MLL1 promoter
was dependent on MLL1 expression, as attenuated promoter
occupancy dynamics were observed in Cre+ cells. We also
observed that, though RelA silencing alone yielded a modest
suppression of the coagulopathy-related factors and inflam-
matory cytokine expression in response to MHVA59 infection
(Figure 4I-J; supplemental Figure 13A-B), combined RelA and
SHARMA et al
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Figure 2. MLL1 regulates the basal expression of coagulopathy-related factors and proinflammatory cytokines in BMDMs. BMDMs were harvested from mice carrying
a myeloid-specific deletion of MLL1 (Kmt2afl/fl Lyz2Cre+/−; denoted Cre+) and littermate controls (Kmt2afl/fl Lyz2Cre−/−; denoted Cre−). (A) mRNA levels of Kmt2a were assayed
in n = 8 Cre+ and Cre− animals analyzed in triplicate. (B) Protein levels of MLL1 were assayed in BMDMs from n = 4 Cre+ and Cre− mice by immunoblotting (representative
blot shown [β-actin served as loading control]). (C-D) mRNA levels of coagulopathy-related factors (C) and proinflammatory cytokines (D) were assayed. (E-F) Protein levels of
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Figure 2 (continued) coagulopathy-related factors (E) and inflammatory cytokines (F) were measured by ELISA. (G) ChIP assays were performed using antibodies specific to
either H3K4me3 or nontargeting species-specific IgG. Bars graphs represent mean values from at least n = 4 independent experiments with individual data points representing
independent experiments. For ChIP experiments, bar graphs represent mean ChIP intensity relative to IgG derived from n = 8 samples performed in triplicate. Statistical
analysis of pairwise comparisons was performed using Mann-Whitney tests. Error bars represent SE. *P < .05; **P < .01; ***P < .001; ****P < .0001. ChIP, chromatin
immunoprecipitation; ELISA, enzyme-linked immunosorbent assay; IgG, immunoglobulin G; SE, standard error.
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MLL1 loss resulted in robust abrogation of the coronavirus-
dependent induction of these genes. Similarly, RelA abun-
dance at the coagulopathy-related factor promoters was
attenuated in Cre+ BMDMs that were infected with MHVA59
(Figure 4K). Collectively, these results show that MLL1 is
required for RelA-dependent transcription of coagulopathy-
related factors and inflammatory cytokines in MO/Mφs in vitro.

Coronavirus infection results in induction of MLL1
and dependent factors in vivo
We next aimed to determine whether MLL1 and its dependent
factors are induced in MO/Mφs upon coronavirus infection
in vivo. C57BL6/J mice underwent intranasal inoculation with
either 2 × 105 plaque-forming units of MHVA59 or with
phosphate-buffered saline (sham). Through viral polymerase
chain reaction (PCR) and MHVA59 enumeration assays, we
determined that postinfection day 3 (d3) represented a period
of robust viremia and infection of lung, splenic MO/Mφs, and
BMDMs and that postinfection day 28 represented a late
time point during which no measurable virus was present in
these tissues (supplemental Figure 14). MHVA59 infection
induced the expression of MLL1, coagulation-related factors,
and inflammatory cytokines (Figure 5A-C; supplemental
Figure 15A-B). Concordant with our in vitro findings, we
observed induction of H3K4me3, MLL1, and RelA occupancy
on the promoters of Kmt2a and the coagulopathy-related
factors (Figure 5D; supplemental Figure 15C-D). Interestingly,
MLL1 silencing in splenic MO/Mφs harvested from infected
animals was able to attenuate coronavirus-mediated gene
expression (supplemental Figure 16). However, compared with
our in vitro studies (supplemental Figure 2), we observed that
MONOCYTE MLL1 DRIVES COVID-ASSOCIATED COAGULOPATHY
splenic MO/Mφs displayed suppressed levels of Ifnar1 and type
II IFN/IFNRs, despite displaying inductions in Ifna and type III
IFN/IFNRs (supplemental Figure 17). Nonetheless, we observed
similar coagulopathy-related and inflammatory cytokine gene
expression and epigenetic changes in BMDMs from infected
animals (supplemental Figure 18).

Finally, we observed coronavirus-mediated induction of plasma
inflammatory cytokine and coagulopathy-related factor
expression (supplemental Figure 15E; Figure 5) and soluble
PLAU/PLAUR expression (Figure 5E-G). We also observed an
induction in plasma PLAU activity and plasma and MO/Mφ TF
activity, suggesting a concurrent fibrinolytic and hypercoagu-
lable phenotype (Figure 5H-J). To explore the functional con-
sequences of these results, we performed tail bleeding assays
and TEG. Coronavirus infection resulted in faster cessation of
tail bleeding and predisposed animals to a higher rate of
rebleeding, thus demonstrating a hypercoagulable phenotype
in which clot stability dynamics were perturbed, possibly
through hyperfibrinolysis (Figure 5K-L). Using TEG, we
observed that coronavirus infection yielded shortened clot for-
mation times (R) (Figure 5M). We attributed this observation to
TF activity as we observed a preferential effect of corn trypsin
inhibitor treatment (an inhibitor of intrinsic coagulation)60 in
prolonging R times in samples from sham animals (Figure 5N).
Furthermore, treatment of samples with 100 μg/mL but not 50
μg/mL of murine-specific TF blocking antibody61 (TFI) was
required to abrogate clot formation in infected samples,
whereas 50 μg/mL of TFI was sufficient to block clot formation
in sham samples (Figure 5N). Collectively, these results show
that the expression of MLL1, coagulation-related factors, and
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inflammatory cytokines is induced in an MLL1-dependent
manner in vivo in response to coronavirus infection and culmi-
nates in a prothrombotic and hyperfibrinolytic phenotype.

MLL1 loss in MO/Mφs attenuates coronavirus-
mediated induction of coagulation-related factors
and inflammatory cytokines in vivo
To further demonstrate MLL1-dependency for the induction of
coagulation-related factors and inflammatory cytokines, we
performed inoculation of Cre− and Cre+ mice with MHVA59.
We observed robust induction of levels of coagulopathy-related
factors and inflammatory cytokines in harvested Cre− BMDMs
(supplemental Figure 19A-B) and splenic MO/Mφs compared
with Cre+ cells (Figure 6A-B; supplemental Figure 20A-B). We
also observed differentially induced H3K4me3 enrichment on
the promoters of Kmt2a and the coagulopathy-related factors in
Cre− splenic MO/Mφs and BMDMs relative to Cre+ cells upon
coronavirus infection (Figure 6C; supplemental Figure 19C).
However, we did not observe MLL1-dependence of RelA
occupancy in splenic MO/Mφs or differential promoter occu-
pancy of RelA in BMDMs (supplemental Figures 20C and 19D)
in contrast to our results in vitro (Figure 4K).
MONOCYTE MLL1 DRIVES COVID-ASSOCIATED COAGULOPATHY
Indicating MLL1-dependence, plasma levels of inflammatory
cytokines (supplemental Figure 20D) and coagulopathy-related
factors (Figure 6D-F) were differentially upregulated in infected
Cre− mice. Furthermore, we observed a robust increase in
plasma PLAU activity and plasma and MO/Mφ TF activity
(Figure 6G-I) in Cre− mice compared with Cre+ mice. Finally,
infected Cre− mice displayed shortened tail bleeding times
with increased rebleeding events (Figure 6J-K) and shortened R
times, which were TF-dependent (Figure 6L-M). Interestingly,
uninfected Cre− and Cre+ mice did not display such differ-
ences, suggesting a context-specific role for MO/Mφ MLL1
in vivo. These results further support MO/Mφ MLL1’s role in the
pathogenesis of coronavirus-dependent inflammatory
coagulopathy.

MLL1 loss alters IFN responsiveness of MO/Mφs
but does not affect MHVA59 infection in vivo
We next chose to investigate whether MO/Mφ MLL1 affected
IFN production and responsiveness after coronavirus infection
in vivo. Analysis of type I-III IFN/IFNR mRNA transcript expres-
sion showed a consistent pattern of IFN/IFNR transcript
changes in splenic MO/Mφs between infected Cre− and
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 733
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(blood to citrate). TEG was performed and R time (time to formation of clot of 2 mm thickness) was measured (left panel). Representative TEGs are presented in the right panel.
(N) To determine the role of TF in hypercoagulability as assayed by a shortened R time as measured by TEG after coronavirus infection, citrated whole blood samples from
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as controls. Bar graphs represent mean values. qRT-PCR, ELISA, and ChIP data represent experiments performed in triplicate. Error bars represent SE. Statistical analysis of
data sets was performed by either Mann-Whitney U test or Kruskal-Wallis test with corrections for multiple comparisons. *P < .05; **P < .01; ***P < .001; ****P < .0001. ChIP,
chromatin immunoprecipitation; ELISA, enzyme-linked immunosorbent assay; PBS, phosphate-buffered saline; qRT, quantitative reverse transcription; SE, standard error
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Figure 6. Coronavirus-mediated induction of coagulopathy-related factors and the resultant coagulopathy is dependent on myeloid-specific expression of MLL1.
Mice harboring a myeloid-specific MLL1 knockout (denoted Cre+; n indicated per group) and littermate controls (Cre−) underwent intranasal inoculation of 2 × 105 plaque-
forming units (pfu) of MHVA59. Mice were sacrificed at the indicated time points and plasma and splenic MO/Mφs (a surrogate for circulating MO/Mφs) were harvested. (A-B)
The mRNA and protein levels of coagulation associated factors were assayed by qRT-PCR and ELISA in splenic MO/Mφs, respectively. (C) H3K4me3 abundance at the
indicated promoters was measured by ChIP assay. (D-E) Circulating levels of PLAU (D) and soluble PLAUR (E) were measured by ELISA. (F) Plasma PLAU activity levels were
measured using a colorimetric assay in which absorbance (A405) correlates with enzyme activity level through the cleavage of a plasmin (activated by PLAU) substrate that
liberates p-nitroaniline. (G) Plasma TF protein levels were measured by ELISA. (H) Plasma TF activity was measured using a colorimetric assay in which the activation of factor
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Figure 6 (continued) X (FXa) by TF and factor VII (TF/FVIIa) and its cleavage of a FXa-specific substrate liberates p-nitroaniline. (I) The TF activity of lysed harvested splenic
MO/Mφs was measured. (J) Tail vein bleeding time was measured in infected and sham mice. (K) The number of rebleeding events during tail vein bleeding time assays was
tallied. (L) Whole blood was collected from infected and sham mice by inferior vena cava puncture and anticoagulated with 3.2% sodium citrate at a ratio of 9:1 (blood to
citrate). TEG was performed and R time (time to formation of clot of 2 mm thickness) was measured (left panel). Representative TEG is presented in the right panel. (M) To
determine the role of TF in hypercoagulability as assayed by a shortened R time as measured by TEG after coronavirus infection, citrated whole blood samples from either
infected (d3) Cre− or Cre+ mice was treated with either corn trypsin inhibitor (CTI; 25 μg/mL final concentration) or a mouse-specific anti-TF neutralizing antibody (TFI; clone
1H1 [Genentech]; 50 μg/mL final concentration) and the resultant viscoelastic properties were analyzed using TEG. Samples which were not subjected to treatment (NT) served
as controls. Representative TEG is presented in the right panel. Bar graphs represent mean values and number of independent experiments per panel is as indicated.
qRT-PCR, ELISA, and ChIP experiments were performed in triplicate. Error bars represent SE. Statistical comparisons were performed by either Mann-Whitney U test or
Kruskal-Wallis test with corrections for multiple comparisons. *P < .05; **P < .01; ***P < .001; ****P < .0001. ChIP, chromatin immunoprecipitation; ELISA, enzyme-linked
immunosorbent assay; qRT, quantitative reverse transcription; SE, standard error.
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C57BL6/J animals (supplemental Figures 21 and 17). Interest-
ingly, only Ifna and Ifnlr1 mRNA levels were found to be
concordantly induced in uninfected Cre+ BMDMs in vitro and
Cre+ splenic MO/Mφs derived from sham animals in vivo
736 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
(supplemental Figures 11 and 21). Analysis of infected BMDMs
in vitro and splenic MO/Mφs derived from infected animals also
revealed concordant induction of Ifna, Ifnar1, and Ifnlr1 in Cre+
cells compared with Cre− cells (supplemental Figures 11 and 21).
SHARMA et al
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Figure 7. SARS-CoV-2–infected patients display elevated levels of MLL1 in MO/Mφs, and upregulated expression of MO/Mφ and circulating coagulopathy-
associated factors and inflammatory cytokines. CD14+ cells were isolated peripheral blood samples from hCOV+ (n = 28), hCOV− (n = 24), and healthy controls
(n = 14). (A) The mRNA levels of KMT2A were measured in isolated cells by qRT-PCR. (B-C) The mRNA and protein levels of coagulopathy-associated factors in MO/Mφs were
assayed by qRT-PCR and ELISA, respectively. (D) The expression of coagulopathy-associated factors was measured from isolated plasma samples. (E) H3K4me3 and (F) MLL1
abundance at the indicated promoters was measured by ChIP assay. (G) Plasma PLAU activity was measured using a colorimetric assay in which absorbance (A405) correlates
with enzyme activity level through the cleavage of a plasmin (activated by PLAU) substrate which liberates p-nitroaniline. (H) Plasma TF activity was measured using a
colorimetric assay in which the activation of factor X (FXa) by TF and factor VII (TF/FVIIa) and its cleavage of a FXa-specific substrate liberates p-nitroaniline. (M) Schematic of
the proposed mechanism of coronavirus-induced inflammation and coagulopathy as mediated by MLL1 in MO/Mφs. Bar graphs represent mean values. qRT-PCR, ELISA, and
ChIP experiments were performed in triplicate. Error bars represent SE. Statistical comparisons were performed using the Kruskal-Wallis test with corrections for multiple
comparisons. *P < .05; **P < .01; ***P < .001; ****P < .0001. ChIP, chromatin immunoprecipitation; ELISA, enzyme-linked immunosorbent assay; qRT, quantitative reverse
transcription; SE, standard error.
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Finally, a limited transcriptomic analysis by quantitative reverse
transcription-PCR array of IFN-signaling relevant genes revealed
heterogeneous coronavirus-mediated responses between unin-
fected and infected Cre− and Cre+ splenic MO/Mφs (sham:
Cre+ vs Cre− MO/Mφs – decreased expression of 29 out of 66
[43.9%, 1.25-fold average decrease in expression] and increased
expression of 37 out of 66 [56.1%, 3.11-fold average increase in
expression] of analyzed transcripts; d3 Cre+ vs d3 Cre−MO/Mφs
– decreased expression of 35 out of 66 [53.0%, 1.73-fold average
decrease in expression] and increased expression of 31 out of 66
[47.0%, 2.07-fold average increase in expression] of analyzed
transcripts), but nonetheless implicated Ifna transcripts as MLL1-
repressible elements in both uninfected and infected states
(supplemental Figure 21G). Despite these results in Cre− and
Cre+ animals, we did not observe differences in MHVA59
infection of lung, splenic MO/Mφs, BMDMs, or whole blood
through viral PCR or viral enumeration assay (supplemental
Figure 22). Thus, our results highlight MLL1-IFN-α signaling
that may preferentially affect coagulopathy after coronavirus
infection.

MLL1 and regulated factors are induced in CD14+

cells and plasma derived from patients infected
with SARS-CoV-2 virus
We assessed whether MO/Mφs isolated from human SARS-
CoV-2–positive samples displayed differential expression of
MLL1 and dependent factors. We isolated CD14+ MO/Mφs and
peripheral plasma samples from hospitalized patients with
738 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
SARS-CoV-2 infection (n = 28; hCoV+), hospitalized patients
without SARS-CoV-2 infection (n = 24; hCoV−), and healthy
controls (n = 14) and identified elevated mRNA levels of MLL1
in hCoV+ patients compared with hCoV− patients and healthy
controls (Figure 7A). We observed differential induction of MO/
Mφ and plasma levels of coagulopathy-related factors in hCoV+
patients (Figure 7B-D; supplemental Figure 23A-C). We
observed these changes in coagulopathy-related factors
despite suppressed Ifna and Ifnb1 mRNA levels in CD14+ cells
from hCoV+ patients compared with hCoV− patients
(supplemental Figure 24). We also observed increased abun-
dance of MLL1, H3K4Me3, and RelA occupancy at the pro-
moters of MLL1 and coagulopathy-related factors in hCoV+
MO/Mφs relative to other groups (Figure 7E-F; supplemental
Figure 23C-D). Finally, we observed that elevated plasma
coagulation-related factor levels corresponded with induced
PLAU and TF activity (Figure 7G-H). These data mirror our
experimental findings regarding MLL1 and show that hCoV+
patients display a MO/Mφ and a plasma profile featuring
induced coagulopathy-related factors and inflammatory
cytokines.
Discussion
Here, we report a critical role for MLL1 in promoting expression
of coagulopathy-related factors and inflammatory cytokines
after coronavirus infection and delineate a context-specific role
for MLL1 in regulating RelA-dependent transcription of these
SHARMA et al
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factors (Figure 7I). We identify self-regulation of MLL1 expres-
sion and show that myeloid MLL1 loss attenuates the
coronavirus-induced hypercoagulable/profibrinolytic pheno-
type in vivo despite derepressing the expression of IFN-α,
which has been described as an inducer of coagulopathy after
endotoxemia.57 Finally, we demonstrate differential expression/
activity of MLL1 and coagulopathy-related factors in samples
from patients with SARS-CoV-2 infection. These findings high-
light a novel role for MO/Mφ MLL1 as a dominant regulator for
the expression of factors important for CAC.

Because of the differences in cell specificity between MHVA59
(which uses CEACAM1 as coreceptors; found on murine MO/
Mφs52,53) and SARS-CoV-2, distinguishing MHVA59-dependent
regulation of MLL1 from virus-independent mechanisms is
difficult. Nonetheless, we identify inflammatory cytokine–
mediated MLL1 induction and reciprocal regulation of these
cytokines by MLL1. Furthermore, we demonstrate Kmt2a and
Plaur as 2 novel MLL1/RelA-regulated targets. Though we did
not identify reciprocal regulation of the expression of MLL1 or
RelA, we observed that MLL1 regulated RelA occupancy at the
Kmt2a, Plau, Plaur, and F3 promoters in vitro but not in vivo.
These results may highlight context-dependent NF-κB/RelA
signaling dynamics, which have been described in response to
a variety of stimuli.62-65 Nonetheless, we observed increased
MLL1 and RELA occupancy on coagulopathy-related gene
promoters in COVID-positive MO/Mφs relative to samples from
patients without COVID patients and healthy controls, indi-
cating a potential for collaborative transcriptional regulation
after SARS-CoV-2 infection.

In contrast to the bidirectional regulation between MLL1 and its
dependent inflammatory effectors, we observed the heteroge-
neity in MLL1-regulated IFN expression/responsiveness across
experimental contexts, though Ifna suppression by MLL1 was a
consistent observation. This finding may explain a mechanism by
which type I IFN expression/responses are repressed after SARS-
CoV-2 infection.26,27,58,59,66-68 Though type I IFNs or MLL1 may
each promote the expression of coagulopathy-associated fac-
tors,24 our finding that MLL1 suppresses Ifna expression indicates
an alternate mechanism for coagulopathy in a setting of dimin-
ished IFN signaling after coronavirus infection. Importantly, our
observation of MLL1 as a mediator of IFN-α1–induced expres-
sion of coagulopathy-related factors in MO/Mφs may point to a
role for MLL1 mediating IFN-dependent coagulopathy in other
diseases such as sepsis. Nonetheless, additional studies are
needed to delineate the relationship between MLL1 and global
MO/Mφ transcription, as attenuated expression of inflammatory
cytokines/coagulopathy-related factors after MLL1 loss may
relate to a general decrease in transcription, with MLL1-Ifna
regulation representing an exception to such a relationship.

Furthermore, an important role for CME and associated pro-
teins continues to be described in the immunopathogenesis of
SARS-CoV2 infection.28,29,69-72 We observed rapid and sus-
tained upregulation in MLL1 expression/function after corona-
virus infection. Our finding that coronavirus-induced gene
expression in MO/Mφs is abrogated by silencing MLL1 is
interesting as it suggests that MLL1 activity may enforce
“epigenetic memory” after coronavirus infection; however,
what contribution MLL1-associated proteins/MLL1-complex
components play in acute and chronic responses remains
MONOCYTE MLL1 DRIVES COVID-ASSOCIATED COAGULOPATHY
unclear. As such memory is thought to contribute to the
long-term sequelae in conditions such as aging, malignancy,
and after recovery from sepsis, it is possible a prolonged state
of smoldering inflammation/dysregulated coagulation, and
other symptoms associated with “long-COVID”69-71 may be
mediated through “epigenetic memory.”

The ability of CME and associated proteins to affect acute and
chronic disease states renders factors such as MLL1 and its core
components (eg, Menin, WDR5) as attractive therapeutic tar-
gets to blunt the sequelae of SARS-CoV-2 infection.38,40,42,73-77

Targeting MLL1/MLL1 complexes with small molecule inhibitors
has been described for MLL1-rearranged leukemia treat-
ment,40,74 and such inhibitors may be used to target MLL1-
driven CAC, during which the balance between opposing
procoagulant and fibrinolytic systems is perturbed. By
addressing both hypercoagulability and hyperfibrinolysis, such
therapies could prevent immunothrombosis/dysregulated fibri-
nolysis and restore a normal coagulation profile without the
attendant risks of current anticoagulant therapies, especially in
the intensive care unit patient population where the bleeding
risk of anticoagulants has been shown to outweigh the bene-
fits.78 Nonetheless, because MLL1 expression is not limited to
MO/Mφs,37 it is unclear what effects would result from global
inhibition of MLL1 activity (though immunosuppressive effects
and poor wound healing a possible side-effects), and therefore
MO/Mφs-targeted therapies must be designed. Furthermore,
our experimental model of myeloid-specific MLL1 loss may
capture MLL1’s effects on other cells of myeloid lineage, such as
neutrophils, which have been implicated in SARS-CoV-2 path-
ogenesis, coagulopathy, and the inflammatory response.79,80

Our study highlights the potential role of MO/Mφ MLL1 in
regulating coagulation/fibrinolysis, and our findings add to the
evidence that CMEs play major roles in directing MO/Mφ gene
expression programs to drive micro/macrovascular immunopa-
thology.32,42,81-85 Epigenetics in translational thrombosis repre-
sents an exciting area of discovery that has the potential to
uncover novel immune-based therapeutic strategies in the study
of vascular immunobiology. We have identified that MLL1 is a
coronavirus-inducible factor in MO/Mφ that is responsible for the
expression of inflammatory and coagulopathy-related gene
expression. Our study shows that MO/Mφ MLL1 induces a
hypercoagulable and fibrinolytic phenotype upon coronavirus
infection. These results point to MLL1 blockade as a potential
therapeutic strategy to curb CAC and inflammation, and possible
long-term sequelae associated with SARS-CoV-2 infection.
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