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Abstract

Since its earliest days, the field of behavioral medicine has leveraged technology to increase the 

reach and effectiveness of its interventions. Here, we highlight key areas of opportunity and 

recommend next steps to further advance intervention development, evaluation, and 

commercialization with a focus on three technologies: mobile applications (apps), social media, 

and wearable devices. Ultimately, we argue that future of digital health behavioral science research 

lies in finding ways to advance more robust academic-industry partnerships. These include 

academics consciously working towards preparing and training the work force of the 21st century 

for digital health, actively working towards advancing methods that can balance the needs for 

efficiency in industry with the desire for rigor and reproducibility in academia, and the need to 
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advance common practices and procedures that support more ethical practices for promoting 

healthy behavior.

Keywords

digital health; mobile applications; social media; wearable technology; behavior change 
intervention

In 1982, W. Stewart Agras predicted that the field of behavioral medicine would succeed 

where previous collaborations between behavioral science and medicine had failed. His 

rationale was behavioral medicine’s emphasis on translational clinical research – 

applications of basic behavioral science discoveries to clinical interventions that could be 

delivered in a variety of settings (Agras, 1982). Technology made its mark on behavioral 

medicine quite early in the field’s development with the emergence of biofeedback. 

Behavioral medicine was even considered “synonymous” with biofeedback in its earliest 

years (Blanchard, 1982). Since that time behavioral medicine has been at the forefront of 

evidence-based behavioral treatment and prevention for health conditions such as obesity, 

diabetes, cancer, and cardiovascular disease, to name a few. These interventions have 

consistently incorporated cutting-edge technology to maximize reach and effectiveness. In 

this article, we describe uses of technology to deliver behavioral medicine interventions and 

identify critical methodological and practical challenges to this work going forward, 

focusing on three technologies: mobile applications (apps), social media, and wearable 

devices. In particular, we discuss the potential for academic-industry partnerships, and 

identify key points for researchers who would like to bring new digital intervention tools to 

market or contribute to the improvement of existing tools.

Increasing Reach: Behavioral Interventions in Daily Life

Traditional behavioral interventions were designed to be delivered in face-to-face meetings 

between a provider and patient(s) or between a public health organization and community 

member(s). Face-to-face intervention delivery has many advantages, including the 

opportunity for providers to respond based on physical cues from the patient and the power 

of social processes such as reinforcement and accountability. However, logistical challenges 

such as scheduling, travel, childcare, and cost limit the feasibility of face-to-face 

interventions for many (Keefe et al., 2002; Tate & Zabinski, 2004). Below, we briefly 

describe technologies that have enabled interventions to be delivered remotely (see Figure 

1).

Telephone.

Intervention delivery via telephone seems not to preclude development of a therapeutic 

alliance (Stiles-Shields et al., 2014), is effective relative to control interventions (e.g., 

Lichtenstein et al., 1996), and is scalable. Tobacco quitlines represent a large-scale example 

of effective intervention via telephone (Cummins et al., 2007). Quitlines are funded by 

government public health agencies and staffed by trained providers. Many vendors offer 

both reactive call responses (i.e., providers available to take calls from individuals who call 
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in) and proactive call scheduling (i.e., providers initiate calls to individuals referred by 

healthcare professionals) (Cummins et al., 2007; Lichtenstein, Zhu, & Tedeschi, 2010). 

State-level quitlines have existed in the U.S. since the early 1990s, with the national quitline 

(1–800-QUIT-NOW) established in 2004 (Anderson & Zhu, 2007). Available evidence 

indicates that quitlines are highly effective and reach a diverse population (Lichtenstein, 

Zhu, & Tedeschi, 2010). As only 1% of U.S. smokers access quitlines (Keller et al., 2010), 

there is opportunity to further improve the reach of this service.

Cell phones.

Advances in cell phone technology allowed interventions to reach individuals where they are 

at any time of day. Mobile-delivered interventions may increase access to care, as 95% of 

U.S. adults own a mobile phone of some kind (Pew Research Center, 2018a). Text messages 

have been used as stand-alone or adjunctive interventions since the early 2000s and show 

modest efficacy for improving health behaviors (Fjeldsoe, Marshall, & Miller, 2009; 

Buckholtz et al., 2013; Head et al., 2013). Together with the low cost of these interventions, 

text messaging is scalable to large subsets of the population (Fjeldsoe, Marshall, & Miller, 

2009; Cole-Lewis & Kershaw, 2010). As an example, Text4baby is a free text messaging 

service that provides health information to 1 million pregnant mothers in the U.S (Whittaker 

et al., 2012). Text4baby has been shown to improve glycemic control (Grabosch, Gavard, & 

Mostello, 2014), change attitudes about alcohol intake during pregnancy (Evans, Wallace, & 

Snider, 2012), and increase positive attitudes about attending prenatal visits and taking 

prenatal vitamins (Evans et al., 2014).

Smartphones.

More than 75% of U.S. adults own smartphones (Pew Research Center, 2018a). The 

increasing popularity of the smartphone has shifted a considerable amount of behavioral 

medicine research to mobile applications (apps) since 2013 (Müller et al. 2018). Although 

smartphones are most popular among young, college-educated individuals, ownership rates 

are comparable across race/ethnicity, and even the majority of those living in rural areas own 

smartphones (Pew Research Center, 2018a). Further, 58% of the adults use their 

smartphones for health-related purposes, including tracking health or health behavior via 

apps (Mack, 2016).

Health apps allow users to engage with health-related content via a variety of media (e.g., 

videos, text). Many include self-monitoring features (based on active input from the user or 

passive sensing), gamification strategies (e.g., competition, digital rewards), goal setting and 

feedback, in-the-moment cues, and/or social features (e.g., social comparison, leaderboards, 

integrated social networks) (Mendiola, Kalnicki, & Lindenauer, 2015; Payne, Lister, West, 

& Bernhardt, 2015). Estimates show that more than 24,000 health apps are available in 

online marketplaces (Dehling, Gao, Schneider, & Sunyaev, 2015). Importantly, however, 

studies have routinely shown that commercial health apps tend to include very few evidence-

based behavior change techniques, and very few have been rigorously tested (Jake-

Schoffman et al. 2017). Those that have been tested show mixed effectiveness, and many 

studies had small sample sizes, lacked optimal comparison groups, and were at risk for 

biased results (Zhao, Freeman, & Li, 2016). In addition, the expertise necessary to inform 
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the optimal design, development, and testing of health apps involves numerous disciplines 

(e.g., behavioral science, software engineering, game design) that have not traditionally 

worked together. Consequently, health apps tend to be weak in the one or more areas in 

which one area of expertise is lacking.

Social media.

About 69% of the U.S. population uses at least one social media site (median = 3 sites per 

user), and the majority of users visit at least once per day (Pew Research Center, 2018b). 

The advent of social media platforms has brought with it new opportunities to study and 

intervene upon health behavior (Pagoto et al., 2016). About 30% of U.S. adults use social 

media to access health information (Fox, 2017), as do 65% of adults with chronic health 

conditions (Shaw & Johnson, 2011). Social media platforms provide new opportunities for 

health organizations and professionals to communicate evidence-based information, counter-

message misinformation, and interface with policymakers (Breland et al., 2017; Waring et 

al., 2018). Social media sites also allow researchers to study knowledge, attitudes, and 

behavior in new ways, which may lead to new theoretical models of health behavior change 

(Charles-Smith et al., 2015; Paul et al., 2016).

Online forums in the form of chat rooms first appeared in the 1990s and became widespread 

in the mid-2000s. These online forums allowed clients to share text-based messages with 

groups or individuals (Eysenbach et al., 2004; Suls et al., 2006). More recently, large 

commercial social media platforms such as Facebook and Twitter have allowed users (and 

providers) to share a variety of types of content, including text, images, GIFs, videos, 

competitions, and polls (Arigo et al., 2018). General-use sites such as Facebook allow users 

to create public or private groups and pages, or to send direct messages; sites such as Twitter 

use hashtags (#) to allow posts to be searchable by topic. Commercial health apps often 

include social media features, either by integrating with an existing platform (e.g., 

Facebook) or by connecting app users directly to one another in an app-specific social 

network. Many weight loss and fitness apps, for example, allow users to follow each other, 

see each other’s data, create discussion threads, and compete with each other (Rivera et al., 

2016; Conroy et al., 2014). Some also include blogs that provide health information to users.

Some social media sites are for specific subgroups of individuals who are similar with 

respect to diagnoses or health goals. For example, PatientsLikeMe connects over 600,000 

users who identify with specific health conditions to one another, and collects patient-

reported data for research on patient experiences (Wicks et al., 2018). Users report 

experiencing myriad benefits from the site, including having a better understanding of their 

health condition and treatment options as well as improved conversations with healthcare 

professionals (Wicks et al., 2018), and the site has been useful for tracking behaviors such as 

off-label use of medication (Frost et al., 2011).

Social media platforms and features also provide new opportunities to recruit participants 

and deliver interventions. Participant recruitment through sites such as Facebook, Twitter, 

Craigslist and specialty networks (e.g., Grindr) show promise for increasing enrollment in 

intervention programs among hard-to-reach groups, such as men who have sex with men, 

transgender people, smokers, and young adults with health conditions (Carter-Harris, Willis, 
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Warrick, & Rawl, 2016; Gorman et al., 2014; Iribarren et al., 2018; Martinez, 2014). Social 

media recruitment can be accomplished via paid ads or by posting in groups or communities, 

or in the case of Twitter posting with community-specific hashtags or incentivizing 

community influencers to post study ads (Arigo et al., 2018). It is not yet clear whether any 

type of social media recruitment is more cost-effective or results in greater overall yield than 

traditional recruitment methodologies; more work is needed to determine the best 

approaches to recruiting specific populations via social media as well as how to avoid 

recruiting an unrepresentative sample (Moreno et al., 2017; Topolovec-Vranic & Natarajan, 

2016).

Delivering behavioral interventions via social media reduces or eliminates barriers such as 

scheduling, transportation, and childcare conflicts, given that individuals can participate 

anywhere and anytime of the day (Arigo et al., 2018). The frequency with which individuals 

view their social media feeds, and the ease of access to social media via computer or mobile 

device, also facilitates real-time intervention (Pagoto et al., 2016). Depending on the 

intervention design, individuals can access provider-developed intervention content, connect 

with other intervention participants, create and share their own content, and ask for help 

whenever they desire or feel in need of support (Maher et al., 2014). Recent systematic 

reviews reveal promise for social media-delivered interventions (Ashrafian et al., 2014; Han, 

Lee, & Demiris, 2018).

Increasing Effectiveness: Personalization, Tailoring, and Adaptation

Advances in technology also provide new opportunities to improve intervention 

effectiveness. In the 1960s, information processing technology afforded by computers 

introduced two new paths for remote intervention. The first allowed for personalizing 

behavior change materials to specific groups or to individuals, based on demographic 

information (e.g., age, race) or personal characteristics (e.g., stage of change). Participant 

characteristics are fed into a computerized algorithm to determine the optimal content 

combination(s) for that individual (Kreuter, Strecher, & Glassman, 1999). While this 

approach allowed content to be individualized based on specific participant characteristics, it 

did not take into account dynamic changes within an individual over time. Because so many 

factors vary within a person over time (e.g., marital status, employment, income, stress, 

weight, behavior), personalizing based on a snapshot of individual characteristics will 

inevitably be limited in precision.

The second path comprised automating and tailoring responses to real time individual input, 

allowing technology-based interventions to (1) intervene in real time, and (2) adapt to an 

individual’s changing characteristics over time. An early albeit rudimentary example of such 

automation and tailoring was Colby, Wyatt, and Gilbert’s (1966) computerized 

psychotherapy, for which a client could type sentences and receive automated responses that 

were determined by key words or phrases. Similar principles apply in automated and tailored 

responses via modern technology such as websites (Lustria et al., 2009), email (Lustria et 

al., 2013), and text messages (Patrick et al., 2009) and are increasingly common in 

commercial settings with the proliferation of chat bots.
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Tailoring based on real-time data requires valid and reliable real-time measures of behavior, 

affect, and other factors. In the 1980s, behavioral medicine researchers began to grapple with 

the limitations of retrospective self-report (Fahrenberg, 1996) by using wristwatch timers, 

electronic pagers, and personal digital assistants (PDAs) to prompt patients to complete 

paper surveys and record survey responses (Stone & Schiffman, 1994). PDAs afforded the 

advantage of time stamps, allowing researchers and clinicians to verify that assessments 

were completed when instructed. Such real-time assessment (e.g., ecological momentary 

assessment [EMA]) enabled ecological momentary intervention ([EMI]; Heron & Smyth, 

2010) also known as just-in-time (JIT) interventions. JIT interventions can be delivered via 

text message (e.g., Riordan, Conner, Flett, & Scarf, 2015), smartphone apps (e.g., Caroll et 

al., 2013), and wearable devices.

More recent advances in mobile technology now allow for just-in-time adaptive 
interventions (JITAI), which adjust timing and content to meet an individual’s changing 

needs in context (Nahum-Shani, Hekler, & Spruijt-Metz, 2015). For example, smartphone 

apps can use immediate local weather data to inform physical activity recommendations 

(Klasnja et al., 2017). Many existing JITAIs rely on user-specific input that is self-reported 

(e.g., mood, social environment, preferences) or gathered from device features such as 

geolocation (Nahum-Shani et al., 2018). Based on the evolving capabilities of additional 

technologies, objective behavioral data from users and their environment can also be input to 

inform JITAIs. For example, an app can provide prompts to increase walking by monitoring 

sedentary time via the phone’s accelerometer, adjust the content of the prompts based on the 

length of time spent sedentary, and provide reward messages for increasing physical activity 

(Bond et al., 2014; Thomas & Bond, 2015). Apps that provide such intervention also can be 

integrated with wearable devices that collect behavioral data. Emerging research is exploring 

how to use the principles of control systems engineering to more intensely optimize adaptive 

interventions, personalizing the experience of behavior change and sustainability for the 

individual user (Hekler et al., 2018; Conroy et al., 2018.).

Wearable technology.

Some of the earliest uses of technology to support behavior change interventions occurred in 

the late 1940s and 1950s with the use of mechanical counters to provide users with 

immediate, personalized feedback on their behaviors. The pedometer is an early-stage 

mechanical device that collects ambulatory data, which can be incorporated into research 

and practice; it was first used in the treatment of obesity in 1949 (Larsen, 1949) and 

commonly applied to the quantification of physical activity engagement in behavioral 

research by the 1960s (Chrico & Stunkard, 1962; Stunkard, 1960; Stunkard & Petska, 1962). 

Pedometers provide real-time, individual self-monitoring of physical activity, which is a key 

behavior change technique (Michie et al., 2009); because they are inexpensive and easy to 

use, they can be implemented on a large scale (Tudor-Locke & Lutes, 2009). Public health 

campaigns that include participant access to pedometers show effectiveness for increasing 

physical activity (Robinson et al., 2014) and cost-effectiveness relative to other types of 

interventions (Cobiac, Vos, & Barendregt, 2009).
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Later versions of activity sensors aligned wrist- and ankle-worn counters (Schulmann & 

Reisman, 1959) and measured ultrasonic sound (Goldman, 1961; see Schwitzgebel, 1968), 

and paved the way for modern wearable fitness bands and smartwatches. These collect data 

on the timing and velocity of movement at lower cost than research-grade accelerometers, 

which have recently been considered the gold standard (Silfee et al., 2018). Such devices 

help users self-monitor physical activity, but additional behavior change skills are typically 

needed to effectively increase and sustain higher physical activity in adults (Samdal et al., 

2017; Murray et al. 2017). Behavior change skills can be delivered via traditional face-to-

face intervention or integrated web or smartphone apps. Integration of wearable technology 

and JIT or JITAI methods allows the device to provide intervention content based on clients’ 

ongoing physical activity behavior; for example, providing reminders to walk if the client 

has spent a certain amount of time sitting.

While it may seem that wearable technology has revolutionized fitness efforts, we have yet 

to document much impact on physical activity at the individual or population level. 

Although these devices and their associated smartphone apps provide more comprehensive 

data to users than pedometers (such as the timing and intensity of activity, Arigo, 2015), 

questions remain about the accuracy of the data they collect (Evenson, Goto, & Furberg, 

2015) and whether appropriate validation occurs prior to commercial sale (Peake, Kerr, & 

Sullivan, 2018). Further, they are considerably more expensive than pedometers (i.e., ~$100 

vs. $5), and a recent survey found that most users tend to be young (i.e., 18–34 years old), 

affluent, and self-described “early adopters of technology” (Patel, Asch, & Volpp, 2015; The 

Nielson Company, 2014). Even among those who show initial interest in these devices, 

many stop using them within 6–12 months (Ledger, & McCaffrey, 2014). The expense 

combined with high attrition rate among users even created an opportunity for a non-profit 

company that collects unused wearables and distributes them to underserved communities 

(RecycleHealth, 2018). Finally, the integration of social media features into the wearable 

device platforms (e.g., apps, websites) also could activate beneficial social processes, but 

further investigation is required to understand how best to incorporate these processes with 

the self-monitoring data from devices (see Arigo, 2015; Butryn et al., 2016). Overall, 

additional research is needed to determine how best to use wearable technology to impact 

physical activity and other health outcomes. Additional emerging areas for wearables 

include monitors for diabetes (Heintzman, 2016), ultraviolet radiation (Hussain, et al., 

2016), alcohol (NIAAA, 2018), and smoking Sazonov, Lopez-Meyer, & Tiffany, 2013).

Summary

The field of behavioral medicine has had a long history of using technology to increase the 

effectiveness of its interventions. Behavioral science in general has been recognized as a 

crucial element in the interdisciplinary field of “digital health,” which has emerged in recent 

years and spans both academia and industry. The heightened interest in leveraging 

technology to understand behavior and health is also evidenced by the $300 million NIH-

funded All of Us initiative, which involves myriad academic and industry partnerships 

working together to use technology to explore individual differences in behavior, biology, 

and environment to inform precision medicine approaches to health (National Institutes of 

Health, 2018a). Behavioral medicine can continue to play an instrumental role in the digital 
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health space by subjecting innovations to rigorous evaluation; new and improved 

methodologies are emerging to meet this need. In the next section, we outline some of the 

current challenges for the field of behavioral medicine to advancing the science and practice 

of digital health interventions (Table 1).

Key Challenges to Reaching the Potential of Behavioral Medicine in Digital 

Health

In 1982, Agras predicted that a “health promotion industry” would emerge and produce its 

own set of interventions. He paired this prediction with a warning:

“Although these developments are in many ways desirable (for example, they will 

increase access to information), they will also cause problems. Too widespread an 

application before sufficient research has been done might lead to premature 

disillusionment with this young field. Moreover, such a development might lead to 

the wide-spread application of procedures that are not based on research findings.”

Indeed, a “health promotion industry” has flourished and now holds an estimated value of 

$3.7 trillion (Global Wellness Institute, 2018). The digital health industry specifically is 

valued at $23 billion (Reuters, 2017), and as Agras stated, many innovations are being 

widely adopted in the absence of research findings. Some of the biggest challenges to 

realizing the potential of behavioral medicine in digital health arise from the fact that 

industry and academia are working in parallel, with very little collaboration. As such, 

problems are arising on both sides, many of which would likely be remedied with 

collaboration across sectors. Challenges and suggestions to address them are summarized in 

Table 2.

Commercial apps and devices lack evidence.

The most widely used digital health tools have been developed in the private sector, and 

commercial development has several advantages. Companies raise money from investors 

that they then leverage toward product design, development, and marketing. They are able to 

move products to market on a relatively short time scale and then leverage user data to 

inform product refinements. Many companies develop application programming interfaces 

(APIs) at very early stages of programming so their products can be integrated across 

devices or platforms. Access to the API is critical for interoperability and allows for 

streamlined data collection and extraction. The app stores contain thousands of commercial 

health apps, and while most will never reach many users, some achieve wide dissemination, 

accruing millions of users.

In spite of how well-disseminated some commercial health apps and devices have become, 

the degree to which they incorporate evidence-based behavior change strategies or clinical 

guidelines, are theory-based, or involve health scientists in the development process appears 

to be low (Conroy et al., 2014; Nikolaou & Lean, 2017; Pagoto et al., 2013; Rivera et al., 

2016; Schoffman et al., 2013). This does not necessarily mean that an app or device is not 

efficacious, but very little rigorous testing has been done on these tools. At present, very few 

apps or devices could be considered efficacious on any clinical or behavioral outcome.
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Current research methods do not match the needs of digital intervention tools.

The traditional randomized controlled trial (RCT), in which two or more treatments are 

compared, remains the gold standard for evidence in clinical medicine. Evidence from RCTs 

is necessary for a treatment to be included in clinical guidelines and reimbursed by insurers 

(Murray et al., 2016; Sackett et al., 1996). Technology-based interventions have unique 

features that present methodological issues when it comes to the traditional RCT design. 

First is the difficulty of designing an adequate control group. Apps and other digital health 

tools often include a variety of features that participants use in different orders and at 

different times; it is not clear which aspects are effective, for whom, or when, and to what 

these specific aspects should be compared (Lipschitz & Torous, 2018). Also, investigators 

should be able to estimate the effect of a control group when calculating sample size, which 

requires preliminary work with the proposed control group. Even if an adequate control 

group is found, as with all behavioral treatment studies, participants cannot be “blinded” to 

condition in the same way as pill placebo-controlled trials, although efforts can be made to 

conceal the alternative approaches being tested and to blind investigators or statisticians to 

participants’ group membership.

Another challenge of using traditional RCTs in behavioral interventions is that behavioral 

interventions, digital ones especially, are rarely unidimensional, meaning they rarely 

compare a single active ingredient to a placebo. Behavioral interventions typically 

incorporate “packages” of strategies that do not identify when, where, or for whom different 

elements will work (Mohr et al., 2015). Careful testing of moderators and mechanisms of 

efficacy is necessary. Behavioral scientists have developed new RCT frameworks such as the 

Multiphase Optimization Strategy (MOST), a process through which multiple intervention 

components can be simultaneously tested (Collins et al. 2014; Murray et al., 2016). A 

variety of RCT designs can be used to assess the contributions of individual components to 

change in the outcomes and mediators of interest; these include factorial or fractional 

factorial designs, sequential multiple assignment randomized trials (SMART), micro-

randomized trials, and control optimization trials (see Chakraborty, Collins, Strecher, & 

Murphy, 2009; Collins et al. 2007; Hekler et al., 2018; Liao, Klasnja, Tewari, & Murphy, 

2016), each most suitable for answering different research questions.

Likewise, N-of-1 studies can provide a framework for the rapid iteration and testing of 

technologies, using small sample sizes (cf. Schaffer et al., 2018). This design is an efficient 

alternative to traditional pilot and feasibility studies that typically recruit 30 or more 

participants to test a single iteration. For example, an N-of-1 study can help researchers and 

developers quickly identify the most effective components of a digital health intervention for 

a single individual, which is critical to designing adaptive interventions that adjust for 

dynamic, contextual change (Conroy et al., 2018; Hekler et al., 2016). N-of-1 designs can 

also disentangle factors that are influential for specific individuals, to aid in defining more 

appropriate intervention strategies and decision rules (Patak et al., 2018). Although these 

designs are increasingly popular in the human-computer interaction (HCI) literature, few 

journals in the behavioral medicine sphere offer explicit opportunities to publish N-of-1 

studies. Introducing options to publish this type of article in behavioral medicine’s leading 

journals could help to facilitate advancements in the science of digital health interventions.
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Behavioral medicine lacks a science of engagement.

While digital behavioral interventions may seem more practical, easier to use, and more 

convenient than face-to-face interventions, they are not immune to the engagement and 

retention issues that have long plagued behavioral interventions. Even among people who 

seek out digital health tools, many use them for only a few days or weeks at most 

(Eysenbach, 2005). In one survey of more than 1600 smartphone users, 58% had voluntarily 

downloaded a health app and 46% of these users had discontinued their use of the app prior 

to completing the survey (Krebs & Duncan, 2015). Lack of face-to-face contact may weaken 

the capacity to build a therapeutic relationship or generate social support in the case of 

group-based interventions, and this could very well play a role in the engagement and 

retention issues observed in digital health interventions. Making matters even more 

complicated, engagement is defined very differently in digital interventions (Yardley et al., 

2016) compared to traditional interventions where session attendance was a common metric. 

For example, engagement in an app-delivered intervention might be measured via use of any 

number of features, whereas engagement in a social media-delivered intervention might be 

measured by views, “likes,” comments, or posts (Yardley et al., 2016; Waring et al., 2018).

Unlike disciplines such as HCI, in which user engagement has been a prominent topic of 

investigation (see Smith et al., 2017, for an example), behavioral medicine has lagged in its 

focus on this critical aspect of digital health interventions, and there is little shared language 

around this concept (Perski, Blandford, West, & Michie, 2016). Consensus is not only 

lacking on how to define engagement, but on how much is needed for adequate intervention 

receipt or to produce positive clinical outcomes. For example, how long does one need to 

use an app or wearable device (and which features) to have experienced the full intervention 

dose? Or, to what degree does one need to engage in a social media-delivered intervention to 

be considered “engaged”? An emerging discussion in this literature focuses on the degree to 

which more engagement really is better, as opposed to some optimal level of “effective 

engagement” that might signal the critical types of interactions with digital forums and 

materials to produce behavior change (Yardely et al., 2016). These are critical questions that 

are linked to the evaluation methods for digital health interventions, as engagement may 

differ between individuals, as well as across stages of behavior change and other contextual 

factors (Rus & Cameron, 2016; Pagoto & Waring, 2016; Smith et al., 2017).

In behavioral medicine, we also know little about what type of engagement matters. Is a 

participant who opens a diet tracking app every day to view other participant’s progress but 

never tracks their own intake considered “engaged”? In a Facebook group for exercise 

promotion, is a participant who only hits the “like” button but never comments on discussion 

threads engaged in the intervention? Digital health interventions allow us to measure how 

participants engage an intervention in ways we never could with traditional interventions, 

where topics were discussed face-to-face and readings may have been assigned. Tracking 

everything a participant said and/or read would have been very difficult. Now that we have a 

digital footprint of a huge range of health-relevant behaviors (Insel, 2017), it is possible to 

assess many different ways that a participant can engage with an intervention. This could 

lead to new ways of understanding how interventions work and ultimately help us construct 

new models of behavior change.
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An unknown landscape of privacy and data security.

Another relatively new set of challenges centers around the issues of privacy and data 

security presented by digital health tools. First, some commercially available technologies 

that were originally produced for purposes other than promoting healthy behavior (e.g., 

social media) are now being used to study health behavior and deliver interventions. This 

poses a variety of potential privacy issues depending on the privacy settings used, including 

the fact that data from non-participants may inadvertently be viewed and collected, and their 

rights should also be considered as part of study procedures (Arigo et al. 2018). Privacy may 

be of particular concern as apps begin to incorporate additional smartphone technologies 

such as GPS location tracking and cameras (Nebeker, Linares-Orozco, & Crist, 2015). 

Second, for commercial products that were originally designed for health behavior change 

(e.g., apps), researchers need to carefully read and understand the associated privacy and 

security agreements, be sure that participants understand these agreements, and include a 

summary of this information in their applications to ethics review boards.

A recent study examined app source code to determine if the data access permissions a 

health app requested from users were necessary to run the app. Results showed that the 

requested access often exceeded what was necessary, posing unneeded potential threats to 

the privacy and security of the user (Pustozerov et al., 2016). Recent data breaches and 

privacy controversies with commercial platforms such as Facebook (Carr, 2018) and 

MyFitnessPal (Segarra, 2018) highlight the pressing importance of protecting participant 

data. Further, technologies developed by researchers should also be thoroughly vetted for 

potential privacy and security issues in order to properly protect participants. As the 

development of technology has outpaced legislative and ethics initiatives in this area, it is 

critical for researchers to take a proactive stance in terms of protecting participants, and 

work together with industry partners to ensure the privacy and security of users’ data.

Privacy and data security are critical to the design and delivery of effective, trustworthy, and 

safe digital health tools. As the research literature in this area has not kept pace with 

technological developments, greater attention to and training for these topics is needed, with 

an emphasis academic-industry partnerships. Programs such as the Connected and Open 

Research Ethics (CORE) initiative can serve a critical role of helping keep researchers in 

academia and industry informed about the evolving ethics of digital health research, 

including assistance with effectively crafting informed consent documents for participants 

and working with ethics review boards (Torous and Nebeker, 2017; https://

thecore.ucsd.edu/).

Academia-produced products lack funding and are poorly disseminated.

Academics regularly develop apps and devices for use in behavioral interventions, which 

they then test in controlled studies (e.g., Garnett et al. 2018, Pagoto et al. 2018, Turner-

McGrievy et al. 2016). The development and testing is typically funded by research grants. 

One challenge to this model is that app development comes at a high monetary and time cost 

relative to typical developmental research grant budgets, the latter of which can range from 

$10K internal grants to $450K for federal grants over 1–3 years. The average app is 

estimated to require about $270,000 and 7–12 months to develop (Turner-McGrievy et al. 
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2016). While some academics have instead used responsive-design websites as a cost-

effective and relatively fast alternative to app and web program development (Turner-

McGrievy et al. 2016, Jake-Schoffman et al. 2018), this does not overcome the fact that 

funds are not typically available for graphic design, long-term maintenance, or technology 

updates needed beyond the grant period.

Sample sizes for research studies also limit the amount of data that can be used to inform 

technology updates. For example, an app with hundreds of thousands of users produces rich 

data on use patterns, whereas a typical research study of 30–100 participants is far less 

useful to this end. In addition, academic research is not conducive to rapid iteration and 

testing of multiple versions of technologies (Riley et al., 2013). For example, institutional 

review board (IRB) approval is required every time an intervention is modified. IRB 

amendments can take weeks and even months to get approval, making it very difficult to 

move swiftly. Thus, the cost, pace, and scope of research grants makes developing and 

testing novel technologies with grant funding a cumbersome and inefficient process. 

Behavioral scientists also do not have a strong history of training in entrepreneurialism. 

Historically, academic “products” have been therapies as opposed to technologies, so few 

have the skills required for commercialization (e.g., fundraising, filing patents). For these 

reasons, few academically-developed tools ever become commercially available or 

disseminated widely, greatly limiting their potential public health impact. Fortunately, the 

availability of training in these areas is increasing. For example, the NIH-funded Innovation 

Corps (I-Corps) program educates researchers and technologists on how to commercialize 

technologies built in the lab (National Institutes of Health, 2018b).

Academics who are interested in widely disseminating their tools, but who are not interested 

in commercialization, could take one of several other alternative paths. First, academics can 

develop and test components or modules in digital health tools, which could be easily 

adapted and incorporated into other interventions. In this way, the advances from each 

academically-developed tool can more easily be used in future academic and/or industry-

produced technologies. Second, web developers have a long history of sharing open source 

code in an effort to help move the field forward without unnecessary duplication of efforts. 

Academics could share the code developed for their health relatively easily via existing 

platforms for open source code, or through more regulated systems on university websites to 

allow for tracking of downloads and use. Third, academics could establish industry 

partnerships early in the planning phases of technology development, such that the process 

of commercialization and dissemination of the final tool is led by the industry partner. 

Behavioral medicine professional organizations should play a role in facilitating these 

partnerships.

Alternatively, academics could leverage the robust platforms built by industry, instead of 

building their own. For example, many behavioral scientists use existing platforms such as 

Facebook, Twitter, and MyFitnessPal for assessment and intervention delivery (e.g., Pagoto 

et al., 2015; Ramo et al., 2018; Teixeira, Voci, Mendes-Netto, & da Silva, 2018; Turner-

McGrievy & Tate, 2013; Waring et al. 2018). As noted previously, an important outcome of 

this work is that it has raised issues of data access and control (which are not always 

straightforward), abrupt changes to the technology, and ethical considerations. For example, 
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a commercially available platform may restrict access to user data, update its features or data 

security policies without notice, or not adhere to data privacy practices that are necessary for 

academic ethics regulation boards (Arigo et al., 2018). In the app and social media spaces, 

this can lead researchers to “reinvent the wheel” (i.e., design their own platform) to test a 

hypothesis. Although this may address some problems, it is quite costly, and the resulting 

tool may not be sustainable, scalable, or attractive to the general population. When using 

commercial platforms, researchers need to do their due diligence to understand all aspects of 

the platform, stay vigilant of changes and updates, and inform participants accordingly.

Principles versus technologies.

Technology is changing at a pace that is quicker than research can happen. For this reason, 

academic researchers should, as indicated by Mohr and colleagues, perform “trials of 

intervention principles” that may play a role in multiple digital health interventions, rather 

than trials of specific technologies (Mohr et al., 2015). For example, interventions that are 

device- or platform-agnostic could increase the likelihood of utilization in the future. Also, 

testing intervention feedback strategies without focus on a single fitness wearable brand or 

social media platform means that as the market changes, the findings may still be applicable. 

This approach assumes some similarity across digital health tools, and it is critical for 

researchers to attend to important differences between tools if they intend to draw broad 

conclusions.

Similarly, many academics focus on the development of a single digital tool, rather than on 

the underlying computer programming processes that may be translatable across tools (e.g., 

algorithms with key decision points). This may be most noticeable in the area of apps, where 

a variety of researcher-developed tools exist that have only reached the formal feasibility or 

pilot testing stage (Payne, Lister, West, Bernhardt, 2015). By developing interventions 

through APIs, rather than focusing on specific apps as outcomes of research projects, 

academics create opportunities for their content to be utilized in multiple settings (e.g., 

electronic health records, web-based disease management portals, other stand-alone apps).

Academic-Industry Partnerships as the Future of Digital Health

Despite what might be a natural synergy between academia and industry (see Figure 2), we 

see few examples of academic-industry collaboration, and it is worth exploring why. 

Historically in the behavioral sciences, the most relevant “industry” was the pharmaceutical 

industry, as this was the only industry that shared our goal of developing effective treatments 

for behavioral problems. However, a disconnect always existed with the pharmaceutical 

industry because behavioral scientists develop non-pharmacological treatments. For this 

reason, behavioral scientists do not have a long tradition of working in industry. Eventually, 

the digital health industry emerged with the shared goal of creating behavioral solutions for 

health, which presented an enormous and unprecedented opportunity for collaboration. 

However, behavioral medicine training programs have not been prepared to produce a 

workforce for industry, which hinders not only collaboration but also knowledge transfer. 

For example, graduate programs in the behavioral sciences do not facilitate industry 

internships (unlike the computer sciences and engineering where this is standard), and they 
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rarely provide any sort of training and mentorship toward industry careers (Goldstein et al., 

2017). In fact, one could argue that academic behavioral science has passively (if not 

actively) discouraged the industry career path by exclusively preparing trainees for the 

academic career path. Training a workforce for industry as well as learning effective ways to 

communicate science to industry will forge connections that will improve the work produced 

in both sectors.

Behavioral scientists’ lack of experience working in industry coupled with a history of 

public battles with certain industries (e.g., tobacco companies), may have led to 

misconceptions about industry that create a reticence to collaborate. Misconceptions include 

accusations that academic and industry have different value systems, that industry is more 

vulnerable to bias, and that industry is less interested in protecting privacy (Wolin & Pagoto, 

2018). Fears of conflict of interest may also prevent academics from working with industry. 

Other barriers include differing language and paces of work across sectors. Perceived 

differences are more imagined than real, as both sides share the goal of producing and 

disseminating effective behavioral solutions to health problems. One potential leverage point 

for growing successful academic-industry partnerships might be when goals and metrics of 

success between the two sectors are closely aligned. These opportunities may occur 

infrequently at present, but offer a chance to demonstrate the success that can be grown from 

synergy between the sectors.

Health coaching as an example of successful academic-industry partnerships.

Health coaching (or behavioral counseling) is the classic modality for delivering evidence-

based interventions. Coaching/counseling models have been developed and tested within 

academic research, and are now moving towards digital systems. Several studies have now 

demonstrated the value of both reach and impact associated with the use of digital tools for 

heath coaching. The digital health coach model has also gained the interest of industry 

stakeholders looking to scale behavioral health interventions for large user bases (e.g., 

implementation within a health system). This overlap in goals has created opportunities for 

cross-sector collaboration.

One key way that academia and industry can work together in this space is for industry to 

scale the reach of academia-developed health coaching programs by developing digital 

versions of those programs in a platform-agnostic way. Digital health coaching programs 

may be implemented in clinical settings (including both health care provider or payer 

settings), employer settings, or other settings within any number of informatics platforms. 

Further, it may often be the case that two or more settings with different platforms (e.g., a 

health care provider with an electronic medical record platform and an insurance company 

with an internal care management informatics platform) both need to consume data from a 

digital health coaching program and to communicate about that data in service to the client 

they share. By creating digital health coaching programs that can be embedded in any 

informatics platform, industry partners remove a number of significant barriers that the 

academic developers of those health coaching programs may otherwise face in their efforts 

to disseminate and implement their evidence-based interventions.
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Considerations for the Future of Digital Health in Behavioral Medicine

As the field of behavioral medicine continues to leverage digital tools to improve the reach 

and effectiveness of interventions, academic-industry partnerships will be essential for 

success. Creating and nurturing high functioning academic-industry partnerships requires an 

understanding of how incentives for each side might align (see Figure 2). Industry enjoys a 

fast pace of development, emphasis on iterative design, and knowledge about the 

commercialization process. Although academia may have much to offer industry with 

respect to health behavior change intervention techniques and rigorous methods of 

evaluation, it must be acknowledged that many commercial efforts have been financially 

successful without much input from academics, and the benefits of academic involvement 

may not be obvious to industry professionals. As a result, behavioral medicine researchers 

and providers who are interested in taking digital tools to market or helping to improve 

existing tools should consider the following points.

Bringing academia-developed tools to the commercial market.

Researchers interested in bringing a new digital intervention tool to market should consider 

what makes a tool ready for dissemination. Has the research team considered how best to 

differentiate their tool from the thousands already available? Have they thought through the 

monetary, computing, and personnel resources needed to scale up use of the tool? 

Companies are often uncomfortable rolling out an intervention to clients that has “only” 

been tested on a few hundred people because serious issues that may not be apparent in a 

platform that has been used by only 300 people may quickly become visible when offering it 

to thousands or more. Thus, a great deal of development is necessary by industry before it 

can implement an academic intervention, and the incentives for the industry partner (e.g., 

cost-effectiveness) must be clear from the outset.

Even among tools that have shown efficacy in clinical trials, the associated costs to scale up 

the tool may be prohibitive. As noted previously, some clinical trials of full intervention 

packages generate important lessons about the behavioral principles that underlie the use of 

a digital tool (Mohr et al., 2015). In a similar vein, dismantling studies may reveal that some 

of the intervention components are less effective than others (e.g., Muench & Baumel, 

2017). In many cases, implementing a principle or reduced version of the intervention on a 

large scale will be preferable, rather than bringing a new, full intervention tool to market. 

Although researchers may worry about losing some of the integrity of the intervention as 

designed and tested, this approach could maximize the strengths of academia and industry 

and facilitate the process of commercialization. Further, the principles of implementation 

science such as the context in which an intervention will be implemented, including what 

elements are essential to remain in their original forms, what can be adapted, and how to 

optimize for uptake of the innovation should guide this work (Bauer et al., 2015).

Continued work to optimize existing digital intervention tools.

In addition to creating new intervention tools in an already-crowded digital marketplace, 

clear opportunities exist to improve the effectiveness of existing tools. Apps and wearables 

rarely reach individuals who are at greatest health risk (Patel, Asch, & Volpp, 2015). We 
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need to know how can we modify these tools to make them more appealing to, or more 

effective for, at-risk groups. How can we match people to the tools that may work best for 

their health needs and goals, as well as their budgets? As use of these tools increases, how 

can we best integrate the resulting data into clinical care? And as our technology advances, 

how can we improve our research methods to match the unique demands, and effectively 

communicate the results to industry partners?

Academic researchers and providers are uniquely positioned to answer these questions, 

particularly with respect to evolving research designs. The use of the MOST framework, 

SMART and micro-randomized trials, machine learning, and control systems engineering 

models is increasing, as these resources are particularly well suited to testing JIT and JITAI 

intervention tools. Important considerations in this domain are the complexity of these 

approaches, and expertise needed to develop and evaluate intervention tools that involve 

them.

Finally, it is critical for both academia and industry to consider whether increasing an 

intervention’s computing complexity is optimal (or necessary) to produce clinically 

meaningful health behavior change. At present, many digital tools still rely on users to self-

report important information such as mood or current environmental factors to inform 

intervention decisions (e.g., what type of prompt the user will receive). The self-report 

burden may lead users to disengage before they receive the minimally effective intervention 

dose (Nahum-Shani et al., 2018), which limits the tool’s impact on health outcomes. On the 

other hand, passive sensing technology may have not yet achieved accuracy for certain 

behaviors, as in the case of dietary intake. Regardless, at least 24% of U.S. adults do not 

have smartphones (Pew Research Center, 2018a), which limits their access to many of the 

intervention tools described here. For some patients or users, a simpler mode of delivery 

such as text messaging may be preferable, more accessible, and/or more effective than an 

app- or wearable-based JITAI. Additional work is needed to determine for whom and under 

what circumstances a particular digital intervention tool is best.

Summary and Conclusions

Although it may seem that the field of behavioral medicine is new to technology, we have a 

long history of embracing new technologies in the pursuit of fostering better health 

outcomes through behavior change. The newest permutation of digital health is establishing 

new opportunities for developing scalable effective interventions, but myriad challenges 

remain related to aligning incentives, methods, and ethical standards between the field of 

behavioral medicine and industry partners who can facilitate the scaling. However, an 

emergence of academics is producing and evaluating tools and resources that are used in the 

real world, just as an emergence of industry partners is interested in using data and evidence 

to create tools that produce the results they are designed to produce. The profound risk to the 

behavioral science community is in not acting and finding ways to support the emerging 

industry that shares our values and goals of better health through scientifically grounded 

work.
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The future of digital health behavioral science research lies in finding ways to advance more 

robust academic-industry partnerships. These include academics consciously working 

towards preparing and training the work force of the 21st century for digital health, actively 

working towards advancing methods that can balance the needs for efficiency in industry 

with the desire for rigor and reproducibility in academia, and the need to advance common 

practices and procedures that support more ethnical practices for helping individuals. This 

work should have a clear focus on respecting privacy, choice, and ownership of personal 

data. It is an imperative to realize both the opportunities and key considerations for forging 

robust academic-industry partnerships so that we can move forward on achieving our 

broader goals of public and population health.
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Figure 1. 
Timeline of key developments in behavioral medicine’s use of technology to support 

interventions. (Dates approximated from published work.)
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Figure 2. 
Strengths, weaknesses, and intersecting priorities for development of digital health tools in 

academia and industry.
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