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The term ‘history effect’ refers to the contribution of any past mass transfer events 
between a gas bubble and its liquid surroundings towards the current diffusion-driven 
growth or dissolution dynamics of that same bubble. The history effect arises from the 
(non-instantaneous) development of the dissolved gas concentration boundary layer in 
the liquid in response to changes in the concentration at the bubble interface caused, 
for instance, by variations of the ambient pressure in time. Essentially, the history 
effect amounts to the acknowledgement that at any given time the mass flux across 
the bubble is conditioned by the preceding time history of the concentration at the 
bubble boundary. Considering the canonical problem of an isolated spherical bubble 
at rest, we show that the contribution of the history effect in the current interfacial 
concentration gradient is fully contained within a memory integral of the interface 
concentration. Retaining this integral term, we formulate a governing differential 
equation for the bubble dynamics, analogous to the well-known Epstein–Plesset 
solution. Our equation does not make use of the quasi-static radius approximation. 
An analytical solution is presented for the case of multiple step-like jumps in pressure. 
The nature and relevance of the history effect is then assessed through illustrative 
examples. Finally, we investigate the role of the history effect in rectified diffusion for 
a bubble that pulsates under harmonic pressure forcing in the non-inertial, isothermal 
regime.

Key words: bubble dynamics, drops and bubbles

1. Introduction

The diffusion-driven growth and dissolution dynamics of bubbles of a soluble gas
are topics that, despite having been studied for a long time, still awaken the interest 
of scientists and engineers. In addition to numerous numerical studies on different 
aspects of the matter, exhaustive analytical treatment in the canonical scenario of 
the mass (and heat) diffusion-driven growth or dissolution of an isolated bubble

† Email address for correspondence: papenasl@ing.uc3m.es
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has been given over the years. The methods employed are based on the quasi-static 
approximation (Epstein & Plesset 1950), thin boundary layer approximation (Plesset 
& Zwick 1954), perturbation techniques (Duda & Vrentas 1969), infinite series (Tao 
1978), integral methods (Rosner & Epstein 1972) and self-similar solutions for bubble 
growth starting from zero initial size (Birkhoff, Margulies & Horning 1958; Scriven 
1959), to cite a few.

All these solutions have in common that they assume

(i) constant ambient pressure during the entire process and
(ii) a uniform concentration (or temperature) field in the liquid as an initial condition.

Perhaps the most widely used ones are the Epstein–Plesset solutions, valid for
growth and dissolution, based on the quasi-stationary approximation (Epstein & 
Plesset 1950), and Scriven’s exact solution for growth that accounts for the advection 
term in the diffusion equation (Scriven 1959). The predicted growth rates have been 
experimentally validated in supersaturated CO2–water solutions by the works of 
Barker, Jefferson & Judd (2002) and Enríquez et al. (2014), among others. Likewise, 
in the case of dissolution, experimental verification of the Epstein–Plesset equation 
has been shown for monocomponent (Kapodistrias & Dahl 2012) and multicomponent 
(Shim et al. 2014) bubbles.

With respect to the assumption (i) stated above, it happens that the effect of a 
non-constant pressure time history has been somewhat overlooked in the derivation of 
these analytical solutions. In some situations of practical interest, soluble bubbles are 
subject to successive slow compression–expansion cycles. Tisato et al. (2015) have 
successfully proven that the growth–dissolution dynamics of bubbles of a soluble 
gas can significantly damp the amplitude of seismic waves. A second example is 
the observation of gas bubble disease in stranded cetaceans after being exposed 
to low-frequency high-intensity acoustic pulses emitted by sonars. Crum & Mao 
(1996) attribute this to bubble growth triggered by rectified diffusion. Houser, 
Howard & Ridgway (2001) suggested that the likelihood of successful triggering 
is strongly dependent on the previous history of dives undergone by the cetacean. 
More specifically, the dive history directly determines the initial supersaturation level 
of dissolved nitrogen gas in the body fluid surrounding the trapped microbubbles at 
the time of insonation.

Other scenarios may entail fast, isolated changes in pressure rather than cyclic 
acoustic forcing. For instance, the growth of gas bubbles trapped in extravascular 
tissue is aided by steady decompression during depressurisation events (Marzella 
& Yin 1994). Payvar (1987) studied the mass-transfer-driven bubble growth during 
rapid liquid decompressions typically found in hydraulic power recovery turbines. 
A numerical treatment based on the integral method developed by Rosner & 
Epstein (1972) was employed. This method requires the imposition of a parabolic 
concentration profile within a thermal boundary layer of time-varying thickness L(t). 
Theofanous et al. (1969) also performed a similar treatment for the growth of vapour 
bubbles in a superheated fluid under the effect of a decreasing pressure field.

However, as Jones & Zuber (1978) pointed out, the integral method is only 
suitable for a monotonically decreasing pressure time history and this approach 
cannot be of general utility. Jones & Zuber (1978) also studied the growth of 
vapour bubbles in a superheated liquid under variable pressure. They used the thin 
boundary layer approximation, which assumes that the temperature spatial variation,
1T , from the bubble surface temperature to that of the bulk fluid o ccurs w ithin a 
thin thermal boundary layer of thickness L, much smaller than the bubble radius R.
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As a consequence, the moving bubble boundary could be modelled as a fixed
Cartesian plane. The spherical geometry of the bubble was later included in the
solution via a correction factor. Little attention was given to the history integral,
consequence of the pressure history in time, that appears in their derivations. Instead
they focused on bubble growth under a linearly decreasing pressure field.

While suitable for heat-induced growth, however, in mass-diffusion-driven growth
(and specially dissolution), the thin boundary layer approximation L(t)/R(t) ≪ 1 
may not be always valid. The concentration boundary layer thickness often becomes
comparable to the bubble in size, regardless of the value of the diffusion coefficient.
To prove this, we can take the well-known asymptotic solutions of Plesset & Zwick 
(1954), Birkhoff et al. (1958) or Scriven (1959) for thermal diffusion growth – under 
assumptions (i) and (ii) – driven by a temperature difference 1T between the bubble 
boundary and the bulk fluid. T he b ubble r adius s cales as

R(t) ∼ Jath

√
Dtht, with Jath = ρlcl1T

ρghfg

. (1.1a,b)

Dth refers to the thermal diffusion coefficient of the liquid, Jath is the Jakob
number for heat transfer, where cl is the specific heat of the liquid, ρl is the
liquid density, ρg is the gas (vapour) density and hfg is the latent heat. The thermal
boundary layer evolves as L ∼

√
Dtht. It follows that for moderate and high superheats,

L/R ∼ Ja−1
th ≪ 1.

Equivalently, for mass-diffusion-controlled growth driven by a (molar) concentration 
difference 1C between the bubble boundary and the bulk fluid, Epstein & Plesset 
(1950) and Scriven (1959) among others obtained

R(t) ∼ Jam

√
Dmt, with Jam = Mg1C

ρg

. (1.2a,b)

Dm denotes the mass diffusion coefficient, Mg is the gas molar mass and Jam (Szekely 
& Martins 1971) may be regarded as the analogous Jakob number for mass transfer. 
For small to moderate supersaturations, at long times the boundary layer thickness is
of the order of the bubble radius, L ∼ R, and analytical treatment accounting for a non-thin 
boundary layer is therefore essential. It should be pointed out that the scale laws just 
described correspond to cases of pure phase-change or mass-transfer-driven dynamics. 
The case where both phenomena are present is more involved and lies beyond the scope of 
the present work. The interested reader is referred to a recent paper by Fuster & Montel 
(2015).

Turning now to assumption (ii), the effect of the previous growth–dissolution history 
of the bubble has not, to the best of our knowledge, been explored in detail. Naturally, 
if the bubble has been exchanging mass with its surroundings as a result of previous 
variations of the ambient pressure, then the concentration field a t t he b eginning o f the 
growth or dissolution stage of interest will not, in general, be uniform. Instead, it is 
determined by the boundary layer that has grown during that history. The temporal 
bubble dynamics has been found to be very sensitive to changes in the initial gas 
concentration profile dissolved in the liquid (Webb et al. 2010).

The effect of the previous history of the bubble on its current dynamics, hereon 
referred to as the history effect, can be observed from the experimental results in 
figure 1 . F igure 1 (a) d epicts t he e volution o f t he r adius o f a  b ubble u nder two
expansion–compression cycles. Before the first g rowth c ycle a t t = T 1, t he b ubble is
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FIGURE 1. Experimental plot depicting the growth and dissolution dynamics of a sessile
CO2 spherical bubble growing from a 50 µm pit on a flat c hip i mmersed i n a  pressurized 
CO2–water solution. The details of the experiments, performed in the facility described by 
Enríquez et al. (2013) and Enríquez et al. (2014) will be described in a companion paper. 
It shows (a) the evolution in time of the measured bubble radius R corresponding to (b) an
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the two growth cycles. The time axis is initialized on T1 or T2 accordingly. The uncertainty
in the growth rate is estimated in ±0.0625 µm s−1, much smaller than the differences 
between both cycles observed initially, at times t − Ti . 40 s.

in equilibrium with its surroundings, implying a uniform concentration field a t t 6 T1. 
This is not the case for the second growth cycle. A non-uniform concentration profile
is expected at t = T2. Consequently, the measured growth rate is different. In this case 
it is larger, as will be explained in this paper, hence the bubble grows to a bigger
size in the same growth time period. The growth rates are shown in figure 1(c). We
have chosen to plot the pressure-corrected radius, defined as

Rcorr(t) = R(t)

(

P∞(t)

Pc

)1/3

. (1.3)

This way, the volumetric expansion of the bubble that is solely caused by the pressure
drop (a fully non-diffusive effect due to Boyle’s law) is removed. The growth rates
are initially different, but converge in time. It will be shown in this work that the
observed differences in growth rate can be elegantly explained via a history integral
of the bubble interfacial concentration, or alternatively, of the ambient pressure.

The objective of the present study is twofold:

(i) to present a theory for the diffusive-driven growth and dissolution of a spherical,
isolated bubble that accounts for variable pressure time history. The dynamics
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evolves around an expression of similar form to (34) in Epstein & Plesset (1950) 
with an additional memory integral term that accounts for the history effect;

(ii) to illustrate the importance and nature of the history effect in a couple of bubble
mass transfer processes of practical interest through analytical and numerical
solutions.

Attending to these ideas, the paper is structured as follows. In § 2 the mathematical 
formulation is presented and the history integral term is derived. The governing 
equation for the bubble dynamics is then developed in § 3. Section 4 focuses on a 
bubble exposed to a train of piecewise constant-pressure steps. An analytical solution 
is presented, in addition to an illustrative example and a brief comparison of the 
aforementioned solution with numerical simulation. Section 5 then describes the role 
of the history effect on the potential growth of an isothermally oscillating bubble 
under harmonic pressure forcing. Finally, § 6 summarizes the main conclusions.

2. Formulation and derivation of the history integral term

2.1. Formulation

The growth rate of an isolated spherical gas bubble of radius R(t) suspended in a 
quiescent, infinite l iquid environment subject to a  t ime-varying l iquid ambient pressure,
P∞(t), is to be determined. The analysis shall be restricted to monocomponent gas 
bubbles. The problem has spherical symmetry and consequently r may be taken as
the radial distance from the bubble centre, while t is the time variable.

The molar concentration field C(r, t ) o f d issolved g as i n t he l iquid i s t o b e solved 
for from the advection–diffusion equation with spherical symmetry,

∂C

∂t
+ ṘR2

r2

∂C

∂r
= Dm

1

r2

∂

∂r

(

r2 ∂C

∂r

)

, (2.1)

where the dot notation stands for d/dt and Dm is the coefficient of mass diffusion.
Notice that the factor ur(r, t) = ṘR2/r2 corresponds to the radial velocity field in the
liquid that, by virtue of the continuity equation, is induced by the rate of change of
the bubble radius. The concentration field is subject to boundary and initial conditions

C(R, t) = Cs(t), C(∞, t) = C∞, C(r > R0, 0) = C∞, (2.2a−c)

where R0 = R(0) is the initial bubble radius. The initial concentration of dissolved
gas is assumed uniform throughout the liquid and equal to the concentration at the
far field, C∞. The concentration boundary condition at the bubble surface is given by
Henry’s law,

Cs = kHPg, (2.3)

where kH is Henry’s coefficient ( molar b ased) a nd P g(t) i s t he t otal g as pressure
inside the bubble. The saturation pressure may thus be defined a s P sat =  C∞/kH . 
The bubble pressure is determined considering the liquid–gas surface tension γlg,
but otherwise neglecting the liquid vapour pressure together with damping and 
inertial effects. Naturally, we will not consider the case of an inertially pulsating
bubble, driven by strong periodic acoustic forcing (Louisnard & Gomez 2003) or by 
resonance-triggering frequencies often employed in rectified d iffusion. I ndeed, i n most
diffusion-driven processes, excluding the aforementioned scenario, the contributions 
of the inertial and viscous terms in the Rayleigh–Plesset equation are negligible since
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bubble radius accelerations and velocities are relatively small. Payvar (1987) reported
that for bubbles of 0.1–1 mm in diameter, P∞(t) still remains the dominant term 
even for fast liquid decompressions of up to 100 bar taking place in less than 1 s.
The bubble pressure is then simply obtained from the Young–Laplace equation,

Pg = P∞ + 2γlg

R
. (2.4)

An isothermal liquid at temperature T∞, well below the boiling point, is considered.
The bubble volume and pressure are related through the equation of state for an ideal
gas,

4
3πR3Pg = nRuT∞, (2.5)

where n(t) is the number of moles inside the bubble and Ru denotes the universal gas
constant. Finally, Fick’s first law sets the molar flow rate of gas across the bubble
surface to be

ṅ = 4πR2Dm

∂C

∂r

∣

∣

∣

∣

r=R

. (2.6)

The governing equations (2.1)–(2.6) are best treated in dimensionless form. Conse-
quently, let us define the dimensionless radius, ambient pressure, concentration and 
interfacial concentration as follows:

a = R

Rc

, p = P∞

Pc

, c = C − C∞

kHPc

, cs = Cs − C∞

kHPc

. (2.7a−d)

Here, Rc denotes some characteristic bubble radius. Pressure Pc is a characteristic
liquid pressure, usually taken as the initial ambient pressure P∞(0). Additionally,
let us introduce the following dimensionless parameters, which remain constant
throughout the process:

Υ = C∞

kHPc

, Λ = kHRuT∞, σ = 2γlg

RcPc

. (2.8a−c)

The parameter Υ refers to the level of saturation of gas in the liquid at the
characteristic pressure Pc. In fact, the (dimensionless) saturation pressure is simply
psat = Psat/Pc = Υ . Saturation conditions at Pc are described by Υ = 1, while Υ < 1
and Υ > 1 imply undersaturation and supersaturation respectively. Similarly, note that
the saturation level at P∞ is given by Υ/p. Moreover, σ represents the characteristic
ratio of the Laplace pressure and Pc, while Λ serves as the solubility parameter.
The latter represents the ratio between the bubble’s volume and the volume of liquid
needed to dissolve, under saturation conditions, the gas it contains. Henry’s law yields
a new expression for cs, which, when written in our notation, reads

cs = (p + σ/a) − Υ. (2.9)

Finally, we shall introduce two different dimensionless time variables, τ and τ̃ , in
addition to the radial coordinate ξ ,

τ = Dm

R2
c

t, dτ̃ = Dm

R2(t)
dt, ξ = r

R(t)
. (2.10a−c)

The identity
dτ/dτ̃ = a2 (2.11)
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directly relates the ‘physical’ dimensionless time τ and nonlinear time τ̃ . In the upcoming 
§ 2.2, it will be shown that the mathematical nature of the problem
encourages us to dispose of the ‘physical’ time τ and work with the nonlinear
time τ̃ instead. We advance that this is done in order to analytically solve for 
the concentration gradient at the bubble boundary from the diffusion equation, all
the while accounting for large variations in the bubble radius. Finally, coordinate 
ξ ∈ [1, ∞) scales with the instantaneous bubble radius R(t). Hence, the moving
bubble boundary is advantageously always mapped

3 
by

3 
ξ = 1. Coordinate ξ is an

alternative to the Lagrangian coordinate η = (r − R (t))/3 which also eliminates 
the moving boundary problem. The latter transformation is usually employed in the
treatment of rectified diffusion (Eller & Flynn 1965; Fyrillas & Szeri 1994). However, in 
the diffusion-dominant regime of interest, the resulting advection–diffusion equation in η 
is much harder, if not impossible, to treat analytically compared to the analogous equation 
in ξ .

2.2. The history term on the concentration gradient at the bubble surface

The advection–diffusion equation (2.1) in dimensionless form becomes

∂c

∂τ̃
+ 1

a

da

dτ̃

(

1

ξ 2
− ξ

)

∂c

∂ξ
= 1

ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

)

. (2.12)

Note that the nonlinear time τ̃ is the time variable of choice for reasons that will soon 
become apparent. The boundary and initial conditions (2.2) of the concentration field
c(ξ , τ̃ ) become

c(1, τ̃ ) = cs(τ̃ ) = p + σ /a − Υ, c(∞, τ̃ ) = 0, c(ξ > 1, 0) = 0. (2.13a−c) Only the 

dimensionless advection term in (2.12) is explicitly dependent on the bubble
dynamics through the prefactor (da/dτ̃ )/a. We may characterize this prefactor as a time-
dependent Péclet number based on the velocity of the bubble boundary,

Pe(τ̃ ) = 1

a

da

dτ̃
≡ RṘ/Dm (2.14)

whose magnitude is essentially associated with the instantaneous ratio of advective 
to diffusive transport. To illustrate the role of the history effect on the diffusive 
growth or dissolution rates of bubbles, we will restrict the analysis to mass transfer 
processes where the advection term in (2.12) is small compared to the diffusion term. 
We anticipate that the history effect is present in every transient diffusion–advection 
problem in which boundary conditions change in time. However, should the advective 
mass transport of species be dominant, the advective nature of the flow would t hen, at 
least partially, obscure the contribution of the history effect on the bubble dynamics 
as well as of any other effect of a diffusive nature.

When can we neglect the advection term? To find out, we can perform an order
of magnitude analysis on (2.12), taking O(∂c) = 1c, O(ξ) = 1 and denoting O(∂ξ)
as l, a characteristic thickness of the boundary layer, defined as ∂c/∂ξ |ξ=1 = 1c/l.
The analysis reveals that the diffusion term magnitude is 1c/l2, while the advection
term has magnitude O(Pe)1c. It follows from the Epstein–Plesset solution that the
penetration length of the mass boundary layer will never be much greater than the
size of the bubble: l . 1. Thus, the dimensionless advection term may be neglected
provided |Pe(τ̃ )| ≪ 1 at all times.
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The negligible advection assumption is usually valid for small supersaturation or

undersaturation ratios, defined as C∞/[kHP∞(t)] − 1 ≡ Υ/p − 1. Larger ratios are

allowed if the gas solubility is very poor (Λ ≪ 1). In fact, it will be shown in a

companion paper that, in the case of a growing or dissolving bubble at pressure

P∞, the Péclet number is related to the Jakob number, defined in (1.2b), through:

|Pe| ≈ Ja2
m = Λ|Υ/p − 1|. Thus, a highly soluble gas such as CO2 gas in water

(Λ ≈ 0.8 at room temperature) will require that |Υ/p − 1| ≪ 1 for advection to be

negligible.

It must be emphasized that the advection term has two components. The component

containing 1/ξ 2 is the (dimensionless) physical advection term, associated with the

radial component of the velocity field, ur(r, t) = R2Ṙ/r2. The component containing

−ξ is the artificially induced advection that compensates for the scaling nature of

ξ with R(t). It naturally arises from the non-dimensionalization process. Neglecting

both terms essentially means that we are now rigorously solving the diffusion equation

with an ever-present numerical advection term (associated to the non-physical velocity

field ur(r, t) = Ṙr/R) that accounts for the moving boundary (Peñas López, Parrales &

Rodríguez-Rodríguez 2015). Nonetheless, the effect of the artificial advection on the

interfacial concentration gradient will still be small for |Pe(τ̃ )| ≪ 1.

The concentration field may then be sought by solving

∂c

∂τ̃
=

1

ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

)

, (2.15)

which has no direct dependency on the bubble dynamics. The choice of τ̃ over τ is justified 
in that τ̃ allows us to go from (2.1) to (2.15) based on the single assumption that the 
advection term is small. Had we chosen to perform an equivalent non-dimensionalization 
with physical time τ (cf. later (5.6)), it is only possible to treat the arising a(τ )-dependent 
diffusive term employing an additional approximation, namely treating the radius a as a 
constant. The essence of the so-called quasi-stationary approximation (Weinberg & 
Subramanian 1980) behind the Epstein–Plesset equation resides in these two 
approximations, namely (i) dropping the advective transport term arising from the 
interface motion and (ii) treating the bubble radius as a constant in the concentration 
boundary condition at the interface. Approximation (ii), hereon referred to as the quasi-
static radius approximation, is only suitable when considering small or slow changes in the 
radius size from the equilibrium or initial size. Otherwise, this approximation will 
inherently decrease

the accuracy of the solution. It is then concluded that the purpose of τ̃ is to avert making 
use of the quasi-static radius approximation, thereby extending the parameter

range in which the theory is valid. Additionally, writing the advection–diffusion

equation in terms of τ̃ allows us to point out an interesting conclusion regarding the 
appropriateness of neglecting advection effects. Indeed, the advective term in (2.12)

is exactly zero at the bubble interface, as (1/ξ 2 − ξ) = 0 there. Thus, in a region close to 
the bubble surface, it is reasonable to expect the advective term to play a small role even 
for moderate values of the Péclet number.

The solution to (2.15) for the concentration gradient across the bubble interface (see 
appendix A) reads

−
∂c

∂ξ

∣

∣

∣

∣

ξ=1

= cs +
cs0√
πτ̃

+
∫ τ̃

0

1√
π(τ̃ − x̃)

dcs

dx̃
dx̃. (2.16)
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The initial interfacial concentration, cs0, is given by

cs0 = cs(0) = p0 + σ/a0 − Υ, (2.17)

where p0 = p(0) and a0 = a(0) denote the initial pressure and radius respectively. The 
first term in the right-hand side of (2.16) corresponds to the steady-state solution
determined by the instantaneous interfacial concentration, cs(τ̃ ). The second term is the 
transient component exclusively associated with the initial conditions. The third
and final term is the history or memory integral term. It depends on the time history
of cs(τ̃ ) caused by any prior variations in the ambient pressure p(τ̃ ). It addresses the 
temporal delay required for the concentration boundary layer to become fully
developed (physically due to the finite diffusivity Dm) as the boundary condition, 
in this case cs, changes with time. In other words, the current concentration profile 
and therefore the mass flux across the bubble are conditioned by the preceding time 
history of the boundary condition.

The history integral may be evaluated analytically for the cases when cs varies
in sudden (step-like) jumps and when cs varies harmonically in time. These will be 
addressed later in § 4 and § 5 respectively.

3. The Epstein–Plesset equation with history term

The ideal gas equation of state provided in (2.5) may be combined with Fick’s law, 
equation (2.6), to obtain the following mass conservation equation:

4πR2Ṙ

(

P∞ + 2γsl

R

)

+ 4πR3

3

(

Ṗ∞ − 2γsl

R2
Ṙ

)

= 4πR2R̄T∞D
∂C

∂r

∣

∣

∣

∣

r=R

. (3.1)

In dimensionless form, it reads

da

dτ̃

(

p + σ

a

)

+ 1

3
a

(

dp

dτ̃
− σ

a2

da

dτ̃

)

= Λa
∂c

∂ξ

∣

∣

∣

∣

ξ=1

. (3.2)

Inserting the expression for the concentration gradient (2.16) into (3.2) yields the 
governing equation for the bubble radius dynamics. This may be regarded as the 
Epstein–Plesset with history term (EPH) equation, written below in terms of cs:

da

dτ̃
(cs + Υ ) + 1

3
a

dcs

dτ̃
= −Λa

[

cs + cs0√
πτ̃

+
∫ τ̃

0

1√
π(τ̃ − x̃)

dcs

dx̃
dx̃

]

. (3.3)

The liquid pressure has been related to the surface concentration through p = cs + Υ − σ /
a using the relation previously provided in (2.9). In the absence of surface tension,
σ = 0, the EPH equation (3.3) may then be conveniently expressed directly in terms
of the ambient pressure p,

1

a

da

dτ̃
+ 1

3p

dp

dτ̃
= −Λ

p

[

p − Υ + p0 − Υ√
πτ̃

+
∫ τ̃

0

1√
π(τ̃ − x̃)

dp

dx̃
dx̃

]

. (3.4)

To obtain the radius evolution in the physical time, a(τ ), we must numerically
integrate the differential EPH equation in (3.3) or (3.4) for a(τ̃ ) in addition to the 
differential equation (2.11) for τ (τ̃ ).
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3.1. Recovering the Epstein–Plesset equation from the EPH

We now show that the Epstein–Plesset equation may be recovered from the EPH
equation. In order to do so we revert back to (3.2). Since the original Epstein–Plesset
equation is formulated using the linear time τ = Dmt/R2

c , it is convenient for both time
derivatives in τ̃ to be replaced by derivatives in τ instead. Recalling that dτ = a2 dτ̃ ,
we may recast (3.2) as

da

dτ

(

p + 2σ

3a

)

+ 1

3
a

dp

dτ
= Λ

a

∂c

∂ξ

∣

∣

∣

∣

ξ=1

. (3.5)

The analytical expression for the interfacial concentration gradient is still a function
of τ̃ as given by (2.16). The Epstein–Plesset equation assumes a constant pressure
history, i.e. p = p0 and dp/dτ = 0. Equation (3.5) then reduces to

da

dτ

(

p0 + 2σ

3a

)

= Λ

a

∂c

∂ξ

∣

∣

∣

∣

ξ=1

. (3.6)

The interfacial concentration gradient deserves special treatment. The history integral
term vanishes, consequence of the constant-pressure condition. Moreover, unlike the
EPH equations (3.3) or (3.4), the Epstein–Plesset equation is based on the quasi-static
radius approximation (Weinberg & Subramanian 1980). The concentration gradient is
calculated for a fixed bubble boundary of radius a. The solution is then coupled with
the equation for mass conservation (3.5), where a is now time dependent. This has
two implications: (i) the bubble radius a is treated as constant when solving for the
concentration gradient. Consequently, (2.11) simplifies to τ = a2τ̃ . Additionally, (ii)
the initial interfacial concentration calculated for a static a is in fact ‘reused’ for all
its values. This amounts to setting a0 = a in (2.17), hence cs0 = cs = p0 + σ/a − Υ .
Under the quasi-static radius approximation, the concentration gradient in (2.16) then
becomes

− ∂c

∂ξ

∣

∣

∣

∣

ξ=1

=
[

cs + cs0√
πτ̃

]

≈
(

p0 − Υ + σ

a

)

[

1 + a√
πτ

]

. (3.7)

Inserting this expression into (3.6), one finally recovers the Epstein–Plesset equation 
in dimensionless form (Epstein & Plesset 1950, equation (34)):

da

dτ
= −Λ(p0 − Υ + σ/a)

p0 + 2σ/(3a)

[

1

a
+ 1√

πτ

]

. (3.8)

An equivalent equation in τ̃ , which does not make use of the quasi-static radius
approximation, may be shown to be

da

dτ̃
= − Λa

p0 + 2σ/(3a)

[

(p0 − Υ )

(

1 + 1√
πτ̃

)

+ σ

a

(

1 + a/a0√
πτ̃

)]

. (3.9)

In the absence of surface tension, σ = 0, (3.9) becomes a separable differential
equation in a and τ̃ . Its analytical solution, with a(0) = a0, is easily found to be

a(τ̃ ) = a0 exp
{

−Λ(p0 − Υ )

(

τ̃ + 2
√

τ̃ /π

)}

. (3.10)
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n 1 2 3 4 5 6

T̃n 2 5 6.9 7.4 10.2 12.5
Tn 2 7.5 9.8 10.3 15.8 18.6
1pn −0.1 0.3 −0.2 −0.1 0.3 −0.2

TABLE 1. Coefficients T̃n and 1pn of the pressure step function used in the example
(see figure 2). The resulting coefficients Tn associated with the physical time τ are also
included.

The exact analytical solution of a(τ ) to (3.10) exists in parametric form, with a(τ̃ ) and 
τ (τ̃ ). The physical time τ is related to τ̃ through

τ = a0

2Λ(Υ − p0)

[

1 − e−2Λ(Υ −p0)(τ̃+2
√

τ̃ /π) +
√

2Λ(Υ − p0)e
2Λ(Υ −p0)

×
{

erf
(

√

2Λ(Υ − p0)/π

)

− erf
(

√

2Λ(Υ − p0)τ̃ +
√

2Λ(Υ − p0)/π

)}]

, (3.11)

which can be derived by solving (2.11).

4. Multiple step-like variations of the ambient pressure

This section intends to shed light on the history effect in bubble growth through
illustrative examples based on analytical and numerical solutions. To this end, we
shall consider the case where the time-dependent ambient pressure consists of N

consecutive step-like jumps in pressure. At the nth jump taking place at nonlinear
time T̃n, the pressure changes by 1pn. The pressure history and its time derivative
may be modelled as

p = p0 +
N
∑

n=1

1pnH(τ̃ − T̃n),
dp

dτ̃
=

N
∑

n=1

1pnδ(τ̃ − T̃n), for n = 1, . . . , N, (4.1a,b)

where H denotes the Heaviside function and δ is the Dirac delta. As anticipated at
the end of § 2, it is then possible to analytically evaluate the history integral term
and consequently solve the EPH equation provided the Laplace pressure is neglected.
The analytical solutions to the EPH equations (3.4) and (2.15) for the concentration
field are derived in appendix B.

4.1. An example to illustrate the history effect

Let us consider the radius history of a bubble with negligible Laplace pressure (σ = 0)
initially in equilibrium at the saturation pressure. Setting Pc = P∞(0) and Rc = R(0)

renders p0 = 1, a0 = 1 and Υ = 1. The bubble is then exposed to N = 6 consecutive
jumps in pressure. We prescribe coefficients T̃n and 1pn, tabulated in table 1. These
are entered into (4.1), resulting in the pressure time history plotted in figure 2(b).
An iterative procedure was employed to establish coefficients T̃n such that the two
expansion (growth) stages (T+

1 < τ < T−
2 and T+

4 < τ < T−
5 ) have the same duration

in τ (see figure 2d). Moreover, both expansion stages are identical in the sense that
a(T1) = a(T4) = a0 = 1, 1p1 = 1p4 and p1 = p4. The analytical solution for a(τ̃ )
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FIGURE 2. Analytical solution for (a) the evolution of the dimensionless bubble radius,
a, corresponding to (b) multiple jumps in the dimensionless ambient pressure p, both
plotted against the dimensionless, nonlinear time τ̃ . Initial conditions correspond to perfect
saturation. Additionally, equivalent plots of (c) the dimensionless bubble radius and
(d) dimensionless ambient pressure are plotted against the dimensionless linear time τ .
For reference, the physical parameters employed are those considering a CO2 bubble of
size Rc = 225 µm in water (kH = 3.40 × 10−4 mol N−1 m−1, Dm = 1.92 × 10−9 m2 s−1)
under conditions Pc = 4.9 bar and T∞ = 293 K. Surface tension is neglected. The resulting
solubility and saturation parameters are Λ = 0.828 and Υ = 1.

provided by (B 3) and (B 4) is plotted in figure 2(b). The solution is more naturally
interpreted when presented in τ (figure 2c). This requires numerical integration of
(2.11) once the analytical solution for a(τ̃ ) has been obtained.

At τ = T−
1 , right before the first growth stage, the history integral is identically

zero, i.e. there is no previous history. This is obviously not the case at τ = T−
4 .

Consequently, the memory effect must be behind the differences in bubble growth
observed between these two pressure-wise identical expansion periods (figure 2a,c).

To highlight this effect, figure 3(a) compares the bubble radius history during
both growth stages. At equal times, measured from the beginning of each expansion
period, the bubble always exhibits a larger radius in the second growth cycle. This
is consequence of the larger, history-augmented growth rate (figure 3b). The second
growth rate is most enhanced at the beginning. It then asymptotically converges in
time with the first growth rate, by then confirming the complete dissipation of the
history effect.

The physical explanation of the history effect lies in the concentration profiles
near the bubble a short time after each jump (figure 3b). Both concentration profiles
are bounded by an identical value of cs(τ

∗) < 0, and the far-field concentration
c(∞, τ ) = 0. The first concentration profile corresponds to a uniform initial condition
c(ξ , T−

1 ) = 0. On the other hand, the second concentration profile remembers that
cs > 0 during the previous dissolution period at T+

2 < τ < T−
3 . Consequently, there

exists a supersaturation region (c > 0) near the bubble, containing the mass of gas
that was transferred to the liquid during said dissolution period. The concentration
boundary layer takes time to fully develop in response to any change in the interfacial
concentration. This effective adaptation time, owing to the finite diffusivity, results in
this case in a momentarily steeper interfacial concentration gradient that enhances the
growth rate substantially.
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FIGURE 3. The first (dashed line) and second (solid line) growth cycles of the bubble
(see figure 2) are compared through (a) the dimensionless radius a and (b) its rate of
change, computed numerically out of the analytical a(τ ). These are plotted against the
dimensionless linear time τ after each of the two negative pressure jumps (1p1 and 1p4)
that lead to undersaturation. Inset: dimensionless concentration radial profiles evaluated at
a short time τ ∗ immediately after each of the two jumps.

The effect described here is also present in the experimental data shown in figure 1.
As a matter of fact, both the size and growth rate time histories are qualitatively
identical to those shown in figure 2, predicted by the analytical solution. The
quantitative analysis of these experiments will be carried out in a future companion
paper, as it involves taking into account the presence of the plate and natural
convection, among other effects.

Another manifestation of the history effect is observed for τ > T+
6 , after the

expansion–compression cycles have ended (see figure 2). Even though the pressure
returns to the saturation value, cs(τ >T+

6 )= 0, static equilibrium is not instantaneously
achieved. As before, a supersaturation region near the bubble (c > 0) remains from
the preceding dissolution stage. This amounts to a positive interfacial concentration
gradient. The radius of the bubble grows from a(τ = T+

6 ) ≈ 0.9 to a(τ = 30) ≈ 1.1,
certainly a non-negligible increment. This growth is entirely provided by the history
effect. In other words, the interfacial concentration gradient in (2.16) is non-zero due
to the sole contribution of the history integral term.

4.2. Comparison with numerical simulation

An important question that arises now is how important are history effects compared
to others that have been neglected in our discussion thus far, such as advection or
surface tension. To shed light on this question, we numerically solve the full mass
transfer problem (2.12), (2.13) and (3.2) which takes these effects into account. Details
of the numerical treatment of the problem may be found in § B.2.

As an example, let us consider a bubble in an initially 105 % supersaturated liquid.
The initial concentration field of dissolved gas is assumed uniform. Setting Pc = P∞(0)
and Rc = R(0) entails p0 = 1, a0 = 1 and Υ = 1.05. The bubble is then exposed
to the pressure time history shown in figure 4(b). There are three constant-pressure
stages, the first corresponding to liquid supersaturation (expansion stage), the second
to undersaturation (compression stage) and the third to perfect saturation (psat = Υ =
1.05). The set of physical conditions are specified in the caption of figure 4. Four
different versions of the problem are numerically solved, namely
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FIGURE 4. Evolution of (a) the dimensionless bubble radius a in time τ according to
the simulation scenarios (i)–(iv) and the analytical solution in (B 3) and (B 4). The bubble
is initially in a 105 % supersaturated liquid. It is exposed to (b) a prescribed pressure
time history consisting of two particular jumps. Inset: the dissolution dynamics for τ > 5
according to the Epstein–Plesset solution (3.8) is compared with solutions (iii) and (iv).
For reference, the physical parameters employed are those considering a CO2 bubble of
size Rc = 175 µm in water (kH = 3.40 × 10−4 mol N−1 m−1, Dm = 1.92 × 10−9 m2 s−1,
γlg = 0.07 N m−1) under conditions Pc = 2 bar and T∞ = 293 K. The resulting surface
tension, solubility and saturation parameters are σ = 0.004, Λ = 0.828 and Υ = 1.05.

(i) neglecting the dimensionless advection term, i.e. setting Pe = 0 in (B 13);
(ii) neglecting surface tension, i.e. setting σ = 0 in (B 12) and (B 14);

(iii) neglecting both the advection term and surface tension (the same scenario as the
one analytically solved, i.e. Pe = 0, σ = 0) and

(iv) taking into account both the advection term and Laplace pressure.

These solutions are compared in figure 4(a), along with the analytical solution
(for which Pe = σ = 0). History effects are critical in order to properly describe
this particular dissolution (compression) stage (5 < τ < 10). While growth is well
determined by existing solutions (Epstein & Plesset 1950; Scriven 1959), the
dissolution experienced by this bubble is greatly affected by the low-concentration
boundary layer left by the preceding growth stage. It stands to reason that for the
initial instants of dissolution, during which history effects are most important, the
dissolution rate observed is much faster than that obtained under the assumption of
a historyless, uniform concentration field at τ = 5+. This is corroborated in the inset
plot of figure 4, where we plot the Epstein–Plesset solution (3.8), which assumes a
uniform initial concentration field (with p0 = 1.1). To enable proper comparison, the
initial radius a0 at τ = 5+ for the Epstein–Plesset solution with and without surface
tension has been fitted to that predicted by curve (iv) and (iii) respectively. Note that
curve (iii) is identical to the analytical solution.
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When the pressure drops to the saturation value at τ = 10, the bubble continues to
grow for some time. As discussed in § 4.1, it is consequence of the high concentration
boundary layer of dissolved gas in the nearby liquid that was left by the preceding
dissolution stage. Since the bubble is nearly close to the equilibrium in this stage,
both advection and surface tension are small compared to history, at least for a few
time units. At later times however, surface tension breaks the diffusive equilibrium,
and ultimately drives the bubble towards its total dissolution. Nonetheless, this occurs
at times much longer than those of the pressure cycle considered here.

Under the conditions investigated here, the effect of advection and surface
tension on the bubble radius dynamics nearly cancel each other out during the
expansion–compression cycle. Consequently, it is observed that the full solution (iv)
(which contains both surface tension and advection) is in better agreement with the
analytical solution (iii) (which contains neither) than with curves (i) or (iii) during
this period. In fact, a quantitative explanation may be obtained from a simple analysis.
For small values of Pe and constant ambient pressure, the contribution of advection
towards the growth or dissolution rate may be quantified using the asymptotic solution
of Duda & Vrentas (1969, equation (43)). To do so, we subtract the Epstein–Plesset
solution (3.8) with σ = 0 from (43). For our particular set of initial conditions,
p0 = a0 = 1, we obtain

[

da

dτ

]

Pe6=0

−
[

da

dτ

]

Pe=0

≈ Λ2 (1 − Υ )2

[

1 − 2

π
+ 1√

πτ

(

τ + 2

π
− 1

2

)]

. (4.2)

Conversely, a simple estimation of the effect of the Laplace pressure on the rate of
change of the bubble radius can be done by subtracting (3.8) with σ = 0 from itself.
Provided p0 = a0 = 1 and σ ≪ 1, this results in

[

da

dτ

]

σ 6=0

−
[

da

dτ

]

σ=0

≈ −Λσ

3a
(1 + 2Υ )

(

1

a
+ 1√

πτ

)

. (4.3)

We may use these formulas to evaluate the characteristic percentage contribution to the
growth rate of each effect with respect to that given by Epstein–Plesset solution (3.8)
with σ = 0. Halfway through the initial growth stage (τ = 2.5, a = 1.18) we determine
that advection enhances growth by approximately 5 % whereas surface tension slows
it down by −7 %. Thus, this small net difference of 2 % (which actually decreases as
the bubble grows) justifies the close agreement between curves (iii) and (iv).

5. Small-amplitude isothermal oscillations

This section aims to deliver insight on the role of the history effect in the problem
concerning the mass transfer across a bubble that pulsates non-inertially under
sinusoidal acoustic excitation. This constitutes a particular regime under the broad
phenomenon known as rectified diffusion, associated with many practical applications.
For a more general description of this complex phenomenon the reader is referred
to the seminal works of Hsieh & Plesset (1961), Eller & Flynn (1965), Crum &
Hansen (1982) or the more recent work by Zhang & Li (2014a). Here, we will
only consider low-frequency forcing, which has special relevance in seismological
events (Tisato et al. 2015) and in the exposure of marine mammals to low-frequency
sonars (Crum & Mao 1996). More specifically, we shall restrict the present analysis
to small-amplitude, isothermal oscillations consistent with (2.4) and (2.5).
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Provided the bubble pressure varies harmonically in time, it is then possible to
readily determine the role of the history effect on the mass transfer across such a
bubble. In turn, it may be used to explain and predict the nature (phase and amplitude)
of oscillation. To this end, let us consider a harmonic pressure forcing,

P(t) = Pc[1 + ε sin(2πfct)], (5.1)

where ε is the dimensionless forcing amplitude and fc is the forcing frequency.
This time it shall prove convenient to work with the linear time τ = Dmt/R2

c . The
dimensionless pressure p(τ ) is then

p(τ ) = 1 + ε sin Ωτ, with Ω = 2πfcR
2
c

Dm

. (5.2a,b)

The angular forcing frequency Ω has been non-dimensionlized with the diffusive
time scale. The frequency Ω/(2π) is in fact equivalent to the frequency-based Péclet
number typically used in rectified diffusion problems, Pef = fcR

2
c/Dm, as introduced

by Fyrillas & Szeri (1994). We propose a solution for the bubble dynamics of the
form

a(τ ) = ā(τ ) − δ sin (Ωτ + φ) + O(δ2), (5.3)

where ā = R̄/Rc is the dimensionless equilibrium radius, while δ is the oscillation
amplitude. Lastly, φ = φ(Ω) denotes the phase shift in oscillations compared to the
phase expected for an equivalent non-soluble, isothermally contracting and expanding
bubble under the sole effect of the oscillatory ambient pressure forcing.

Solution (5.3) and the analysis soon to follow make use of three underlying
assumptions.

(i) The bubble remains isothermal throughout the oscillations. Inertial and viscous
effects in the bubble dynamics are completely neglected. The effect of the
Laplace pressure on the oscillatory problem is also ignored: σ/ā ≪ 1.

(ii) The strain amplitude of the oscillations is small, δ/ā ≪ 1.
(iii) The equilibrium radius ā(τ ) is assumed to vary sufficiently slowly in time

to be treated as constant within an individual oscillation period. This time
scale for bubble growth/dissolution must be much larger than the period of
oscillation, Ω−1.

The derivation and discussion of the range of frequency Ω , pressure amplitude ε
and saturation level Υ for which assumptions (i)–(iii) hold is provided in appendix C.
Here, we choose to highlight that assumption (i) requires that the value of Ω must
satisfy

Ω < Dth/Dm, 1 .Ω ≪ Ωres, (5.4a,b)

where Dth is the thermal diffusivity of the gas at constant volume and Ωres is the
dimensionless Minnaert resonance frequency. Note that this range may span several
orders of magnitude. Moreover, assumption (ii) requires that ε ≪ 1.

Assumption (i) allows for the gas pressure in the bubble to be the same as the
ambient pressure p(τ ) and consequently cs(τ ) = p(τ ) − Υ . The radius ap of the
equivalent non-soluble bubble mentioned above (for which φp ≡ 0) then satisfies
pa3

p = ā3. Linearization results in

ap(τ ) = āp−1/3 = ā(1 + ε sin Ωτ)−1/3 = ā − εā

3
sin Ωτ + O(ε2ā2). (5.5)

Naturally, (i) implies that ap is in anti-phase with pressure p and interfacial
concentration cs.
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To conclude, we would like to remark that assumptions (i)–(iii) essentially simplify
this complex mass transfer problem to the point that the role of the history effect can
be smoothly rooted out and analysed by means of simple analytical expressions. This
is the purpose of the next subsection.

We anticipate that it is beyond the scope of this work to determine the threshold
pressure amplitude for growth under rectified diffusion or to model the bubble
growth rate under specific low-frequency scenarios of interest. These notions have
been investigated in the case of volcanic systems (Ichihara & Brodsky 2006), and in
high supersaturation levels with potentially large-amplitude oscillations, as observed in
the capillaries of marine mammals (Crum & Mao 1996; Ilinskii, Wilson & Hamilton
2008) in which the effect of the viscoelastic medium is undoubtedly important (Zhang
& Li 2014b).

5.1. The oscillatory problem

The full advection–diffusion problem is usually tackled by splitting it into a smooth
problem and an oscillatory problem following the work of Fyrillas & Szeri (1994).
The smooth problem (diffusion time scale τ ∼ 1) accounts for the steady part of the
boundary condition and yields the net flux of dissolved gas across the oscillating
bubble. The oscillatory problem (diffusion time scale τ ∼ Ω−1) takes into account
the unsteady part of the boundary condition and describes the zero-average-mass
exchange occurring over one bubble oscillation. This approach is only valid on the
assumption that the time scales of the two processes are well separated: Ω ≫ 1.
Since we are also considering frequencies Ω ∼ 1, splitting the problem is no longer
possible. Moreover, the smooth solution, whether following the approach of Eller
& Flynn (1965) or Fyrillas & Szeri (1994), is constructed from the mass transport
equation in Lagrangian spherical coordinates (as opposed to (5.6)) and requires special
time averaging of the radius dynamics to properly capture the effect of advection.
The interested reader is referred to Ilinskii et al. (2008) for a brief review on these
two forms of the smooth solution.

Fortunately, the history effect is only directly relevant in the oscillatory problem
associated with the unsteady boundary condition. In other words, we are only
interested in the solution during an individual period of oscillation about ā. Solving
the governing mass transport equation directly in the form

∂c

∂τ
+ Pe(τ )

a2

(

1

ξ 2
− ξ

)

∂c

∂ξ
= 1

a2ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

)

(5.6)

is suitable to this end. Note that Pe(τ ) = (da/dτ)a ≡ RṘ/Dm is our Ṙ-based Péclet
number (as previously defined in § 2.2). It follows that under the small-amplitude
oscillation restriction, the magnitude of the dimensionless advection term in (5.6) is
always smaller than the unsteady and diffusive terms by a factor of O(ε), where ε ≪ 1
(see appendix D). Note that this condition holds true regardless of the magnitude
of Pe (cf. O(Pe) ∼ εΩ ā2/3), which may not necessarily be smaller than unity. It
is therefore not unreasonable to neglect the advection term when dealing just with
the oscillatory problem consisting of an individual cycle. Note, nonetheless, that the
small contribution of the advection term on the interfacial gradient (negligible over
one individual cycle) is still crucial to providing net growth over many cycles.

Moreover, assumption (ii) allows us to make the approximation a(τ ) = ā(τ ) +
O(δ) ≈ ā, which is constant over an oscillation period according to (iii). While this
greatly simplifies the problem, it only induces very small errors of O(ε) ≪ 1.
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Additionally, we will consider saturation conditions Υ = 1. This is justified in that
the bulk concentration of the liquid comes into play in the smooth solution only
(Fyrillas & Szeri 1994). Similarly, surface tension and time-averaged bubble interface
motion are mostly relevant in the smooth solution.

Implementing these notions, the solution to (5.6) for the concentration profile is
found to be (see appendix D for the complete derivation)

c(ξ , τ ) = ε

ξ
exp

{

−ā
√

Ω/2(ξ − 1)

}

sin
{

Ωτ − ā
√

Ω/2(ξ − 1)

}

, (5.7)

which renders the following concentration gradient at the wall:

∂c

∂ξ

∣

∣

∣

∣

ξ=1

= −ε

[

sin Ωτ + ā
√

Ω sin
(

Ωτ + π

4

)]

. (5.8)

The first term on the right-hand side of (5.8) refers to the quasi-steady mass flux
imposed by the current value of cs(τ ) = ε sin Ωτ . The last term in the right-hand side
constitutes the contribution from the history integral (derived in appendix D). In the
scenario of small-amplitude oscillations considered here, the mass flux coming from
the contribution of the history term is thus observed to be proportional to the pressure
amplitude ε. The history effect imposes a phase shift in the sinusoidal interfacial
concentration gradient, 0 < φgrad(Ω)6 π/4, with respect to the phase of −cs(Ωτ) or
the oscillatory component of ap(τ ).

As Ω → 0, the history integral term vanishes and φgrad → 0. The mass flux is
in phase with ap (cf. (5.5)). Conversely, as Ω → ∞, the instantaneous mass flux
is entirely provided by the history integral. The maximum possible phase shift with
respect to ap is attained: φgrad = π/4. In fact, the frequency dependency of this phase
shift is independent of ε and may be shown to be

φgrad(Ω, ā) = −2 arctan

{

1 +
√

2

ā
√

Ω
−

√
2

ā
√

Ω

(

ā2Ω +
√

2Ω ā + 1
)1/2

}

. (5.9)

Solution (5.7) may be described as a damped transverse wave with wavenumber k =
ā
√

Ω/2 and phase velocity
√

2Ω/ā attenuating over a penetration depth l ∼ 1/(ā
√

Ω).
Figure 5 shows the close agreement of this (advectionless) analytical solution with
the full numerical computation (taking into account advection) involving (5.6) and the
mass conservation equation (3.5) with no surface tension for Ω = 1 and Ω = 1000
(with equilibrium radius ā = 1). This verifies the negligible qualitative impact of the
advection term in the oscillatory problem even for this moderate pressure amplitude
of ε = 0.01. On another note, the boundary layer thickness h may be best estimated
as the wavelength, h = 2π/k. Over a distance h, (horizontal span in figure 5) the
concentration amplitude reduces by a factor of e2π ≈ 540.

For Ω = 1000, figure 5(b) hints that the shift in the phase of the concentration
gradient with respect to −cs is practically that of the high-frequency limit, φgrad =π/4.
The interfacial gradient is flat at Ωτ = 3π/4, 7π/4 as opposed to cs(τ ) = 0 taking
place at Ωτ = π, 2π. For Ω = 1, direct evaluation of (5.9) yields φgrad = π/8 (as later
observed in figure 6a).

It stands to reason that solutions (5.7) and (5.8) evaluated in the limit Ω ≫ 1
converge to those one may obtain following the approach of Fyrillas & Szeri (1994)
(inherently valid for Ω ≫ 1) subject to the quasi-static radius approximation, i.e.
taking a(τ ) = ā as constant. The complete derivation may be found in § D.1.
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Numerical Analytical

FIGURE 5. Radial concentration profiles at different times over an oscillation period
for (a) Ω = 1 (b) Ω = 1000 taking ā = 1 and ε = 0.01. The radial coordinate has
been normalized by the wavenumber and spans one wavelength. The circle represents the
relative bubble size (drawn to scale with the horizontal axis) for reference.
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FIGURE 6. Numerically obtained oscillation waveforms for Ω = 1, with ā = 1,
ε = 0.01 and Λ = 0.828. Phase shifts are annotated in (a) showing the normalized
waveforms for strains (a − ā)/δ, (acorr − ā)/δcorr, (ap − āp)/δp and for the interfacial
concentration gradient (∂c/∂ξ |ξ=1)/δgrad. (b) Unscaled strain waveforms a/ā−1, acorr/ā−1
and ap/ā − 1.

5.2. Strain amplitudes and phase

The frequency-dependent φgrad induced by the history effect implies that pressure-
induced contraction of the bubble radius (p > 1, cs > 0, dap/dτ < 0) is not in
phase with dissolution (negative mass diffusion rate, ∂c/∂ξ(1, τ ) > 0). Likewise, the
pressure-induced expansion is not in phase with growth. We would like to conclude
this work by determining the dependency on Ω of the overall strain amplitude and
phase lag with respect to ap(φ < 0) of the isothermally pulsating bubble.
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Let us then define the dimensionless pressure-corrected radius, acorr(τ ), in an
analogous manner to Rcorr in (1.3) as follows:

a = p−1/3acorr = apacorr/ā. (5.10)

The pressure-corrected radius is associated purely with the mass transfer across the
interface. It has the useful property that its rate of change, dacorr/dτ , always takes the
same sign as the interfacial concentration gradient. Consequently, φcorr = φgrad − π/2,
as shown in appendix E.

The characteristic amplitude of oscillation for the interfacial concentration gradient
may be estimated from (5.8),

O

(

∂c

∂ξ

∣

∣

∣

∣

ξ=1

)

∼ ε(1 + ā
√

Ω) = δgrad. (5.11)

Equation (5.10) may be rewritten in terms of the different oscillation amplitudes about
the equilibrium radius ā,

ā + δ ≈ (ā + δp)(ā + δcorr)/ā. (5.12)

Linearization provides δ = δp + δcorr + O(δpδcorr). Amplitudes δp and δcorr may be
reasonably approximated as the product of the characteristic time derivative and the
characteristic time scale, 1/Ω . We obtain

1

Ω

dap

dτ
∼ εā

3
= δp, (5.13)

which is consistent with (5.5). Likewise, making use of (E 3),

1

Ω

dacorr

dτ
∼ Λε

āΩ

(

1 + ā
√

Ω

)

= δcorr. (5.14)

Two limiting cases arise. For small Ω ≪ 1, we see that δ ≈ δcorr ∼ εΛ/āΩ . The
bubble oscillation amplitudes are provided entirely by mass transfer across the bubble
surface, the pressure-induced expansion and contraction amplitude is negligible in
comparison. The behaviour of the different phase shifts as Ω approaches this limit is:

as Ω → 0, φgrad → 0, φcorr → −π/2, φ → φcorr → −π/2. (5.15a−d)

Taking Ω = 1, ā = 1 (figure 6), the dominant contribution in δ and hence φ still come
from δcorr and φcorr. The relative contributions of δcorr and δp may be estimated from
δcorr/δp ∼ 6Λ ≈ 5.

For large Ω ≫ 1, we see that δ ≈ δp ∼ εā/3. There is negligible mass transfer during
an individual oscillation due to the short oscillation period. The phase shifts behave
according to:

as Ω → ∞, φgrad → π/4, φcorr → −π/4, φ → φp = 0. (5.16a−d)

Taking Ω = 100, ā = 1 (figure 7), ap now provides the main contribution since
δcorr/δp ∼ 3Λ/10 ≈ 1/4.

Ultimately, the difference in the phase lags φ and φcorr partly induced by the
history effect has a direct impact on the relative contributions of the area effect and

20

https://doi.org/10.1017/jfm.2016.401


–1

0

1

a

0

(a) (b)

FIGURE 7. Oscillation waveforms for Ω = 100, with ā = 1, ε = 0.01 (see caption of
figure 6).

the so-called shell effect (Eller & Flynn 1965), the two driving mechanisms behind
bubble growth in rectified diffusion. The area effect refers to the increase of the bubble
interfacial area during expansion and the subsequent decrease during contraction. The
velocity field generated by the bubble oscillations also influences the gas transport
through the advection term in the advection–diffusion equation. This influence is
referred to as the shell effect. More specifically, we can regard the shell effect as the
advection-induced squeezing of the concentration boundary layer when the bubble
radius expands and similarly the stretching when the radius contracts. In turn, this
effect yields either a steeper or shallower concentration gradient at the bubble surface
compared to that of a motionless bubble of the same size. As a result, the area effect
increases mass transfer with respect to the motionless equilibrium bubble when a > ā.
Similarly, the shell effect has an amplifying effect on the interfacial mass flux when
da/dτ > 0.

Let us consider the high-frequency limit where φ = 0, φcorr = π/4 and a ≈ ap. The
area and shell effects act non-symmetrically in the bubble dissolution (dacorr/dτ < 0)
and growth (dacorr/dτ > 0) periods, which are of equal duration in time. Figure 8
shows that the area and shell effect increase mass transfer during three-quarters of the
growth period and one-quarter of the dissolution period. Consequently, these effects
reduce mass transfer during one-quarter of the growth period and three-quarters of
the dissolution period. As a result, bubble growth is always promoted.

6. Conclusions

The contribution of any past mass transfer events between a gas bubble and its
liquid surroundings towards the current diffusion-driven bubble growth or dissolution
dynamics has been referred to as the ‘history effect’. The history effect arises from
the non-instantaneous development of the concentration boundary layer in response
to changes in the concentration at the bubble interface caused, for instance, by
variations of the ambient pressure in time. To put in another way, the current state of
the concentration profile must be naturally conditioned by the preceding time history
of the concentration field itself. As a consequence, the mass flux across the bubble is
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FIGURE 8. Strain waveforms for Ω = 5000, with ā = 1, ε = 0.01 and Λ = 0.828.
(a) Normalized strain waveforms (a − ā)/δ and (acorr − ā)/δcorr. SE and AE refer to the
‘shell effect’ and ‘area effect’, which may increase (+) or hinder (−) mass transfer across
the bubble, be it growth (dacorr/dτ > 0, grey background) or dissolution. (b) Unscaled
strain waveforms a/ā − 1 and acorr/ā − 1.

conditioned by the preceding time history of the boundary condition. This very last
notion is the essence of the history effect. It has been shown that the contribution of
the history effect in the current interfacial concentration gradient is fully contained
within a memory integral of the interface concentration.

Under the assumption that advection effects are small, the integral term has been
used to derive the governing equation for bubble dynamics concerning the canonical
case of a spherical bubble suspended in a quiescent liquid. It has been termed as
the Epstein–Plesset with history term (EPH) equation. This equation is not restricted
to a constant-pressure time history and does not make use of the quasi-static radius
approximation. It is however expressed in nonlinear time τ̃ , which can be related to
the standard time once the EPH equation has been solved for a(τ̃ ), the time evolution
of the bubble radius.

The EPH equation has been analytically solved for the case of multiple step-like
jumps in pressure. The nature and relevance of the history effect in the bubble
dynamics has been assessed through illustrative examples. A future companion paper
shall deal with the experimental and numerical analysis of the history effect regarding
a sessile bubble exposed to such step-like pressure time histories.

Finally, we have investigated the role of the history effect concerning the problem
of mass transfer across a non-inertial bubble that pulsates under harmonic pressure
forcing. The history effect has been shown to induce a phase shift in the interfacial
concentration gradient with respect to the phase of the interfacial concentration. At
sufficiently high forcing frequencies, the oscillatory mass flux across the bubble is
entirely provided by the history integral term and the aforementioned phase shift
asymptotically tends to π/4. This phase shift causes the shell effect and area effect
(the two driving mechanisms behind rectified diffusion) to act non-symmetrically on
growth and dissolution during each individual bubble oscillation period. Growth is
always favoured as a result.
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Appendix A. Derivation of the history integral term

Upon the substitution f (ξ , τ̃ ) = ξc(ξ , τ̃ ), and furthermore neglecting any arising
(da/dτ̃ )/a terms, equation (2.15) transforms to

∂f

∂τ̃
= ∂2f

∂ξ 2
. (A 1)

Taking the Laplace transform of (A 1) subject to the initial condition f (ξ > 1, 0) = 0
yields

sf̂ = d2 f̂

dξ 2
. (A 2)

A solution compatible with boundary conditions f (1, τ ) = cs(τ̃ ) and f (∞, τ̃ ) = 0 is
found to be

f̂ (ξ ; s) = ĉse
−√

s(ξ−1), (A 3)

where ĉs is a function of s, to be determined from the boundary conditions. The
transformed concentration gradient across the bubble interface is

∂ ĉ

∂ξ

∣

∣

∣

∣

ξ=1

= ∂ f̂

∂ξ

∣

∣

∣

∣

∣

ξ=1

− f̂ (1; s) = −(1 +
√

s)ĉs. (A 4)

The initial value of cs is required. It is given by

cs(0) = p0 + σ/a0 − Υ = cs0, (A 5)

where p0 = p(0) and a0 = a(0) denote the initial pressure and radius respectively. Note
that in perfect initial saturation conditions, the surface concentration is the same as the
gas concentration in the liquid, Cs(0) = C∞. This amounts to Υ = p0 and cs0 = σ/a0 >
0, corresponding to slow dissolution purely driven by the Laplace pressure. Taking
then the inverse Laplace transform of (A 4) results in

− ∂c

∂ξ

∣

∣

∣

∣

ξ=1

= cs +
∫ τ̃

0

1√
π(τ̃ − x̃)

[

dcs

dx̃
+ cs0δ(x̃)

]

dx̃. (A 6)

The term containing the Dirac delta δ(x̃) may be directly integrated. This finally sets
the concentration gradient at the interface to be

− ∂c

∂ξ

∣

∣

∣

∣

ξ=1

= cs + cs0√
πτ̃

+
∫ τ̃

0

1√
π(τ̃ − x̃)

dcs

dx̃
dx̃. (A 7)

It is not surprising that Jones & Zuber (1978) obtained an analogous expression for
the heat flux across a vapour bubble. In fact, the history integral provides the general
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solution (for the spatial derivative at the boundary) for the canonical diffusion problem
consisting of a scalar field U(z, t) obeying

∂U

∂t
= α

∂2U

∂z2
, (A 8)

with boundary and initial conditions U(0, t) = Us(t) and U(z, 0) = U(∞, t) = 0. The
solution for the gradient at the boundary z = 0 (see, for example, Landau & Lifshitz
1987) reads

− ∂U

∂z

∣

∣

∣

∣

z=0

= 1√
α

∫ t

0

1√
π(t − x)

dUs

dx
dx. (A 9)

The history integral is therefore essential in determining the heat flux across a plate
or the shear stress exerted by a viscous fluid on a plate moving in its plane (often
referred to as the Basset force). While the history integral has been identified to play
an important role in the rectilinear motion of bubbles in viscous flows (Magnaudet &
Legendre 1998), its effect has been overlooked in diffusion-driven bubble dissolution
and growth.

Appendix B. Solutions for step changes in pressure

B.1. Analytical solution

Let pn be the pressure at the nth plateau (constant-pressure segment) after jump n. Its
value is thus

pn = p0 +
n
∑

j=1

1pj for T̃+
n 6 τ̃ 6 T̃−

n+1. (B 1)

The time coefficient T̃−
n describes the instant in time right before the nth pressure

jump at τ̃ = T̃n, while T̃+
n refers to the moment right after.

B.1.1. Solution for the Epstein–Plesset with history term equation

The EPH equation (3.4) may be integrated in time within the nth segment as

∫ a(τ̃ )

a(T̃−
n )

d ln a + 1

3

∫ pn

pn−1

d ln p = −Λ

pn

[

∫ τ̃

T̃+
n

(

pn − Υ + p0 − Υ
√

πỹ

)

dỹ

+
∫ τ̃

T̃+
n

{

∫ ỹ

0

1
√

π(ỹ − x̃)

n
∑

j=1

1pjδ(x̃ − T̃j) dx̃

}

dỹ

]

. (B 2)

Evaluating this integral finally yields, for segments n = 1 to n = N,

a(τ̃ ) = a(T̃−
n )

(

pn

pn−1

)−1/3

exp

{

−Λ

pn

[

(τ̃ − T̃n)(pn − Υ ) + 2√
π

(p0 − Υ )

×
(√

τ̃ −
√

T̃n

)

+ 2√
π

n
∑

j=1

1pj

(

√

τ̃ − T̃j −
√

T̃n − T̃j

)

]}

for T̃+
n 6 τ̃ 6 T̃−

n+1. (B 3)

The initial condition is a(0) = a0. The end radius from any segment a(T̃−
n ) must

be first computed before moving on to the next. We begin with segment n = 0, i.e.

24

https://doi.org/10.1017/jfm.2016.401


before the first pressure jump. The radius dynamics in this initial segment is evidently
identical to the solution in (3.10) and are straightforwardly given by

a(τ̃ ) = a0 exp{−Λ(p0 − Υ )(τ̃ + 2
√

τ̃ /π)} for 0 6 τ̃ 6 T−
1 . (B 4)

B.1.2. Solution for the concentration field

From (A 3), the Laplace transformed concentration field ĉ(ξ ; s) may be conveniently
split as the product of two separate functions f̂ (s) and ĝ(ξ ; s) as follows:

ĉ(ξ ; s) = ĝ(s) × ĥ(ξ ; s) = sĉs × e−√
s(ξ−1)

ξs
. (B 5)

The inverse Laplace transforms of these two functions may be shown to be

g(τ̃ ) = dcs

dτ
+ cs0δ(τ̃ ), h(τ̃ ) = 1

ξ
erfc

(

ξ − 1

2
√

τ̃

)

. (B 6a,b)

Using these results, the concentration field in the time domain c(ξ , τ̃ ) may be then
computed by means of the convolution theorem. This gives

c(ξ , τ̃ ) = cs0

ξ
erfc

(

ξ − 1

2
√

τ̃

)

+ 1

ξ

∫ τ̃

0

dcs

dx̃
erfc

(

ξ − 1

2
√

τ̃ − x̃

)

dx̃. (B 7)

Surface tension is to be neglected once again. This renders cs0 = p0 −Υ and dcs/dτ̃ =
dp/dτ̃ , the latter modelled in (4.1). After inserting these expressions into (B 7), the
time evolution of the concentration field at every nth segment is finally obtained:

c(ξ , τ̃ ) =























p0 − Υ

ξ
erfc

(

ξ − 1

2
√

τ̃

)

for 0 6 τ̃ 6 T−
1 ,

p0 − Υ

ξ
erfc

(

ξ − 1

2
√

τ̃

)

+ 1

ξ

n
∑

j=1

1pj erfc





ξ − 1

2
√

τ̃ − T̃j



 for T̃+
n 6 τ̃ 6 T̃−

n+1.

(B 8)

B.2. Numerical model

The pressure step functions are analytically modelled by the logistic function

p(τ̃ ) = p0 + 1

2

N
∑

n=1

1pn{1 + tanh[k̃(τ̃ − T̃n)]}, (B 9)

where k̃ is a large constant. The Heaviside functions are recovered as k̃ → ∞, whilst
here the value k̃ = 1000 was deemed as sufficiently large. The time derivative of the
pressure reads

dp

dτ̃
= k̃

2

N
∑

n=1

1pnsech2[k̃(τ̃ − T̃n)]. (B 10)

The governing equations will be numerically integrated in nonlinear time τ̃ , purely for
consistency with the analytical derivation. However, we shall conveniently establish
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the pressure time history input and present the bubble size history in the linear time
τ . To this end, the physical time τ was computed at each time step by integrating
dτ = a2dτ̃ . Provided k̃ is large enough, (B 9) and (B 10) may be computed from

p(τ̃ − T̃n)= p(τ − Tn)= p0 + 1

2

N
∑

n=1

1pn{1 + tanh[k(τ − Tn)]},
dp

dτ̃
= a2 dp

dτ
, (B 11a,b)

where use of k = k̃ has been made. Note that the precise value of k is not relevant
provided it is large. The radius dynamics can then be obtained by integrating (3.2),
namely

da

dτ̃
= a

(

Λ
∂c

∂ξ

∣

∣

∣

∣

ξ=1

− 1

3

dp

dτ̃

)

(

p + 2σ

3a

)−1

, (B 12)

subject to the prescribed initial size a0. The concentration gradient at the interface is
solved for numerically from (2.12) using a finite-differences scheme. Equation (2.12)
is written here again for the reader’s convenience:

∂c

∂τ̃
+ Pe(τ̃ )

(

1

ξ 2
− ξ

)

∂c

∂ξ
= 1

ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

)

, (B 13)

where Pe(τ̃ ) = (da/dτ̃ )/a. The required boundary and initial conditions are

c(1, τ̃ ) = p(τ̃ ) + σ/a − Υ,
∂c

∂ξ

∣

∣

∣

∣

ξ=∞
= 0, c(ξ > 1, 0) = 0. (B 14a−c)

Appendix C. Conditions for small-amplitude isothermal oscillations

Following the work of Prosperetti (1977) (see figure 1 of that paper), the assumption
of isothermal oscillations (polytropic exponent equal to unity) may be safely assumed,
provided the thermal Péclet number based on the oscillation frequency is smaller than
one: Ωth ≡ 2πfcR

2
c/Dth < 1, with Dth = kg/ρgcv,g. Symbols kg, ρg and cv,g denote the

gas thermal conductivity, density and specific heat at constant volume respectively.
Consequently, Ω does not need to be small for this assumption to hold, as long as
Ω < Dth/Dm. As an example, for air at 300 K, Dth/Dm ∼ 104.

Assumption (i) in § 5 additionally implies that the oscillation frequency fc must
be much smaller than the resonance frequency of the bubble. The low-frequency
limit, for history effects to be visible, is given by fc & 1/tm, where tm = R2

c/Dm is
the time scale of mass transfer by diffusion. When fc ≪ 1/tm, the rate of change of
the bubble interfacial concentration is very slow compared to mass diffusion. The
concentration field has enough time to reach the quasi-steady solution characterized
by the absence (full dissipation) of the history effect. Summarizing these last ideas,
Ω must additionally satisfy

1 .Ω ≪ Ωres, (C 1)

where Ωres =
√

3Pc/ρlRc/Dm, is the Péclet number based on Minnaert’s resonance
frequency. As an example, consider bubbles trapped in magma chambers exposed
to earthquake-induced shaking with typical periods of 1–20 s (Ichihara & Brodsky
2006). This results in Ω ∼ 1–100 for a 100 µm bubble. Likewise, a 10 µm bubble
in the tissue of a marine mammal exposed to 5–5000 Hz sonar (Crum & Mao 1996)
corresponds to Ω ∼ 30–3000.
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Except for small values of Ω ≪1 outside our range of interest (where the oscillation
period is slow enough so that gas diffusion across the bubble surface results in large
volumetric oscillations) δ will always be of the same order of magnitude as the
pressure-induced isothermal expansion and contraction amplitude. Comparison of
(5.3) and (5.5) gives δ/ā ∼ ε/3. Therefore, (ii) requires that ε ≪ 1.

Turning now to (iii), consider a bubble in a gas-saturated liquid Υ = 1, with
negligible Laplace pressure σ = 0. Under these conditions, the growth rate purely
due to rectified diffusion is expected to be largest. For such a case, the asymptotic
growth rate of ā due to rectified diffusion under assumptions (i)–(iii) was found to
be reasonably well approximated by Hsieh & Plesset (1961),

dā/dτ = (2/3)Λε2. (C 2)

The inverse of the characteristic time scale for growth is then τ−1
b ∼ Λε2/ā, which

must be much smaller than Ω . Let us now consider low forcing frequencies in
addition to a highly supersaturated (say Υ ∼ 2–3) or undersaturated (Υ ≈ 0) liquid
together with a non-negligible Laplace pressure. The likely existence of high diffusion
rates will result in fast diffusion-driven bubble growth or dissolution. Consequently,
the equilibrium radius ā may no longer be constant over an individual oscillation
period (Ilinskii et al. 2008), i.e. assumption (iii) no longer holds. The inverse of
the characteristic time for bubble growth or dissolution may be estimated from (3.8)
as τ−1

b ∼ |Υ − 1 − σ/ā|Λ/ā2. Thus, (iii) imposes that the solution saturation level,
pressure amplitude and frequency must fulfil the following inequalities:

|Υ − 1 − σ/ā| ≪ Ω ā2/Λ, ε2 ≪ āΩ/Λ. (C 3a,b)

Finally note that if surface tension and undersaturation are to be overcome,
equating Hsieh–Plesset solution (C 2) with the Epstein–Pesset solution (3.8) leads
to an approximate, simplistic threshold condition for growth (Safar 1968): ε2 =
(3/2)(1 − Υ + σ/ā). As noted by Safar (1968), this threshold is only valid for large
isothermal bubbles in a liquid close to saturation (Υ ≈ 1) under sufficiently high
ambient pressures such that the Laplace pressure is comparatively small: σ/ā ≪ 1.
As an example, ε ∼ 0.01 would be required to overcome the surface-tension-driven
dissolution of a CO2 bubble of size Rc ∼ 100µm in saturated water at Pc ∼ 20 MPa.

Appendix D. The oscillatory problem

Valuable insight on the nature of the concentration field may be gained by
performing an order of magnitude analysis on the governing mass transport equation:

∂c

∂τ
+ Pe(τ )

a2

(

1

ξ 2
− ξ

)

∂c

∂ξ
= 1

a2ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

)

, (D 1)

where Pe(τ ) = (da/dτ)a = RṘ/Dm. Its magnitude is given by O(Pe) ∼ εΩ ā2/3 since
O(a) ∼ ā and O(da/dτ) = O(dap/dτ) ∼ εΩ ā/3. Bear in mind that ā will often be of
order unity (provided R(t) is comparable to the chosen characteristic radius Rc), but
we shall carry the analysis allowing for any magnitude of ā.

Evaluation of (D 1) on ξ = 1 makes the advection term become identically zero. The
diffusive term must therefore be of leading order in a layer bounded by 1 < ξ < 1 + l

where O(∂c) = O(1cs) ∼ ε. Parameter l is the dimensionless penetration depth of
diffusion using R(t) as the length scale, i.e. l = L/R(t). The relevant length scales
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are O(ξ) ∼ 1 and O(∂ξ) ∼ l, while the characteristic time scale per oscillation is
O(∂τ ) ∼ Ω−1. The magnitudes of the unsteady and diffusive terms in (D 1) are
given by

O

(

∂c

∂τ

)

∼ εΩ, O

(

1

a2ξ 2

∂

∂ξ

(

ξ 2 ∂c

∂ξ

))

∼ ε

ā2l2
. (D 2a,b)

Balancing these two terms yields l ∼ 1/(ā
√

Ω). Note that the equivalent dimensional
penetration depth is L ∼

√
Dm/(2πfc), and it is independent of the bubble size. In the

low-frequency limit, it follows from the Epstein–Plesset solution that l ∼ 1. Hence,
(ā2Ω)−1 ∼ 1 is of the order of the diffusion time scale associated with a length scale
equal to the current bubble size. Length scales are now O(ξ) = O(∂ξ) ∼ 1 and it is
easy to show that the advection term scales as ∼ ε2Ω . Approaching the high-frequency
limit, the penetration depth is much smaller than current bubble radius (l ≪ 1), i.e.
when ā2Ω ≫ 1. A series expansion of the advection term taking ξ = 1 + l reveals that
the magnitude of the dimensionless advection term is independent of l since:

O

(

Pe(τ )

a2

(

1

ξ 2
− ξ

)

∂c

∂ξ

)

∼ εΩ

3
(3l)

ε

l
∼ ε2Ω. (D 3)

We conclude that under the small-amplitude oscillation restriction, the magnitude of
the dimensionless advection term in (D 1) is always smaller than the unsteady and
diffusive terms by a factor of ε ≪ 1. Therefore, the dimensionless advection term may
be neglected in the oscillatory problem. Moreover, following the discussion presented
in § 5.1, we may assume a(τ )= ā(τ )+ O(δ)≈ ā to remain constant over an oscillation
period and additionally take the liquid to be saturated: Υ = 1.

Hence, letting f = ξc, equation (D 1) is reduced to a parabolic equation,

∂f

∂τ
= 1

ā2

∂2f

∂ξ 2
(D 4)

together with boundary conditions

c(1, τ ) = f (1, τ ) = cs(τ ) = ε sin Ωτ, c(∞, τ ) = f (∞, τ ) = 0. (D 5a,b)

Resorting to the same treatment given to (A 1) involving Laplace transforms, we arrive
from (D 4) at an analogous expression for (2.16), the concentration gradient evaluated
at the interface:

− ∂c

∂ξ

∣

∣

∣

∣

ξ=1

= cs + cs0ā√
πτ

+ ā

∫ τ

0

1√
π(τ − x)

dcs

dx
dx. (D 6)

Under our particular conditions, cs0 = 0. The integral term, with cs(τ ) = ε sin Ωτ , may
be evaluated from an identity provided by Stepanyants & Yeoh (2009), yielding

− ∂c

∂ξ

∣

∣

∣

∣

ξ=1

= ε sinΩτ + āεΩ

∫ τ

0

cos Ωx√
π(τ − x)

dx= ε

[

sin Ωτ + āΩRe

{

eiΩτ erf
√

iΩτ√
iΩ

}]

.

(D 7)
The asymptotic expansion as τ → ∞ (since we are interested in the steady periodic
state solution) of the last term is

Re

{

eiΩτ erf
√

iΩτ√
iΩ

}

∼ 1√
2Ω

(cos Ωτ + sin Ωτ) . (D 8)
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Finally, inserting this result into (D 7) we obtain

∂c

∂ξ

∣

∣

∣

∣

ξ=1

= −ε

[

sin Ωτ + ā
√

Ω sin
(

Ωτ + π

4

)]

. (D 9)

The last term is hence the contribution from the history integral. As reiterated by
Fyrillas & Szeri (1994), the problem of the oscillating bubble is completely analogous
to Stokes’ second problem of viscous flow near an oscillating flat plate (see for
example Landau & Lifshitz 1987). The concentration profile must be a harmonic
function in τ with the same frequency as the boundary condition cs(τ ) = ε sin Ωτ .
Equation (D 4) may be easily solved for harmonic motion considering a solution of
the form

f (ξ , τ ) = ξc(ξ , τ ) = Im{f̂ (ξ)eiΩτ }, (D 10)

compatible with the boundary conditions in (D 5). It then follows that f̂ (1) = ε and
f̂ (∞) = 0. The solution for the concentration profile is

c(ξ , τ ) = ε

ξ
exp{−ā

√

Ω/2(ξ − 1)} sin{Ωτ − ā
√

Ω/2(ξ − 1)}, (D 11)

which renders the following concentration gradient profile:

∂c

∂ξ
=−ε exp{−ā

√

Ω/2(ξ −1)}
[

1

ξ 2
sin Ωτ + ā

√
Ω

ξ
sin
(

Ωτ − ā
√

Ω/2(ξ − 1) + π

4

)

]

.

(D 12)
Evaluating (D 12) on ξ = 1 identically results in (D 9).

D.1. Treatment following Fyrillas & Szeri (1994)

As demonstrated by Fyrillas & Szeri (1994), when considering a large frequency-
based Péclet number Ω/(2π)≫ 1, to obtain the asymptotic solution for the oscillatory
concentration field one must first solve

∂c

∂τ̂
= ∂2c

∂η2
. (D 13)

The Lagrangian coordinate η, linear time variable τ ′ and nonlinear time τ̂ are defined
as follows:

η =
(

Ω

2π

)1/2
a3

3

(

ξ 3 − 1
)

, τ ′ = fct = Ω

2π
τ , τ̂ (τ ′) =

∫ τ ′

0
a4(x′) dx′. (D 14a−c)

The boundary condition at the interface associated with the oscillatory problem reads

c(η = 0, τ̂ ) = pg(τ
′) − 〈pg(τ

′)〉τ̂ . (D 15)

Neglecting inertial and viscous effects, pg(τ
′) is defined as

pg(τ
′) = p(τ ′) + σ/a(τ ′)

1 + σ/ā
, (D 16)
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 while time averaging is computed according to

〈 f (η, τ ′)〉τ̂ = 1

τ̂ (T)

∫ T

0
f (η, τ ′)a4(τ ′) dτ ′, (D 17)

where T denotes the dimensionless period of oscillation. Expressing this boundary
condition as a Fourier series,

c(η = 0, τ̂ ) =
∞
∑

m=1

[

am cos ωmτ̂ + bm sin ωmτ̂
]

, with ωm = 2πm

τ̂ (T)
, (D 18)

a compatible solution is found to be

c(η, τ̂ )=
∞
∑

m=1

exp
(

−
√

ωm/2η

)[

am cos
(

ωmτ̂ −
√

ωm/2η

)

+ bm sin
(

ωmτ̂ −
√

ωm/2η

)]

.

(D 19)
The interfacial concentration gradient is thus

∂c

∂η
(η = 0, τ̂ ) = −

∞
∑

m=1

ωm

[

am cos
(

ωmτ̂ + π/4
)

+ bm sin
(

ωmτ̂ + π/4
)]

. (D 20)

Comparing (D 19) and (D 20), it is inferred that the history effect shifts every
frequency component of the (negative) interfacial concentration gradient profile with
respect to the interfacial concentration by π/4 when Ω/(2π) ≫ 1.

Next, we shall prove that the solutions (D 19) and (D 20) above will converge
with those given in (D 11) and (D 12) given the right set of assumptions. We are
considering harmonic pressure forcing: p(τ ′) = 1 + ε sin 2πτ ′ and T = 1. Making
the quasi-static radius approximation, i.e. taking a(τ ′) = ā + O(δ) ≈ ā as constant
implies that τ̂ = ā4τ ′. Provided the Laplace pressure is small (σ/ā ≪ 1), then
pg(τ

′) ≈ 1 + ε sin 2πτ ′ − σ/ā and the boundary condition (D 15) becomes

c(η = 0, τ̂ ) = ε sin 2πτ ′. (D 21)

From (D 18), we infer that a1 = 0, b1 = ε, ω1 = 2π/ā4 and am = bm = 0 for m > 1. The
solution in (D 19) then simplifies to

c(η, τ ′) = ε exp

(

−
√

π

ā2
η

)

sin

(

2πτ ′ −
√

π

ā2
η

)

. (D 22)

Since Ω/(2π) ≫ 1, we have seen that the boundary layer thickness is very small in
comparison with the bubble radius. We are in fact in the limit ξ → 1+. Applying this
limit to the Lagrangian coordinate η, we obtain the following identity:

lim
ξ→1+

{η} = lim
ξ→1+

{

(

Ω

2π

)1/2
ā3

3
(ξ − 1)(ξ 2 + ξ + 1)

}

=
(

Ω

2π

)1/2

ā3(ξ − 1). (D 23)

Using this result, we may rewrite the solution for c(η, τ ′) in (D 22) as a function of
our original variables, c(ξ , τ ). This gives

c(ξ , τ ) = ε exp
{

−ā
√

Ω/2(ξ − 1)

}

sin{Ωτ − ā
√

Ω/2(ξ − 1)}, (D 24)
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which in turn yields the following gradient profile:

∂c

∂ξ
(ξ, τ ) = −εā

√
Ω sin

(

Ωτ − ā
√

Ω/2(ξ − 1) + π

4

)

. (D 25)

Applying the limit ξ → 1+ alongside Ω ≫ 1 to (D 11) and (D 12), those solutions
reduce to expressions (D 24) and (D 25) above. Notice that effect of the bubble
curvature is lost (ξ in the denominator of (5.7) vanishes) consequence of the thin
boundary layer approximation. Consequently, the steady-state (first) term contributing
to the gradient in (D 9), which dominates for small values of Ω , is also lost.

Appendix E. Pressure-corrected radius

We begin by rewriting the mass conservation equation (3.5) without surface tension,

1

a

da

dτ
+ 1

3p

dp

dτ
= Λ

a2p

∂c

∂ξ

∣

∣

∣

∣

ξ=1

. (E 1)

Integrating this equation in time results in

ap1/3 = a0 exp

{

∫ τ

0

Λ

a2p

∂c

∂ξ

∣

∣

∣

∣

ξ=1

dτ ′

}

= acorr, (E 2)

where acorr(τ ) has been identified using (5.10). Its time derivative is then

dacorr

dτ
= Λacorr

a2p

∂c

∂ξ

∣

∣

∣

∣

ξ=1

. (E 3)

Since the prefactor multiplying the interfacial concentration gradient in (E 3) is
positive at all times, we can write

sign

(

dacorr

dτ

)

= sign

(

∂c

∂ξ

∣

∣

∣

∣

ξ=1

)

. (E 4)

It follows that the oscillating part of acorr, namely acorr − ā, is in phase with

∫ τ

0

∂c

∂ξ
(ξ = 1, x) dx = − ε

Ω

[

sin
(

Ωτ − π

2

)

+ ā
√

Ω sin
(

Ωτ − π

4

)]

. (E 5)

Thus, equivalently, φcorr = φgrad − π/2.
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