
Jean Leonard Marie Poiseuille (I 797-1869). From a photographic portrait that appeared 
with the article by Brillouin (1930); oil-painted enhancement by SPS. 
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1. BIOGRAPHICAL HIGHLIGHTS AND MYSTERIES 

Jean Leonard Marie Poiseuille entered the Ecole Poly technique at the age 
of 18 in the fall of 1815. His residence there ended April 13, 1816 when 
the entire Ecole was disbanded for political reasons. He did not go back 
when it reopened but switched to the study of medicine instead. During 
his months at Ecole Poly technique Poiseuille took courses from Cauchy, 
Ampere, Hachette, Arago, Petit, and Thenard. Brillouin (1930) attributes 
Poiseuille's extraordinary sense of experimental precision to the influence 
of his physics professor, the brilliant but short-lived (1791-1820) Alexis 
Petit, who along with P. L. Dulong discovered in 1819 that the molar 
specific heat of all solids tends to a constant at high temperature (Dulong
Petit rule). During his doctoral research on The force of the aortic heart 
(Poiseuille 1828), Poiseuille invented the U-tube mercury manometer 
(called the hemodynamometer) and used it to measure pressures in the 
arteries of horses and dogs. A recording version of the manometer, named 
the Poiseuille-Ludwig hemodynamometer, was used in medical schools 
until the 1960s and to this day blood pressures are reported in mm Hg due 
to Poiseuille's invention. 

Between 1828 and 1868 Poiseuille published 15 articles ranging from 
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2 SUTERA & SKALAK 

brief communications to the French Academy of Sciences to extensive 
monographs. A complete list ofPoiseuille's publications is given under the 
Literature Cited section (from Pappenheimer 1978). It is remarkable that 
these few experimental papers have made the name of Poiseuille familiar 
in a variety of fields including engineering, physics, medicine, and biology. 
Following completion of his doctoral dissertation on the heart and pulse 
waves, Poiseuille turned his attention to hemodynamics in micro
circulation. His observations of the mesenteric microcirculation of the frog 
(Poiseuille 1835) revealed that blood flow in the arterioles and venules 
features a plasma layer at the vessel wall in which there are few red cells, 
that "plasma-skimming" occurs at vessel bifurcations, and that white cells 
tend to adhere to the vessel wall. The realization that uncontrolled in vivo 
studies would not permit a clear formulation of the laws governing blood 
flow in microcirculation led him to undertake his careful and extensive 
studies of the flow of liquids in small diameter glass capillaries. 

These studies presumably began sometime in the 1830s since in 1838 he 
gave a preliminary oral report on the effects of pressure and of tube length 
to the Societe Philomatique (Poiseuille 1838). Then, in 1839, Poiseuille 
deposited with the French Academy of Sciences a sealed packet containing 
the results of his studies on the flow of water through glass tubes and the 
effects of pressure drop, tube length, tube diameter, and temperature. The 
purpose of this procedure was to establish priority. During the academic 
year 1840-1841 he made three oral communications (Memoires Ius) to the 
Academy of Sciences. Excerpts of these were subsequently published in 
the Academy'S Comptes Rendus (Poiseuille 1840a,b; 1841). In January 
1841 Poiseuille deposited another sealed packet of experimental results 
dealing with the flow of a variety of liquids through glass capillaries. Some 
of these results were communicated to the Academy in 1843 (Poiseuille 
1843). 

The results and conclusions presented by Poiseuille in 1840-1841 were 
considered sufficiently important that the Academy appointed an elite 
Special Commission to investigate their validity. This Commission, con
sisting of members Arago, Babinet, Piobert, and Regnault, met in 1842 
and with Poiseuille repeated some of his experiments using his apparatus. 
In the course of this review, the Commission prevailed upon Poiseuille to 
do some new preliminary experiments using mercury and ethyl ether. 
The Commission reported back to the Academy on December 26, 1842 
recommending that Poiseuille's work be approved and included in its 
entirety in Memoires des Savants Etrangers, a publication of the Academy 
of Sciences. It actually appeared in the Memoires Presentes par Divers 
Savants a {,Academie Royale des Sciences de l'Institut de France in 1846, 
seven full years after he delivered his first sealed packet to the Academy. 
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POISEUILLE'S LAW 3 

A complete English translation of this paper is available (in Bingham 
1940). The Commission's report was published in the Annales de Chimie 
et Physique (Regnault et al 1843). Poiseuille's final contribution to the 
subject of liquid flow in narrow tubes appeared in September 1847. That 
paper presented measurements for (i) dilute aqueous salt solutions, (ii) 
aqueous solutions of bases, (iii) aqueous solutions of acids, (iv) mineral 
waters, (v) teas, (vi) wines and spirits, (vii) extracts of plants and roots, 
(viii) bovine serum and acidic solutions thereof, and (ix) a mixed group of 
ethers, alcohols, and solutions of ammonia. In each group flow times were 
compared to that of distilled water under the same conditions. It appears 
that these studies were motivated by Poiseuille's interest in the possible 
facilitation of capillary blood flow through medication. 

There is no record of where Poiseuille did his work or how it was 
supported financially. His apparatus was elaborate and certainly required 
the services of an expert glassblower. The experiments were time-con
suming (the calibration of a single capillary tube took as long as twelve 
hours) so he probably had technical assistance. Brillouin (1930) suggests 
the possibility that the well established physiologist Magendie provided 
space and necessary resources at La Salpetriere Hospital in Paris. Pap
penheimer (1978) suggests that a wealthy father-in-law may have made it 
possible for Poiseuille to dedicate himself to research. Apparently Poi
seuille practiced medicine for a while because he was listed in a Paris directory 
of physicians dated 1845, but other evidence indicates that he did not 
practice medicine after 1844. 

Original biographical information on Poiseuille's life is scarce. Brillouin 
(1930), Joly (1968), and Pappenheimer (1978) summarize most of the 
known information. Joly's biographical note, which was delivered prior 
to the presentation of the first Poiseuille medal to Robin Fihraeus in 1966, 
is an especially eloquent testimony to the many facets of this scientist and 
his accomplishments. Joly points out that during his lifetime Poiseuille 
was only modestly recognized. In 1835, the Academy of Sciences awarded 
him half of the prize for experimental physiology (value unmentioned); in 
1845, he won the prize for medicine and surgery (worth 700 francs), and 
in 1860, he received an honorable mention, again from the Academy of 
Sciences. Although Poiseuille was an elected member of the Paris Academy 
of Medicine, his numerous attempts to win election to the Academy of 
Sciences in the 1840s, 1850s, and 1860s were never successful. 

Another mysterious aspect ofPoiseuille's life concerns his circumstances 
and employment in later life. In 1858, he filed an application for a position 
in the Paris public school system. In 1860, Dr. Poiseuille went to work as 
Inspector of School Sanitation in the Seine district. Poiseuille, born on 
April 22, 1799, died in Paris, the city of his birth on December 26, 1869. 
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4 SUTERA & SKALAK 

2. POISEUILLE'S EXPERIMENTS 

Poiseuille set out to find a functional relationship among four variables: the 
volumetric efflux rate of distilled water from a tube Q, the driving pressure 
differential P, the tube length L, and the tube diameter D. The diameters of 
his glass tubes ranged from 0.015 to 0.6 mm, encompassing vessel sizes 
found in most microcirculatory systems but not quite that of human capil
laries ('" 5 to 10 microns). Initially he planned to maintain a constant 
temperature of I O°C; subsequently he examined the influence of temperature 
from 0 to 45°C, still using distilled water as the test liquid. He later extended 
his studies to a great variety of other liquids (Poiseuille 1847). 

Figure 1 is a drawing of the frontal view of Poiseuille's experimental 
apparatus. It is estimated that the apparatus stood between 21 and 3 meters 
tall. The heart of the system is the small capillary viscometer labeled c-e
d near the center of the figure just below the spindle-shaped bulb M. 
Because it is immersed in water inside a glass cylinder the viscometer is 
shown in dotted outline. A hand-operated pump (h, surrounded by a water 
jacket x- Y) was used to charge the vertical reservoir on the left with air 
and simultaneously to raise either a water column in the tall manometer 
i-i or a mercury column in the short manometer i' -i'. During pre
ssurization the valve R leading to the viscometer was closed. Once the 
desired pressure, as indicated by one of the manometers, was reached, the 
pump discharge valve R' was closed, valve R was opened, and flow was 
driven through the test capillary d. 

A close-up enlargement of the viscometer assembly is shown in Figure 
2. The pointed bottom of the bulb M served to trap dust particles-which 
tended to settle out either from the air or the liquid used to clean the 
glassware-preventing them from falling into the capillary branch (b"-c
e-d). Poiseuille found it necessary to filter his distilled water repeatedly, 
sometimes as many as 20 times, to be rid of foreign particles. The entire 
test capillary was situated under water in a glass cylinder (C-D-F-E) 
which was surrounded by a water bath (G-H-I-K). 

The underwater efHux of the capillary tubes was necessitated when 
Poiseuille discovered that he could not achieve reproducible results when 
the minuscule liquid flows (some as low as 0.10 cc in several hours) exited 
in air against the erratic resistance of surface tension. This problem was 
eliminated by underwater efflux, but required that flow be measured 
upstream by timing the passage of a liquid meniscus between two lines, C 
and E (Figure 3), which delimited a known volume of the spherical bulb 
A-B. The second smaller bulb G in Figure 3 provided the entrance to the 
horizontal test capillary D which was fused to G so as to provide an abrupt 
entrance. This was crucial to the accurate definition of tube length. 
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POISEUILLE'S LAW 5 
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Figure 1 Frontal elevation view of PoiseuilIe's apparatus. Photocopy of one segment of a 
ten part fold-out plate published with PoiseuilIe's summary paper (1846). 

Poiseuille extended his study of the influence of pressure up to about 
eight atmospheres. (At a pressure of 10 atmospheres, one of the bulbs M 
exploded.) For pressures above one atmosphere the spherical bulbs were 
replaced by a cylindrical vessel shown in Figure 4. These cylinders and the 
attached test capillaries (labeled K-D in Figure 4) were tested in air. In 
these cases, the efRuxes were large enough so that surface tension was not 
a problem. 
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6 SUTERA & SKALAK 
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Figure 2 Enlargement of the viscometer assembly, from Figure I. 

The pressure differential was the primary independent variable in Poi
seuille's experimental design. However, the head declined during outflow 
becausc of changing liquid levels in thc manometer, the viscometer bulb, 
and the receiver vessel. Following contemporary understanding among 
hydraulic engineers, Poiseuille used the arithmetic average of the initial 
and final heads for P in his data analysis. He even performed an auxiliary 
experiment (one of several) to test the accuracy of this assumption. 
Bingham pointed out in his critique (1940) that the arithmetic mean is not 
rigorously the correct average to use but that, given the dimensions of his 
viscometer bulbs and the total heads applied, Poiseuille probably avoided 
any appreciable errors from this approximation. Poiseuille was meticulous 
in making second-order corrections for (a) the difference in the atmo
spheric pressures acting on the water in the open manometer leg S' and 
the free surface of the receiver vessel, (b) the weights of unequal air columns 
confined within the pressurized legs of the apparatus, and (c) capillarity in 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
3.

25
:1

-2
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 6
1.

22
8.

15
8.

16
 o

n 
05

/0
3/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



POISEUILLE'S LAW 7 

D 

Figure 3 Detailed drawing of the spherical viscometer bulb (0) with attached test capillary 
(D) (from Poiseuille 1846). The horizontal lines m, m', ... , m, constructed inside the bulb 
were used by PoiseuilJe to argue that the elevation of the midplane (AOB) could be used to 
determine the average pressure under which the bulb volume was discharged. 

G ___ H 

D 
.. _ .. --- --... _- Figure 4 Cylindrical-conical viscometer 

bulb employed in high pressure experi
ments. KD is the capillary. From Poiseuille 
(1846). 
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8 SUTERA & SKALAK 

the viscometer bulb. In one sample calculation Poiseuille showed that the 
correction due to different air column weights amounted to about 0.15%. 

Correction for the capillarity in the spherical bulbs was more prob
lematic because the area of the air-water interface varied continuously 
during flow. Poiseuille solved this by running auxiliary trials on graduated 
cylindrical bulbs wherein the capillarity was constant. First a capillary 
tube connected to a spherical bulb was tested. Then this tube was detached 
from the spherical bulb and reattached to a graduated cylindrical bulb. By 
carefully timing the outflow of a volume equal to that of the spherical bulb 
through the cylindrical bulb at the same average pressure and temperature, 
Poiseuille was able to figure the net capillarity correction of the original 
spherical bulb. This process was repeated "a great number of times" for 
each and every bulb used in the experiments. Again, by numerical example, 
Poiseuille also showed the capillarity correction to be of the order of three 
parts in 2000. 

From a great number of glass tubes which he examined, Poiseuille 
selected a few which appeared to be fairly cylindrical along their length. 
This first screening was done by measuring the length of a thread of 
mercury a few centimeters long at different positions along the length of 
the tube. The cross section of a tube was then examined by cutting a small 
perpendicular section 2 to 3 mm long from one end, and grinding and 
polishing its faces until its thickness was reduced to about 0.1 mm. This 
thin annular disk was then placed between two plates of glass along with 
some Canada balsam and heated. The heating caused the balsam to flow 
into the small bore. This sandwich was then examined under the objective 
of a horizontal Amici microscope. Owing to the thinness of the annular 
disk, problems due to reflection, refraction, and diffraction were eliminated 
and the image of its bore was distinct and clear. By means of an illuminated 
chamber, a camera lucida, fitted to the microscope, an image of the bore 
was projected at a known magnification on the horizontal table of the 
microscope and its maximum and minimum diameters were measured with 
dividers and a millimeter scale. By this technique Poiseuille specified his 
tube diameters in millimeters, nominally from 0.015 to 0.6, to four and 
sometimes five places, i.e. to tenths or hundredths of a micron! One can 
question the significance of the fourth and fifth digits in these measured 
diameters, however, given that the original measurements of the magnified 
projected images were made by dividers and a millimeter scale and could 
be read perhaps to within! part in 10 to 300 mm. 

The lengths of the glass tubes were measured, after both ends were 
ground smooth, by means of a beam-compass equipped with a vernier 
scale. This tool (which was borrowed from the physical laboratory of the 
College de France courtesy of Monsieur Savart) could be read to within 
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POISEUILLE'S LAW 9 

1/20 to 1/40 mm. The series of seven tubes used in the "length study" 
ranged from 6.77 to 100.5 mm long. 

Poiseuille recorded efflux times to the nearest quarter of a second but 
did not identify the particular timepiece (chronometer) used. 

In most of the experiments dealing with the influence of pressure, tube 
diameter, and length, Poiseuille maintained the temperature of the bath 
surrounding the receiver vessel at 10°C. The temperature was indicated by 
the thermometer T (Figure 2) situated in the receiver with its bulb at the 
same level as the test capillary. This thermometer had divisions of fifths 
of a degree Celsius. Poiseuille's papers say nothing about how temperature 
was controlled. In two subsets of his experiments on the effect of pressure 
in which the driving heads were high, Poiseuille used tubes that were too 
long to fit in the receiving vessel. Hence these tests were performed in air 
at ambient temperatures varying from about 20°C all the way down to 
7°C! (Apparently the laboratory was unheated.) 

Poiseuille first studied the effect of pressure on flow. He began with a 
tube referred to as A, which was 100.5 mm long, determined its maximum 
and minimum internal diameters at each end (in this instance, exit end: 
0.l395 mm, 0.1415 mm; entrance end: 0.1405 mm, 0.1430 mm), and fused 
it to the bulb G (Figure 3). Pressures of 385.870, 739.114, and 773.443 mm 

Hg at 10°C were established in succession and the corresponding flow 
times of 13.34085 cm3 (the bulb volume at 10°C) of distilled water 
measured. These were 3505.75, 1830.75, and 1750.00 s, respectively. Next, 
successive portions of the end of the tube were cut off to provide test 
lengths of 51.1, 25.55, 15.75, 9.55, 6.775, and about 1 mm. The same 
procedure was followed with tubes B, C, D, E, F, G, H, I, and K with 
nominal internal diameters of 0.11, 0.085, 0.045, 0.03, 0.65, 0.63, 0.01, 
0.09, and 0.13 mm, respectively. The lowest pressure applied was 74.29 
mm of water and the highest was over 6000 mm Hg (about 8 atmospheres). 

Poiseuille summarized his findings at this stage by the equation Q = KP, 
where the coefficient K was a function, to be determined, of tube length, 
diameter, and temperature. To investigate the influence of tube length 
Poiseuille took from his previous experiments on the A series of tubes all 
the data from those runs where the pressure was close to 775 mm Hg. 
Then, using his "law of pressures" he adjusted the measured flow times to 
correspond to a standard P of exactly 775 mm Hg. He was then able to 
show that the flow time was proportional to tube length (the "law of 
lengths") in a majority of his experiments. At this point Poiseuille could 
state that K = K' / L and, therefore, Q = K' P / L, where K' was a function 
of tube diameter and temperature. 

To determine the effect of tube diameter on flow Poiseuille (1847) stated 
that "we have measured the volumes of liquid flowing through tubes of 
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10 SUTERA & SKALAK 

different diameters under the same pressure, at the same temperature, in 
the same time, the tubes having the same length; and we have compared 
the efflux, taking the diameters of the tubes into account. " In fact, Poi
seuille used the data he already had in hand, interpolating as necessary and 
applying the "laws of pressure and length", to arrive at a set of volume
diameter data standardized to P = 775 mm Hg, L = 25 mm, bt= 500 s 
and T = lOne. The volume of the bulb used in each experiment was 
accurately determined by weighing the mercury contilined between the 
lines C and E (Figure 3) to the nearest 0.5 mg. Since these weighings were 
carried out at ambient temperature, the calculated bulb volumes were 
corrected for the thermal expansion of glass to find .:he correct volume at 
the standard temperature of lO°e. 

To assign a diameter to one of his noncircula':, noncylindrical tubes, 
Poiseuille first calculated a geometrical average diameter for each end. 
This was defined as the diameter of the circle having the same area as an 
ellipse with the maximum and minimum diameters of the tube section. 
The arithmetic average of the geometrical means at the two ends was taken 
as the average diameter of the tube. 

Following the above scheme, Poiseuille analyzed the data of seven of 
his previous experiments from which he was able to discern that the efflux 
volumes (in 500 s) varied directly as the fourth power of the average 
diameter. He would now claim that 

(1) 

K" being simply a function of temperature and the type of liquid flowing. 
For l Ooe his data yielded an average value of K" = 2495.224 for distilled 
water expressed in mixed units of (mg/s)/(mm Hg) mm3• 

In his final series of experiments, Poiseuille explored the influence of 
temperature from a few tenths of a degree e to 45°C. He used four of his 
original tubes (before truncating them): A, e, D', and E. In each case he 
corrected both tube diameter and bulb volume for thermal expansion or 
contraction relative to the reference state of lOoe. Recognizing that the 
dependence of K" on the temperature Twas nonlinear, he elected to seek 
a polynomial fit of the form K" = KI( l  +AT+A'T2+A"T3+ . . .  ) and 
found for distilled water: 

K" = 1836.7 ( l  +0.033679T +0.00022099 TZ), (2) 

where T is in dc. 
Poiseuille recognized what are now called entrance effects, but did not 

come to precise conclusions. In his first series of experiments on the 
pressure effect beginning with tube A, Poiseuille found that the results 
obtained from shorter tubes deviated from the proportionality Q = KP. 
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POISEUILLE'S LAW 11 

He relegated these experiments to a "Second Series of Experiments" and 
excluded their data from his subsequent analyses. Poiseuille concluded 
that the "pressure law" would hold only if tube length exceeded a certain 
limit and that this limit depended on the tube diameter. He saw that the 
smaller the diameter, the smaller the limiting or minimum length. Beyond 
this observation Poiseuille had no explanation for the "Second Series." In 
one case, referring to the tube that was about I mm long, he opined that 
the "movement of fluid molecules" through the tube was not rectilinear. 
He recalled his observation of blood flow in a small diameter (0.15 mm), 
lateral branch from the mesenteric artery of a living frog. The "blood 
globules" could be seen to move along linear trajectories only if the artery 
was longer than about 2 mm. 

The aberrant experiments (Second Series) encompassed a fairly wide 
range of Reynolds numbers, from close to 1 to 2600, but Poiseuille did not 
consider the relative roles of inertial and viscous forces in the development 
of tube flow. However, he expressed the belief that the pressure-flow 
proportionality would hold in capillary blood vessels longer than about 
300 microns. 

3. DERIVATION OF POISEUILLE'S LAW 

Strictly speaking, Poiseuille's law as written by Poiseuille is Equation (1) 
above. The equation which is more usually referred to as Poiseuille's law 
was not derived by Poiseuille. The more usual form is: 

(3) 

The difference between Equation (3) and Poiseuille's Equation (1) is 
simply that in Equation (3) Poiseuille's constant K" is replaced by n/128Jl 
where Jl is the viscosity of the fluid. Although viscosity had been defined 
by Navier (1823) no mention of viscosity per se was made by Poiseuille. 
However, he clearly recognized that K" was a function of temperature 
and the flowing liquid. Poiseuille's determinations of K" for water were 
so accurate that the viscosity derived from K" agrees with accepted values 
within 0.1 % (Bingham 1922). 

The first derivation of Equation (3) from the Navier-Stokes equations 
is usually attributed to Eduard Hagenbach (1833-1910), a physicist of 
Basel. Hagenbach's 1860 paper is reprinted in a book edited by L. Schiller 
(1933) who states in an appendix that at about the same time that Hagen
bach's paper appeared, another derivation of Poiseuille's law was pub
lished by H. Jacobson (1860) based on lectures of Franz Neumann, a 
physicist of Konigsberg. Neumann's own treatise did not appear until some 
years later (Neumann 1883). Bingham (1922) points out that derivations of 
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12 SUTERA & SKALAK 

Poiseuille's law were also published by H. Helmholtz (1860), 1. Stephan 
(1862), and E. Mathieu (1863). 

Sir George Gabriel Stokes (1813�1903) of Cambridge University appar
ently solved the problem ofPoiseuille flow as an application of the Navier
Stokes equations which he derived in the same paper in 1845. However, 
he did not publish the result because he was unsure of the boundary 
condition of zero velocity at the tube wall. He writes: "But having calcu
lated, according to the conditions which I have mentioned, the discharge 
of long straight circular pipes and rectangular canals, and compared the 
resulting formulae with some of the experiments of Bossut and Du Buat, 
I found that the formulae did not at all agree with experiment." [Charles 
Bossut (1730-1814), Pierre Louis Georges Du Buat (1734-1809)]. Stokes 
was apparently unaware ofPoiseuille's work at this time. Later in the same 
article (Stokes 1845), he discusses the flow in canals and points out the 
similarity to pipe flow under gravity at constant pressure. For the case of 
a circular pipe he writes: "In this case the solution is extremely easy" and 
gives the solution: 

gp sinO( 
w = 

4f.1 
(a2_r2)+ U. (4) 

Here w is the axial velocity, a and 0( are the radius and inclination of the 
pipe and U is the velocity of the fluid at the wall, which Stokes still leaves 
open. By 1851, Stokes felt quite sure of the no-slip condition for a viscous 
fluid at a rigid wall as he explicitly discusses it and uses it in his famous 
paper in which he derives Stokes law of drag on a sphere at low Reynolds 
number (Stokes 1851). But he did not remark further on pipe flow. 

The naming of Equation (3) as Poiseuille's law is due to Hagenbach 
(1860) who, after giving the derivation, generously suggested calling it 
Poiseuille's law: "wir werden daher die obige Formel die POI
SEUILLE'sche Formel nennen." Jacobson (1860) also calls Equation (3) 
Poiseuille's law. 

Hagenbach (1860) indicates a footnote that explains that Navier (1823) 
had arrived at a different equation, namely Q = CPD3jL where C is a 
constant [Claude Louis Marie Henri Navier (1785�1836)]. It is interesting 
to note that Thomas Young (1773� 1829) tried to summarize existing 
pressure-drop formulae for flow of liquids in tubes in his Croonian Lecture 
of 1809 which was aimed at studying various aspects of blood flow, includ
ing wave propagation, in living organisms. He also quotes data of Bossut 
and Du Buat. His equations also give a dependence of Q approximately 
proportional to D3. This was apparently a widespread opinion and explains 
why Bingham (1940) remarks on Poiseuille's work: "It was not a simple 
thing to go exactly counter to all of the established data and proposed 
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POISEUILLE'S LAW 13 

formulas of the hydraulicians. It made it necessary to use the utmost 
possible precision." 

An aspect of Poiseuille's law that is not explicitly covered in Poiseuille's 
work is the effect of gravity if the capillary is inclined. For this case 
Poiseuille's law may be written 

nD4 (P ) 
Q = 

12811 L + pX , (5) 

where p is the density of the fluid and X is the component of body force 
per unit mass in the direction of flow. All of Poiseuille's tests were carried 
out on horizontal tubes. 

Another poorly documented aspect of Poiseuille flow history concerns 
who first solved and named the unidirectional flow between parallel plates 
commonly called two-dimensional Poiseuille flow. The form ofPoiseuille's 
law that is the counterpart to Equation (5) in this case is: 

H4 (P ) 
q = 12tt L +pX , (6) 

where q is defined as the discharge rate in a width H of the flow and H is 
the spacing of the plates. Poiseuille never mentioned flow between parallel 
plates, but such flows were well known to Stokes (1898) and were probably 
derived earlier. 

4. HAGEN'S EXPERIMENTS 

In 1839, a German hydraulic engineer, Gotthilf Heinrich Ludwig Hagen 
(1797-1884) of Berlin, published a paper on the flow of water in cylindrical 
tubes. His results were similar to those ofPoiseuille, but less extensive and 
less accurate. However, they included some entrance effects and obser
vations of the differences between laminar and turbulent flows. In the 
notation used above, Hagen's expression for the driving pressure difference 
was assumed to be of the form 

(7) 

where A and B are constants. Hagen found A to be dependent on tem
perature and expressed it in the form 

A = a-bT+cT2 (8) 

where a, b, and c are experimental constants. Hagen appreciated that the 
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14 SUTERA & SKALAK 

Q2 term in (7) was associated with generating the kinetic energy of the 
fluid and the term linear in Q was a fluid friction resistance. It is readily 
seen that for sufficiently small values of Q, the Q2 term in Equation (7) 
should be negligible. Then solving Equation (7) for Q gives the same 
form as proposed by Poiseuille. Prandtl & Tietjens (1934) have converted 
Hagen's measurements of the coefficient A in Equations (7) and (8) to 
derive a plot of a friction factor vs the Reynolds number, RN = D Vjv, 

where Vis the mean velocity and v is the kinematic viscosity. Hagen's data 
fall very close to the theoretical line f = 64jRN (where f is the usual pipe 
friction factor) for a range of Reynolds numbers from about 70 to 1000. 
The coefficient of viscosity of water extracted from Hagen's data is also 
shown to agree closely with accepted values. In view of the fact that 
Hagen's results were quite accurate and preceded publication of Poi
seuille's main papers in 1840 and 1841, Prandtl & Tietjens suggest that the 
laminar flow law should be called the Hagen-Poiseuille law as advocated 
by Ostwald (1925). It seems, however, that the majority opinion, as ex
pressed by common usage, has settled on calling it Poiseuille's law. There are 
some points of rationale that can be raised in favor of this decision. It 
appears that Poiseuille and Hagen worked quite independently and were 
doing their experiments at about the same time. Their papers do not 
cross-reference each other's work, but Hagen in 1869 published an article 
pointing out that his 1839 paper preceded Poiseuille's work (Hagen 1869). 
Poiseuille's first paper is dated 1838, although his main results were not 
published until 1840 and 184l. 

Hagen's tests were on three brass tubes of diameters 0.255, 0.401, and 
0.591 em and lengths of 47.4, 109, and 105 em, respectively. In seeking the 
dependence of the pressure drop on tube diameter, he used a least squares 
fit to determine the appropriate exponent of the diameter and reported 
a value of -4.12-but suggested that since the possible errors in the 
measurements were not exactly known, a value of - 4.0 be adopted. In 
Poiseuille's work, several more different diameters were used and the 
exponent - 4.0 was more definitively established. Bingham (1940) con
cludes, 

It does not appear that entire historical justice can be done in a name and the coupling 
of several names together is cumbersome and unnecessary. The greatest importance 
must be attached to the fact that Poiseuille's paper brought conviction, whereas without 
it the rheological writings of all the others might have long remained unknown or never 
have been wri tten. 

5. EXTENSIONS AND USES OF POISEUILLE'S LAW 

Historically, one of the interesting uses of Poiseuille's careful experiments 
was to provide evidence as to the correct boundary condition for a viscous 
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POISEUILLE'S LAW 15 

flow at a solid boundary. Lamb (1932) remarks on the occurrence of the 
factor D4 in the formula for discharge rate through a tube: "This last result 
is of importance as furnishing a conclusive proof that there is in these 
experiments no appreciable slippage of the fluid in contact with the wall." 
Lamb goes on to show that if there were slippage at the wall, there would 
be a correction to Poiseuille's law, which, in fact, Poiseuille's experiments 
show to be zero within measurable accuracy. 

Deeley & Parr (1913) proposed naming the e.G.S. unit of viscosity the 
"Poise" in honor ofPoiseuille. We quote from their paper on the viscosity 
of glacier ice: 

It would be a distinct advantage to have a name for the unit of viscosity expressed in 
e.G.S. units, and we would suggest that the word Poise be used for this; for it is to 

Poiseuille that we owe the experimental demonstration that when a liquid flows through 
a capillary tube of considerable length, at constant temperature, the viscosity is constant 
at all rates of shear, provided that the flow is not turbulent. In the case of a soft solid 
(plastic substance) the so-called viscosity is not the same for all rates of shear: whereas 
the viscosity of a liquid is a physical constant and should be named. 

This usage is then found in the standards literature as early as 1918 (Perry 
1955) and in later literature on weights, measures, and units (CGPM 1948, 
Mechtly 1964). 

As a practical matter, the capillary viscometer is a simplified version of 
Poiseuille's test equipment, and its use is based on PoiseuiIIe's law with 
interpretation based on Hagenbach's derivation, Equation (3). 

It is interesting to take stock of progress made toward Poiseuille's 
original goal of understanding the laws of pressure distribution in a living 
circulation of blood. A great deal has been learned about the properties 
of blood cells and the flow of blood in the 20th century. When all is said 
and done, Poiseuille's law is a good approximation for blood flow provided 
the appropriate value for the apparent viscosity is used. Therein lies the 
rub. Red blood cells are very flexible and at low shear rates they aggregate 
into stacks called rouleaux. At higher shear stresses, disaggregation and 
deformation of the cells leads to decreasing viscosity (see Chien et a1 1984, 
for example). Nevertheless, when bulk viscosity measurements are made 
(in large tubes) and compared to the apparent viscosity derived from tube 
flows in smaller tubes at the same hematocrit (cell concentration) and 
mean shear rate, the results agree quite closely for diameters down to 
about 29 tlm (Barbee & Cokelet (1971). 

Blood cells tend to move away from blood vessel walls [as observed by 
Poiseuille (1835) and many others] in small diameter vessels. This leads to 
a reduction in apparent viscosity as the diameter decreases-known as the 
Fahraeus-Lindqvist (1931) effect. However, it has been shown that this 
result is largely due to the reduction in hematocrit which results from 
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16 SUTERA & SKALAK 

the centralization of the blood cells (Cokelet 1987). At sufficiently small 
diameters (D < 8 mm) there is a reverse Fahraeus-Lindqvist effect, namely, 
the apparent viscosity increases with decreasing capillary diameter because 
the blood cells fill most of the lumen (Skalak 1990); so Poiseuille's law no 
longer holds. 

As a direct proof of the extent of applicability of Poiseuille's law to the 
in vivo flow of blood, a summary of measurements due to Lipowsky et al 
(1978) is shown in Figure 5. A good correlation of the resistance per unit 
length of vessel is obtained with the exponent of vessel radius close to 4.0. 
Surely Poiseuille would have been glad to see this! 

Poiseuille's law is one of the few equations derived from applied mech
anics that is well known in the present medical community. It has been 
used to model other biological flows, besides blood flow. Pappenheimer 
(1978) explains how he used it to discuss flow through the endothelial layer 
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Figure 5 Resistance per unit length of vessel (R/L) where R = !:;'P/Q. The resistance R to 
blood flow is computed from simultaneous measurements of flow Q and pressure drop !:;'P,in 
single unbranched vessels of mesentery. The solid curves are power law regressions of the 
form R/L = aDm. (From Lipowsky et a11978, by permission). 
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POISEUILLE'S LAW 17 

of blood vessels to approximate the size of pores or other channels that 
must exist to account for measured fluid transport. 

Similarly, flow through porous media (Batchelor 1967, p. 233) and filters 
(Skalak et al 1987) have been modeled by defining equivalent Poiscuille 
flows. Like Stokes drag for sedimenting particles, Poiseuille's law allows 
an approximate length scale to be defined characterizing the geometry of 
laminar flows where the geometry is, in fact, much more complex. 

Extensions of Poiseuille's law are legion, depending on which definition 
of an extension is adopted. A broad definition might be classes of flows 
which, in some limit of the range of the parameters involved, reduce again 
to Poiseuille's law. Thus, Poiseuille's law is one example of exact solutions 
of the Navier-Stokes equations (see Wang 1991 for a comprehensive dis
cussion). 

A case of interest to blood flow is the exact solution of the sinusoidally 
oscillatory rectilinear flow of a Newtonian fluid in a circular tube. This 
solution has also been published independently several times (McDonald 
1974), but is known in the blood flow literature through the work of 
Womersley (1955) and McDonald (1974). At sufficiently low dimensionless 
frequency [0: = a(w/v)1/2 where a is the tube radius and w is the frequency], 
the oscillatory flow velocity profile and pressure gradient approach Poi
seuille flow. 

Another interesting extension is the so-called Hele-Shaw flows between 
parallel plates (Hele-Shaw 1898). The theory of these flows was given by 
Stokes ( 1898) who showed that the parabolic Poiseuille velocity profile 
was obtained in each component of velocity parallel to the bounding plates. 
He also pointed out the analogy of Hele-Shaw flows to two-dimensional 
inviscid flow. 

Extensions and uses of Poiseuille flow listed above are just a few cases 
which readily come to mind. The authors apologize for neglect of the many 
additional cases and categories not covered in which the name ofPoiseuille 
is involved. However, one of the most recent such references indicates how 
far afield Poiseuille's influence has extended (Chamkha 1991). Surely, 
Poiseuille would be surprised to see his name in the title: "Series solution 
for unsteady hydromagnetic Poiseuille two-phase flow." It shows how long 
and far the influence of Poiseuille has been manifest. 
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