
The Hitchhiker’s Guide to Successful
Wireless Sensor Network Deployments

Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vetterli

LCAV, EPFL, Switzerland

firstname.lastname@epfl.ch

ABSTRACT

The successful deployment of a wireless sensor network is
a difficult task, littered with traps and pitfalls. Even a
functional network does not guarantee gathering meaning-
ful data. In SensorScope, with its multiple campaigns in
various environments (e.g., urban, high-mountain), we have
acquired much knowledge in planning, conducting, and man-
aging real-world sensor network deployments. In this paper,
we share our experience by stepping through the entire pro-
cess, from the preparatory hard- and software development
to the actual field deployment. Illustrated by numerous real-
life examples, excerpted from our own experience, we point
out many potential problems along this way and their pos-
sible solutions. We also indicate the importance of a close
interaction with the end-user community in planning and
running the network, and finally exploiting the data.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
Networks.

General Terms

Design, Experimentation.

Keywords

Architecture, Deployment, Environmental Monitoring, Im-
plementation, Wireless Sensor Network.

1. INTRODUCTION
Although most theoretical aspects of wireless sensor net-

works (WSNs) have been well studied over the past few years
(e.g., synchronization [12], routing [19]), real-world deploy-
ments still remain a challenging task. All too often, good
WSN systems fail to provide expected results once deployed
in the real world. Such failures may be either due to a com-
pletely non-working system or an inability to meaningfully

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
Copyright 2008 ACM 978-1-59593-990-6/08/11 ...$5.00.

exploit gathered data. While certain issues may be antici-
pated, experience is still the key asset to ensure a successful
deployment. A few groups have already shared part of their
experience in this field, ranging from habitat monitoring [15]
to precision agriculture [7], to the study of tree canopy cli-
mate [17], to environmental monitoring [14, 18].

Three main areas exist, in which expertise is needed to
access the “Holy Grail” of successful deployments:

• Development — The first step, during which local con-
ditions, such as the expected weather in case of out-
door deployments, must be carefully studied and con-
sidered. Hardware must be well suited for the targeted
site, while embedded software must be designed in a
way that eases debugging later on.

• Testing — Ensuring that the system is ready to be
deployed before going on site is mandatory, and setting
up a testbed is often the best solution. Designing a
good one, however, is not so easy.

• Deployment — Last but not least, the deployment is
most often the time to face unexpected problems due
to unanticipated or—even worse—underestimated is-
sues.

Over the past three years, we have worked on Sensor-
Scope1, an environmental monitoring system based on a
WSN. We have engineered a complete framework, including
electronic circuit boards, a solar energy system, an embed-
ded communication stack, based on TinyOS [9], as well as
server-side software. We have run six deployments, rang-
ing in size from half a dozen to a hundred stations, from
EPFL’s campus to high-mountain sites. Throughout these
campaigns, we have gathered experience in preparing, con-
ducting, and managing deployments. As a case in point,
we have deployed our system on a rock glacier located at
2 500m (8 200 ft), on top of the Génépi, a mountain in the
Swiss Alps. Although beautiful, this environment is rough
and the deployment took place under very harsh conditions.
It was, nevertheless, successful and led environmental sci-
entists to the modeling of a microclimate, which has been
causing dangerous mud streams [1].

In this paper, we share our experience and go through the
aforementioned steps on the way to successful WSN deploy-
ments, detailing the problems we faced (e.g., weather con-
ditions, traceability) and the solutions we found. Although

1http://sensorscope.epfl.ch

Figure 1: Overall SensorScope architecture. Deployments feature a GPRS-enabled sink that sends gathered data to a network
socket on our database server, which, in turn, makes it available to other servers. Remote management of the sink is possible
via GSM text messages.

SensorScope is aimed at outdoor deployments, many of the
issues we describe in this paper are common to all kinds of
deployments. We believe that our experience will be of in-
terest to the community, and that our story will help other
groups in anticipating many of the problems they are likely
to face. In fact, this paper is written as a guide for readers
aiming to deploy a WSN. It contains much advice, illustrated
with many examples, all taken from our own experience.

In the next section, we bring up the difficulty of deploying
a WSN, while in Sec. 3, we provide an overview of Sensor-
Scope and its various deployments. Sec. 4 is the guide to
successful deployments, and Sec. 5 concludes this paper.

2. DEPLOYING WIRELESS SENSOR NET-

WORKS
Deploying a WSN has always been reported as a difficult

task. One of the first known deployments was performed
by a group at Berkeley in 2002, on Great Duck Island, to
help habitat monitoring [10, 15]. While this was pioneering
work, limited to single-hop communications, it helped in
understanding the difficulty of coping with hardware failures
and of correctly packaging sensors to protect them, while
still getting correct readings.

A few years later, the same group reported results ob-
tained from their new sensor network, Macroscope [17], built
on top of TASK [2], a set of WSN software and tools, also
designed at Berkeley. Macroscope has been extensively used
for microclimate monitoring of a redwood tree. Despite
building on their previous experience, they faced numer-
ous issues, such as correctly calibrating sensors or detect-
ing outliers. They recommended to build a sensor network
well-suited to the application, to get the most robust sys-
tem possible, and to carefully think about the deployment
methodology.

Lessons stacked up with the increasing quantity of re-
ported deployments, resulting in more and more successful
data gathering campaigns. One of the most exciting expe-
riences has been the study of an active volcano, measuring
seismic and infrasonic signals, performed by a group at Har-
vard [18]. Still, even more advice and cautions were pro-
vided, for instance about the low quality of crystals in most
sensor motes, or about the need for the highest possible de-
gree of remote control of the deployment.

Nevertheless, new reports about failed campaigns keep
appearing, demonstrating that WSN deployments remain

a non-trivial task. One of them was reported by researchers
at Delft University, who deployed a large-scale sensor net-
work in a potato field [7]. Their goal was to improve the
protection of potatoes against a fungal disease, by precisely
monitoring its development. Unfortunately, the deployment
went awry due to unanticipated issues, such as the bad in-
teraction between many“external”software components, not
suited to the targeted application. A lack of consistency and
coordination between the team members was also reported.
Overall, this paper remains a good advocate for carefully
preparing deployments to avoid disastrous failures.

Finally, even very recent deployments still provide new in-
sights into the methodology. For instance, researchers from
the University of Virginia have reported their work on WSNs
for environmental research [14]. LUSTER, their system, has
been designed mainly to gather light measures. They em-
phasize the need to use monitoring tools, to assess the health
of the system, as well as the need for deployment-time tools
to ensure the system is up and running before leaving the
field. Such a tool is actually already part of TASK [2].

All these examples cover a wide range of scenarios, and
clearly demonstrate how much more difficult it is to deploy
a WSN in the real-world rather than in a simulator. In this
paper, we have brought together many of the aforementioned
issues and advice, augmented with our own experience, to
help at improving current deployment methodology.

3. SensorScope
SensorScope is an environmental monitoring system, ba-

sed on a time-driven WSN. The network’s sensing stations
regularly transmit environmental data (e.g., wind speed and
direction) to a sink, which, in turn, uses a gateway to relay
the data to a server. Depending on the deployment scenario
and the available communication resources, we use different
gateways: GPRS, Wi-Fi, or Ethernet. Data is published
on our real-time Google Maps-based web interface2 and on
Microsoft’s SensorMap website3. Figure 1 illustrates this ar-
chitecture. Several deployments can occur at the same time,
all data being sent to the same database server.

SensorScope is developed in collaboration between two re-
search laboratories at EPFL: LCAV (signal processing and
networking) and EFLUM (environmental fluid mechanics
and hydrology). Our goal is to improve current environmen-

2http://www.climaps.com
3http://atom.research.microsoft.com/sensormap

(a) Sensing station. (b) Sensor box.

Figure 2: Design of our sensing station.

Table 1: TinyNode characteristics.

Component Characteristic Value

CPU
Type MSP430 (16-bit)
Frequency 8MHz

Memory
ROM 48KB
RAM 10KB
Flash 512KB

Radio
Type Semtech XE1205
Frequency 868–870MHz
Bit rate 76Kbps
Range Up to 500m (15 dBm)

tal data collection techniques, commonly based on a single,
expensive station (± e 60 000 is a common price). Further-
more, such stations use data loggers with limited capacity,
requiring manual on-site downloads. Using a WSN is highly
relevant to this area of research, as it allows for real-time
feedback (e.g., storms, pollution) as well as long-term mon-
itoring (e.g., snow level) in areas of varying size.

In this section, we survey both the hardware and the net-
work architecture we have developed for the project. More
in-depth details have been previously published [1]. We also
describe the various deployments we have performed so far.

3.1 Hardware
We use a Shockfish TinyNode4 sensor mote, whose char-

acteristics are given in Table 1. We opted for this platform
because of its long communication range and its low power
consumption. A transmission power of 15 dBm allows for a
communication range of up to 500m with the on-board an-
tenna, and up to 1 km using an external quarter-wavelength
omnidirectional antenna [4].

To allow for long-term deployments, we designed a com-
plete solar energy system. It is composed of a solar panel
and two rechargeable batteries, one of them being a backup
buffer. Stations are equipped with seven sensors, measuring
nine environmental quantities: air temperature and humid-
ity, surface temperature, solar radiation, wind speed and
direction, soil water content and suction, and precipitation.

A sensing station, as depicted in Figure 2a, is composed of

4http://www.tinynode.com

(a) The stack. (b) Packet format.

Figure 3: SensorScope communication stack.

a 2m high aluminum flagstaff, to which the solar panel and
the sensors are fixed. The electronic circuitry is placed inside
a hermetic box, shown in Figure 2b, which is also attached to
the pole. The average price of a station is around e 900. The
price is kept down by using lower-end sensors. A key goal
of the project is to obtain dense spatial measurements. This
is achieved by deploying multiple low-cost—possibly less-
accurate—sensing stations, rather than a single expensive,
but very accurate one.

3.2 Network
To meet our requirements in multi-hop wireless network-

ing, we have designed and implemented a communication
stack for TinyOS 2.x, illustrated in Figure 3, that follows
the OSI model and is freely available under an open-source
license5. It stores four bytes per packet in the default 28-
byte TinyOS payload, leaving 24 bytes for the application
itself. We chose not to modify the TinyOS network headers
for reasons of independence. There are four layers:

• Application — Collects data to be sent to the sink
(e.g., environmental measurements, battery levels).

• Transport — Creates, receives, and queues packets.

• Network — Takes all routing decisions (i.e., choosing
a next hop); synchronizes stations.

• MAC — Performs synchronous duty-cycling of the ra-
dio, similar to TASK [2], and acknowledges data pack-
ets to the previous hop; uses a random backoff mech-
anism to minimize packet collisions.

3.2.1 Neighborhood Management

Motes maintain a neighborhood table, in which they store
the neighbors they can hear from. We chose an overhearing
method in the spirit of MintRoute [19]: there are no ded-
icated neighborhood discovery packets; neighbors are dis-
covered by listening to data traffic; the sink starts the dis-
covery process by emitting beacons. A cost—currently the
hop-distance to the sink—and a timestamp are associated
with each neighbor. Each time a packet is captured, the
table is updated. When a neighbor entry gets too old, it is

5http://sensorscope.epfl.ch/network_code

Table 2: All SensorScope deployments conducted since the beginning of the project. The first two deployments were limited
to single-hop communications, while the others used multi-hop communications.

Place Duration Size Data Points Characteristics

Campus of EPFL 6 months (2006) 97 stations 190 000 000 Large-scale WSN
Plaine Morte 4 days (2007) 13 stations 1 300 000 Rapid deployment
Morges 1 month (2007) 6 stations 750 000 First use of multi-hop
Génépi 2 months (2007) 16 stations 5 800 000 High-mountain rock glacier
Grand St. Bernard 1.5 month (2007) 17 stations 4 300 000 High-mountain pass
Wannengrat Ongoing (2008) 20 stations n/a High-mountain ridge
Campus of EPFL Ongoing (2008) 10 stations n/a Outdoor testbed

removed from the table. To avoid sending packets to poorly-
connected neighbors, a link quality measure is maintained
for each neighbor. The measure is based on a count of the
missing sequence numbers of overheard packets.

3.2.2 Synchronization

To allow for meaningful exploitation, gathered data must
be time-stamped by the nodes, as part of the sensing process.
Because our power management mechanism relies on duty-
cycling, we opted for global synchronization of all motes. We
use SYNC_REQUEST/SYNC_REPLY messages to propagate the
local time of the sink (the network time), so that all nodes
share its clock. When a node wants to update its clock, it
sends a request to a neighbor closer to the sink than itself.
This neighbor, if it knows the network time, broadcasts it
back, and all receivers that are further from the sink update
their clock. By doing this, the network time always prop-
agates away from the sink, which acts as the global refer-
ence. Time-stamping of synchronization requests is done at
the MAC layer to avoid delay errors [5]. The sink regularly
sends its local time to the server, which can compute the
offset between the network time and the actual time. The
entire process is repeated regularly, so that all nodes stay
synchronized with the sink, even if their own clocks drift.
Hence, adjusting timestamps at the server always provides
the correct absolute time.

3.2.3 Power Management

Even with solar energy, power management at the MAC
layer is essential for long-term deployments, as the radio
chip is a greedy energy consumer. Turning on the radio
of a TinyNode increases its energy consumption approxi-
mately eightfold. We opted for a synchronous duty-cycling
scheme [2], rather than an asynchronous low power listening
approach [11]. We made this decision based on interactions
with EFLUM, which allowed us to determine that overall
data traffic would be low. Nodes wake up at approximately
the same time thanks to the previously described synchro-
nization mechanism, which is precise enough for this pur-
pose. Nodes which are not yet synchronized with the rest
of the network keep their radio on, until they acquire the
network time. To account for clock drift, nodes wait a bit at
the beginning of their active state to make sure that their
neighbors are indeed awake. Because TinyOS is based on
events, the division into communication cycles is transpar-
ent to other layers. When a packet has to be sent while the
radio is off, it is queued until the next active state; the net-
work layer simply waits for the TinyOS sendDone signal as
usual.

3.2.4 Routing

To route data to the sink, we chose a randomizing solution.
Each time a packet has to be routed, the forwarding node
randomly selects a next hop between the neighbors closer
to the sink, as opposed to MintRoute [19], where nodes are
always connected to their best parent. To give priority to
the better neighbors, two thresholds, based on link quality,
are used: when a packet has to be routed, a random good
neighbor is selected, if there is one; otherwise, a random fair
neighbor is chosen [1].

3.3 Deployments
Over the past years, we have conducted six deployments

(see Table 2), ranging in size from 6 to 97 stations, from the
EPFL campus to high-up in the Alps. During these cam-
paigns, we have gathered hundreds of megabytes of environ-
mental data, freely available for download on our website6.

We started with a large “backyard” deployment on our
campus, using a simple single-hop routing protocol with sev-
eral sinks and Ethernet gateways. This deployment allowed
us to extensively test the hardware (e.g., solar energy sys-
tem, sensor board, sensors), while avoiding the added com-
plexity of multi-hopping.

In a second step, we deployed our system on an alpine
glacier. The aim of this deployment was to gather atmo-
spheric measures during a highly stable winter period. As
these events are rare and unpredictable, they require a rapid
deployment, when the moment arises. Due to the small
size of the deployment, we again employed our single-hop
communication protocol, this time, however, with a GPRS
gateway at the sink. We proved the feasibility of a rapid
deployment and also tested our system under very harsh
conditions (e.g., extreme temperature values and variations,
icing).

Once confident in our hardware and software, we concen-
trated on networking. The first deployment that required
multi-hopping consisted of six stations located along a river
bank, to monitor the air temperature and humidity, as well
as the water temperature. The aim of this research project,
financed by the Swiss Federal Office for the Environment,
is to counter the effects of river-warming by systematically
planting vegetation along river banks.

These successful deployments encouraged us to engage in
more challenging ones: long-term deployments in remote
and difficult-to-access high-mountain sites. Swiss authorities
in charge of risk management asked us to deploy our system
in two potentially dangerous places: the Génépi rock glacier
and the Grand St. Bernard pass. The former is infamous

6http://sensorscope.epfl.ch/environmental_data

for being the source of dangerous mud streams that have al-
ready caused severe damage, while the latter is known as the
“Combe des Morts” (“Canyon of the Dead”). Both deploy-
ments required multi-hop communications to cover the area
of interest and a GPRS gateway to relay data to the server.
Moreover, due to the remote location of both sites, in-situ
maintenance had to be minimized (the Génépi rock glacier
is reachable either by helicopter or by a strenuous five-hour
hike). Each deployment enabled the development of an ac-
curate hydrological model of the respective site, which could
not have been obtained with traditional measurement meth-
ods. The use of SensorScope provided spatially and tempo-
rally dense measurements, and resulting models will help
in predicting avalanches and mud streams, thus preventing
accidental deaths [1].

We are currently running a new deployment in Wannen-
grat, a 2 500m high environmental observatory in Switzer-
land. One of the projects at this observatory studies the
wind field using seven permanent meteorological stations,
and employs their measurements to devise new models. So-
metimes however, higher resolution measurements are nee-
ded to fully understand the complex processes, which are
taking place. We have thus deployed a dense network of 20
stations.

4. THE HITCHHIKER’S GUIDE
Despite careful design and concerns about possible deploy-

ment issues, we still faced many problems. In the following,
we try to outline what we have learned from our mistakes,
by describing many of the problems we faced, how we solved
them, and how they could have been avoided.

4.1 Hardware and Software Development
Development is the first step towards the construction of

a new system. During this phase, it is of prime importance
to ensure that both hardware and software fit the intended
application, considering not only the expected results, but
also the conditions, in which deployments will take place.

Consider Local Conditions

You must carefully investigate how local environmental
conditions will affect your deployments.

Because we knew that our deployments were going to be
outdoors, we studied, with the help of EFLUM, how weather
conditions would impact our system. However, it is not al-
ways obvious how, possibly drastic, variations in tempera-
ture and humidity will affect hardware devices in general,
so that a lack of testing under real conditions may lead to
serious issues. For instance, we already knew that our Li-Ion
battery should not be charged when the temperature is be-
low freezing, as it could explode. We thus disabled its charg-
ing during the Génépi deployment so that only the main
battery was charged. We nevertheless faced many hardware
failures during that deployment. For instance, hydrologists
brought a disdrometer, an expensive instrument that can
distinguish between different kinds of rain by analyzing the
water drops. It was supposed to be used as a high-quality
benchmarking tool. It turned out that it worked only during
a few days, because it was too cold on top of the mountain.
Of course, we noticed that only at the end of the deploy-
ment, because the device uses a data logger and no one had
the chance to look at its measures until it was too late.

It is, therefore, crucial to simulate the anticipated con-

−30

−15

0

15

30

1 2 3 4 5 6 7 8

A
ir
 t
e
m

p
e
ra

tu
re

 [
°

C
] Indoor Outdoor Freezer

0

125

250

375

500

1 2 3 4 5 6 7 8

T
im

e
 d

ri
ft
 [
m

s
]

Day

Figure 4: Time drift per hour of a TinyNode.

ditions as accurately as possible. Studying the impact of
weather conditions on hardware devices may be done by us-
ing a climate chamber, in which arbitrary temperature/hu-
midity conditions can be created. However, in most cases,
basic tests inside a household freezer will expose potential
points of failure.

Time’s a Drifter

Keep in mind that the crystals used in sensor motes are
imperfect and that temperature impacts their precision [18].

Figure 4 shows the time drift of a TinyNode relative to the
air temperature. This experiment was conducted in three
phases, during which the mote was placed successively in-
doors, outdoors, and inside a freezer. The drift was com-
puted by subtracting the mote’s local time from a global
reference time every hour. We can see that the colder the
temperature, the slower the crystal oscillates. Indoors, the
drift is close to the data-sheet value (± 120ms/h) while in-
side the freezer, the drift is much higher (± 375ms/h). By
looking at the outdoors part of the figure, it is clear that
day/night cycles can be particularly challenging, and that
rapid temperature changes greatly affect the time drift. Ba-
sed on these results, we designed our protocols so that they
could cope with such variations, e.g., by accounting for drift
when waking up nodes, rather than believing in their perfect
synchronization.

Hard Shell – Soft Core

If you target outdoor deployments, well thought-out packa-
ging of sensors is of prime importance.

Packaging sensors for outdoor deployments is a difficult
task, as it must protect electronic parts from humidity and
dust while being unobtrusive at the same time [15]. Inter-
national Ingress Protection (IP) codes are used to specify
the degree of environmental protection for electrical enclo-
sures. The required level for outdoor deployments is IP67,
which provides full protection against dust and water, up to
an immersion depth of one meter. With any lesser degree
of protection, electronics, being susceptible to corrosion, are
exposed to humidity and atmospheric contaminants, leading
to irreparable damages. Corrosion may cause the malfunc-
tion of a sensor connection, consequently corrupting the data
from that sensor. Even more disastrous, humidity may cause

0

25

50

75

100

Oct 5 Oct 6 Oct 7 Oct 8

A
ir
 h

u
m

id
it
y
 [
%

]

(a) Three humidity measurements (Génépi). Due to corro-
sion, sensors fail when there is too much humidity

0

20

40

60

80

100

120

140

Sep 25 Oct 4 Oct 14 Oct 24

R
a
in

 [
m

m
]

Average falls (without station 14)
Fall reported by station 14

(b) Rain fall (Grand St. Bernard). A short circuit caused
by previous rain falls corrupted the readings of station 14.

Figure 5: Two striking examples of bad measurements caused by the corrosion of sensors.

a short circuit in a sensor connector resulting in permanent
damage and/or continuous rebooting of the affected mote.

For instance, the Sensirion SHT75 sensor we use to mea-
sure both air temperature and humidity comes unpackaged.
It took us quite some time to figure out a suitable packaging,
protecting from direct sunlight, while still letting the wind
reach the sensor. Our solution is to use a stacked-plates
structure and a small adapting circuit to embed the sensor
inside. The wire connection to the sensor is additionally pro-
tected using epoxy resin. Despite all efforts, we faced many
early sensor failures and node reboots during cold and humid
periods, forcing us to review and improve our design several
times. Figure 5a shows the humidity measures reported dur-
ing the Génépi deployment by three different SHT75 sensors.
Due to poor packaging, condensation settled on the connec-
tors, corrupting measurements when the humidity was too
high. This is clearly visible on Oct 6.

This particular sensor is not the only one that caused us
problems, though. Another such example is illustrated in
Figure 5b, which shows the average rain fall reported by all
stations excluding station 14, as well as only that reported
by station 14 during the Grand St. Bernard deployment. We
can see that the rain meter of this station worked well during
the first 12 days and reported erroneous values after that.
The problem was again the corrosion of the connector to the
sensor board, which caused a short circuit in the interrupt
line, and, therefore, the reading of false precipitation val-
ues. Such failures are always to be expected with outdoor
deployments.

There Is no Light at the End of the Tunnel

Do not forget that LEDs are big energy consumers.

On our motes, a single LED consumes about 3mA. That
makes a total of 9mA for the typical three LEDs, while the
radio chip, when on, consumes “only” 15mA. There is thus
no reason to efficiently manage the radio while carelessly us-
ing the LEDs. As they are the most useful debugging tools
for WSN developers (and often the only ones), we have writ-
ten a simple module implementing the TinyOS Led inter-
face with empty functions. Using conditional compilation,

this module is used during deployments, while the standard
TinyOS module is used on our indoor testbed. Thus, the
code remains the same, but calls to turn on/off the LEDs
simply do nothing during deployments. With this trick, en-
ergy is conserved without error-prone manual code changes.

Keep It Small and Simple

Follow Einstein’s famous advice, “Everything should be
made as simple as possible, but not simpler.”

Both code and algorithms must be well-fitted to the in-
tended application, in order to avoid unexpected interactions
between software components as much as possible [2]. Some-
times, complexity cannot be avoided, but whenever the ben-
efits are questionable, simple solutions should be preferred.
For instance, as our stations contain energy consumers as
well as batteries and solar panels, an overall positive energy
balance is required and at the same time sufficient to achieve
long-term autonomy. Fortunately, we were able to avoid
complex, ultra low-power MAC layers, generally requiring
high-precision synchronization, which may be impossible to
achieve in realistic conditions, in favor of a very simple, pre-
dictable one. Furthermore, packet losses with such complex
protocols are more likely to occur in harsh conditions (e.g.,
heavy rain, intense cold), since that is when channel con-
ditions degrade. However, such conditions are at the same
time the most interesting episodes for environmental data
analysis. The code of our communication stack (i.e., trans-
port, network, and MAC layers) is just over a thousand lines
long, and is thus easy to read and maintain.

Remote Control

You should have as much remote control facilities on your
deployments as possible.

If sensor motes are to be deployed in difficult-to-access
places (and sometimes even in easy-to-access places), the
ability to remotely control the deployment is highly desir-
able. When going back to the deployment site is difficult
or costly, being able to adjust certain parameters remotely,
such as the sampling frequency or the duty-cycle ratio, may
be necessary [18]. More drastically, being able to reprogram

 0

 2

 4

 6

Sep 16 17 18 19 20 21 22 Sep 23

B
a
tt
e
ry

 l
e
v
e
l
[v

]

Main battery
Secondary battery

0

25

50

75

100

Sep 16 17 18 19 20 21 22 Sep 23

S
o
la

r
p
o
w

e
r

[m
A

]

(a) One week of data from the solar energy system of a
station (Génépi).

0

10000

20000

30000

40000

50000

4 6 7 10 12 13 14 29 32 33 34 36 39 42 44 45 46

D
a
ta

 p
a
c
k
e
ts

 s
e
n
d
in

g
s

Sensor mote

Not acknowledged
Canceled

Successful

(b) Load distribution on our indoor testbed.

Figure 6: Two examples of how the SensorScope network can be monitored. Both plots, each showing one week of data, were
generated from status packets, which are regularly emitted by the motes.

the motes of a deployment, without leaving the office, may
be a desired feature.

When we developed SensorScope, we added routines to
the software running on the GPRS module, which enable
us to control it remotely, using simple GSM text messages,
sent from a mobile phone. This allows us to query its status
or to reboot either the GPRS or the sink’s mote. We can
also ask the GPRS to download a new version of its binary
image from an FTP server, and to reboot using this new
version. We still cannot, however, change parameters of the
network, as this requires a mechanism to disseminate infor-
mation from the sink, which is currently not implemented.
We are also studying the possibility to support Deluge [6],
an over-the-air programming mechanism that can be used
to reprogram the motes. During the Génépi deployment,
when we discovered a bug in the driver of the wind speed
sensor, detailed below, such a mechanism would have been
very useful.

Don’t Be a Black Box

Keep in mind that programming embedded devices requires
a different philosophy than traditional programming.

In traditional programming, code is easy to debug, using
any kind of debugging statement or tool. It is far more
difficult with sensor motes, as the simplest way for them
to communicate with the outside world is by blinking their
LEDs or using their serial port. These interfaces are not
only limited, but also mostly unusable once a network is
deployed. Moreover, embedded programs are more often
subject to hardware failures than traditional software, so
that their behavior can be incorrect, even if the code itself
is actually fine [15].

It is thus of great importance to be able to determine
what happens inside the network, and not only at the sink.
This issue has already been pinpointed—and proved to be
of prime importance—in previous work, but is unfortunately
still widely underestimated in the WSN community [7, 14].
In SensorScope, besides traditional sensing packets, sensor
motes generate three kinds of status packets:

• Energy — They contain the energy level of each bat-
tery, the incoming solar power, the current drawn by
the system, and which battery is currently in use.

• Network — They contain statistics about the most re-
cent activity of the transport layer, such as the number
of data/control packets sent, the greatest size of the
queues, or the quantity of non-acknowledged packets.

• Neighborhood — They contain a dump of the neigh-
borhood table, including the identifier of each neigh-
bor and its link quality. If the table does not fit into
one packet, multiple packets are created.

Once the routing protocol is in place, it is easy to cre-
ate such packets and to let them go to the sink—and thus
to the server—just like sensing packets. Their frequency is
low (four per hour), so that they do not have much impact
on data traffic. Figure 6 provides two examples of how our
system can be monitored. Figure 6a shows the energy level
of the two batteries of a station during the Génépi deploy-
ment, as well as the incoming solar energy. This metadata
allowed us to determine that the backup battery was never
used, even in case of multiple, consecutive cloudy days. Due
to this observation, our next-generation energy board will
use only a single battery. Figure 6b provides the load distri-
bution of the network on our indoor testbed, showing that
nodes 4, 6, and 33 are the main hubs for routing packets to
the sink.

Publish or Perish

You should plan your publications very early, to ensure
that the required data will be gathered during deployments.

Our primary goal in SensorScope was to develop a work-
ing system and to succeed in collecting environmental data.
Unfortunately, we forgot some of the issues related to pub-
lishing our results to the networking community, more or less
thinking that successful deployments would be enough. This
was a mistake, as our status packets have proved to be insuf-
ficient to extract some of the interesting data we would like

to publish now. For example, we have no statistics about the
waiting time of individual packets at a given node, or about
the time correlation of packet retransmissions. We should
have actually gathered more data related to network condi-
tions, not just environmental conditions! Once a network is
deployed, it is usually too late to think about these issues.
By planing publications early on, the code to gather needed
data can be incorporated into the development process.

Choose Your Partner

Make sure to really know what to do with your data.

There are two components of a successful deployment:
gathering the data and exploiting it. Generally, network-
ing laboratories only care about the first component, while
the second one actually plays an equal role. A WSN primar-
ily exists to transport data from one point (i.e., the targeted
site) to another one (e.g., a database), but there is no pur-
pose in gathering data just for the sake of gathering it. The
final objective of a WSN deployment is to gather data for
an end-user. This end-user must be present in all the stages
of the deployment preparation: from sensor selection, place-
ment, and calibration, to data analysis [17].

In SensorScope, we (LCAV) work in close collaboration
with EFLUM. We have frequent meetings to discuss the
project, allowing us to tackle problems very pragmatically.
For instance, when we learned that a sampling rate of less
than two minutes was useless for environmental monitor-
ing, we decided to omit network congestion management.
Without such personal interaction, we may have ended up
with solutions, potentially non-working, solving non-existing
problems. EFLUM also led all decisions regarding deploy-
ments (e.g., place, duration, observations), which allowed
us to obtain nice results with a high scientific impact. For
instance, if we had to choose ourselves, where to deploy
our system, we would have never gone to the Génépi, and
we would have certainly never discovered a microclimate
there [1].

4.2 Testing and Deployment Preparation
To prepare for our deployments, we use two different test-

beds. One is indoors, conveniently located in our building,
used mostly to test our communication software. The sec-
ond testbed is a pseudo real-world deployment, located on
our campus, composed of actual sensing stations. This one
is used to ensure that all code which is not in use on our in-
door testbed (e.g., sampling sensors, managing solar power)
does not interfere with the rest.

Efficiency Matters

When setting up a testbed, keep in mind that it will be used
to develop and to test many software components.

Because that is a long process, composed of many test-
it-and-fix-it cycles, the testbed must be easily and quickly
accessible. While programming motes one by one with a
serial cable may be acceptable for deployments, because it is
done only once, this is not the case for a testbed. Regularly
replacing batteries is not a good idea either, and this will be
necessary, even if some slick power-saving algorithm is used.

Our indoor testbed consists of 50 motes deployed through-
out our building. As it is solely used to evaluate the network
code, its motes are not wired to any external sensors. All of
them are, however, plugged into AC power, allowing us to
disregard any problems linked to energy management. Fur-

thermore, all 50 motes are equipped with a Digi Connect
ME7 module which makes it possible to access and program
them over a simple Ethernet connection. Each Digi module
is indeed assigned an IP address which, in combination with
the appropriate PC-side drivers, allows for transparent PC–
mote serial communication. Such equipment is important to
allow for quick testing. On our indoor testbed, it takes only
between 10 and 45 seconds to flash all 50 motes (depending
on the size of the image), while it takes about 50 minutes to
flash the 10 motes of our outdoor testbed and to put them
back onto the stations.

Labels that Stick

Carefully let other people know what you are doing.

Our indoor testbed is distributed among more than 40
offices in our building, some of them belonging to other lab-
oratories. We frequently discover that motes have been dis-
connected, or have even disappeared, because people do not
know what these strange devices are. When we installed our
indoor testbed, we put stickers on the motes, stating that
“this device belongs to LCAV, please contact . . . for further
information.” Without such stickers (and sometimes even
with) nothing will prevent colleagues from disconnecting a
device and reclaiming that Ethernet plug. It even happens
to us that people bring back a mote they found in their
office, thinking it was somehow lost. Carefully explaining
to co-workers what these devices are used for, and labeling
them with informative, long-term messages, is not a waste
of time. Trying to find out every week why some motes are
no longer responding actually is a waste of time. The same,
of course, applies to our outdoor testbed, as people may cer-
tainly be surprised to find a weather station on the terrace
in front of their office.

Know Your Enemy

Make sure that your radio frequency is not already in use.

When setting up a deployment (especially indoors, or close
to urban areas), the first order of business should be to in-
spect the radio spectrum used by your platform to detect
possible interferences. The optimal way to do this is to use
a spectrum analyzer. However, due to the analyzer size,
weight, and power consumption, it is difficult to make use
of it at the deployment site, and portable analyzers often
do not provide the required resolution. Another solution
would be to use a software-defined radio system (e.g., GNU
Radio8). Although preliminary work has already been per-
formed in this area, the solution is not quite ready yet [13].
A simpler way to check for interferences is to run a test
program to determine losses over time for the various fre-
quencies that your selected platform can use. There are a
lot of radio devices around these days that can create inter-
ference, compromising the results of test runs, and leading
into thinking that your code is incorrect.

For instance, Figure 7 provides the packet losses observed
during a test run on our indoor testbed. In this experi-
ment, a run of 100 transmissions was started for each pay-
load length, with an interval of two seconds between pack-
ets. Our primary goal was to see the receiving probability
based on the payload length, but we quickly discovered that
there was periodic interference at the frequency we were us-
ing. The loss pattern resulting from this interference (i.e.,

7http://www.digi.com
8http://www.gnu.org/software/gnuradio

0

25

50

75

100

10 25 40 55 70 85 100 115

P
a
c
k
e
t
n
u
m

b
e
r

Payload length [bytes]

(a) Temporal loss distribution. Each black square is a lost
packet. Diagonal lines are losses caused by some interfer-
ences.

0

25

50

75

100

10 25 40 55 70 85 100 115

L
o
s
s
e
s
 [
%

]

Payload length [bytes]

(b) Payload length-dependent loss distribution.

Figure 7: Packet losses on our indoor testbed over seven hours. A new run of 100 packets was started for each payload length,
at a rate of one packet every two seconds. Losses when the payload length is equal to (15x + 10) are caused by a bug in our
radio drivers.

the diagonal lines) is clearly visible in Figure 7a. We tried
to determine the source, but were finally unable to do so.
We suppose that another laboratory is sometimes using the
same frequency for its own purpose, as the interference is
not always present.

One known source of interferences in our frequency band
are cellular phones: the TinyNode operates in the 868–
870MHz band, which is close to the European GSM 900
band (890–915MHz). We have performed some tests to de-
termine whether cell phones would impact the performance
of our testbed. It turns out that the first few seconds of
an incoming call interfere with mote transmissions. In our
tests, this happened when there was less than one meter be-
tween the phone and a mote, which is a frequent situation
in offices. Fortunately, GSM calls are sparse enough, so that
we can afford to simply ignore them in our indoor testbed
results.

The Value of Simulation

Do not neglect how much simulation can help you.

In place of a testbed, or in addition to it, simulations can
be used to test protocols. Many simulation tools are avail-
able, the most famous one certainly being ns-29. However,
such tools are very generic, and generally require the code
of protocols to be specifically written for them. There are
two major drawbacks: the code must be written twice, and
simulation results do not provide insights into the quality of
the “real” code to be deployed.

To overcome these issues, a new kind of simulation tool
has recently been considered [3, 8, 16]: sensor mote emu-
lation, rather than simulation. For instance, WSim loads
the real target binary code and provides cycle-accurate re-
sults [3]. Thus, any sensor mote OS may be used in conjunc-
tion with it, and the code is written only once. Moreover,
this code can be easily debugged and will work on the real
system as long as it works with WSim. The downside is that

9http://nsnam.isi.edu/nsnam/index.php/Main_Page

only a few architectures have been ported so far. Such tools
will, nevertheless, certainly replace simple packet-based sim-
ulators in a near future, as they fill the gap between theory
and real-world deployments.

Data You Can Trust

Do not forget that your success not only depends on the
amount of gathered data, but also on the quality of that data.

While most sensors are supposedly pre-calibrated, their
installation may require manipulations (e.g., mounting, pa-
ckaging) that can affect the measurements [2]. An example
of such a case is the aforementioned Sensirion SHT75, used
to measure air temperature and humidity. While it is fully
calibrated and should theoretically provide an accuracy of
0.3◦C, inadequate packaging may skew its measurements.
In SensorScope, all sensors, once packaged, are tested be-
fore deployments, first indoors, then outdoors. Readings
are compared to high-precision reference stations over sev-
eral days, and bad sensors (i.e., correlation coefficient below
0.98) are simply discarded. During these tests, we detected
sensors with an offset of more than 2◦C, a significant error
that would have invalidated scientific conclusions.

Calibration may also be required at the time of deploy-
ment: an example of this is the wind direction sensor, which
must be precisely North-oriented to provide sensible data.
We forgot this “obvious” detail in our first on-campus de-
ployment, so that we had to return to each station to correct
its orientation. Of course, wind direction data was almost
unusable (i.e., we would have had to document the wrong
orientation of each station to correct the data later on), so
that we had to drop it. Once a deployment is over, and sen-
sors are back at the laboratory, it is important to repeat the
calibration process. Doing so makes it possible to detect sen-
sors which have been damaged during the deployment and,
consequently, to flag the applicable data (see, for instance,
Figure 5, showing corrupted measurements).

Consistency Pays

It is very important that you use the same configuration
during both tests and real deployments.

This may sound obvious, but at some point one may be
tempted to change a few parameters, or to switch to a new
version of the drivers just before a deployment, to improve
a given aspect. With new versions, however, always come
new bugs, and it is by far easier to detect them on a testbed
than during a deployment. Another possible issue is the“last
minute commit,” which can kill a complete deployment [7].

For instance, Figure 7 also exposes a bug in our radio
drivers: some payload lengths simply do not work, i.e., pack-
ets are either not sent or not received. This occurs each time
the sum of the payload length and the TinyOS header (five
bytes) is a multiple of 15. During development, the payload
length of some packets grew from a “valid” length to an “in-
valid”one, and it took us almost one full day of debugging to
discover the bug. Obviously, we were glad it was discovered
on our testbed rather than during an actual deployment, as
it could have occurred only with the deployment drivers and
not with the testbed ones, had they been different.

Practice Makes Perfect

Be aware that Murphy’s law will do its best to make its
way into your deployment [7].

If an ice-ax is needed to anchor the stations (as we do
in high-mountain environments), chances are that none will
be available. If a Phillips screwdriver is needed, chances are
that only slotted ones will be at hand. Forgetting something
may always happen, but the risk can be reduced by rehears-
ing the deployment close to home and making a checklist as
you go along. This is one of the reasons why we have set up
a permanent deployment on EPFL’s campus. Not only does
it help us in testing our code under real conditions, but it is
also used as a practice deployment. To ensure that we do not
forget anything, we ready all tools and hardware during the
rehearsal, and put everything into bags which we take with
us to the real deployments. The other advantage of having
a close-to-real testbed is that it is much easier to show to
visitors than a real deployment on top of a mountain!

4.3 Deployments
Once the system has been fully developed and thoroughly

tested, it is ready to be deployed. Many pitfalls still remain
ahead at this point, as even a working system may fail to
produce the expected data and desired insights.

Consider Local Conditions – Again

Always be ready to face unforeseen bugs.

Some bugs can be hard to spot before the real deployment,
simply because they do not occur under testing conditions.
For instance, Figure 8 shows strange patterns in the time
distribution of lost packets during the Grand St. Bernard
deployment: it seems that sometimes packets from all sta-
tions were lost simultaneously. At first, we thought that the
sink was at fault, and that it had rebooted for some reason,
causing the loss of all queued packets. This was, however,
quite strange, because packets are almost immediately for-
warded to the GPRS, and a reboot would have caused the
loss of at most one packet. After some investigation, we
discovered that there was a bug in the GPRS drivers, pre-
venting it from reconnecting to the cellular network upon a
loss of connectivity. Due to this bug, we remotely rebooted

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

Sep 26 Oct 10 Oct 25

S
ta

ti
o
n

Figure 8: Time-correlated packet loss (Grand St. Bernard).
Each vertical black line represents a lost packet.

the GPRS a few times during the deployment, using GSM
text messages. Although GPRS reboots were already antic-
ipated and all packets waiting to be transmitted were stored
in flash memory, we still faced losses. After its reboot, the
GPRS was sometimes so busy reading packets from the flash
memory that it could not handle arriving messages, causing
their loss. The thickness of the resulting lines in Figure 8
thus depends on the time it took us to notice the disconnec-
tion and to reboot the GPRS. We had never faced this bug
during our tests, simply because cellular connectivity on our
campus is very good, so that a disconnection never occurred.
Needless to say that the connectivity is rather poor on top
of the mountain.

The aforementioned time drift also caused some GPRS-
related losses. We discovered that the crystal of the sink’s
mote and the crystal of the GPRS chip react differently to
temperature variations. Communications between the mote
and the GPRS occur over a serial bus. The drift caused by
rapid temperature changes (e.g., during sunrise on an alpine
glacier, we observed temperature gradients of up to 10◦C per
hour) resulted in a loss of synchronization between the mote
and the GPRS chip, and thus in lost packets. This is quite
ironic, as a serial bus seems robust compared to wireless
communications. At the time, however, the serial link—as
opposed to the radio link—was lacking an acknowledgment
mechanism, which we have now added. We could actually
have detected this problem earlier by simply putting the
GPRS into a freezer, as indicated earlier in this paper. A
posteriori tests have indeed shown that after a few minutes
in the freezer, most of the serial packets are lost due to a
lack of synchronization.

For outdoor deployments, manipulating electronic parts in
the field must be kept to a minimum. The hermetic box we
use effectively prevents the corrosion of the electronic com-
ponents inside, but it has a major flaw, which we had not
noticed until we encountered bad weather at a deployment
site: we need to open the box to replace a sensor. Indeed,
while all sensors are external, they are directly plugged into
the sensing board, within the box. Thus, when we detect a
broken sensor, we need to open the box to replace that sen-
sor. This is a problem in the field, especially when weather
conditions are poor (e.g., fog, snow). Hence, our next gen-

0

2

4

6

8

Sep 27 Oct 19 Oct 31

S
p
e
e
d
 [
m

/s
]

Figure 9: Wind speed measurements (Génépi). Due to a
design problem in the sensor’s driver, data gathered before
Oct 19 is unusable.

eration of stations will feature a better box with external,
hermetic plugs, thus easing in-field sensor replacement.

The Barking Watchdog

Do not blindly believe in the quality and correctness of
incoming data.

Our deployments have taught us that all data must be
scrutinized as soon as it reaches the server, to promptly
detect arising problems and malfunctions (e.g., broken sen-
sor, failing sink). When appropriate, the network operator
should be automatically notified (e.g., by emails or GSM
text messages). However, while it may seem easy to detect
obviously incorrect measures (see Figure 5b, showing the
malfunction of a rain meter), other problems may be more
subtle.

For instance, Figure 9 provides the wind speed reported by
station 6 during the Génépi deployment. At first glance, the
data may look correct, while it is actually not. Until Oct 19,
because of a bug in the sensor’s driver, all wind speed data
is unusable. On Oct 19, we had detected and corrected the
bug, and went back to the deployment site to update all sta-
tions. The explanation of this bug is simple: each time the
anemometer completes a revolution, an interrupt is fired,
which in turn increases a counter. Each time the sensor is
queried, the speed is computed by multiplying the counter
value by the distance represented by one revolution. To con-
serve memory, we used an 8-bit counter, which turned out
to be too small. In the two minutes between consecutive
sensor queries, the anemometer could complete more than
255 revolutions, resulting in a counter overflow and, hence,
unusable data. Previously, as we had always queried the
sensor every 30 seconds, this bug never occurred. While
we are guilty of having broken one of our aforementioned
rules (Consistency Pays), this particular problem was very
difficult to detect. Correlating wind speed data among all
stations would not have helped, since all of them were af-
fected by this bug. With a remote reprogramming system,
we could have avoided going back to the mountain.

Guard Your Treasure

Do not throw away even a single byte of raw data.

Figure 10: Picture taken by an autonomous camera during
the Génépi deployment. Weather conditions such as fog and
snow are difficult to detect without visual feedback.

On the back-end server, there will be multiple programs
processing data and producing statistics, aimed at visualiz-
ing certain aspects of the system. Nevertheless, all the raw
data must be securely archived for future reference. There
may—and will—be some statistics that were not envisioned
at first. One may also, for example, discover that the equa-
tion used to transform raw data into SI units was wrong, or
poorly implemented. If the original data is no longer avail-
able, and the conversion destructive, the obtained data may
be worthless after all.

In SensorScope, the server creates log files, which we call
raw dumps, besides generating the real-time statistics. These
logs contain all packets (in their raw hexadecimal format)
coming in from the network, together with a timestamp.
Once a day, a new file is opened and the previous one is
closed and compressed. This way, we have archived approx-
imately 20MB of compressed raw dumps (100MB uncom-
pressed) for the Génépi deployment alone. As these files are
the most precious output from a deployment, they must be
carefully backed-up. Everything else can be recovered from
them. Figure 8, showing time-correlated losses during the
Grand St. Bernard deployment, is an example of a plot that
has been generated a posteriori, directly from these dumps.

Seeing Is Believing

You must make sure to be able to correctly make sense of
the data you gather.

As extensively noted above, gathering data is a problem
in itself, but making sense of it, is a whole nother one. Sen-
sors provide only a partial view of the real world, which
may be insufficient to correctly interpret their readings. For
instance, when ambient light measurements are low, is it
because of clouds or because a leaf has fallen onto the sen-
sor? Figure 5b shows that there has been a good amount
of precipitation on Oct 3 during the Grand St. Bernard de-
ployment, but was it rain or melting snow, which had fallen
during previous days? Our set of sensors provides a lot of
useful information, but leaves us unable to make this seem-
ingly simple distinction.

To better understand the data we gather, we are consider-
ing the possibility of equipping one or more stations with a
camera to provide visual feedback. We have already begun

Figure 11: Our deployment-time WSN validation device.

to experiment in this domain, by installing an autonomous
camera during the Génépi deployment. Figure 10 provides
a sample image taken by that camera, showing a foggy and
snowy day, with a thin layer of snow on the rocks. We are
still a long way, however, from seamlessly integrating one or
more cameras into our sensor network. A lot of problems
remain unsolved, mainly regarding energy management and
bandwidth usage. Our camera prototype was connected to
a car battery and had its own, dedicated GPRS connection.
On-site image analysis may be part of a possible solution.

Trust Is Good, Control Is Better

Perform as many on-site checks as possible.

Monitoring the status of a WSN system, while deploying
it, is very important, as one certainly wants to avoid re-
turning to the laboratory just to discover that half of the
network is not functioning. Since a computer and an Inter-
net connection may not be available at the deployment site,
having a handy, battery-powered tool for deployment-time
validation is highly desirable (see, for instance, TASK [2]
and LUSTER [14]).

We have developed a similar device for our system. Fig-
ure 11 shows the device, as it displays a few measurements
(wind speed and direction, air temperature, and solar radi-
ation) sent by one of our stations. It has a size of 7×11 cm,
and is powered by two AA batteries, making it autonomous
for over one hundred hours. The system works by overhear-
ing, i.e., it captures packets sent by stations and extracts
and displays their data. It can also display the various kinds
of status packets, still with the aim of discovering problems
as early as possible.

There Is Life after the Deployment

Keep your equipment ready for subsequent deployments.

The end of a deployment is the right time to relax be-
fore further work, namely data analysis and publication. As
stated above, much work is left in these areas once the sys-
tem is back in the laboratory. At the same time, however,
one should not forget that more deployments are likely to be
planned for the future, and that the equipment will almost
certainly be used again. Starting that next deployment with
fully charged batteries, certainly falls into this category.

After the Génépi deployment, we took down all stations
and put the sensing boards into cardboard boxes, removing

Figure 12: Outcome of a close-by construction site.

neither the motes, nor the batteries. One day, during test-
ing, we noticed “ghost” motes in our network, and after a
bit of investigation, we discovered that the motes we had
brought back from the deployment were still active. They
were indeed communicating with each other in their card-
board boxes, trying to send their data to a non-existing sink.
Finally, they found our testbed. Of course, we had never
thought about this “after-deployment” behavior. The fact
that the motes had almost completely drained their batter-
ies, no longer charged by solar panels, could have delayed
our next deployment for a somewhat ridiculous reason, had
we not discovered it in time. Fully charging a battery takes
almost five hours, and we only have two chargers.

Flag Them All

Detect and remove outliers from your gathered data.

Having a watchdog at the server helps in detecting prob-
lems such as broken sensors, but flagging outliers often ne-
cessitates powerful offline algorithms, processing all data at
once. Outliers may appear due to various reasons, some of
them being quite unexpected. For instance, during one of
our smaller deployments, we detected anomalous measures
from a station, uncorrelated with the readings from the oth-
ers. We went back to the site to inspect it, and Figure 12
shows what we found: a close-by building was under con-
struction, and workers, not knowing what our station was,
simply wrapped it in plastic to protect it. While this partic-
ular example is funny, it illustrates how easy it is to collect
incorrect data with correct hardware and software.

In SensorScope, flagging outliers is currently mostly done
by hand at EFLUM, which is a very time consuming task.
Developing validity checks and QA/QC algorithms is com-
plicated, since it requires a perfect understanding of the
monitored parameters, and is still work in progress. How-
ever, this represents an important part in deploying WSNs,
as the considered sensors are generally not of very high qual-
ity, and may often lead to such outliers.

Trace Your Steps

Do not forget that traceability is a key point in managing
deployments.

As the software on both the server and the motes is likely
to evolve over time, it is important to know exactly which
version was used for a given deployment. Here, a version

Table 3: Our most important advice.

Dos Don’ts

Add remote monitoring and control mechanisms Make your system a black box
Always think about your upcoming publications Make your system more complex than needed
Package your sensors well, but unobtrusively Mistake your laboratory or testbed for the real world
Be consistent between tests and deployments Implicitly trust your gathered data
Diligently track and flag your data Throw away even a single byte of gathered data

control system, such as Subversion10, is not enough. A good
solution, which, unfortunately, we did not have at first, is to
tag data packets with a version byte. As mentioned above,
due to the wind speed bug during the Génépi deployment,
we had to go back to the site to reprogram the motes. Now,
the raw dumps coming from this deployment contain packets
generated by two different versions of the code. The obvious
problem is to distinguish between packets containing correct
and incorrect wind speed measurements. Moreover, the or-
der of the data fields inside the packets had changed. Since
the packets in their hexadecimal raw format show no indi-
cation of this, we had difficulties to automatically extract
meaningful data from them. If we had tagged the packets
with a simple version-control byte from the beginning, the
reordered fields would not have posed a problem.

The traceability of individual measures and devices is also
very important. For instance, when a bad sensor is detected,
which probably broke during a deployment (see for instance
Figure 5b showing a broken rain meter), it is common prac-
tice to simply exchange it. However, as the sensors are not
tightly associated with the ID of the station they are con-
nected to (these are given by the motes placed onto the
stations), it is virtually impossible to determine which val-
ues from previous deployments should be double-checked for
integrity. In SensorScope, we are currently in the process of
tagging all our motes and sensors with RFIDs. With the
corresponding reader, it becomes very easy to scan stations
during deployments to associate sensors and station IDs.
Storing this information in a database will allow us to re-
trace the exact history of all devices and measures, so that
flagging potentially incorrect data will be made easier.

5. CONCLUSION
Our multiple field campaigns have shed light on various

problems linked to the actual deployment, to early devel-
opment errors, and to system testing. In this paper, we
have shared the experience we have acquired in dealing with
all these problems. In spite of not addressing all possible
challenges, following our advice should help other groups in
appreciating and anticipating many issues related to real-
world WSN deployments. Table 3 summarizes this paper,
by recapitulating the most critical issues.

We are now in the refinement process of SensorScope. We
believe that our most important remaining issue is data in-
spection and assessment. Even if a system does not manage
to collect every single desired datum, still, much data is usu-
ally gathered. But what is the point of gathering data at all,
if it is incorrect or cannot be properly interpreted? There-
fore, in interdisciplinary collaboration, we are investigating
the real-time detection of outliers to ensure data quality.

10http://subversion.tigris.org

Lastly, our camera project presents many challenging prob-
lems, but will also be of great benefit to data analysis once
fully integrated.

6. ACKNOWLEDGMENTS
This work was partially financed by the Swiss National

Center of Competence in Research for Mobile Information
and Communication Systems (NCCR MICS) and the Euro-
pean Commission under the FP6 project WASP. We would
like to thank Samuel Madden, our shepherd for this paper,
for helping us to improve it.

7. REFERENCES

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli,
O. Couach, and M. Parlange. Sensorscope:
Out-of-the-box environmental monitoring. In
Proceedings of the ACM/IEEE International
Conference on Information Processing in Sensor
Networks (IPSN), Apr. 2008.

[2] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong,
and S. Madden. TASK: Sensor network in a box. In
Proceedings of the IEEE European Workshop on
Wireless Sensor Networks and Applications (EWSN),
Jan. 2005.

[3] G. Chelius, A. Fraboulet, and E. Fleury. Worldsens:
Development and prototyping tools for application
specific wireless sensors networks. In Proceedings of the
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), Apr. 2007.

[4] H. Dubois-Ferrière, R. Meier, L. Fabre, and
P. Metrailler. Tinynode: A comprehensive platform for
wireless sensor network applications. In Proceedings of
the ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN),
Apr. 2006.

[5] S. Ganeriwal, R. Kumar, and M. Srivastava.
Timing-sync protocol for sensor networks. In
Proceedings of the ACM International Conference on
Embedded Networked Sensor Systems (SenSys), Nov.
2003.

[6] J. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at a
scale. In Proceedings of the ACM International
Conference on Embedded Networked Sensor Systems
(SenSys), Nov. 2004.

[7] K. Langendoen, A. Baggio, and O. Visser. Murphy
loves potatoes: Experiences from a pilot sensor
network deployment in precision agriculture. In
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Apr.
2006.

[8] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the ACM International
Conference on Embedded Networked Sensor Systems
(SenSys), Nov. 2003.

[9] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
K. Whitehouse, J. Hill, M. Welsh, E. Brewer,
D. Culler, and A. Woo. Ambient Intelligence, chapter
TinyOS: An Operating System for Sensor Networks.
Springer, 2005.

[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In Proceedings of the ACM International
Workshop on Wireless Sensor Networks and
Applications, Sept. 2002.

[11] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In
Proceedings of the ACM International Conference on
Embedded Networked Sensor Systems (SenSys), Nov.
2004.

[12] K. Römer, P. Blum, and L. Meier. Handbook of Sensor
Networks: Algorithms and Architectures, chapter Time
Synchronization and Calibration in Wireless Sensor
Networks. John Wiley and Sons, 2005.

[13] T. Schmid, O. Sekkat, and M. Srivastava. An
experimental study of network performance impact of
increased latency in software defined radios. In
Proceedings of the ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation
and Characterization (WINTECH), Sept. 2007.

[14] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu,
A. Srinivasan, Y. Wu, W. Kang, J. Stankovic,
D. Young, and J. Porter. LUSTER: Wireless sensor
network for environmental research. In Proceedings of
the ACM International Conference on Embedded
Networked Sensor Systems (SenSys), Nov. 2007.

[15] R. Szewcszyk, A. Mainwaring, J. Polastre,
J. Anderson, and D. Culler. Lessons from a sensor
network expedition. In Proceedings of the IEEE
European Workshop on Wireless Sensor Networks and
Applications (EWSN), Jan. 2004.

[16] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable
sensor network simulation with precise timing. In
Proceedings of the ACM/IEEE International
Conference on Information Processing in Sensor
Networks (IPSN), Apr. 2005.

[17] G. Tolle, J. Polastre, R. Szewczyk, D. Culler,
N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, and W. Hong. A macroscope
in the redwoods. In Proceedings of the ACM
International Conference on Embedded Networked
Sensor Systems (SenSys), Nov. 2005.

[18] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10(2):18–25, 2006.

[19] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. In Proceedings of the ACM
International Conference on Embedded Networked
Sensor Systems (SenSys), Nov. 2003.

