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ABSTRACT 
The number of selectively neutral  polymorphic sites in a random  sample of genes can be affected 

by ancestral selectively  favored  substitutions at linked loci. The degree to which this  happens  depends 
on  when in the history of the sample the selected  substitutions  happen, the strength of selection  and 
the  amount of  crossing over between the sampled locus and  the loci at which the selected  substitutions 
occur. This phenomenon is commonly  called  hitchhiking.  Using  the  coalescent  process for a random 
sample of genes  from a selectively neutral locus that is linked  to a locus at which  selection is taking 
place, a stochastic,  finite  population  model is developed  that  describes the steady  state  effect of 
hitchhiking  on the distribution of the number of  selectively neutral  polymorphic  sites in a random 
sample. A prediction of the model is that, in  regions  of  low  crossing over, strongly  selected  substitutions 
in the history of the sample  can  substantially  reduce  the  number of polymorphic  sites in a random 
sample of genes  from  that  expected  under a neutral  model. 

T HE effect of a  strongly  selected allele at  one locus 
on  the frequencies  of neutral alleles at a  linked 

locus, commonly referred  to  as  the  “hitchhiking ef- 
fect,” has been  studied by a number of authors (e.g., 
KOJIMA and SCHAEFFER 1967 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; MAYNARD SMITH and 
HAIGH  1974; OHTA and KIMURA 1975). MAYNARD 

SMITH and HAIGH presented  a  deterministic analysis 
that  supported  their  contention  that  the hitchhiking 
effect  of  linked favorably selected  variants on  neutral 
polymorphisms is an  important mechanism for  reduc- 
ing heterozygosity. They also showed that  the hitch- 
hiking effect on  the “half-life” of  a  neutral  polymor- 
phism depends  on  the  strength of selection and  the 
rate of crossing over. OHTA and KIMURA presented  a 
stochastic analysis of the hitchhiking  effect, which they 
interpreted as refuting  the  contentions of MAYNARD 
SMITH and HAIGH. The major  distinction  between 
these  two investigations was that MAYNARD SMITH 

and HAIGH considered the consequences of a  favora- 
bly selected  substitution on preexisting  linked  neutral 
polymorphism, while OHTA and KIMURA chose to 
examine  the impact on  neutral  mutations arising while 
the selected allele is on its way to fixation (OHTA and 
KIMURA 1976;  HAIGH and MAYNARD SMITH 1976). 

Neither  side in this  controversy  presented  a  complete 
steady  state analysis with recurring selected  substitu- 
tions,  neutral  mutation,  random  genetic  drift  and 
crossing over. 

With the  advent of  molecular  population  genetics, 
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the question  of the evolutionary  effects of strongly 
selected substitutions  merits  a  reexamination. The 
large  number of polymorphisms found in a small 
stretch  of  DNA  among  randomly  chosen individuals 
from large outbreeding  natural populations  should 
make it possible to investigate the consequences of 
hitchhiking with more precision and power.  What is 
needed is an analysis that predicts the hitchhiking 
effect on experimentally  measurable  quantities  de- 
rived from  random samples of genes. The results of 
MAYNARD SMITH and HAIGH (1974) on  the hitchhik- 
ing effect on  the half-life of a  neutral  polymorphism 
cannot  be readily applied. 

A  natural  summary statistic for DNA sequence  data 
is S, the  number of polymorphic  nucleotide sites in a 
sample of  genes. The distribution of S depends  on  the 
assumed  underlying  population  genetics  model.  For 
selectively neutral, infinite sites models both with and 
without  recombination,  the  distributional  properties 
of S at equilibrium are well characterized (e.g., WAT- 

V A R ~  1984). We will refer  to such selectively neutral 
loci  as “isolated, selectively neutral loci.” More  re- 
cently, the  distribution of S has been  studied  for  a 
class of infinite sites models where selectively neutral 
sites are linked to a locus at which natural selection 
leads to polymorphism, e.g., strong balancing selection 
(KAPLAN, DARDEN and HUDSON 1988; HUDSON and 
KAPLAN 1988). The effect in this case is also an 
example of hitchhiking, but heterozygosity is in- 
creased rather  than  decreased. HUDSON and KAPLAN 

( 1  988) determined  the distribution of S and quantified 

TERSON 1975; KINGMAN 1982; HUDSON 1983; TA- 



888 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKaplan, R. R. Hudson  and C. H. Langley 

the hitchhiking effect on the moments of S. 
In this paper we study the  distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS for  a 

class  of models where selectively neutral sites are 
linked to loci where strongly selected mutations have 
rapidly swept through  the population at  different 
times in the past. All  of the previous work on hitch- 
hiking has focused on analyzing the effect on  neutral 
polymorphism of a selectively favored allele while it is 
in a  state of transient polymorphism. The distribution 
of S, on  the  other  hand, is dependent  on  the popula- 
tion dynamics since the most recent  common  ancestor 
of the sample, and so advantageous  substitutions oc- 
curring  at different times in the past at  different loci 
can affect the distribution of S. In  order  to quantify 
this effect on the distribution of S, it is necessary to 
consider the coalescent process which describes the 
genealogical history of a  random sample of genes at a 
selectively neutral  region of the genome which is 
linked to a locus that is not selectively neutral.  This 
stochastic process was studied by HUDSON and KAPLAN 
(1988)  and so their results can be directly applied. 
The analysis is then  extended  to  the case where se- 
lected substitutions of  newly arising  mutants or very 
rare variants are assumed to occur  randomly in the 
history of the sample at  random locations in the 
genome. The details are given in the  next section 
(THEORY). 

For the models considered,  the degree  to which the 
distribution of S is affected by ancestral, selected 
substitutions at linked loci is determined by the param- 
eters 0 = 4Np, C = 2Nc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY = 2Ns and A = 2NX, where 
N is the diploid population size, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the expected 
number of  selectively neutral  mutations per nucleo- 
tide site, per chromosome, per  generation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is the 
expected  number of crossovers per nucleotide site, 
per genome,  per  generation, s is the selective advan- 
tage of the  favored allele per  generation  and X is the 
expected  number of selected substitutions per nucleo- 
tide site, per  generation  (Table 1). The parameter X 
may or may not  be  a  function of 2N, depending  on 
assumptions about  the process generating selected 
substitutions. In the  third section (CALCULATIONS) 

some numerical calculations are presented to illustrate 
the behavior of the mean of S for  a sample of size 2 
for  different values of the parameters. 

Finally  in the last section (DISCUSSION) the results 
are compared with available data.  A conclusion of this 
investigation is that  hitchhiking may  well reduce 
standing variation (as measured in number of  poly- 
morphic sites) in samples from  natural populations. 
At the very  least it is the most plausible explanation 
for  the  reduced restriction site polymorphism ob- 
served in regions of the genome with restricted cross- 
ing over  per physical length  (STEPHAN and  LANGLEY 
1989; AGUADE, MIYASHITA and LANGLEY  1989). 

TABLE 1 

Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N Diploid population size 
p Expected number of  selectively neutral mutations per nucleo- 

s Selective advantage of the favored allele per generation 
c Expected number of crossovers per nucleotide site per genome 

0 4 N p  
CY 2Ns 
C 2Nc 

Case of single selected substitution 

2N7 Ancestral generation that  a strongly selected allele (destined 
for fixation) was introduced  into the population 

2N7, Ancestral generation  that  a strongly selected allele (intro- 
duced into  the population in generation 2N7) fixed in the 
population 

tide site per chromosome per  generation 

per generation 

II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 - T f  

R Expected number of crossovers between the neutral region 
and selected locus per  genome  per 2N generations 

Case  of multiple selected substitutions 

X Expected number of strongly selected substitutions per 

A 2NX 
A, AlC 
AMAX The upper  bound  on A, 
M Maximal distance (measured in units of recombinational 

distance) from the  neutral region that a selected locus  can 
be and have a hitchhiking effect on the neutral region 

nucleotide site per  generation 

THEORY 

We begin by considering the evolutionary effects of 
the substitution of a newly arising selectively favored 
mutant. We refer  to  the  present  population as gener- 
ation  zero, and  the population i generations back  in 
time as the i ancestral  generation. Suppose in a  ran- 
domly mating diploid population of  size N, a strongly 
selected allele that is destined to fix  in the  population 
was introduced in the 2N7 ancestral  generation at a 
locus, and  that it fixes in the  population in the 2N7f 
ancestral generation (7f < 7) .  The wildtype is denoted 
by b,  the selectively favored allele by B and  the  fre- 
quency of the E allele in the t ancestral  generation by 
X ( t ) ,  t > 0. We assume that  the fitnesses of the  three 
genotypes bb, bE and BE are  1, 1 + s and 1 + 2s, (s > 
0) (it?., selection is additive). This model was also 
considered by MAYNARD SMITH and  HAIGH  (1974) 
and  OHTA  and KIMURA (1 975). 

If the  population size, 2N, is large and selection is 
strong [a = 2Ns  is large, typically lo3 S CY d 10-'(2N)], 
then it is  well known (KURTZ 1971; NORMAN 1974) 
that so long as the X process stays  away from  the 
boundaries 0 and 1, it can be treated as deterministic 
and is approximately equal  to the solution of  an ap- 
propriate  differential  equation. More specifically, if E 

> 0 and small, then with high probability, X ( t )  can be 
written as 
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{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( t )  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd t d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( l  - E )  

X ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt < +),  
x(t) = X ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( 1  - E )  < t d .(E) ( 1 )  

where 
T(I - E )  = infit: X ( t )  = 1 - E ) ,  

T ( E )  = X- ' (& ) ,  

and x ( t )  satisfies the differential  equation 

" d x ( t )  - - a x ( t ) ( l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx@)), 
dt 

X(T(1  - E ) )  = 1 - E ,  t b T ( l  - E ) .  

The magnitude of the X process while the B allele 
is on its way to fixation is essentially deterministic, i.e., 
near  the  boundary 0, X is near 0, near  the  boundary 
1 ,  X is near 1 and  on  the  interior X is determined by 
the differential  equation in (2 ) .  The choice of E de- 
pends  on  the  magnitude of a; the  larger a is, the 
smaller E can be. Since the probability that  the  mutant 
goes extinct equals 1 - 2s, and  the frequency process 
of the  mutant in its early stages can  be  approximated 
by a  branching process, E is chosen so that (1 - 2~)~" ' "  

The only randomness of the X process of any con- 
sequence is at  the boundaries 0 and 1. This  random- 
ness affects how long  the X process remains  near the 
boundaries, and so it cannot  be  ignored when calcu- 
lating the expected  time  for the favored allele to fix 
in the population,  conditional  on the event  that it does 
fix. This expected  time is relevant to  later results. 

Let 7 = T - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7p Since the derivation of the diffusion 
estimate of the  conditional  expectation of 7 assumes 
that s = a / 2 N  is small, there is reason to suspect the 
diffusion estimate  [EWENS (1979 Eq. 5.521 when s is 
large, e.g., s = T o  check its adequacy we derive 
the following estimate.  It follows from  the  represen- 
tation in (1) that  the time that it takes the X process 
to  go  from 1 - E to E can be assumed to be  determin- 
istic and equal to 

e-2ar - - 0. It  therefore suffices to choose E = 5 / a .  

J" a x ( 1  - x )  
dx -2 In E -- - 

a 

To estimate the conditional  expectation of the time 
that  the X process is  less than E ,  we use simulation 
techniques. This is feasible because, when X ( t )  is small, 
the process, (2NX(7 - t ) ) ,  can be  approximated by a 
branching process whose offspring  distribution is Pois- 
son with mean 1 + s (EWENS 1979). Since the branch- 
ing process goes extinct with probability 1 - 2s (Ew- 
ENS 1 9 7 9 ) ,  a  large number of simulations are re- 
quired  to  obtain  a sample path  that eventually reaches 
E .  Thus  the estimate is based on 50 sample paths that 
ultimately reach E = 5/a. If X ( t )  is near 1, then  the 
process, (2N(  1 - X ( T  - t ) ) ) ,  can be  approximated by a 
branching process whose offspring  distribution is Pois- 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Values of M, AHAX, Z&f) and E*(q) for different values of a 
assuming 2N = 10' and 8 = 0.01 

a /  M AMAX I z d M )  E * ( d  

IO' 3.7 X 10' 1.2 X 8.8 X 10' 1.6 X lo-* (1 X IO-') 

104 2.6 X 103 5.3 X 10-4 5.8 x 102 2.1 X 1 0 - ~  ( I  x 10-4) 
lo5 1.9 x 104 3.2 x 1 0 - ~  4.4 x 103 2.6 x 1 0 - ~  (1 x 
lo6 1.5 X lo5 2.8 X 3.6 X I O 4  3.0 X ( 1  X 

E*(?) is given for c = 5 / a .  The number in the parentheses is the 
sample standard deviation of the time (measured in units of 2N 
generations) that the frequency process spends less than 5/a for  the 
50 sample paths that reach 5 / a .  

son with mean 1 - s. Therefore,  the conditional 
expectation of the time  that the X process is greater 
than 1 - E can also be  estimated using sim- 
ulations. Since the subcritical branching process goes 
extinct with probability one,  there is no difficulty with 
the sample size. In  Table 2 the estimate of the condi- 
tional expectation of 9, E*(7),  is given for  different 
values  of a (2N = 1 O8 and E = 5/a). In all cases, E* (7) 
agrees with the diffusion estimate. 

The value of E*(7)  is negligible if a is large. For 
example,  as a increases from lo3 to lo6,  E * ( t )  de- 
creases from 1.6 X to 3.0 X Thus,  for 
strong selection, fixation is virtually instantaneous 
when time is measured in units of 2N generations. 

Suppose we take  a  random sample of n genes (n b 

2 )  and consider  a small region of the genome of L 
nucleotide sites. Let S denote  the  number of  selec- 
tively neutral  polymorphic sites in the sample in the 
region. If p,  the expected number of selectively neu- 
tral  mutations per nucleotide site, per chromosome, 
per  generation is sufficiently small, then with high 
probability, at most one selectively neutral  mutation 
will have occurred  at each nucleotide site since the 
most recent  common  ancestor. In this case the distri- 
bution of S can be  approximated as 

P(S = k) = la e"'f @f dF(t), k 2 0 ,  (4) 
k! 

where 
/ L  \ 

F( t )  = P ti c t , t b 0, 
\ i= l  ) 

and ti is the sum of the lengths  (measured in genera- 
tions) of  all the branches of the ancestral tree describ- 
ing  the genealogical history of the sample for  the  ith 
nucleotide  site, 1 d i c L (WATTERSON, 1975). For (4) 
to hold, it is necessary that p maxIeieL(ti)  be small  with 
high probability. If the L nucleotides are completely 
linked,  then there is only one ancestral tree  and so 

ti = LT, where T is the size of the ancestral tree 
of a single nucleotide site. Unless otherwise stated, we 
will assume that  the  region of L nucleotides (in which 
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selectively neutral  mutations  occur) is completely 
linked. In this case it is appropriate to think of the 
region as a single locus. 

In view of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), the distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS follows directly 
from the distribution of T, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso it suffices to study 
the distributional  properties of T. For  example, 

E ( S )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= LpE(T)  

and 

Var(S) = LpE(T) + (Lp)'Var(T). 

The formula  for E ( S )  holds even if there is recombi- 
nation between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL nucleotide sites. This is not  the 
case however,  for  Var(S)  (HUDSON 1983). 

Assuming an isolated selectively neutral locus, WAT- 
TERSON (1975) showed that T  (measured in 2N gen- 
erations) can be  represented  as 

n 

T = j Y ( j  ), (5) 

where  the { Y ( j ) ]  are independent  random variables, 
and  for large N the distribution of Y ( j )  is ap- 
proximately negative exponential with parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( j   ( j  - 1))/2,  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd j d n. The time to  the most recent 
common  ancestor of the sample, To, can also be rep- 
resented  as 

j=2  

n 

To = c Y ( j ) .  (6) 
j = 2  

The occurrence of a selected substitution at some 
time in the past can affect the distribution  of T and 
consequently the distribution of S. Our goal is to 
quantify  this  effect, and to do this we will use the 
results of HUDSON and KAPLAN (1988) on  the coales- 
cent process for a sample of genes at a selectively 
neutral locus that is linked to a locus at which selection 
is operating. 

Each ancestor of each sampled  gene (referred to as 
an ancestral  gene) is linked to either a B allele or a b 
allele. We therefore  define Q(t)  = (i, j )  if, in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
ancestral  generation, t > 0, i of the ancestral  genes of 
the sample are linked to a B allele and j to a b allele, 
1 C i+j C n. Since the B allele is fixed in the population 
at  the time of sampling, it is necessarily the case that 
Q(0) = (n, 0). In  Figure 1 a possible realization of the 
Q process for  a sample of size 4 is described. 

The Q process is a jump process and because the 
number of ancestral  genes  cannot  increase,  this  pro- 
cess eventually reaches either of the two states (0, 1 )  

or ( 1 ,  0), i .e.,  there is a single ancestor of the sample 
and it is linked to either a b allele or a B allele. The 
ancestral  generation in  which this first occurs,  To, is 
the generation  that has the most recent  common 
ancestor of the sample. 

HUDSON and KAPLAN showed that, when 2N is large 
and time is measured in units of 2N generations, the 

1 -E 

X 

E 

past present 

FIGURE ]."A realization of the Q process of a sample of four 

genes at a selectively neutral region linked to another locus at which 

a selectively favored mutation (destined to fix at time T I )  arose at 

time T in the past (time measured in 2N generations). The most 

recent  time that the Q process changes value [(4,0) to (3. O)] is T I ,  
the  occurrence of the most recent  common ancestor of sampled 

genes 2 and 3. During the  selective phase [0 < X ( t )  < 1, T/ < t < T ]  

the ancestral gene of sampled gene 1 crosses over to a wild type or 

b bearing chromosome,  and  the ancestral genes of sampled genes 3 

and 4 have a most recent  common ancestor [Q(T) = ( I ,  I ) ]  and so 
Q(T+) = (0, 2). Finally, at time T + T2, the most recent common 

ancestor of the sample occurs [Q(T + T2) = (0, I)] .  

distribution of the Q process when conditioned  on the 
ancestral  frequency process, (X ( t ) ,  t > 01, of the se- 
lected allele B,  can be  approximated by the time 
inhomogeneous Markov jump process described be- 
low. From now on time will be  measured in units of 
2N generations unless otherwise specified. 

If,  for any t > 0, Q(t) = (i, j ) ,  then, according to 
HUDSON and KAPLAN (1 988), the probability that  the 
process jumps  to a  different  state  before t + A equals 

hg(X(t))A + O(A2) 

as A approaches 0, where 

and R is the expected number of crossovers between 
the  neutral  region  and  the selected locus per  genome, 
per 2N generations. Also, x(x > 0) = 1 if x > 0 
and equals 0 otherwise. x(x < 1 )  is defined similarly. 

Finally is set  equal to 0 if i < 2. (i) 
The only states  that the Q process can jump  to from 

(i, j )  are (i - 1 ,  j ) ,  (i, j - l),  (i + 1 ,  j - 1) and 
(i - 1 , j  + 1) .  The first two states  represent  common 
ancestor  events and  the  latter two crossover events. 



Hitchhiking  Revisited 89 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

It is important  to  remember  that  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPh, are uncon- 
ditional probabilities, and so are calculated by aver- 
aging  over all possible realizations of the X process. 

All the  other quantities  that are needed  to specify 
the distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT are computed assuming that  the 
Q process behaves as a coalescent process for a sample 
at an isolated, selectively neutral locus. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor example, 
to calculate the expectation of T,  we write T as 

The description of the Q process is complete  except 
for  one  thing. Since the favored allele is introduced 
into  the  population in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ancestral  generation, it is 
always the case that 

Q(T+) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (0, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ j )  if Q(T) = ( l , j ) ,  j b 1. 

The dynamics of the Q process can be described as 
follows. Going back  in time until the T/ ancestral 
generation,  the Q process behaves as a coalescent 
process for  a sample of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn at  an isolated, selectively 
neutral locus, since there is no polymorphism at  the 
linked selected locus. If n - k coalescent events  occur 
before  the ~f ancestral  generation,  then Q(T/)  = (k, 0), 
i .e.,  the selective phase is entered having k ancestral 
genes  that are linked to  the favored B allele. During 
the selective phase additional coalescent events  can 
occur, as well as crossovers, and so the  number of 
ancestral  genes at  the  end of the selective phase (the 
7 ancestral  generation), equals j where  1 s j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd k @ e . ,  
Q(T+) = ( 0 , j ) ) .  After  the selective phase, the Qprocess 
again behaves as a coalescent process for  a sample at 
an isolated, selectively neutral locus, but now the 
sample is of sizej (Figure 1) .  The selected substitution 
thus  accelerates the coalescing process, and  the  degree 
to which this takes place depends  on a and R .  

It is only during  the selective phase that  the com- 
plexities of the Q process are relevant. If selection is 
strong  enough,  then  the  time, 7, of the selective phase, 
when measured in units of 2N generations, is negligi- 
ble with high probability. Thus,  the only quantities 
related to  the selected event  that  need  to  be calculated 
in order  to completely specify the distribution of the 
size  of the ancestral tree, T ,  are  the probabilities of 
entering  the selective phase with k ancestral  genes and 
exiting it with j ancestral  genes, 1 6 j d k d n. We 
denote these probabilities by 

Let T(t)  denote  the size of the ancestral tree  for  the 
first t ancestral  generations. If 7 is negligible, then it 
follows from  (9)  that  the  expectation of T can be 
written as 

where 

t a 0  and 2 S k S n ,  

and each of the above three quantities is computed 
assuming that  the Q process is for  a sample at  an 
isolated, selectively neutral locus. Since 7 is negligible, 
r/ T and so T/ can be  treated as a  constant. 

It is not difficult to show from  the  properties of the 
coalescent process of a sample at  an isolated, selec- 
tively neutral locus that  the { J n k ( t ) ,  t b 0) and {Lnk(t), 
t b 01 satisfy the following system of differential 
equations (GRIFFITHS 1980): 

t b 0 ,  2 s k c n - 1 ,  

and 

The initial values areJnk(0) = 0, 2 d k S n and Lnk(0) 
= 0, 1 s k d n - 1 and Lnn(0) = 1. To complete  the 
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calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(T) ,  we note  that 

The system of equations in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  1 )  has been solved ex- 
plicitly (GRIFFITHS 1980). The solution, however, is 
complicated and  for  moderately sized samples, it is 
just as easy to solve the system  of differential  equations 
numerically. 

The simplest case to evaluate E ( T )  is for samples of 
size 2 .  Indeed, 

&(T, To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2ue-" du S' 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2(1 - ( 1  + 7f)e-Tf),  

J 2 2 ( 7 f )  = 27fe"f and L22(7f) = e-'/. 

Thus 

E ( T )  = 2(1 - ( 1  + 7f)e-'f) 

+ 27fe"f + 2e-'fP22 ( 1 2 )  

= 2(1 - e"f + e-'fPZ2). 

We  now turn  our  attention  to  the calculation of the 
{pkj ). Define for 7f C t C 7 and 1 C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj C k, k 3 2 ,  
the probabilities, 

pk,i , j ( t)  = p(Q(t)  = (ij j ) l  Q(7f) = (k, 0)). 

It follows from  the  definition of the Q process that 

pkj = Pk,Oj(7) + P k , l , j - l ( T ) *  

Let e > 0. If e is sufficiently small, then it is not 
difficult to show from  the Markov structure of the Q 
process that  there is low probability of the Q process 
changing its state in the time  interval (7f ,  ~ ( 1  - e ) ) .  
Thus 

P(Q(7(1 - e ) )  = (k, 0)l Q(7 f )  = (k, 0)) = 1 ,  

and so for t 3 T (  1 - e) 

Pk,i,j(t) p(Q(t) = (i, j )  I Q(7(1 - E ) )  = (k, 0)) .  

On the  interval ( ~ ( 1  - E ) ,  7 ( e ) )  the X process can be 
treated as deterministic (see ( l ) ) ,  and so the Q process 
is a time inhomogeneous Markov process. We can 
therefore numerically solve the associated Kolmogo- 
rov forward  differential  equations to evaluate the 
(pk,t,j(t), ~ ( 1  - e )  C t c ~ ( e ) ) .  These equations are 

where we recall that x ( t )  is defined by 

" d x ( t )  - -ax( t ) ( l  - x@)) 
dt 

~ ( 1  - e )  S t C .(e) and 2 d i + j  C k. 

The initial conditions are pk,k,O(7(1 - e ) )  = 1 and 
P k , i , j ( 7 ( 1  - e ) )  = 0 otherwise, Ph,i,j(t) = 0 for all t if 
i + j  > k, and x ( ~ ( 1  - e ) )  = 1 - e. 

Finally we need  to  relate  the { P k , i , j ( T ( e ) ) )  to the 
( p k , , , j ( T ) ) .  If all the (pk,i,j ( 7 ( ~ ) ) ,  2 c i c k )  are negligible, 
i.e., at time 7 ( e )  at most one ancestral  gene is linked 
to a B allele, then 

pkj = pk,l,j-1(7(e)) + Pk,OJ(7(e)). (14 )  

If e = 5/a,  then  the ( p k , i , j ( T ( c ) ) ,  2 C i C k )  are  not 
always negligible. In this case there is still an op- 
portunity  for  recombination  to  occur in the interval 
( 7 ( e ) ,  T )  and so P k j  as  defined in ( 1  4) is an underesti- 
mate of the  true value. 

There  are two ways to proceed. One is to  extend 
the solution of ( 1  3) for  larger values of t until the 
(pk,,,j ( t ) ,  2 c i 6 k ) are negligible. Since we are treating 
the frequency of the X process deterministically in a 
region  where it should  be  treated stochastically, this 
approach leads to  an overestimate of P k j  [see MAY- 

NARD SMITH and HAIGH (1974)  for  a discussion  of 
this issue]. Alternatively, we can treat  the X process 
stochastically and use simulation methods.  More spe- 
cifically, when X ( t )  is small, the process, ( 2 N x ( 7  - t ) ) ,  
behaves as  a Poisson branching process whose off- 
spring  distribution has mean 1 + s. Thus  the fre- 
quency process can  be simulated and  the (pk.,,j(t)) 
evaluated  conditional on  the sample path of the  fre- 
quency process. In this case the conditional Q process 
is a  time  inhomogeneous Markov chain. This  method 
is clearly more involved and will only be  carried  out 
for  a few  cases  in order  to examine how much the 
first approach  overestimates the  true value. 

The quantity, P k j ,  is a  function of R and for what is 
to follow, it is convenient to denote this by P h j  (R) .  For 
k 3 2 ,  the asymptotic behavior of P u ( R ) ,  as R con- 
verges to 0 or 00 is  easy to describe. If R is very small, 
then crossing over is a rare event and so P u ( R )  con- 
verges to 0 as R goes to 0 ( i e . ,  the k sampled genes 
remain linked to  the selected allele and so the most 
recent  common  ancestor of the sample occurs during 
the selective phase). Alternatively, if R is very large, 
then  the Q process behaves as a coalescent process for 
a sample of  size k at  an isolated, selectively neutral 
locus, and so Pkk(R)  converges to E(e-(Z)q) as R con- 
verges to 00. If a is large,  then E(e-(:)') = 1 and  thus, 
in this case nothing  happens during  the selective 
phase. 

As a  concrete  example, we consider  a sample of size 
2. The equations in ( 1  3) are 
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d P 2 ' 1 ~ 1 ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -RP2,1,1(t)  + 2 R ~ ( t ) P ~ , ~ , ~ ( t )  

dt 

dP2'0'2(t) 

- ( + 2Rx(t) 
1 

dt 1 - x(t)  

and 

" dx( t )  - -CYx(t)( 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( t ) ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT( 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE )  6 t 6 T(c) ,  ( 1  5 )  
dt 

where R ,  the  recombination  parameter  and CY, the 
selection parameter  are  defined in Table 1 .  The initial 
conditions are 

P2,2,0(7(1 - e))  = 1 ,  

Pz,1,1(~(1 - E ) )  = P2,0,2(7(1 - e ) )  = 0 and 

X ( T ( 1  - e ) )  = 1 - E .  

There is no possibility of solving ( 1  5 )  analytically and 
so it must be done numerically. 

The quantity PZ2 can also be related to  the change 
in  expected  heterozygosity at  the  neutral locus. Since 
the  duration of the selective phase is so short,  the only 
way that two  genes,  sampled just  after fixation, can 
be heterozygous is  if they do  not have  a  common 
ancestor  during  the selective phase (the probability of 
this  event is P22) and  their ancestral  genes just  prior 
to  the  introduction of the selected  mutation are dif- 
ferent  (the probability  of this event is assumed to be 
Ho). These two  events are  independent  and so 

Hcc = HoP22, (16 )  

where H ,  equals the  expected heterozygosity at  the 
neutral locus after fixation. 

Up until now we have only examined  the evolution- 
ary  effect of one ancestral  selected  substitution. Now 
we consider recurring selected  substitutions. We recall 
some  notation  introduced  earlier.  Let A = 2NX where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X is the  expected  number of selected  substitutions per 
nucleotide  site, per  generation. Also, let C = 2Nc 
where c is the  expected  number of crossovers per 
nucleotide  site,  per  genome,  per  generation. 

Selected  substitutions are assumed to occur  accord- 
ing  to a  time-homogeneous Poisson process with mean 
A (time  measured in units  of 2N generations),  and  the 
location of  each  substitution is randomly  distributed 
in the  genome.  If  the physical distance of a  selected 
substitution  from the  neutral region is m (measured 
in base pairs  (bp)), then its recombinational  distance 

from the  neutral  region is defined  to  be Cm, which 
equals the expected  number  of crossovers between 
the selected  substitution and  the  neutral  region  per 
genome per 2N generations. It is convenient for what 
follows to  measure A in  units  of C ,  and so we define 
A, = A/C.  

Since P,,(Cm) converges to E(e-@") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAss 1 as m goes 
to infinity, a  selected  substitution whose recombina- 
tional distance (Cm) from  the  neutral region is large, 
will have negligible effect on  the coalescent process of 
the sample. We therefore restrict our attention  to 
selected  substitutions whose recombinational dis- 
tances from  the  neutral region are less than some 
large value M ,  a value to  be specified. (Equivalently, 
selected substitutions are assumed to have  a physical 
distance less than M / C  bp  from  the  neutral region.) 

In  order  to use the theory  developed for a single 
selected  substitution, it is necessary that  at any time 
at most one selected allele, with recombinational dis- 
tance less than M from  the  neutral  region, is on its 
way to fixation.  If A, is small enough,  then selected 
substitutions are infrequent  and so the previous  the- 
ory will apply. The question  of how small A, must  be 
will be  considered  shortly. 

M was chosen so that selected  substitutions whose 
recombinational  distances from  the  neutral region are 
greater  than M have negligible effect on  the coalescent 
process of the sample. It is reasonable to assume that 
this is still the case, even if several of  these  distant 
selected  variants are simultaneously going to fixation. 

We now define for a sample of size n at  the selec- 
tively neutral locus, the  analog of the Q process de- 
fined  earlier,  assuming  that  the  selected  substitutions 
are sufficiently infrequent.  For t 3 0 (measured in 2N 
generations) let Q(t)  = k if in the t ancestral  generation 
there  are k ancestral  genes, 1 d k d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. There  are two 
ways that  the Q process can change its state: either by 
the occurrence  of  a  common  ancestor or  the occur- 
rence of  a  selected  substitution and  at least one coal- 
escent event  occurs during  the selective phase. If Q(t) 
= k, 2 6 k d n, then it is not difficult to show using 
previous arguments  and  properties of the Poisson 
process that as A goes to 0 

P(Q(t  + A )  = k I Q(t) = k) 

= 1 - ((k) + 2A,Zu(M))A + O(A'), 

P(Q(t  + A )  = k - 1 I Q ( t )  = k) 

= ((3 + 2A,Zu-,(M) A + O(A2) ) 
and 



894 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. L. Kaplan, R. R. Hudson  and C. H. Langley zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M 

Ikk(M) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl (1 - Pkk(U)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu 

and 

M 

Ikj(M) = Pkj(U) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdU, 1 “ j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd k - 1. 

Thus,  the Q process is a Markov process, where  the 
holding  time in state d k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS n,  is negative  expo- 

nential with + 2h,zhk(M), and  the  jump 

probabilities are 

and 

1 dj d k - 2 .  (17) 

T o  calculate the mean and variance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT one 
can use a  renewal argument similar to  that used 
by KAPLAN, DARDEN and HUDSON (1988). For  a 
sample of size 2 these calculations are simple since 
T has an exponential  distribution with parameter 
(1 + 2 ~ i , Z * ~ ( M ) ) / 2 .  Thus,  for a sample of size 2 

and 

If 2ArZ2,(M) is much smaller than  1,  then E(T) = 2 
which is its value for  an  isolated, selectively neutral 
locus. On  the  other  hand, if 2ArZ22(M) is much  larger 
than 1,  then E ( T )  z 2/ArZ22(M), which is less than 2. 
Thus, the  larger ArZ22(M) is, the  stronger  the effect 
of hitchhiking on E(T) .  

It remains to specify M and  the  range of values of 
A,. T o  demonstrate how this is done, we consider the 
case  of a sample of size 2 .  It follows from (17)  that 
the distribution of the Q process is dependent  on M 
only through  the  upper limit of the integral Z22(M). 
For any M *  > M we have 

where 

If A ( M ,   M * )  is small, say  less than a specified 6 ,  then 
increasing M to M * will not  change  the Q process very 
much. Also, we want M to  be as small as possible so as 
not  to  be  too restrictive  on the  range of values of A,. 

Thus, we choose M so that 

A(”, M * )  < a}. (19) 

Since the physical  size of the  genome is finite, M * has 
a  finite  upper bound, M,, and so M is  well defined. 
Furthermore, it  is not difficult to show that M satisfies 

1 (1 - P 2 2 ( ~ ) )  du = - r(1 -P22(u))  du. ( 2 0 )  
1 + 6  

Finally, we consider the possible range of values of 
A,. For the Markov process defined in (1 7)  let Kd 
denote  the  number of selected  substitutions up until 
T i ,  the first  time that Q(t)  = 1. On  the set Q ,  where 
none of the KA selected variants  occurring  before TA 
are simultaneously going to fixation, To = Th. Since 
the probability  of Q is a  decreasing  function of A,, it 
suffices that A, < A M A X ,  where 

A M A X  = sup{A,: P ( Q )  = 1 - S i ,  

where 6 is a small positive number. 
We now calculate P(Q) .  The probability  that  a se- 

lective substitution  occurs  before  a coalescent event is 
2A,M/(  1 + 2A,M) .  Furthermore,  the probability that 
no additional selective substitutions  occur during  the 
selective phase and  that  during  the selective phase 
there is a  common  ancestor is pZ22(M)/M, where 

p = E(e-2MAr”) = 1 - 2MA,E(77), 

remembering  that  the expectation is conditional  on 
the selected allele fixing in the population. 

Also, if no common  ancestor  occurs  during  the 
selective phase, then  the  entire process repeats itself. 
Thus 

l +  2 A J 4  PI22(M) 
‘(’) = 1 + 2A,M 1 + 2A,M M 

+ 2A,M 
1 + 2h,M 

and so 
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2A,M(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  = I -  

1 + 2ArZ22(M) ' 

Since p is close to 1,  1 - p = 2A,ME(v). Hence, 
A M A X  satisfies 

where 6 is a small  positive number  and E' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7 )  is the 
estimate of E (7). 

The renewal argument used to derive (21) can  also 
be used to obtain the expectation of KO, so long as 
A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC AMAX. Indeed, 

+ 2ArM 

1 + 2A,M '(' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) z22(M) ('1 + E(K0)) 

- - ~ M Z Z ( M ) P  

1 + 2Ar122(M)p + 2ArM(1 - p )  

- 2A,M - I + 2ArZ22(M) * 

The analysis up until now has  assumed that  the 
initial frequency of the favored allele is 1/2N as it 
would be in the case  of a newly arising mutant that is 
destined to fix.  If the favored allele is a  rare existing 
variant that for some  reason  becomes  selectively  fa- 
vored, then  the analysis presented above still  holds. 

CALCULATIONS 

For  simplicity, we only examine a sample  of  size 2. 
Similar  calculations  can be made for larger samples. 
When considering the hitchhiking effect  caused by 
the substitution of a single, rare, selected allele, the 
distribution of the Q process for  a sample  of  size 2, 
only depends on PZ2(R), where R is the expected 
number of  crossovers per genome per 2N generations 
between the selectively neutral region and  the selected 
locus. In Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, P22(R) is plotted as a function of R 
for different values  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. To calculate P22(R) we  used 
formula ( 1  4) with c = 1 02/2N and  the population size, 
2N = 10'. This value  of c is small enough so that 
P 2 , 2 . 0 ( 7 ( & ) )  is negligible.  Calculations not presented 
here show that  the curves in Figure 2 are fairly  insen- 
sitive to 2N so long as 2N 3 100a. 

Since 5/a > 102/2N, the curves in Figure 2 over- 
estimate P22(R). In order to examine how much  of an 
overestimation there is, a simulation was performed 
as described in the theory section. For each value  of 
a, P22(R) was evaluated for R = 10, R = 100 and R = 
1000. For each set  of parameter values 50 sample 
paths  of the X process that reach 5/a were simulated. 

1 .a 

0.0 

0.6 

0.4 

0.2 

O S  

I 2N= 10' I 

FIGURE 2.-P**(R), the probability of escaping the hitchhiking 

effect for a sample o f  size 2, is plotted against R ,  the  expected 

number of crossovers between  the selectively neutral region  and 

the  selected locus per genome per 2N generations  for various values 

of a, where 2N = 10' (see  text  for  explanation). 

In all  cases the estimate of P22(R) differed from the 
value plotted in Figure 2 by  less than 2%. For exam- 
ple, if CY = lo4 and R = 100, then the plotted value  of 
PZ2(R) is 0.158, while the estimate obtained from the 
simulation is 0.155. Thus the error caused by using 
the deterministic model for  the frequency of the B 
allele  when the frequency is small, is negligible. 

As the  amount of crossing over increases  between 
the neutral region and  the selected  locus, the proba- 
bility  of no common ancestor occurring during  the 
selected  phase, PZ2(R), would be expected to increase. 
It is clear from Figure 2 that P22(R) is an increasing 
function of R. Increasing a decreases 7 ,  the time of 
the selective  phase, and so one would expect that 
PZ2(R) decreases as a function of a. This behavior is 
also  seen  in Figure 2. Another way to  interpret this 
observation is that the larger a is, the larger the region 
of the genome that is affected by the selected  substi- 
tution. 

The curves in Figure 2 are all  similar in shape and 
they appear to be equal distance from each other, 
suggesting that P22(R) may  be a function of R/a and 
so independent of population size. Direct calculation 
however, shows that this is only approximately true. 

The expectation, E ( T ) ,  whose formula is given  in 
(12), is plotted in Figure 3a for different values  of R,  
and in Figure 3b for different values  of a as a function 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr (measured in 2N = 1 Os generations), the ancestral 
time when the selected mutation was introduced into 
the population (or when the  rare allele  becomes  selec- 
tively favored). In Figure 3a, a = lo4  and in Figure 
3b, R = 10. It is not difficult to show from Figure 2 
and Equation (12) that E(T)  is an  increasing function 
of r and R and decreasing function of a. In particular, 
as is seen in Figure 3, a and b, E ( T )  will differ 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.--E(T), the  expected size (measured in 2N genera- 

tions) of the ancestral tree of a sample of two genes at a selectively 

neutral region that  is linked to  a  selected locus (Equation 12), is 

plotted against T, the ancestral time of fixation of the  selected 

substitution, a. For different values of R, the expected number of 
crossovers between the neutral region and the  selected locus per 

genome per 2N generations (a = lo4),  and b. For different values 

of selection, a (R  = 10); (see  text for explanation). 

significantly from 2, its neutral value, if 7 < 0.1 and 
R / a  < 0.01. This means that  the  expected level of 
variation will be substantially reduced  for all the sites 
within a physical distance of (O.Ol)a/C base pairs of a 
locus at which a selected substitution has recently 
occurred.  For  example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2N = lo8, s = and c = 

then  the width of the affected  region is only 
about 200 bp. But if s = and c = 1 0-', then  the 
expected variation is reduced in a  region  about 2000 
bp wide. 

In Table 2 the values of M (Equation 20), A M A X  

(Equation 22) and Z22(M) are given for  different values 
of a (2N = lo8 and 6 = 0.01). The value of Mf in (20) 
is chosen so that  1 - P22(Mf) is within 1 % of its limit, 
1 - E ( e - 7 )  E*(s).  The quantities M and Z22(M) 

increase more or less linearly with a,  and  the  ratio 
Z22(M)/M =: 0.24,  independent of the value of a. The 
product 2 M h ~ ~ ~  varies between 0.8 and  84 as a varies 
between 1 O3 and 10'. All the quantities in Table 2 are 

insensitive to 2N so long as a < 10- ' (2~)  (calculations 
not shown). 

The major goal of this paper is to  determine  the 
consequence of hitchhiking  resulting  from  recurring 
selected substitutions on standing, selectively neutral 
variation at  the DNA level. In  Figure  4 E ( T ) ,  (Equa- 
tion la), is plotted as a  function of A,. for  different 
values  of a with 2N = 10'. Since Z22(M) is insensitive 
to 2N (for fixed a ) ,  the same is true of E ( T ) .  Even for 
small  values  of A, the hitchhiking effect can reduce 
E ( T )  substantially from 2 (its expectation  for  an iso- 
lated, selectively neutral locus) for  large values of a,  
e.g. ,  if a 3 lo5,  and 0.0002 < A, < A M A X ,  then E ( T )  
G 0.7. Since the  expected  number of polymorphic 
sites, E ( S ) ,  is proportional to E ( T ) ,  it is clear that  the 
hitchhiking effect associated with the rapid fixation of 
selected mutants (or very rare alleles) can substantially 
reduce  the  expected  number of polymorphic sites in 
a sample from  that  expected in the absence of  selec- 
tion. 

The expected  number of selected substitutions in a 
region of  size 2M until the most recent common 
ancestor of the sample, E(&), can be calculated from 
Equation 23. The values of E(&) corresponding to 
A M A X  range  from  0.7  (for a = lo3) to 4.1 (for a = 
lo6). It is interesting  to  note  that this latter value is 
near  the maximum value of E(&), M/Z22(M), which is 
about 5 and  independent of a. 

DISCUSSION 

The analysis  of the theoretical  population genetics 
model of  selectively neutral molecular variation under 
the forces of mutation and  random genetic drift (KI-  

MURA 1983; GILLESPIE 1987) has yielded many im- 
portant  and useful predictions. The ability of the 
theory to explain much of the  observed variation 
within and between species has led many to accept the 
proposition that most molecular polymorphism within 
and divergence between species is of no phenotypic 
consequence to  the fitness of the organisms. Two 
critical assumptions of the  neutral  theory  are  that 
selected variants are so rare  that they comprise a 
minute  portion of molecular genetic variation and 
that  their dynamics have negligible effects on  the 
dynamics of the  preponderant,  neutral variation.  It is 
this second assumption that we have investigated. 

MAYNARD SMITH and HAIGH (1974)  studied  the 
effect of a single selected substitution of a newly 
arising mutant  (or  rare  variant)  on  a  neutral polymor- 
phism, and showed that the hitchhiking effect of a 
single selected substitution can substantially reduce 
heterozygosity at a linked selectively neutral polymor- 
phic locus. The experimental  data motivating their 
investigation was the  mounting evidence of allozyme 
polymorphism in the early 1970s. Today  more  de- 
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tailed information on molecular genetic variation in 
natural  populations is accumulating and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso what is 
needed is an analysis of the cumulative  hitchhiking 
effect of multiple, linked selected substitutions  that 
affords  predictions about DNA sequence variation in 
samples from  natural  populations. 

For DNA sequence data, a  natural  summary statistic 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, the  number of polymorphic sites in the sample. 
To study the consequences of hitchhiking on  the 
distribution of S ,  it suffices to consider the effect of 
recurring,  linked selected substitutions on  the coales- 
cent process for  a  random sample of genes at a selec- 
tively neutral locus. This  approach  differs  from  more 
classical population genetics theory (in particular  the 
approach  of MAYNARD SMITH and HAIGH) in that  the 
genealogical history of a sample is the focus rather 
than  population variables or statistics thereof, e.g., 
heterozygozity or half-life of neutral polymorphism. 

The expected  time to  the common  ancestor of two 
randomly sampled genes at a selectively neutral locus 
that is linked to loci at which strongly selected substi- 
tutions  have  occurred in the history of the sample is 
our primary  interest. Our results can in principal,  be 
generalized to study  higher  moments  and/or  larger 
samples. However, the calculations become much 
more complicated. Our analysis is an extension of that 
of KAPLAN, DARDEN and HUDSON (1 988) and HUDSON 
and KAPLAN (1 988) and proceeds in two steps. Using 
their  techniques, we first quantify the effect of single, 
linked  ancestral, selected substitution on  the time to 
the common  ancestor. The magnitude of the effect 
on  the  expected  time  depends  on  the  population size, 
when the selected substitution  occurred, the  strength 
of the selection and finally the  amount of crossing 
over between the two loci. Next we identify the  do- 
main of the  parameters  where  these  results  can  be 
extended  to  the case of  recurring selected substitu- 
tions at random distances from  the selectively neutral 
region of interest. The critical assumption for this 
extension is that selected substitutions  near the  neutral 
region  be sufficiently rare so that it is unlikely that in 
any generation  more  than  one would be polymorphic 
in the population. 

The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, the  expected  number of selected 
substitutions per nucleotide site per  generation, has 
two interpretations. On  one  hand, it can reflect the 
rate  at which the  environment  changes causing pre- 
viously rare  deleterious alleles to be selectively fa- 
vored. In  this case X and A, are constant and  do  not 
depend  on  the  population size. Alternatively, the fix- 
ation of favored  variants may be  mutation-limited. In 
this case, X can be  approximated as (2Np3) (2s) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p, is the  mutation  rate to favorable  variants per  nu- 
cleotide site per chromosome per  generation, each of 
which is assumed to have selective advantage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and 2s 
in the heterozygote and homozygote, respectively. 

2.0 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 
u1 

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 I 

rn u.10’ 
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FIGURE 4.”E(T), the expected size (measured in 2N generations) 

of the ancestral tree of a sample of 2 genes at a selectively neutral 

region assuming recurring selected substitutions (Equation 16), is 

plotted as a function of A,, for  different values of a where 2N = 
10’ (see text for explanation). Each curve is plotted  for the values 

of A, between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and AMAX (see Table 2). 

Thus X and A, are proportional  to 2N,  assuming ps, s 
and c are fixed. 

The hitchhiking effect of recurring, linked selected 
substitutions on T and consequently on S, can  be 
substantial. As Figure 4 shows the expected  time to 
the common ancestor of a sample of two genes can be 
more  than  an  order of magnitude below its predicted 
value under  the  neutral theory. Furthermore, this 
effect is sensitive to  the  strength of selection and  the 
rate of crossing over. 

Decreasing c, the  rate of crossing over per nucleo- 
tide  site, per genome, per  generation, increases A, 

and so as seen in Figure 4, decreases E ( T ) .  Thus in 
regions of  low crossing over per physical length,  one 
would expect  that the  number of polymorphic sites in 
a random sample would be less than  that  predicted by 
the  neutral  theory. The recent  data of STEPHAN and 
LANGLEY (1 989) and AGUAD~, MIYASHITA and LANG- 
LEY (1989) surveying the levels  of restriction  map 
variation in chromosomal regions with reduced levels 
of crossing over per physical length  support this pre- 
diction. 

MAYNARD SMITH and  HAIGH (1974) investigated 
the  reduction in heterozygosity due  to  the substitution 
of a linked favored  mutation, B. They developed  a 
two locus deterministic model that  provided the lim- 
iting value of heterozygosity as a  function of the initial 
frequency, RO of the  neutral allele, A, the coefficient 
of selection, s, and  the recombination  fraction, r ( i e . ,  
r = R / 2 N ) .  Their calculation of heterozygosity is 
conditional  on  the selected mutation  occurring  on  a 
chromosome  bearing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, the alternative allele to A. By 
weighting their expression by the probability (1 - Ro) 
that  the selected mutation  occurs  on  a  chromosome 
bearing  an a allele and  adding it to  the symmetrical 



898 N. L. Kaplan, R.  R. Hudson and C. H. Langley zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
expression multiplied by the probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ro) that  the 
selected mutation  occurs on  an A bearing  chromo- 
some, the following unconditioned  expression  for  het- 
erozygosity can be  obtained: 

Hw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( 1  - Ro)Qm(ab)(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQm(ab)) (24) 

+ RoQm(Ab)(l - Qm(Ab)),  

where Qm(ab) and @,(Ab) are  the frequencies of the 
AB allele after fixation,  conditional on  the selected 
mutation  occurring  on  an ab or Ab chromosome, 
respectively. The subsequent calculations of MAY- 

NARD SMITH and HAICH ( 1  974) that  are based on  the 
ratio H,/Ho (e.g., Equation 29) are also conditioned 
on  the selected  mutation  occurring on  an a bearing 
chromosome  and so they too  need  to  be modified 
appropriately. EWENS (1  979, pp. 206) used the expres- 
sion for H ,  in (24) in his discussion of OHTA and 
KIMURA’S (1  975) analysis of the hitchhiking  effect. 

In  the diploid case MAYNARD SMITH and HAICH 

(1  974) were  unable to  obtain closed form  expressions 
for &(ab) and &(Ab), while in the haploid case they 
showed that 

Qm(ab) = ROD, 

where 

D = r(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(0)) 
(1  - r)” 

1 - X(0) + X(O)(l + s)”+l 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is the  recombination fraction  between the  neu- 
tral locus and  the selected locus per  genome  per 
generation. We note by symmetry that 

Qm(Ab) = (1 - Ro)D. 

If we substitute the expressions for Q,(ab) and &(Ab) 
in (24), then 

Hm 
- = D(2 - D). 
HO 

The diploid and haploid cases are effectively the 
same when s is small, and so one might  expect  from 
( 1  6) that P22 = D(2 - 0). Numerical calculations, how- 
ever, show P 2 2  is smaller than D(2 - D). One reason 
why PZ2 is less than D(2 - D) is because  Equation 24 

is only valid  if the variance  of the  frequency of the AB 

allele after fixation is negligible, and this  in  general is 
not  the case. Ignoring this variability leads to  an 
overestimate  of the ratio, Hm/H0. A discrepancy be- 
tween P 2 2  and D(2 - D) exists even  when P 2 2  is very 
small, the case where  one might  expect  the variance 
of the AB allele after fixation to be negligible. For 
example, if 2N = lo8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = lo-’ and r = then P 2 2  

= 2.19 x and D(2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = 3.6 X Part of the 
problem  in this case may be  that MAYNARD SMITH and 
HAICH’S calculation of Qm(ab) uses a  deterministic 
model for  the frequency of B allele regardless  of 

whether  the frequency is very small or very large. 
This, as pointed  out by MAYNARD  SMITH and HAIGH, 

results in an overestimate  of @(ab). 
The simplest prediction of the  neutral  theory of 

molecular  evolution is that  expected heterozygosity 
should increase with population size. The apparent 
failure of allozyme survey results (LEWONTIN 1974) 

to  support this prediction  stimulated MAYNARD SMITH 

and HAICH (1974) to investigate the hitchhiking ef- 
fect. Their results  certainly  indicate that  the hitchhik- 
ing effect “can account  for  the uniformity  of  hetero- 
zygosity between species.” Our analysis of the hitch- 
hiking effect on  the  expected  number of  segregating 
sites in samples from  natural  populations  supports 
their  contention. In  the absence  of selection E ( T )  = 2 

and so E ( S ) ,  which equals 2NpE(T), is proportional  to 
2N. In  the presence of hitchhiking, E ( T )  is a  decreas- 
ing  function of a and A, (Figure 4), and so E ( S )  is no 
longer  proportional  to 2N. For example,  suppose s = 
lo-’, 2N = lo8 (a = lo5) and A, is large enough so 
that  there is a  hitchhiking  effect on E ( T ) ,  say 2.5 X 

( E ( T )  = 1.64). If X reflects the  rate of change  of 
the  environment ( i e . ,  it does  not  depend  on 2N and 
so A, is a  constant), then E ( S )  increases fivefold as 2N 

increases tenfold  from 1 O8 to lo’. Alternatively, if the 
fixation of favored  mutations is mutation-limited (it?., 
X and A, are proportional to 2N), then E ( S )  actually 
decreases by more  than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35% when 2N increases from 

The hitchhiking  effect on E ( T )  can be substantial, 
even when the fraction of substitutions that  are selec- 
tively fixed,& is negligible as assumed in the  neutral 
theory  of  molecular  evolution. For example, if c = 
1 0-8, p = lo-’ (reasonable values), 2N = lo9, s = lo-’ 

and A, = 2.5 X then E ( T )  = 0.096, and 

lo8 to 10’. 

& = X/(p + X) CAr/2Np = 2.5 X lo-’. 

Thus  on average,  one  out of every 400 substitutions 
is selectively fixed, while E ( T )  [and  thus E @ ) ]  is only 
l/zo of its value under  strict selective neutrality. 

The analysis we have  presented  requires several 
assumptions. The requirement  that a is large  ensures 
that we can model the frequency process at  the se- 
lected locus deterministically. This is not a  stringent 
assumption since there is no hitchhiking  effect when 
a is small. A second and  more  important  limitation 
concerns the  magnitude of A,. The results are only 
valid when A, is sufficiently small so that it can be 
assumed that  at any one time at most only one se- 
lected, linked substitution is on its way to fixation. 
This constraint on A, is a technical requirement  and 
has no biological counterpart. Actual values of A, in 
natural  populations  could well exceed  this artificial 
upper  bound. The consequences  of  hitchhiking in 
natural  population with the  larger values of A, re- 
quires  further investigation. 
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