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Introduction

In [2, 3, 4] it was suggested that the Hitchin functional [5] is related to the topological B model [6,
7, 8, 9]. The topological B-model studies maps of a Riemann surface Σ into a target space X,
and it couples to deformations of the complex structure of X. The Hitchin functional SH can be
viewed as an (effective) target space theory action on X. In some sense it is a real analogue of the
Kodaira-Spencer gravity [9]. Roughly speaking, the Hitchin functional SH is defined on the space
of all almost complex structures on the real six dimensional manifold X, while its critical points are
integrable complex structures. Using special properties of three-forms in six dimensions, variations
of almost complex structures can be mapped to variations of real three-forms, and SH is defined on
the functional space of real three-forms. It is interesting to compare the free energy of the target
space theory with action SH with the free energy of topological B-model.

Construction of SH

Our goal is to construct, following Hitchin, a functional defined on the space of almost complex
structures, such that its critical points are integrable complex structures. We use special properties
of three-forms in six dimensions.

Namely, any non degenerate three-form ρ can be represented as a sum of two three-forms

ρ = α + β,
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where α and β are decomposable into a product of one-forms

α = α1 ∧ α2 ∧ α3

and
β = β1 ∧ β2 ∧ β3.

The three-forms α and β are uniquely defined up to permutation, while the one forms αi and βi

are defined only up to an SL(3) action. This statement is easily checked by dimensional counting.
The space of three-forms in six dimensions has dimension 6!/3!3! = 20.

The dimension of the GL(6) group is 36. The dimension of the stabilizer SL(3)×SL(3) is 8+8 = 16.
Hence the dimension of the orbit of some canonical three-form e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6 under the
action of GL(6) is 36−16 = 20. We see that it is equal to the dimension of the space of three-forms.

The statement above was formulated for an algebraically complete field such as C. If we want
to make analogue statement for real three-form ρ, then using the property above, we represent
ρ = α + β, where α and β are (generally complex) decomposable three-forms. Then, from the
reality condition ρ = ρ̄ it follows, that (i) either α = ᾱ and β = β̄, or (ii) α = β̄. The cases (i) and
(ii) can be viewed as the domains of ’positive’ and ’negative’ real three forms in six dimensions.
The case (ii) is actually interesting for us, since it allows us to build an almost complex structure
as following. Take as the holomorphic subspace ’z’ the space spanned by α1, α2, α3, and as the
corresponding antiholomorphic subspace ’z̄’ the space spanned by β1, β2, β3. Algebraically, the
domains (i) and (ii) in the space of three-forms are separated by hypersufarce of codimension one,
where the three-form degenerates. Therefore, if we start with a three-form of type (ii), and consider
its small deformations, they will be again of type (ii), and hence will again define an almost complex
structure.

So we have learned, that locally we can map almost complex structures on X to three-forms on
X. Now we want to construct the functional SH(ρ), such that its critical points will be integrable
complex structures. The natural functional SH [ρ] is just the volume form (up to a normalization)

S = i

∫
α ∧ β,

where are α and β are (locally) uniquely constructed by the three-form ρ as above.

Let us introduce ρ̂ = i(ᾱ − α), and Ω ≡ α = ρ + iρ̂, so that Ω is the (3, 0) form. So we have
ρ = ReΩ, and ρ̂ = ImΩ. The functional SH(ρ) is equivalently

SH(ρ) = i

∫
α ∧ ᾱ =

1
2

∫
ρ ∧ ρ̂ = − i

4

∫
Ω ∧ Ω̄
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The formula for SH

Let X be a real six dimensional manifold, let ρ ∈
∧3(TX) is a real three-form on X (of type (ii)).

Given ρ let us define map K(ρ) from TX to
∧5(TX∗) as

v 7→ (v · ρ) ∧ ρ (1)

where (v ·ρ) means contraction of vector v and the three-form ρ. Since
∧5(TX∗) '

∧6(TX∗)⊗TX

the map K can be considered to be in End(TX) with values in
∧6(TX∗). Therefore

√
−1

6trK2 ∈∧6(TX∗) can be integrated over X and defines SH

SH(ρ) =
∫

X

√
−1

6
trK(ρ)2 (2)

The property of the form to be of type (ii) means that trK2 < 0.

In coordinates one can write the matrix Ka
b as following

Kb
a(ρ) =

1
2!3!

εbi2i3i4i5i6ρai2i3ρi4i5i6 . (3)

We can check that SH is a nontrival nonlinear function of ρ, namely it is written as the square root
of the certain quartic polynomial of ρijk.

Critical points of SH(ρ) and integrability condition

Let us consider the space of closed three-forms, and moreover, let us fix the cohomology class as
ρ = ρ0 + db, where ρ0 is some representative of H3(X, R).

Hitching proved that at the critical points of SH(ρ0 + db) with respect to b, the almost complex
structure constructed by ρ = ρ0 + db is integrable. To prove this statement consider a variation of
SH(ρ0 + db)

δSH =
1
2

∫
ρ ∧ ρ̂ =

1
2

∫
δρ ∧ ρ̂ +

1
2

∫
ρ ∧ δρ̂ =

∫
δρ ∧ ρ̂

where the last equation holds because ρρ̂ is an homogeneous function of ρ of the second degree.
Therefore

δSH =
∫

δb ∧ dρ̂

and at the critical point we have dρ̂ = 0. Since dρ = 0 by construction, we have dΩ = d(ρ+ iρ̂) = 0.
From the fact that the (3,0) form Ω is closed follows [5] the integrability condition for the complex
structure.

Moreover, Hitchin proved that modulo Diff(X) group the Hessian of the functional is nondegen-
erate in the critical point. Therefore, locally an element of H3(X, R) defines a complex structure on
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X together with (3,0) holomorphic form Ω, which will be called CY structure for a short. Locally,
H3(X, R) is the moduli space of CY structures on X. (Compare it with the traditional parametriza-
tion of moduli space of topological B-model, where the tangent space is H(3,0)(X, C)⊕H(2,1)(X, C).
The dimension is the same, but the slice in H3(X, C) is chosen differently).

Correspondence between topological B-model and SH at classical level

So we consider the field theory of closed real three forms with fixed cohomology class in six dimen-
sions, defined by the action SH . Symbolically, the quantum field theory is defined by the following
functional integral

e−FH = ZH [ρ0] =
∫

Dbe−SH [ρ0+db]

So the partition function ZH is a function of the cohomology class ρ0 ∈ H3(X, R). Classicaly, the
free energy FH = SH evaluated in the critical point. In the critical point of SH the manifold X
has CY structure and

FH [ρ] = − i

4

∫
Ω ∧ Ω̄

In a canonical basis of Ai, Bi cycles in H3(X, Z) using bilinear Riemann identities, SH can be
written as

FH [ρ] = − i

4
(XiF̄i − F iX̄i),

where Xi =
∫
Ai

Ω and Fi =
∫
Bi Ω.

Let us recall that the genus zero free energy of the topological B model is given by the formula

FB[X] =
1
2
XiFi

What is the relation between FH and FB? First of all we have to identify what variables they
depend on. The free energy FH is a function of ρ which is a real part of the (3,0) form Ω, in
other words it is a function on H3(X, R). While FB is traditionally considered to be a function
of H(3,0)(X, C) ⊕ H(2,1)(X, C), or, equivalently, a function of periods Xi. Going to real variables
Re Xi, Im Xi,Re F i, Im F i we see that

FB ≡ FB[Re Xi, Im Xi]

while
FH ≡ FH [Re Xi,Re F i]

Thus FB and FH depend on different variables. However the relation between Im FB and FH is
very simple. Namely FH is a Legendre transform of Im FB with respect to Im Xi and vice verse.
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Quantization of SH(ρ) in quadratic order

Now we want to compare FB and FH beyond the classical limit. The leading quantum correction
is given by the determinants coming from the Gaussian functional integral for the action expanded
up to the second order near the critical point ρc.

The quadratic term of SH(ρc + db) in terms of Hodge decomposition b = b20 + b11 + b02 is simply

SH =
∫

∂b11 ∧ ∂̄b11 (4)

First we note the trivial degeneracy of the action with respect to the components b20 and b02, they
are simply absent in the quadratic expansion. It was mentioned before that the quadratic part of
the Hitchin functional is nondegenerate up to the diffeomorphism group. Indeed, the modes b20

and b02 are precisely identified with diffeomorphisms generated by some vector field ξ as following

δρ = Lξρ = (iξd + diξ)ρ = d(iξρ) (5)

Since at the critical point ρ = Re Ω and Ω is (3,0) form we see that δρ = d(iξρ), is represented as
d of (2,0) plus (0,2) form.

So the modes b20 and b02 are gauged away by Diff(X) symmetry. There still remains the gauge
symmetry of the form b11 = ∂̄b10 + ∂b01. Moreover these gauge transformations are degenerate,
namely they vanish if b10 = ∂b00 and b01 = ∂̄b00. Quantization of gauge theories with degenerate
gauge symmetries is most conveniently done in the Batalin-Vilkovysky formalism [10, 11]. There
the set of fields and ghosts fields is extended by set of antifields. The antifields are canonically
conjugate to fields with respect to odd symplectic structure {, } on the functional space, which
is called antibracket. The Q transformations of fields are viewed as an odd vector field in the
functional phase space associated with the master action S, so the field f transforms as Qf = S, f .
There is a requirement that Q2, or equivalently, {S, S} = 0. After extending the physical action
to the master action S one integrates over some Lagrangian submanifold in the BV phase space.
Equivalently that can be done by introducing gauge fixing fermion

The parity of the ghosts fields is alternating with its level, so ghosts for ghosts are bosons, and so
on. In the quadratic case, like we have, it is easy to make Gaussian integration. The result will be
an alternating product of determinants arising from Gaussian integrals for the fields and ghosts of
all levels.

The complete technical details can be looked in [1], and the result turns out to be expressed in
terms of Ray-Singer torsions.

ZH,1−loop =
I1

I0
. (6)
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Comparison with genus one free energy of the topological B-model

Now we need to compare this result with the genus one free energy of the topological B-model.
The genus one free energy of the topological B-model was computed in [9] and turned out to be
equal to some product of ∂̄ Ray-Singer torsions Ip for the bundles of holomorphic p-forms Ωp,0(X)
on X:

FB
1 = log

n∏
p=0

(Ip)(−1)p+1p = − log
I1

I3
0

. (7)

Here Ip stands for

Ip =

 n∏
q=0

(
′

det ∆pq)(−1)q+1q

1/2

. (8)

In terms of determinants

FB
1 =

1
2

log
n∏

p=0

n∏
q=0

(
′

det ∆pq)(−1)p+qpq. (9)

We can see now that ZH,1−loop = I1/I0 and ZB,1−loop = I1/I3
0 differ by a factor of I2

0 . Does this
points to failure of the correspondence between target space theory with Hitchin functional and
the topological B-model?

The resolution of this discrepancy turns out to be nice, and actually natural from the view point
of the topological B-model.

Generalized complex structures and the resolution of the discrepancy

Namely, we have to consider not variations of complex structure on X, but variations of the
generalized complex structure on X. The notion of generalized complex structure was introduced
by Hitchin [12] and then developed in the thesis [13].

An almost complex structure can be viewed as a section J ∈ End(TX) with condition J2 = −1. A
generalized complex structure is defined similarly, by extending TX to TX⊕TX∗. So, a generalized
complex structure is a section J ∈ End(TX ⊕ TX∗), which satisfies J 2 = −1 and J ∗ = −J .

Generalized complex structures naturally interpolate between complex structures and symplectic
structures. For example, a complex structure J defines the generalized complex structure

JJ =
(

J 0
0 J−1

)
. (10)
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And a symplectic structure ω defines the generalized complex structure

Jω =
(

0 −ω−1

ω 0

)
. (11)

In the standard case we had a correspondence between complex structures and real three-forms.
In the generalized case Hitchin’s construction gives a correspondence between generalized complex
structures and an odd real form of mixed degree ρ1 + ρ3 + ρ5. The generalized Hitchin functional
is defined in a similar fashion on a space of odd-forms with the fixed cohomology class Hodd(X, R).
The critical points of that functional give integrability conditions for the generalized complex struc-
ture defined by ρ = ρ1 + ρ3 + ρ5. The Hessian of the functional is again non-degenerate modulo
diffeomorphisms of X and B-field transforms [12]. To compute the partition function in quadratic
order we again take the quadratic term of the action and follow BV quantization for careful treat-
ment of (degenerate) gauge transformation. The details can be looked again in [1]. The quadratic
term of the extended Hitchin functional looks like

SH,ext =
∫

b11 ∧ ∂∂̄b11 + b00 ∧ ∂∂̄b22 (12)

It is the second term of this expression which differs from the one that we had in the case of Hitchin
functional for complex structures. And it turns out, that after BV completion, careful gauge fixing
and the Gaussian integration the second term produces precisely the determinants I−2

0 that were
missing in comparison between ZH,1−loop and ZB,1−loop. The conclusion is that

ZHext,1−loop =
I1

I3
0

= ZB,1−loop (13)

Interpretation of the results on the B-model side

It is interesting that the emergence of the generalized complex structure concept can be observed
on the topological B-model side.

Let us recall that the physical states in B-model are identified with sections of Hq

∂̄
(
∧p(TX)), that

is closed (−p, q) forms modulo ∂̄ exact ones. The case (−1, 1) corresponds to Beltrami differentials
µi

j̄
, which represent infinitesimal deformation of complex structure. The operators with p + q = 2

can be used to construct deformation of Lagrangian of ghost number zero by the descend relations

{Q,O(1)} = dO(0) (14)
{Q,O(2)} = dO(1) (15)

If (−1, 1) deformations stand for deformations of the complex structure, what is the geometrical
meaning of the (−2, 0) and (0, 2) deformations?
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In the picture of generalized complex geometry these deformations are identified with the non
diagonal blocks βij and Bij in the matrix of generalized complex structure

J =
(

J i
j βij

Bij −J j
i

)
. (16)

In the algebraic approach to the open B-model, where B-branes are roughly speaking holomorphic
vector bundles on X, (or, more precisely, derived categories of coherent sheaves on X), deformations
have the following meaning. The deformations of type (-1,1) correspond to the usual deformations
of complex structure, parameterized by Beltrami differential µi

j̄
. The deformations of type (-

2,0), parameterized by holomorphic bivector βij correspond to the noncommutative Kontsevich
deformation of the multiplication. And deformations of type (2, 0), parameterized by two-form Bīj̄

correspond to deformation of holomorphic vector bundles into gerbes, see [14, 15, 16] and references
therein.
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