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1 Introduction

Black holes lie at the front line of the struggle to unify quantum mechanics with gravity.
Recent progress is focused on how this struggle plays out at the level of effective theory
in a gravitating system like a black hole. In particular, the effective description involves
techniques that have evolved over many years involving quantum field theory over a fixed
background spacetime using semi-classical techniques. In a black hole geometry this leads
to the emission of Hawking radiation and the apparent loss of unitarity [1, 2]. On the other
hand, there is a microscopic level of description, for example provided by string theory, in
which a black hole is described as a quantum system with a large density of states given by
the Bekenstein-Hawking (BH) entropy (see [3] for a review).
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1.1 The holographic map

Recent progress has shed light on how these two levels of description are related and
how the information-loss paradox is resolved and unitarity is restored [4–7] (also see the
reviews [8, 9]). A key ingredient is a map, the ‘holographic map’, between the effective
semi-classical description and the microscopic description

V : Hsc Ñ Hmicro . (1.1)

The idea of such a map between the semi-classical and microscopic descriptions naturally
arises in holography where the semi-classical state describes the state of bulk gravitational
theory while the microscopic state describes the non-gravitational CFT dual [10–15]. It is
becoming clear that such a map should apply more generally and specifically in spacetimes
which are not asymptotically AdS, such as an evaporating black hole, where the radiation
can escape the AdS bulk. The holographic map has been interpreted as the encoding map of
a quantum error code and this synergy between the two subjects has been very fruitful and
has led to a better understanding of entanglement wedge reconstruction [16–26]. However,
recent work [27, 28]1 has clarified certain details and in particular argued that, in the
context of a black hole, it is an important feature that the map is not isometric, V :V ‰ 1.
This means that the relation with the standard theory of quantum error correcting codes is
not so compelling. The non-isometric nature of the map is actually very natural because as
the black hole ages its Hilbert space becomes too small to accommodate all the Hawking
partners of the previously emitted radiation and so something has to give. Another key
insight of [28] is that the map does not act on the radiation once it has dispersed away from
the black hole. This clarifies certain statements that have been made about the radiation,
in particular it is not possible to change the microscopic state of the black hole by making
operations on the radiation however complicated: there is no long-range non-locality of
this kind.

The purpose of this work is to construct the holographic map V in a very simple
microscopic model of black hole evaporation defined e.g. in [31, 32] but refined to take
account of energy conservation leading to thermal states. The basic version of the model is
the block random unitary model (BRU) of [28]. A number of key features follow also for
this more refined model:

1 The semi-classical state of the radiation ρsc
R is precisely the average of the microscopic

state of the radiation ρR over the quasi-random microscopic scrambling dynamics of
the black hole.

2 Past the Page time the quasi-random fluctuations of the microscopic state ρR over-
whelm the state and it becomes very different from the semi-classical (Hawking) state
ρsc
R .

3 The Quantum Extremal Surface (QES) formula [33, 34] for the entropy of a generic
number of radiation and black hole subsets is derived in the regime where the black
hole is evaporating slowly [31, 35].

1See also [29, 30] for recent developments.
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4 Unitary actions on an infalling system can be reconstructed on the radiation after the
Page time showing that the information of the infalling system has been teleported out
of the black hole realizing the Hayden-Preskill ‘black hole as a mirror’ scenario [36].

5 There is a version of state-specific entanglement wedge reconstruction (of the type
discussed in [28]): local unitaries acting on the Hawking partners can be reconstructed
as a unitary acting on the black hole before the Page time and on the radiation after
the Page time. The discussion is extended for generic subsets of the Hawking radiation.

Let us now put some flesh on the bones. At the semi-classical level, the state of a QFT
in the black hole background consists of an entangled state between the outgoing Hawking
radiation R and their partner modes behind the horizon R. The overall state is pure

|ψy “
#

ÿ

J

λJ |JyR b |JyR
+

b |SyF P Hsc . (1.2)

We have also included the possibility for infalling modes in the state |SyF , including the
matter that collapsed to form the black hole. We will develop two models: (i) a simple one
in which the Hilbert space of the radiation is taken to be finite dimensional and (1.2) is the
maximally entangled state λJ “ 1{?dR and (ii) a more refined one for which the radiation
and partners are in a thermofield double with a slowly varying temperature.

At the microscopic level, the black hole is described by a finite dimensional Hilbert
space HB whose dimension is exponential in the BH entropy dB “ eSBH . The black hole
emits Hawking radiation and at the microscopic level we can write the state of a partly
evaporated black hole and radiation as

|Ψy “
ÿ

J

λJ |JyR b |ΨJyB P Hmicro . (1.3)

The two states, the semi-classical |ψy and the microscopic |Ψy are related by the
holographic map (1.1)

V : HR bHR bHF Ñ HR bHB . (1.4)

It was argued in [28] that the map should act trivially on R because the outgoing radiation
system is identical in both the semi-classical and microscopic descriptions. So V actually
only acts non-trivially as HR bHF Ñ HB. This is natural because the Hawking partner
modes R and the infalling modes F are behind the horizon and so part of the black
hole whose semi-classical geometry should emerge from the microscopic description. By
comparing (1.2) with (1.3), we have

V |JyR b |SyF “ |ΨJyB . (1.5)

We leave the dependence on the infalling state implicit.
The way that Hawking’s information loss paradox can be resolved now reveals itself.

In Hawking’s analysis, the state of the radiation is the reduced state, the maximally-mixed
state in the basic model and a quasi-thermal state in the refined model

ρsc
R “

ÿ

J

|λJ |2|JyRxJ | , (1.6)
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since the partner mode states are orthonormal, RxJ |KyR “ δJK . On the other hand, at the
microscopic level,

ρR “
ÿ

JK

λK λ̄JξKJ |KyRxJ | , ξKJ “ xΨJ |ΨKy . (1.7)

The semi-classical state is devoid of internal correlations, information is lost and unitarity
is violated. The microscopic state, on the other hand, can carry the correlations and repair
unitarity if the inner products ξJK are non-trivial. The fact that

xΨJ |ΨKy ‰ δJK , (1.8)

implies that the holographic map V is non-isometric, a key insight in [28]. It is the
non-isometric nature of V that allows information to escape out of the black hole in
the correlations induced by the inner product [37]. Such a release of information would
presumably be interpreted as being a non-local process to a semi-classical observer. This is a
major insight but perhaps to be expected when spacetime geometry is an emergent concept.

For a black hole past its Page time, when Srad " SBH, one would expect the states |ΨJy
to be far from orthogonal because there are order eSradpRq states in a much smaller eSBH

dimensional Hilbert space. Roughly speaking, as previously argued e.g. in [4, 38], we find

xΨJ |ΨKy “
#

1` Ope´SBHq J “ K ,

Ope´SBH{2q J ‰ K ,
(1.9)

so the violation appears to be exponentially small „ e´1{G in the semi-classical limit. This
seems to suggest that the corrections coming from the microscopic theory will be small.
However, if we write ξ “ I ` Z, then Z is roughly-speaking a quasi-random Hermitian
matrix whose elements are order e´SBH{2. It seems, therefore, that the effect of Z would be
very suppressed. However, if the dimension of the matrix „ eSrad is large then its eigenvalues
can be expected to lie in a distribution between ˘epSrad´SBHq{2. What this indicates is
that the fluctuations in Z could be expected to give rise to a radical change in the state
of the radiation beyond the Page time when Srad " SBH and a mechanism to ensure the
unitarity of the evaporation. On the other hand, if we average the microscopic state over
the quasi-random fluctuations Z we recover the semi-classical state

ρR “ ρsc
R . (1.10)

The fact that ρR ‰ ρsc
R means that if we were to attempt to interpret the microscopic state

as a state on the semi-classical geometry, then in the near-horizon region it would not be
the inertial vacuum and so we could expect there will be non-trivial energy and momentum
as the horizon is approached [39].

Another issue that is clarified by the fact that V acts trivially on the radiation R is,
as already mentioned, that the state of black hole is completely invariant under any local
action on the radiation. In more detail, the most general local action is obtained by coupling
R to an auxiliary system M and having them interact. On the semi-classical state

|ψy b |∅yM ÝÑ
ÿ

α

Kα|ψy b |αyM , (1.11)

– 4 –



J
H
E
P
0
7
(
2
0
2
3
)
0
4
3

for some orthonormal states |αy of M and where the operators Kα act on R. This defines
a quantum channel acting on R and unitarity implies that Kα are Krauss operators
ř

αK
:
αKα “ 1. Mapping this to the microscopic state, and using the fact that rV,Kαs “ 0,

the reduced state on B, after R and M have interacted, is

ρ1B “
ÿ

α

TrR
!

Kα|ΨyxΨ|K:
α

)

“ TrR

#

|ΨyxΨ|
ÿ

α

K:
αKα

+

“ ρB , (1.12)

so the state of the black hole is invariant.

1.2 The QES formula

One can quantitatively appreciate how ρR differs from ρsc
R by calculating their von Neumann

entropies. The entropy of the semi-classical state ρsc
R , suitably regularized, is just the

thermal entropy of Hawking radiation familiar from Hawking’s calculation. The question
is, how to calculate the entropy of the microscopic state ρR? This is where the QES, or
generalized entropy, formula comes in [14, 33, 40–42]. It relates the von Neumann entropy
of the microscopic state ρA reduced on some subsystem factor e.g. A “ R or B, or some
more specific subset of R to the generalised entropy:

SpρAq “ minSgenpXAq, SgenpXAq “ A pXAq
4G ` Spρsc

WpAqq. (1.13)

Here A pXAq is the area of a codimension two surface XA in the gravitating region, called
the Quantum Extremal Surface (QES), that bounds a region known as the entanglement
wedge WpAq of A in the gravitating region. The full entanglement wedge WpAq is given by
appending AXR to this region2 and is determined by extremising the generalised entropy.
Note that if A is the radiation R, or some subset thereof, the entanglement wedge WpAq
consists of A and potentially also a region disconnected from A i.e. WpAq “ AY I. The
region I is known as the ‘entanglement island’, or ‘island’ for short.

The formula (1.13) is remarkable in several ways but principally because it allows one
to calculate the entropy of the microscopic state ρA using only semi-classical techniques
even when the details of the microscopic theory are not known. It does this by implicitly
averaging over the complex chaotic microscopic dynamics of the black hole in the way
familiar from statistical mechanics. More precisely, when computed in the semi-classical
theory, we can think of the left hand side as being equal to the usual nÑ 1 limit of the
Rényi entropies but averaged in the following way

SpρAq “ lim
nÑ1

1
1´ n log ep1´nqSpnqpρAq , (1.14)

with the average over a suitable ensemble that is a proxy for the underlying complex, chaotic
microscopic dynamics. Just as in statistical mechanics, the conceptual idea is that the
average captures the behaviour of a single typical microscopic state because, unlike the
state itself, the Rényi entropies are self-averaging quantities.

2More precisely, WpAq is the domain of dependence of this region.
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For an evaporating black hole, the QES are behind the horizon and when the evaporation
is slow, which it is for most of the evaporation time apart from the final stage, the QES are
very close behind the horizon. In fact the QES are completely determined within the scope
of the slow evaporation approximation [31, 35, 43]. Firstly, they have Kruskal-Szekeres (KS)
coordinates related via

UV ∼
c

SBH
! 1 , (1.15)

where c are the number of (massless) fields. In terms of Eddington-Finkelstein (EF)
coordinates pu, vq,3 this means

v “ u´∆tscr , ∆tscr “ 1
2πT log SBH

c
. (1.16)

The slow evaporation regime applies precisely when SBH " c so that the QES are pressed up
against the horizon from within. The time shift above between the infalling and outgoing
coordinates ∆tscr is identified with the scrambling time of the black hole. This is time
dependent but only changes slowly as the black hole evaporates.

The second condition on the QES is that the outgoing EF coordinate of a QES uQES
(inside the horizon) must be equal to the outgoing EF coordinate of one of the endpoints of
the radiation uBA (outside the horizon)

tuQESu Ă tuBAu . (1.17)

This reduces the variation problem to a discrete minimization problem.
When A is a subset of the radiation and the entanglement wedge WpAq “ AY I, the

second term in (1.13) is just the thermal entropy4

Spρsc
WpAqq « SradpAa Ĩq “ πc

6

ż

AaĨ
T puq du , (1.18)

where T puq is the instantaneous temperature of the black hole as a function of the outgoing
EF coordinate u on I `. Here, Ĩ, the ‘island-in-the stream’, is just the reflection of the
island in the horizon and projected onto I ` [31, 35, 44]. So in terms of the outgoing EF
coordinate u, I and Ĩ are equal, with the former outside the horizon and the latter inside.
The symmetric difference in (1.18) accounts for the fact that I contains purifiers of the
radiation. The first term in (1.13) is then approximately equal to the Bekenstein-Hawking
entropy SBH evaluated at EF outgoing coordinates of the QES uBI . Hence, within the slow
evaporation approximation, we can write the entropy as a discrete minimization problem

S pAq « min
I

#

ÿ

uBI

SBHpuBIq ` SradpAa Ĩq
+

. (1.19)

3The KS and EF coordinates are related by an approximately exponential map, U “ ´ exp
`

´2π
şu
T ptqdt

˘

and V “ exp
`

2π
şv
T ptqdt

˘

, where T ptq is the instantaneous temperature of the black hole.
4There is a common divergence associated with the end-points of A at I ` which can be regularized.

The divergences associated to end-points of I, on the other hand, are precisely cancelled by the divergences
in the area term in (1.13).
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This formula can easily be adapted to the case when A includes the black hole itself,
B Ă A. One simply replaces A by AXR in the second term.5 In section 3 we verify this
formula in both the basic and refined models using the replica trick. We also find a simple
formula (3.29) for the island which relates the replica trick and the entanglement wedge in
quite a direct way.

The paper is organized as follows. In section 2 we define two simple discrete models
of a holographic map for an evaporating black hole. There is a basic and refined model.
Compared with the basic model, the refined model has the nice features that the state of
a small subsystem is thermal instead of maximally mixed and that the irreversiblity of
evaporation is naturally incorporated (there is no need to add in ancilla qubits to mimic
this effect). We also show that the average over the quasi-random unitary time evolution of
the microscopic state is just the semi-classical state (1.10). In section 3, we compute the
Rényi and von Neumann entropies of subsets of the radiation and black hole and derive the
minimization problem for the generalized entropy of a slowly evaporating black hole (1.19).
In section 4, we turn to the Hayden-Preskill scenario [36] and consider when the action of a
unitary on an infalling system be reconstructed (in a state-specific sense) on a subset of the
radiation or black hole from a ‘decoupling argument’. We find the model reproduces the
‘black hole as a mirror’ phenomenon and reconstruction is possible on the radiation when
the black hole is past the Page time. This problem of reconstruction of operators acting
on an infalling system was studied in the basic (or BRU) model and a random pairwise
interaction model (which incorporates the fast scrambling nature of black holes) in [28].
Our main contributions here are to study this problem in a model which generalises the
basic model and also to consider when reconstruction is possible not just on the radiation
or the black hole, but a subset thereof. In section 5 we consider when local operations, in
the form of a quantum channel, acting on the Hawking partners can be reconstructed on
a subset of the radiation or black hole. As expected, we find that reconstruction on the
radiation is possible when the black hole is past the Page time. In section 6 we draw some
conclusions. In appendix A we review the computation of certain thermodynamic quantities
for free bosonic and fermionic fields, which is used in the refined model. In appendix B we
provide a proof of the dominant saddles which contribute in the replica trick calculation in
the basic model.

2 The model

In the model, described in [31], the evaporation at the microscopic level is described by
a series of discrete time steps identified with the scrambling time of the black hole (1.16)
shown in the figure 1. During the pth time step the state of the black hole evolves by a
unitary Up which maps

Up : HBp´1 bHFp´1 ÝÑ HBp bHRp . (2.1)
5Then, if RN R A, the most recent emitted interval of radiation, there must be a QES with a u coordinate

equal to the u coordinate of the upper end-point of RN , giving a contribution SBHpMN q ” SBHpMq to (1.19).
On the other hand, if RN P A then it must be that RN Ă I. In the latter case, the connected subset of I
that includes RN is not strictly-speaking part of the island although it is in the entanglement wedge of A.
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B0 “ F0

R1

B1U1
R2

B2U2

F1
BN´1

RN

B ” BN

UN

FN´1

Figure 1. The model of black hole evaporation consisting of a sequence of random unitaries that
mimic the scrambling microscopic dynamics. At each time step a small subsystem escapes as the
Hawking radiation and there can be an infalling system. The time steps are of the order of the
scrambling time of the black hole (1.16) and so the model will appear to be continuous at time
scales much larger than the scrambling time, including the Page time and the evaporation time.

In the basic model, we have dBp´1dFp´1 “ dBpdRp , whereas in the refined model energy
conservation is taken into account and Rp is infinite dimensional. In this case, Up is an
isometric embedding of a microcanonical energy window into HRpbHBp , as we will describe
later. After N time steps, the state of the black hole and radiation is

|ΨptN qy “ UN ¨ ¨ ¨U2U1|SyF P HB bHR , (2.2)

where
|SyF “ |s0yF0 b |s1yF1 b ¨ ¨ ¨ b |sN´1yFN´1 , (2.3)

describes the infalling matter that created the black hole B0 ” F0 as well as matter that
falls in during each time step Fp as the black hole evaporates. The radiation is split into
a temporal sequence of subsets R “ Ť

pRp. In the above, the remaining black hole is
B ” BN . A basis of states of the radiation consists of |JyR where J “ tj1, . . . jNu and each
jp P t1, 2, . . . , dRpu labels the states in the pth time step Rp. In particular, the microscopic
states defined in (1.3) are

|ΨJy “ 1
λJ

RxJ |UN ¨ ¨ ¨U2U1|SyF P HB . (2.4)

Consequently the time evolution of the black hole in the model leads to a concrete expression
for the holographic map,

V “
ÿ

J

1
λJ

RxJ | b RxJ |UN ¨ ¨ ¨U2U1 , (2.5)

acting on HR bHF . In the basic model we take λJ “ 1{?dR and so the map has the form
of a unitary followed by a post selection on the maximally-entangled state on HR bHR. In
the refined model we take λJ to be given by (2.15). In the refined model the map also has
the form of a unitary followed by a post selection, however, we note that the post selection
is not on the thermofield double state on HR bHR. In fact, in the refined model the sum
in (2.5) is not well defined and V is only defined acting on suitable states such as |ψy.

– 8 –
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I `

Rp

F
p

Rp

ho
riz

on

Figure 2. Subsets of Hawking modes Rp are their entangled partners Rp behind the horizon and
infalling modes Fp. The Hawking modes propagate out to null infinity I `. Each Rp and Fp lasts
for a scrambling time.

The basic model [31] is identified with the block random unitary model of [28]. What
is noteworthy is that, in the basic model, the post selection on the maximally entangled
state, which manifests the non-isometric property of the map, is also the mechanism which
allows information to be teleported out of the black hole.

At the semi-classical level, the subsets of Hawking radiation Rp and their partners
behind the horizon Rp are illustrated in the Penrose diagram figure 2.

2.1 The refined model

In this section we refine our model of black hole evaporation to take account of energy
conservation and the thermal nature of the Hawking radiation. We will work in the adiabatic,
or quasi-static, regime where the black hole is evaporating slowly enough that it makes
sense to ascribe a slowly varying temperature T ptq to the Hawking radiation determined by
the thermodynamic equation of the black hole

1
T
“ dSBH

dM
, (2.6)

where M is the black hole mass.6 The adiabatic regime is where Hawking’s calculation
derivation is valid. It is defined by the requirement that

SBH " c , (2.7)

the number of massless fields. In addition, for a semi-classical limit c " 1.
6For a Schwarzschild black hole, M is the mass, while for the charged black hole and the black hole in

JT gravity, M is the mass minus the mass of the extremal black hole.

– 9 –



J
H
E
P
0
7
(
2
0
2
3
)
0
4
3

The time dependence of the energy is determined by the energy flux of the Hawking
radiation. Since most of the energy loss occurs in the s-wave modes we have effectively
a 1` 1-dimensional relativistic gas. We also ignore the possibility for back-scattering of
modes and so take a trivial greybody factor. The energy balance equation is then

dM

dt
“ ´πcT

2

12 (2.8)

and given (2.6) all that it needed to determine the time evolution of M , T and SBH is the
energy dependence of the BH entropy which depends on the nature of the black hole. For
example, for Schwarzschild SBH “ 4πGM2.

We will model the evaporation in terms as a series of time steps whose size are of the
order of the scrambling time of the black hole,

∆t ∼ 1
T

log SBH
c

. (2.9)

Note that this is time dependent, so the size of the time steps adapt as the evaporation
proceeds.

At each time step, the radiation carries away a small amount of energy in a distribution
that is strongly peaked around an average. Therefore, we can model the state of the black
hole at each time step as lying in a Hilbert space HBp describing a system with energy in
a small window Θp “ rMp,Mp ` δM s. Implicitly, Mp includes the energy of the infalling
system Fp. In other words, the black hole is in a microcanonical state. The size of the
window δM is assumed to be small but for simplicity we will assume that it is much larger
than the spread of the energy carried away by the radiation at each time step. The fact
that the BH entropy is so large means that Θp contains a vast number of states that forms
a quasi-continuum. The dimension of this space is exponential in the Bekenstein-Hawking
entropy

dBp “
CδM

Mp
eSBHpMpq ∼ eSBHpMpq . (2.10)

In the above, C is some constant which we do not have to specify since SBHpMq is very large.
The picture of the black hole evolving through a sequence of microcanonical states is

of course an approximation which is justified because the radiation emitted during a time
step has a sharply defined average energy and a spread that is assumed to be much smaller
than the width of the windows δM . Let us justify this claim. Since the time step, the
scrambling time ∆t, is much greater than the thermal scale T´1, the energy and entropy
of the Hawking radiation follow from the standard statistical mechanics of a relativistic
bosonic or fermionic gas (summarized in appendix A). For a bosonic gas

E “ cV

ż

dω

2π
ω

eω{T ´ 1
“ πcV T 2

12 (2.11)

and the entropy Srad “ πcV T {6, where we identify the volume with the space filled by the
gas in the scrambling time, i.e. V “ ∆t. In particular, the entropy

Srad “ πc∆tT
6 ∼ c log SBH

c
" 1 . (2.12)

– 10 –
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Hence, the Hawking modes emitted in a time step have a large entropy and so can be
described thermodynamically. Indeed, the normalized spread of the energy

∆E
E

∼
1?
Srad

! 1 . (2.13)

On the other hand, the radiation is a much smaller system than the black hole because

SBH " c log SBH
c

. (2.14)

We will then assume that this spread is much smaller than the microcanonical energy
window δM " ∆E justifying the evaporation as a sequence of microcanonical states.

The semi-classical state is now a thermofield double with a slowly varying temperature.
Taking the basis states |jpy to be approximate energy eigenstates with eigenvalues Ejp , we
have

λJ “ e´
ř

p Ejp{2Tp?
Z

, (2.15)

where Z “ ř

J e
´ř

p Ejp{Tp is the partition function which provides normalization. The
temperature Tp is the instantaneous temperature of the Hawking radiation given in (2.6)
evaluated at E “Mp. The states |jpy are to be thought of as localized in an outgoing shell
of thickness ∆tp. This is justified because the modes have characteristic momentum Tp and
so can be localized on scales T´1

p which is much smaller than ∆tp.

2.2 The average state

Black holes are famously fast scramblers so that over the scrambling time Up is essentially a
random unitary. The question of how random time evolution of a black hole is an interesting
question but one can make the hypothesis that for certain quantities it is effectively
indistinguishable from a Haar random unitary. In this section, we make that assumption
and compute the average of the microscopic state. We note that this was analysed in the
basic model in [28] and we review the calculation here to set up some notation.

We will need to average quantities over an N ˆN unitary for which the basic results
is the integral

ż

dU UÅBUA1B1 “
1
N
δAA1δBB1 . (2.16)

We will also need the generalization of this involving n replicas:
ż

dU
n
ź

j“1
UÅjBjUA1jB

1
j
“

ÿ

σ,τPSn

n
ź

j“1
δAjAσpjqδBjBτpjqWgpστ´1,N q , (2.17)

where Wg is the Weingarten function [55, 56]. Note how the integrals over the replicas
involves a sum over the elements of the symmetric group σ, τ P Sn that permute the replicas.
We will only need the behaviour in the limit that N is large, which picks out the terms
with σ “ τ for which Wgp1,N q “ 1{N ,

ż

dU
n
ź

j“1
UÅjBjUA1jB

1
j
“ 1

N n

ÿ

τPSn

n
ź

j“1
δAjA1τpjq

δBjB1τpjq
` ¨ ¨ ¨ , (2.18)
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Let us consider the microscopic state of the radiation ρR and compute its average over
the unitaries Up, p “ 1, 2, . . . , N . The ket |Ψy contributes a Up and bra xΨ| a U :p . The
average over Up then knits together the bra and ket.

Let us focus on the average over Up of its adjoint action on a operator f . Using (2.16),
we can write this average as

ż

dUp UpfU
:
p “ Trpfqρ(mm)

RpBp
. (2.19)

Here, ρ(mm)
RpBp

is the maximally-mixed state on HRp bHBp which in the basic model is,

ρ
(mm)
RpBp

“ 1
dRpdBp

. (2.20)

In the refined model it is the maximally-mixed state in the energy window Θp´1 embedded
in HRp bHBp in such a way as to conserve energy,

ρ
(mm)
RpBp

9ΠΘp´1 . (2.21)

where ΠΘp´1 is the projector onto the energy window. The following Up`1 average then
imposes a trace over Bp. In the basic model, that gives

TrBp
`

ρ
(mm)
RpBp

˘ “ 1
dRp

ÿ

jp

|jpyxjp| , (2.22)

In the refined model, let us denote a basis of energy eigenstates of Rp as |jpy with energies
Ejp , then

TrBp
`

ρ
(mm)
RpBp

˘ “ e´SBHpMp´1qÿ

jp

eSBHpMp´1´Ejp q|jpyxjp| . (2.23)

Implicitly, the sum here is constrained to have Mp´1 ´ Ejp P Θp. We can now follow
the standard route for deriving the canonical ensemble of a small subsystem of a larger
system in a microcanonical state [45], in our case the maximally mixed state. Since the
radiation subsystem is much smaller then the black hole, we can expand SBHpMp´1 ´
Ejpq « SBHpMp´1q ´ Ejp{Tp where the temperature is defined in the standard way via the
thermodynamic equation (2.6) for a black hole of mass Mp´1. Then we can extend the
restricted sum over Ejp to be unrestricted because terms for which Mp´1 ´ Ejp R Θp are
heavily suppressed. This gives the familiar approximation, namely the canonical state

TrBp
`

ρ
(mm)
RpBp

˘ «
ÿ

jp

e´Ejp{Tp
Zp

|jpyxjp| , (2.24)

where Zp “ ř

jp
e´Ejp{Tp .
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If we now assemble the expressions (2.22) and (2.24) for all the time steps, to find the
average state of the radiation

ρR “ 1
dR

ÿ

J

|JyxJ | (basic) ,

ρR “
ÿ

J

e´
ř

p Ejp{Tp
Z

|JyxJ | (refined) .
(2.25)

Hence the averaged microscopic state ρR is precisely the semi-classical state ρsc
R as stated

in (1.10). Deviations from the average arise because of the non-isometric nature of the map.
These have been analysed in the basic model in [28].

3 Entropies

We can calculate the entropy of the microscopic state reduced on any subset

A Ă tR1, . . . , RN , Bu . (3.1)

The strategy is to first calculate the Rényi entropies which can be defined by introducing n
replicas of the Hilbert space

ep1´nqSpnqpAq “ TrpρnAq “ TrpnqσrR1s
1 ¨ ¨ ¨σrRN sN τ

rBs
N`1 |ΨyxΨ|bn , (3.2)

where the σp and τN`1 are elements of the symmetric group Sn. The superscripts, e.g. σrRpsp ,
on these elements indicate which subspace of the replicated Hilbert space the element acts
on where it is ambiguous. These elements are taken to be either the identity element e or
the cyclic permutation η according to the definition of the subset A

A “  

Rp
ˇ

ˇ σp “ η , p “ 1, 2, . . . , N
(Y  

B
ˇ

ˇ τN`1 “ η
(

. (3.3)

The Rényi entropies are known to be self-averaging in the ensemble of the unitaries Up
(e.g. [46]) and so we will calculate the ensemble average of (3.3) and take this to describe a
typical element of the ensemble. The integrals we need are given in (2.18) which capture
the leading order behaviour when the Hilbert spaces have a large dimension.

Using (2.18), the average over the unitary Up acting in a replicated Hilbert space at
large dRpdBp of adjoint action is given by a sum over elements of the symmetric group Sn,

ż

dUp U
:bn
p f Ubnp “

ÿ

τpPSn

!

Trpnqτ rBp´1Fp´1s
p f

)

pτ rRpBpsp q´1 ρ
(mm) bn
RpBp

` ¨ ¨ ¨ , (3.4)

for some f in the replicated Hilbert space. So each average over Up comes with a sum over
an element of the symmetric group τp P Sn. In the above, ρ(mm)

RpBp
is the maximally mixed

state of HRp bHBp as in (2.20), while for the refined model, it is the subspace with energy
in the window Θp´1 as in (2.21). The ellipsis stand for subleading corrections, suppressed
by inverse powers of dBp´1dFp´1 , that we will not keep track of in our analysis. Trpnq is the
trace defined on the replicated Hilbert space.
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HRp

HBp

Up

Up`1

HFp

τp`1

ρFp “ |spyxsp|

τ´1
p

τ́
1

p

σp

τp`1

ρ
(mm)
RpBp

Figure 3. Assembling the ingredients for the building block in (3.6).

Applying (3.4) for all p, it becomes apparent that the average of (3.2) breaks up into a
set of building blocks:

ep1´nqSpnqpAq “
ÿ

τ1,...,τNPSn
Z1 ¨ ¨ ¨ZN , (3.5)

where

Zp “ TrpnqσrRpsp τ
rBpFps
p`1 pτ rRpBpsp q´1`ρ

(mm)
RpBp

b ρsc
Fp

˘bn
, (3.6)

where ρsc
Fp
“ |spyxsp| is the semi-classical state of the infalling system Fp. In the last step

p “ N this piece is missing, there is no FN . The traces over HFp are trivial because the
states ρsc

Fp
are pure and so Trpnqpσρscbn

Fp
q “ 1, for any σ P Sn. This includes the initial state

in HF0 that collapsed to form the black hole. Hence, the building block (3.6) can be written
more simply as

Zp “ TrpnqσrRpsp τ
rBps
p`1 pτ rRpBpsp q´1ρ

(mm) bn
RpBp

. (3.7)

The expression for the building block Zp can also be interpreted in terms of the equilibration
ansatz of [46] as an alternative to the unitary averages. In this interpretation, the pure
state of the black hole at time tp´1 equilibrates over the next time step meaning that for
certain observables it is indistinguishable from an equilibrium state, in this case precisely
the maximally mixed state ρ(mm)

RpBp
(2.20), or (2.21) in the refined model.

In the basic model, it is then straightforward to evaluate the building block (3.7),

Zp “ exp
”

pkpτp`1τ
´1
p q ´ nqSBHpMpq ` pkpσpτ´1

p q ´ nqSradpRpq
ı

, (3.8)

where kpσq is the number cycles of the element σ and with SBHpMpq “ log dBp and
SradpRpq “ log dRp . Then plugging into (3.5) gives the final result

ep1´nqSpnqpAq “
ÿ

τ1,...,τNPSn
e
p1´nqSpnq

tτpu
pAq

, (3.9)
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where we have defined

S
pnq
tτpupAq “

1
n´ 1

N
ÿ

p“1

!

dpτp`1, τpqSBHpMpq ` dpσp, τpqSradpRpq
)

, (3.10)

where dpσ, πq “ n´ kpσπ´1q is the Cayley distance between elements of Sn.7

3.1 Refined model

The refined model is rather more complicated because of the need to enforce energy
conservation. The Rényi entropies now involve a sum over both the energies Ejp and the
elements of the symmetric group τp,

ep1´nqSpnqpAq “
ÿ

tjpu

ÿ

tτpuPSn

n
ź

p“1
Zp “

ÿ

tjpu

ÿ

tτpuPSn
e
p1´nqSpnq

tτpu
pAq (3.11)

where the building block is

Zp “ dRppEjpqkpσpτ
´1
p qdBpMp´1 ` Ep ´ Ejpqkpτp`1τ

´1
p q

´

ř

jp
dRppEjpqdBpMp´1 ` Ep ´ Ejpq

¯n . (3.12)

where Ep is the energy of the infalling system Fp. Note that the mass of the black hole
depends implicitly on the energy of the radiation emitted up to that point

Mp “M0 `
p
ÿ

q“1
pEq ´ Ejqq , (3.13)

a point that must be born in mind when we perform the saddle point approximation.
The denominator in (3.12) can be evaluated by a saddle point approximation where the

sum is replaced by an integral over a continuous variable Ep. In particular, the radiation
can be described thermodynamically in the way summarized in appendix A and the entropy

log dRppEq “ 2
a

µpEp where µp “ πc∆tp
12 . (3.14)

Since the saddle point value of the energy is much smaller than the black hole mass, the
saddle point equation is

c

µp
Ep
“ ´dSBHpMp´1 ` Ep ´ Epq

dEp
« 1
Tp

ùñ Ep “ µpT
2
p , (3.15)

where Tp defined in (2.6) is precisely the temperature of the Hawking radiation Rp. The
average energy of the radiation emitted Ep and the infalling energy Ep are assumed to be
much smaller than the black hole mass. Hence, we have

ÿ

jp

dRppEjpqdBpMp´1 ` Ep ´ Ejpq « dBpMp´1qeSradpRpq{2`Ep{Tp , (3.16)

7Alternatively, the Cayley distance dpσ, πq may be defined as the minimal number of transpositions
required to go between σ and π.

– 15 –



J
H
E
P
0
7
(
2
0
2
3
)
0
4
3

where the saddle point value of the entropy is

SradpRpq “ 2µpTp “ πc∆tpTp
6 . (3.17)

This and Ep above are the familiar expressions for the entropy and energy of a volume ∆tp
of a relativistic gas in 1` 1 dimensions in a volume V “ ∆tp (as reviewed in appendix A).
The saddle point approximation is, of course, just the conventional way of deriving the
Legendre transformation between the internal energy and free energy in thermodynamics
and is justified precisely because the spread in the energy is small (2.13).

For later use, note that

dBpMpq “ dBpMp´1 ` Ep ´ Epq « dBpMp´1 ` Epqe´SradpRpq{2 (3.18)

and so
SBHpMp´1 ` Epq ´ SBHpMpq “ SradpRpq

2 , (3.19)

which is the familiar relation for a model of black hole evaporation in the s-wave approxi-
mation and with no back scattering (i.e. grey body factor). Note that it implies that the
evaporation is irreversible.

We now proceed to evaluate the sums of the energies in (3.11) by similar saddle point
approximations. After we replace the sums by integrals over Ep, the exponent of the
integrand is

p1´ nqSpnqtτpupAq “
N
ÿ

p“1

#

2pn´ dpσp, τpqq
a

µpEp ´ dpτp`1, τpqSBHpM0q

´
˜

n´
N
ÿ

q“p
dpτq`1, τqq

¸

Ep
Tp
´

N
ÿ

q“p
dpτq`1, τqqEp

Tp
´ n

2SradpRpq
+

.

(3.20)

It is now simple to compute the saddle point equations for the energies Ep. In the regime
of slow evaporation we can ignore the Ep dependence of the temperatures Tp. The saddle
point values are found to be

Ep “ µpT
2
p

˜

n´ dpσp, τpq
n´řN

q“p dpτq`1, τqq

¸2

, (3.21)

where for consistency the saddles must have

n ą
N
ÿ

q“1
dpτq`1, τqq . (3.22)

The contribution of this saddle to the Rényi entropy is

S
pnq
tτpupAq “

1
n´ 1

N
ÿ

p“1

#

dpτp`1, τpqSBHpM0q `
N
ÿ

q“p
dpτq`1, τqqEp

Tp

` 1
2

˜

n´ pn´ dpσp, τpqq2
n´řN

q“p dpτq`1, τqq

¸

SradpRpq
+

.

(3.23)
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We can re-write this by noting that (3.19) implies

SBHpMpq “ SBHpM0q `
p
ÿ

q“1

ˆ

Eq
Tq
´ SradpRqq

2

˙

, (3.24)

as

S
pnq
tτpupAq “

1
n´ 1

N
ÿ

p“1

#

dpτp`1, τpqSBHpMpq

`
2ndpσp, τpq ´ dpσp, τpq2 ´

´

řN
q“p dpτq`1, τqq

¯2

2
´

n´řN
q“p dpτq`1, τqq

¯ SradpRpq
+

,

(3.25)

which is the refined model generalization of (3.10).

3.2 Relation to the island formalism

We interpret (3.9) as being a sum over saddles of the (Lorentzian) gravitational path
integral in the semi-classical limit, labelled by the elements tτpu. In this limit, the entropies
SBHpMpq and SradpRpq are very large. If we avoid the crossover regimes when saddles are
degenerate, it turns out that only a much smaller number of terms can actually dominate
in the sum, namely, those for which each τp, p “ 1, . . . , N , is equal to e or η only, the
identity and cyclic permutations, respectively. This is proved in appendix B for the basic
model. The te, ηu dominance means that the saddles that dominate respect the Zn cyclic
symmetry of the replicas mirroring the symmetry of the replica wormholes of [4, 5], or,
equivalently, we can interpret the average over unitaries to be equivalent to the average
over baby universe states (see [29, 47]).

For the refined model, the discussion is very similar. Indeed each element in the energy
sum in (3.11) behaves like a basic model, and therefore we can again invoke the fact that
τp is dominated by τp P te, ηu, which will be valid as long we are not in the vicinity of a
crossover of saddles.8

The expression for the von Neumann entropy of our chosen subset A Ă R Y B is
obtained from (3.10) and (3.25) in the limit SpAq “ limnÑ1 SpnqpAq and has the form of a
minimization problem over the 2N choices τp P te, ηu. Indeed notice that when σ, π P te, ηu,
we can write

dpσ, πq “ pn´ 1qp1´ δσπq , (3.26)

which facilitates the evaluation of the Cayley distances in the nÑ 1 limit of (3.10) and (3.25).
In both models, the von Neumann entropy is given by

SpAq “ min
tτpu

StτpupAq “ min
tτpu

#

N
ÿ

p“1
p1´ δτp`1τpqSBHpMpq ` p1´ δσpτpqSradpRpq

+

. (3.27)

8Notice that we don’t risk of having a crossover at every time step since we assumed that each energy
window is small (2.13).
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q

Figure 4. An example of a saddle for the model with N “ 8 time steps, with some choice of
the set A “ R3 Y R4 Y R7 Y R8, as shown, with an island-in-the-stream Ĩ. Note that BĨ Ă BA.
The contributions to the entropy from each time step are shown and summing these up gives
SIpAq “ SBHpM2q ` SBHpM8q ` SradpR5 YR6q. Note that the last term is SradpAa Ĩq.

The resemblance of this equation to the QES formula described in the introduction for
a slowly evaporating black hole (1.19) becomes more apparent if we set

SIpAq ” StτpupAq. (3.28)

where I is defined in both models as

I “
ď

pPΦ

`

Rp Y Fp´1
˘

. (3.29)

with Φ “  

p | τp “ η
(

. The I that minimizes (3.28) is called the ‘entanglement island’ or
‘island’, for short, will be denoted IpAq. Even if in principle we have 2N possible saddles,
most of them will not contribute since terms with τp ‰ τp`1 are not favourable because of
the black hole entropy being big. One can check that the only saddles that are not trivially
suppressed are the one where τp changes in correspondence with a change in σp, which is
an analog of the condition (1.17). See figure 4 for an example where Φ “ t3, 4, 5, 6, 7, 8u.

In order to make more transparent the identification of (3.27) with the QES for-
mula (1.19) for the A that we have chosen, we can also notice that the second term is a
discrete version of the continuum expression SradpAa Ĩq where we identify the island-in-
the-stream as the reflection of the island I in the horizon and then projected onto I `, so
each Rp gets mapped to Rp:

Ĩ “
ď

pPΦ
Rp . (3.30)

On the other hand, the first term can be written in terms of the BH entropy at the outgoing
EF coordinates of QES uBI . We can then parametrize the entropy of the black hole with
its mass at outgoing time u. Notice also that the infalling states in (3.29) are shifted by
p Ñ p ´ 1. This is how the model accounts for the fact that infalling coordinate v of
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the QES are shifted relative to the outgoing coordinate u by the scrambling time (1.16),
precisely the size of the time steps in the model.

In the next sections, we will enforce our definition of the entanglement island (3.29)
studying when it is possible to reconstruct an unitary acting on the radiation, which is
equivalent to the well known statement that the island is in the entanglement wedge of
the radiation. Specifically, since the emitted radiation is in both the semi-classical and
microscopic descriptions, we include it in its own entanglement wedge

WpAq “ IpAq Y pAXRq . (3.31)

Although we call IpAq the island, strictly speaking, this only applies when subsets of IpAq
are separated from the rest of the entanglement wedge by QES.9

4 Information recovery and reconstruction

In this section, we consider the fate of an infalling system, Hayden and Preskill’s diary for
instance [36]. A version of this problem was considered for the basic (or BRU) model in
section 7 of [28]. The purpose of this section is to extend this analysis to reconstruction
on subsets of the radiation, which we verify is consistent with the QES formula discussed
in section 3, and to extend this analysis to the refined model. It is worth noting that we
employ a different method, as compared with [28], to show when reconstruction is possible
by employing a replica trick to calculate the trace distance to find when certain decoupling
conditions hold. Finally, we point out in section 4.1 how a different approach which uses
standard bounds on the trace distance can not always be used in the refined model.

We will focus on a single system that falls in during the qth time step. For simplicity,
we will avoid the case that this is the last time step, in other words we will take q ă N .
The idea is to consider a family of infalling states W |sqy for a unitary W and fixed state
|sqy P Fq. This gives a family of microscopic states |ΨpW qy. The physical question is, can
the effect of the unitary W be achieved by a local action on the radiation or the black hole?
This will inform us as to when the information in Fq has been teleported out of the black
hole. More specifically, when can the action of W be reconstructed on A “ R or B, or a
subset thereof, in the sense that there exists a unitary WA acting on A such that

WA|Ψy ?“ |ΨpW qy . (4.1)

This is the state-specific notion of reconstruction described in [28]. The above implies that
WA acts on the reduced state on A via the adjoint action

ρApW q “WAρAW
:
A , (4.2)

while the reduced state on the complement A is invariant

ρApW q “ ρA . (4.3)
9For example, when A “ B, the black hole before the Page time has IpBq “WpBq “ RYF which is not

an island in the strict sense.
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In fact this decoupling condition on A implies the existence of WA in (4.1). This can be
seen using the Schmidt decomposition. The decoupling condition implies that if |Ψy “
ř

j
?
pj |jyA|jyA then |ΨpW qy “ ř

j
?
pj |jy1A|jyA. It follows that WA “ ř

j |jy1Axj| acting
on the subspace of HA spanned by the Schmidt states |jyA although it can be extended to
a unitary acting on HA. Acting within the subspace, we can write explicitly,

WA “ TrA |ΨpW qyxΨ|ρ´1
A
. (4.4)

The Schmidt basis states depend implicitly on the infalling state |sqy and so the construction
of W is ‘state dependent’ in this sense. It is an interesting question if the construction can
be extended to any operator acting on any state of the infalling system in HFq and thereby
be state independent, at least in this limited sense. In fact, the construction above can be
seen as a special case of the Petz map and, indeed, there is a more general state-independent
construction [48].

We cannot expect the conditions (4.1) and (4.3) to hold exactly and approximate forms
of these conditions are formulated in [28]. However, we will work to leading order in the
semi-classical limit and we will not need these approximate forms in our analysis.

The decoupling condition is therefore key to reconstructing that action of W on either
the radiation or the black hole. Hence, we need to calculate the difference between the
states ρApW q and ρA. This can be measured by the trace norm10 difference

ˇ

ˇ

ˇ

ˇσ ´ ρˇˇˇˇ1 or the
quantum fidelity fpσ, ρq. Both are tractable in our models when averaged over the unitary
evolution to leading order in the semi-classical limit where they can be computed using the
replica method and an analytic continuation. For the trace norm difference, we take an
even number of replicas and then take an analytic continuation,

ˇ

ˇ

ˇ

ˇσ ´ ρˇˇˇˇ1 “ Tr
apσ ´ ρq2 “ lim

nÑ 1
2

Trp2nqη
`

σ ´ ρ˘b2n (4.5)

and similarly for the quantum fidelity,

fpσ, ρq ” Tr
b?

ρσ
?
ρ “ lim

nÑ 1
2

Trp2nqη
`

σ b ρ˘bn . (4.6)

In our context, there is a subtlety in that the analytic continuations must be taken after
the semi-classical limit has picked out a dominant saddle otherwise saddles would become
degenerate. We should also emphasize that what we are actually calculating are the unitary
averages of the replica expressions before taking the limits nÑ 1

2 . This is in the same spirit
as calculating the averages the exponents of the Rényi entropies as in (3.5) before taking
the limit nÑ 1 to recover the von Neumann entropy. In section 4.1 we compute an upper
bound on the trace norm which does not require the nÑ 1

2 limit.
Let us compute the average of the trace difference in (4.5). The computation is similiar

to that of the Rényi entropy via TrρnA. In fact, since W acts locally on HFq , only the qth

time step is modified:

Zq ÝÑ Trp2nqσrRqsq τ
rBqFqs
q`1 pτ rRqBqsq q´1`ρ

(mm)
RqBq

b pρsc
FqpW q ´ ρsc

Fqq
˘b2n

“ Zq Trp2nqτq`1
`

ρsc
FqpW q ´ ρsc

Fq

˘b2n
,

(4.7)

10For Hermitian operators the trace norm is equal to
ˇ

ˇ

ˇ

ˇO
ˇ

ˇ

ˇ

ˇ

1 “
ř

j |λj |, where λj are the eigenvalues of O.
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where we separated out the trace over the replicas of Fq where W acts and the quantity Zq

is the original quantity in the entropy calculation defined in (3.7). The contribution from
the other time steps p ‰ q are precisely as for the entropy (3.7). Hence, assembling all the
pieces gives

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

ÿ

τ1,...,τNĂte,ηu
e
p1´2nqSp2nq

tτpu
pAqTrp2nqτq`1

`

ρsc
FqpW q ´ ρsc

Fq

˘b2n
. (4.8)

Now we have to be careful to take the semi-classical limit before taking the analytic
continuation nÑ 1

2 . The semi-classical limit picks out a dominant term in the sum over
the elements τp and, in particular, fixes τq`1. Hence,

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nqτq`1
`

ρsc
FqpW q ´ ρsc

Fq

˘b2n (4.9)

One can follow the same steps for the average of the quantum fidelity. Once again the
contribution comes entirely from the qth time step which is modified as

Zq ÝÑ Trp2nqσrRqsq τ
rBqFqs
q`1 pτ rRqBqsq q´1`ρ

(mm)
RqBq

˘b2n b `

ρsc
FqpW q b ρsc

Fq

˘bn

“ Zq Trp2nqτq`1
`

ρsc
FqpW q b ρsc

Fq

˘bn
,

(4.10)

leading to
fpρApW q, ρAq “ lim

nÑ 1
2

Trp2nqτq`1
`

ρsc
FqpW q b ρsc

Fq

˘bn (4.11)

Let us now evaluate our results above. When Fq R WpAq, it follows that the dominant
saddle has τq`1 “ e. For the trace norm difference (4.9), this gives an expression that is
clearly seen to vanish

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nq
`

ρsc
FqpW q ´ ρsc

Fq

˘b2n

“ ˇ

ˇTrpρsc
FqpW q ´ ρsc

Fqq
ˇ

ˇ “ 0 .
(4.12)

This proves the decoupling condition in terms of the trace norm. On the other hand, for
the fidelity (4.11),11

fpρApW q, ρAq “ lim
nÑ 1

2

Trp2nq
`

ρsc
FqpW q b ρsc

Fq

˘bn

“
b

Trρsc
Fq
pW qTrρsc

Fq
“ 1 ,

(4.13)

which is another expression of decoupling. Note that, if the trace norm difference of two
states vanishes, then they must have unit quantum fidelity and ρApW q “ ρA.

11The fidelity plays an important role in quantum hypothesis testing, which is the task of making a
measurement to distinguish between two quantum states given that the actual state is one of them. The
fidelity bounds the error on the optimal measurement. We expect that the corrections to (4.13) are non-
perturbatively suppressed in the semi-classical limit, as in [57, 58]. If so, this would imply that whilst it is
not possible to distinguish the two states given a single copy of the state, it will be possible given sufficiently
many copies of the state.
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On the other hand, when Fq P WpAq, the element τq`1 “ η and the trace norm
difference (4.9) is

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nqη
`

ρsc
FqpW q ´ ρsc

Fq

˘b2n

“ ˇ

ˇ

ˇ

ˇρsc
FqpW q ´ ρsc

Fq

ˇ

ˇ

ˇ

ˇ

1 .

(4.14)

For the fidelity, we have a similar relation to the semi-classical state

fpρApW q, ρAq “ lim
nÑ 1

2

Trp2nqη
`

ρsc
FqpW q b ρsc

Fq

˘bn

“ fpρsc
FqpW q, ρsc

Fqq .
(4.15)

Let us take stock of the results and, in particular, relate them to the state reconstruction
formula of [49]. This states that if there are two microscopic states ρA and σA such that
the semi-classical saddles that dominate Trpρ2n

A q and Trpσ2n
A q are the same (and preserve

the Zn symmetry of the replicas) then12

ˇ

ˇ

ˇ

ˇρA ´ σA
ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
WpAq ´ σsc

WpAq
ˇ

ˇ

ˇ

ˇ

1 , (4.16)

up to OpGq corrections, where WpAq is the entanglement wedge of A. The fact that the
map V preserves the trace norm difference is on the same footing as the preservation of the
relative entropy [5, 25, 50].

To relate this to our analysis, we identify σR “ ρRpW q. The saddles associated to
Trpρ2n

A q and Trpσ2n
A q are the ones that determine the Rényi entropies and are therefore

associated to the set of elements τp, p “ 1, . . . , N . The fact that they both have the same
saddle is ensured by the fact that W only acts on a small subset of the infalling modes and
so cannot alter the dominant saddle.

Let us consider our results for the case A “ R. Before the Page time, WpRq “ R and
so Fq R WpRq and the formula (4.16) implies

ˇ

ˇ

ˇ

ˇρRpW q ´ ρR
ˇ

ˇ

ˇ

ˇ

1 “ 0 , (4.17)

which is the decoupling condition (4.12) with A “ R. This means that W can be re-
constructed on B. On the other hand, after the Page time, the entanglement wedge
WpRq “ RY IpRq, so Fq P WpRq, since the island IpRq contains the outgoing and infalling
modes IpRq “ RY F since it lies very close behind the horizon. Hence, (4.16) implies

ˇ

ˇ

ˇ

ˇρRpW q ´ ρR
ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
RRF

pW q ´ ρsc
RRF

ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
FqpW q ´ ρsc

Fq

ˇ

ˇ

ˇ

ˇ

1 , (4.18)

which is (4.14) with A “ R. We will see shortly that this is the case when W can be
reconstructed on R because B decouples.

12We have stated the formula in a slightly more general way to include the case when A is any subset of
the radiation plus the black hole rather than all the radiation as considered in [49]. The condition for Zn
symmetry is satisfied by our saddles which involve only the elements e or η of Sn.
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Now consider the case A “ B. After the Page time, WpBq “ ∅ and so (4.16) predicts
decoupling as we found in (4.12). This occurs at the same time as (4.18) which makes
perfect sense as W can be reconstructed on R. On the other hand, before the Page time,
WpBq “ RY F , and so (4.16) gives

ˇ

ˇ

ˇ

ˇρBpW q ´ ρB
ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
RF
pW q ´ ρsc

RF

ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
FqpW q ´ ρsc

Fq

ˇ

ˇ

ˇ

ˇ

1 . (4.19)

But this is precisely (4.14) for A “ B. This is also when R decouples and so W can be
reconstructed on B. So once again we find precise agreement between our averaged results
and the formula (4.16).

4.1 Bounding the trace norm

The condition for decoupling is that the averaged trace norm difference between ρApW q
and ρA vanishes in the leading order saddle (4.12). But this is derived with the limits in a
particular order, first the semi-classical limit picking out a particular saddle and then in
the replica limit n Ñ 1

2 . Can we trust this? In fact there is standard way to bound the
averaged trace norm difference,

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 ď
b

dATrpρApW q ´ ρAq2 . (4.20)

We can evaluate the right-hand side, at least in the case that the subsystem A is finite
dimensional. Note that this seems to exclude A “ R, the radiation, in the refined model as
it has infinite dimension. The average on the right-hand side is just the right-hand side
of (4.8) with nÑ 1, so

TrpρApW q ´ ρAq2 “
ÿ

τ1,...,τNĂte,ηu
e
´Sp2q

tτpu
pAqTrp2qτq`1

`

ρsc
FqpW q ´ ρsc

Fq

˘b2
. (4.21)

If we consider A “ B, so dA „ eSBHpMq, and after the Page time, the sum in (4.21)
is dominated by the term with τp “ η for which S

p2q
tηupBq “ αSradpRq, where α “ 1 for

the basic model and α “ 3
4 , for the refined model.13 Therefore we can bound the trace

norm difference
ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 Æ O
´

e
1
2SBHpMq´α

2 SradpRq
¯

! 1 , (4.22)

after the Page time when SradpRq " SBHpBq.

5 Reconstruction of the Hawking partners

In this section, we consider reconstruction for the Hawking partners which semi-classically
are behind the horizon and part of the black hole. This problem was considered in the
static model of [28], which essentially represents the holographic map at a fixed time.
Therefore, it differs from the dynamical models considered in this paper. In addition, we

13The latter follows from (3.25) with τp “ η, p “ 1, . . . , N ` 1 and σp “ e giving dpτp`1, τpq “ 0 and
dpσp, τpq “ n ´ 1 giving Spnq

tηupBq “ pn ` 1qSradpRq{p2nq. This is the Rényi entropy of the radiation (see
appendix A) and then taking n “ 2 gives 3

4SradpRq.
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note that section 8.2 of [28] addressed a different yet related problem concerning the ability
to distinguish certain interior states.

Conceptually the discussion is very similar to the reconstruction of the infalling system
in the last section but the technical details are rather different. The idea is to consider a
unitary operator on the Hawking partners R and ask if it is possible to reconstruct this on
some A Ă RYB, i.e.

|ΨpW qy ?“WA|Ψy . (5.1)

As in section 4 the condition for such a reconstruction is the decoupling condition for the
complement

ρApW q “ ρA , (5.2)

which can be analysed by calculating the trace norm difference or quantum fidelity.
In order to proceed, it is useful to deploy the following trick. Exploiting the entanglement

between R and R, we can write the action of W on the semi-classical state as the action of
an operator ĂW on R:

W |ψy “ ĂW |ψy , (5.3)

where
ĂW “ pρsc

Rq1{2W T pρsc
Rq´1{2 . (5.4)

We remark that ĂW is not unitary so it is not a physically realizable local action on the
radiation. It then follows that the reduced state on R is invariant under adjoint action
by ĂW ,

ρsc
R ÝÑ ĂWρsc

R
ĂW : “ pρsc

Rq1{2
`

W :W
˘˚pρsc

Rq1{2 “ ρsc
R , (5.5)

as it must be by locality: the action of W on R cannot change the state of R.
We now compute the trace difference and quantum fidelity of the two states ρApW q

and ρA using the replica method following the same steps as in section 4. For simplicity, we
will take W to act on just one of the subsets of partner modes Rq. We can then use (5.3)
to write the action on the Hawking modes Rq by switching W Ñ ĂW . As for the infalling
system, the only effect of W is on the qth time step. For the trace norm difference, this
time step is modified as

Zq ÝÑ Trp2nqσrRqsq τ
rBqs
q`1

`

Ad
ĂW
´ 1

˘b2npτ rRqBqsq q´1ρ
(mm) b2n
RqBq

, (5.6)

where Ad
ĂW

is the adjoint action of ĂW on ρ
(mm)
RqBq

. We now assume that the saddle that
dominates the entropy, and therefore the trace norm difference, has τq`1 “ τq. This means
that Rq is not just before a QES. One can view this as avoiding an edge effect created
by having a discrete model. In that case, we can perform the trace over Bq to give the
semi-classical state ρsc

Rq
“ TrBqρ

(mm)
RqBq

:

Zq ÝÑ Trp2nqσq
`

Ad
ĂW
´ 1

˘b2n
τ´1
q ρsc b2n

Rq
. (5.7)

where in the second line we used the fact that all relevant saddles have τq`1 “ τq and
ρsc
Rq
“ TrBqρ

(mm)
RqBq

. Following the same steps as in section 4, and in particular taking the
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semi-classical limit before the analytic continuation in n, gives
ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nqσq
`

Ad
ĂW
´ 1

˘b2n
τ´1
q ρsc b2n

Rq
(5.8)

where τq is determined by the saddle that dominates the entropy. Similarly, for the quantum
fidelity

fpρApW q, ρAq “ lim
nÑ 1

2

Trp2nqσq
`

Ad
ĂW
b 1

˘bn
τ´1
q ρsc b2n

Rq
(5.9)

When Rq R WpAq the dominant saddle has τq “ e and then the trace norm difference is
ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nqσq
`

ĂWρsc
Rq
ĂW : ´ ρsc

Rq

˘2n “ 0 , (5.10)

using the invariance (5.5). We can repeat the analysis for the fidelity,

fpρApW q, ρAq “ lim
nÑ 1

2

Trp2nqσq
´

ĂWρsc
Rq
ĂW : b ρsc

Rq

¯bn

“ lim
nÑ 1

2

Trp2nqσq ρsc b2n
Rq

“ 1 .
(5.11)

So decoupling occurs when the partners Rq do not lie in the entanglement wedge of A.
Under these circumstances, W can be reconstructed on the complement A.

On the other hand, when Rq P WpAq, the appropriate saddle has τq “ η and (5.8)
becomes

ˇ

ˇ

ˇ

ˇρApW q ´ ρA
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Trp2nqσq
`

Ad
ĂW
´ 1

˘b2n
η´1ρsc b2n

Rq
. (5.12)

We can now consider this for particular choices for A. For the case A “ R, so after the
Page time, then σq “ η, and the above becomes

ˇ

ˇ

ˇ

ˇρRpW q ´ ρR
ˇ

ˇ

ˇ

ˇ

1 “ 2
b

1´ ˇ

ˇTr
`

ρsc
Rq
W T

˘ˇ

ˇ

2

“ ˇ

ˇ

ˇ

ˇρsc
RR
pW q ´ ρsc

RR

ˇ

ˇ

ˇ

ˇ

1 .

(5.13)

For the case A “ B, so before the Page time, σq “ e, we have
ˇ

ˇ

ˇ

ˇρBpW q ´ ρB
ˇ

ˇ

ˇ

ˇ

1 “ lim
nÑ 1

2

Tr
`

W ˚ρsc
RqW

T ´ ρsc
Rq

˘2n

“ lim
nÑ 1

2

Tr
`

Wρsc
Rq
W : ´ ρsc

Rq

˘2n

“ ˇ

ˇ

ˇ

ˇρsc
R
pW q ´ ρsc

R

ˇ

ˇ

ˇ

ˇ

1 .

(5.14)

Note that (5.14) is not the same as (5.13) because R is entangled with R.
We can also consider the quantum fidelity. For A “ R (after the Page time),

fpρRpW q, ρRq “ lim
nÑ 1

2

Trp2nqη
`

Ad
ĂW
b 1

˘b2n
η´1ρsc b2n

Rq

“ ˇ

ˇTrpρsc
RqW

T qˇˇ “ fpρsc
RR
pW q, ρsc

RR
q

(5.15)
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and for A “ B (before the Page time),

fpρBpW q, ρBq “ lim
nÑ 1

2

Trp2nq
`

Ad
ĂW
b 1

˘b2n
η´1ρsc b2n

Rq

“ lim
nÑ 1

2

Trp2nqη
`

W ˚ρsc
RqW

T b ρsc
Rq

˘n

“ fpρsc
R
pW q, ρsc

R
q .

(5.16)

These expressions are close cousins of the expressions for the trace norm difference in (5.13)
and (5.14).

Once again, let us compare our results to the formula (4.16) of [49]. Firstly, let us
compare the microscopic states ρRpW q and ρR. Before the Page time, Rq R WpRq and
so (4.16) implies

ˇ

ˇ

ˇ

ˇρRpW q´ρR
ˇ

ˇ

ˇ

ˇ

1 “ 0. After the Page time, Rq P WpRq and so (4.16) implies
ˇ

ˇ

ˇ

ˇρRpW q ´ ρR
ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
RRF

pW q ´ ρsc
RRF

ˇ

ˇ

ˇ

ˇ

1 , (5.17)

which is precisely (5.13) because F is not entangled with RYR.
Now we turn to the states ρBpW q and ρB . In this case, after the Page time, WpBq “ ∅

and so (4.16) implies
ˇ

ˇ

ˇ

ˇρBpW q ´ ρB
ˇ

ˇ

ˇ

ˇ

1 “ 0. On the other hand, before the Page time,
WpBq “ RY F , and so (4.16) implies

ˇ

ˇ

ˇ

ˇρRpW q ´ ρR
ˇ

ˇ

ˇ

ˇ

1 “
ˇ

ˇ

ˇ

ˇρsc
RF
pW q ´ ρsc

RF

ˇ

ˇ

ˇ

ˇ

1 . (5.18)

This is precisely (5.14) because F is not entangled with R.

6 Discussion

We have defined a simple model which accounts for energy conservation that captures the
information flow of an evaporating black hole and have seen that many of the features of the
model proposed in [28] can be extended to this refined model. Unitarity is built in and this
manifests at the level of the entropy of the radiation in the form of a discrete version of the
QES variational problem. The model then allowed us to investigate in detail entanglement
wedge reconstruction for a system that falls into the black hole and also for local actions on
the Hawking partners. Our main contributions here were to study these problems in a model
which generalised the model of [28] and also to consider when reconstruction is possible
not just on the radiation or the black hole, but a subset thereof. The model reproduces
the properties of the holographic map that have been proposed in [28]; namely, the map
acts trivially on the outgoing radiation and non-isometrically on the black hole. This latter
fact manifests the fact that the Hilbert space of an old black hole is not large enough to
host all the Hawking partners of the semi-classical state. Something must give, the map
is non-isometric and as a result the Hawking partners have been teleported out into the
radiation as subtle features of the microscopic state of R. In a sense, when a black hole is
past the Page time according to an external observer, its inside has been squeezed out into
the radiation leaving only a small region between the horizon and the QES that could be
thought of as being part of the black hole.
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Although the proposal of [28] has clarified certain issues, much remains to be understood.
Of principal interest is the fate of an infalling system. According to these models, an infalling
system begins to be scrambled immediately. In fact, the infalling system will soon enter the
entanglement wedge of a late-time observer who collects all the radiation, since the QES is
very close up behind the horizon meaning that the information of the infalling observer is
in the radiation available to the late-time observer. Is this compatible with the idea that
the infalling system experiences a smooth internal geometry after horizon crossing? We
have argued at the microscopic level, the state of the radiation is not the inertial vacuum
in the neighbourhood of the horizon but perhaps the infalling system sees effectively a
smooth geometry and being thermalized takes some time. This would support an idea
previously presented in [51] and analysed in the basic model in [28]. The situation seems
quite analogous to the same questions for the fuzzball paradigm in string theory [52, 53].
In that context, it is argued that a macroscopic (i.e. high energy) infalling system would
take time to be thermalized as it falls into the fuzzball. In a proposal known as fuzzball
complementarity, the high energy infallling system would not resolve the subtle structure of
the microscopic state and effectively average it to see a smooth geometry. It seems plausible
that the same mechanism is at work here, if an observer cannot resolve the fine details of
ρR maybe it effectively experiences the average ρR “ ρsc

R , precisely the semi-classical state
and a smooth horizon, at least for a while.

Acknowledgments

TJH, AL and SPK acknowledge support from STFC grant ST/T000813/1. NT and ZG
acknowledge the support of an STFC Studentship. AL has also received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 804305).

A Thermodynamics of free fields

Consider a set of free fields in 1 ` 1 dimensions. We will consider just the right-moving
modes. The canonical partition function of a single mode of energy ω is equal to

Z “
8
ÿ

p“0
e´pω{T “ 1

1´ e´ω{T ,
1
ÿ

p“0
e´pω{T “ 1` e´ωT , (A.1)

for a scalar and spinor field, respectively. Summing over modes in a volume V and assuming
there are N “ c, 2c fields for bosons/fermions, gives the free energy

f “ ˘NV T

ż 8

0

dω

2π logp1¯ e´ω{T q “ ´πcV T 2

12 . (A.2)

The average energy

E “ NV

ż 8

0

dω

2π
ω

eω{T ¯ 1
“ πcV T 2

12 (A.3)
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and the entropy

Srad “ NV

ż 8

0

dω

2π

! ω

T peω{T ¯ 1q ¯ logp1¯ e´ω{T q
)

“ πcV T

6 . (A.4)

We can also evaluate the Rényi entropes,

p1´ nqSpnqrad “ NV

ż 8

0

dω

2π log
8,1
ÿ

p“0

˜

e´pω{T

Z

¸n

“ NV

ż 8

0

dω

2π
`

log ZpT {nq ´ n log ZpT q˘ .
(A.5)

Hence,

S
pnq
rad “

nfpT q ´ nfpT {nq
p1´ nqT “ 1` n

n
µT “ 1` n

2n Srad . (A.6)

We will need to understand whether the relativistic gas can be described thermody-
namically. We can solve for the entropy in terms of the entropy, Srad “ 2

?
µE , where

µ “ πcV {12. In the thermodynamic it should be possible to approximate the canonical
partition function as a integral over a continuum set of states with energy E and density of
states eSradpEq, that is

Z “ e´f{T “
ż

dE eSradpEq´E{T . (A.7)

The thermodynamic limit can be understood as when the saddle point approximation of
this integral is valid. The saddle point equation corresponds to the Legendre transformation
between the internal energy and free energy:

f “ ext
E

`

E ´ TSradpEq
˘

, (A.8)

and has solution
E “ µT 2 , (A.9)

for which the free energy
f “ ´µT 2 . (A.10)

One can verify that these expressions are entirely consistent with (A.2) and (A.3). The
saddle point approximation is valid in the limit that the spread in the energy around the
saddle point ∆E ! E which is the condition

∆E
E

∼
1?
Srad

! 1 . (A.11)

So when Srad " 1, the gas can be described thermoydnamically.
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B Dominant saddles

In the model, we encounter sums over elements of the symmetric group of the form (3.5).
This motivates analysing a sum of the form

Zpnq “
ÿ

σPSn
d
´dpσ,τ1q
1 d

´dpσ,τ2q
2 d

´dpσ,τ3q
3 , (B.1)

where di ě 1, τi P Sn and dpσ, πq is the Cayley distance between elements of Sn. This is
equal to

dpσ, πq “ n´ kpσπ´1q , (B.2)

where kpσq is the number of cycles the make up σ, e.g. kpeq “ n and kpηq “ 1.
We are interested in minimising the following ‘free energy’

fpσq “ x1dpσ, τ1q ` x2dpσ, τ2q ` x3dpσ, τ3q , (B.3)

where xi “ log di. We first consider the permutations which minimise the free energy at the
following special regions in the phase diagram (see figure 5), which we may parameterise by
x1{x3 and x2{x3:

• for x1{x3 Ñ 0 and x2{x3 Ñ 0: fpσq Ñ x3dpσ, τ3q is minimised for σ “ τ3.

• for x1{x3 ` x2{x3 “ 1: fpσq “ x1 pdpτ1, σq ` dpσ, τ3qq ` x2 pdpτ2, σq ` dpσ, τ3qq is
minimised for σ P Γpτ1, τ3q X Γpτ2, τ3q. Here, Γpτi, τjq denotes the set of permutations
σ which saturate the triangle inequality dpτi, σq ` dpσ, τjq ě dpτi, τjq.

There are two ` two more regions in the phase diagram where the permutations which
minimise the free energy can be determined by cyclically permuting the labels in the
above. Most of the rest of the phase diagram can then be filled in using convexity of
the free energy. That is, since f is a linear function of the xi, if σ minimises f at two
points in the phase diagram, then σ also minimises f along the segment joining these two
points. This argument can only be used to fill in the whole phase diagram if the set of
permutations Γpτ1, τ2, τ3q – Γpτ1, τ2q X Γpτ2, τ3q X Γpτ3, τ1q which simultaneously saturate
the three triangle inequalities

dpτi, σq ` dpσ, τjq ě dpτi, τjq for i ‰ j , (B.4)

is not empty. The argument we have used to find the minima of f by considering special
regions in the phase diagram and then using convexity to fill in the rest is due to [54].

From the above, we find that:

• for x1{x3 ` x2{x3 ă 1:

Zpnq « d
´dpτ1,τ3q
1 d

´dpτ2,τ3q
2 . (B.5)

The behaviour of the sum in two other regions may be obtained by cyclically permuting
the labels in the above.
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x1{x3

x2{x3

1

1 Γpτ1, τ2, τ3q

τ1

τ2

τ3

Figure 5. Phase diagram for the sum (B.1) when Γpτ1, τ2, τ3q is not empty. Along the blue lines
there are more permutations which can contribute e.g. along x1{x3`x2{x3 “ 1 the sum is dominated
by the set of permuations which lie in Γpτ1, τ3q X Γpτ2, τ3q.

• assuming Γpτ1, τ2, τ3q is not empty, for x1{x3 ` x2{x3 ą 1, x2{x1 ` x3{x1 ą 1 and
x3{x2 ` x1{x2 ą 1:

Zpnq « |Γpτ1, τ2, τ3q|
ˆ

d1d2
d3

˙´dpτ1,τ2q{2 ˆd2d3
d1

˙´dpτ2,τ3q{2 ˆd3d1
d2

˙´dpτ3,τ1q{2
. (B.6)

B.1 Proof

We now prove that when τN P te, ηu the nested sum (3.5) in the simple model:

ZN pτN q “
ÿ

τ0,...,τN´1PSn

N
ź

p“1
d
´dpτp´1,τpq
Bp

d
´dpτp´1,σpq
Rp

, (B.7)

with dBp , dRp ě 1 and σp P te, ηu, is dominated by the terms with τp´1 P te, ηu for each
1 ď p ď N , provided we ignore the crossover regimes. It is useful to notice that ZN pτN q
satisfies the recursion relation

ZN pτN q “
ÿ

τN´1PSn
d
´dpτN´1,τN q
BN

d
´dpτN´1,σN q
RN

ZN´1pτN´1q , Z0pτ0q “ 1 . (B.8)

First consider

Z1pτ1q “
ÿ

τ0PSn
d
´dpτ0,τ1q
B1

d
´dpτ0,σ1q
R1

. (B.9)

This sum is of the form (B.1) so is dominated by the terms with τ0 P tσ1, τ1u Ă te, η, τ1u.
Using this fact we see that

Z2pτ2q “
ÿ

τ1PSn
d
´dpτ1,τ2q
B2

d
´dpτ1,σ2q
R2

Z1pτ1q

«
ÿ

τ1PSn
d
´dpτ1,τ2q
B2

d
´dpτ1,σ2q
R2

minpdB1 , dR1q´dpτ1,σ1q ,
(B.10)
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is also of the form (B.1) so is dominated by the terms with τ1 P tσ1, σ2, τ2uYΓpσ1, σ2, τ2q Ă
te, η, τ2u Y Γpe, η, τ2q. We have assumed that Γpe, η, τ2q is not empty; a fact we will verify
ex-post facto. Using this, (B.5) and (B.6) it is simple to show that Z3pτ3q is also of the
form (B.1) so is dominated by the terms with τ2 P te, η, τ3u Y Γpe, η, τ3q.14 Again, we have
assumed that Γpe, η, τ3q is not empty; a fact we will verify ex-post facto. It is not too
difficult to see that this pattern continues and proceeding with the argument we find that,
provided Γpe, η, τpq is not empty,

τp´1 P te, η, τpu Y Γpe, η, τpq (B.11)

for each 1 ď p ď N . However, since τN P te, ηu, this implies that

τp´1 P te, ηu (B.12)

for each 1 ď p ď N . In particular, each Γpe, η, τpq is not empty, which is consistent with
our assumption.
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