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Abstract

We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat

spacetime, all information about massless excitations can be obtained from an infinites-

imal neighbourhood of the past boundary of future null infinity and does not require

observations over all of future null infinity. Moreover, all information about the state

that can be obtained through observations near a cut of future null infinity can also

be obtained from observations near any earlier cut although the converse is not true.

We provide independent arguments for these two assertions. Similar statements hold

for past null infinity. These statements have immediate implications for the informa-

tion paradox since they suggest that the fine-grained von Neumann entropy of the state

defined on a segment (−∞, u) of future null infinity is independent of u. This is very

different from the oft-discussed Page curve that this entropy is sometimes expected to

obey. We contrast our results with recent discussions of the Page curve in the context

of black hole evaporation, and also discuss the relation of our results to other proposals

for holography in flat space.
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1 Introduction

The principle of holography has been understood for asymptotically AdS spacetimes for more

than twenty years, but some of its implications for how quantum information is stored in

theories of quantum gravity are still not widely appreciated.

For asymptotically AdS spaces, holography states that a bulk theory of gravity is described

by a dual conformal field theory [1–3]. But, crucially, the “extrapolate dictionary” [4] suggests

that operators in the boundary theory are just given by taking the asymptotic limit of bulk

operators. If we take this dictionary seriously, it leads to a remarkable prediction that can be

stated purely in the bulk theory of gravity, without any reference to the CFT: since boundary

operators, at a single instant of time, have complete information about the quantum state,

asymptotic operators in the bulk theory on any time slice also have all information about the

bulk state.

So, consider a Cauchy slice through the bulk, which may contain black holes or other

excitations in its interior. The claim is that the degrees of freedom on the boundary of the

same slice already carry complete information about these excitations. This is so surprising,

and so unlike how quantum information is stored in a usual quantum field theory, that even

practitioners of holography tend to often forget this fact, or at least wish it away by classifying

it as something that should be ignored for all practical purposes!

However, it was recently argued in [5], following earlier work [6, 7], that if one thinks

carefully about canonical gravity with asymptotically AdS boundary conditions, it is indeed

possible to conclude that any two wavefunctions that are distinct in the bulk can also be dis-

tinguished by asymptotic operators.

The object of this paper is to understand how quantum information is stored holographi-

cally in flat space. The boundary of flat space is null infinity, and we have found that it stores

information in a more intricate manner than the timelike boundary of AdS. We will argue that

the following results hold for quantum gravity in four dimensional flat space.

1. All information about massless excitations in a quantum state — which one might naively

have thought requires observations over all of future null infinity (I+)— can be obtained

from an infinitesimal neighbourhood of null infinity near its past boundary (I+− ).

2. On future null infinity, any information about the quantum state that is available in the

neighbourhood of a cut is also available in the neighbourhood of any cut to its past.
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Precisely analogous statements hold for past null infinity, I−. The analogue of result (1) is that

all information about massless excitations is available in an infinitesimal interval near its future

boundary (I−+ ). The analogue of result (2) is that information available in the neighbourhood

of a cut of I− is also available in any cut to its future.

These results should be understood in the following sense. Currently, we do not know how

to define quantum gravity nonperturbatively about flat space. The claim is that any UV com-

pletion of the semiclassical theory should obey the results above, subject to certain reasonable

physical assumptions that we now outline.

The assumptions that go into result (1) are that, in the full UV-complete theory of quantum

gravity, (a) the vacua can be identified by operators near the past boundary of I+ (b) oper-

ators near the past boundary of I+ can map any vacuum to any other and (c) the spectrum

of the Hamiltonian in the full theory remains bounded below. Assumption (a) is clearly true

in semiclassical gravity, where the vacua are ground states of the ADM Hamiltonian, labeled

by supertranslation charges, all of which can be defined near the past boundary of I+. As-

sumption (b) can also be checked explicitly. Since assumptions (a) and (b) are both about

the vacua of the theory, they simply state that the UV-complete theory shares some of the low-

energy structure of the semiclassical theory. Assumption (c) is difficult to prove but we do

expect it to hold in any reasonable UV-complete theory of gravity.

The reader will note that result (2) above is stronger than result (1). In fact, result (1)

follows as a special limit of result (2). This is because the assumptions that go into result (2)

are also stronger: this result requires us to assume that certain commutation relations that can

be derived at null infinity in the semiclassical theory are corrected only by local terms in the

full theory of quantum gravity. Although we argue that this assumption is true at all orders

in perturbation theory, we do not know how to justify it nonperturbatively. However, we note

that even if result (2) fails nonperturbatively, this does not affect the validity of result (1).

The results above have immediate implications for the black hole information paradox.

A tremendous amount of attention has been focused on the question of how the information

“emerges” from the black hole as it evaporates. However, our results suggests that this is not

the right question to ask. Rather, our results suggest that the information is always available

outside. This can be formalized in terms of the next two important results of our paper

3. The von Neumann entropy of any pure or mixed state of massless excitations, defined

on a segment (−∞, u) of future null infinity, is independent of the upper limit u.

4. The von Neumann entropy of any state defined on a segment (u1, u2) of future null

infinity, with u2 > u1, is independent of u2.

Analogous results hold for I−. The analogue of result 3 is that the von Neumann entropy

of any state of massless excitations on a segment (v,∞) is independent of the lower limit

v on I−; the analogue of result 4 is that the von Neumann entropy of a segment (v1, v2) is

independent of its lower limit.

We show that result (3) follows directly from result (1). Result (4), which is stronger than

result (3), follows directly from result (2) and therefore also relies on the stronger assumptions

that enter result (2). The main results of our paper, together with the assumptions that they

are based on, are displayed in Fig 1.

These results imply that the oft-discussed Page curve for the von Neumann entropy of the

black hole radiation at future null infinity is not the right expectation. Rather, since all the

information about massless particles is already available near the extreme past of future null

infinity, no new information becomes available as we move along null infinity towards the

future. So the von Neumann entropy of the state defined on null infinity remains constant!1 It

1As we describe in section 4, this constant may not be 0 even in a unitary theory because our analysis does not

currently include massive particles.
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Figure 1: The main results of our paper are displayed in yellow ovals, with numbers in

adjoining circles. The purple rectangles indicate physical assumptions. Dependence

of a result on an assumption is indicated by a dashed line. Implications between

results are denoted by thick black lines.

is not surprising that the Page curve does not apply to black hole radiation since the Page curve

is derived by considering systems where the Hilbert space factorizes neatly into two parts. This

assumption has been known to be wrong in quantum gravity.

Our results are not in contradiction with the recent derivations of the Page curve in AdS/CFT

[8–11]. The reason is that the setups considered in those papers involve a factorized Hilbert

space, which is achieved by turning gravity off at some point, and then considering the en-

tanglement between the gravitational and the non-gravitational system. But our results do

suggest that those discussions of the Page curve are not immediately relevant to the calcula-

tion of the evolution of von Neumann entropy of the black hole exterior in our world, where

gravity does not get turned off sharply at any point.

There has been considerable work on understanding holography in asymptotically flat

spacetimes starting with the work of de Boer and Solodukhin [12–104]. But this paper is

complementary to much of this literature since our focus is neither on rewriting S-matrix el-

ements as correlators in a dual theory, nor on the question of asymptotic symmetries. Rather

we are interested in the novel question of how quantum information is stored at null infinity.

Our work is closest in spirit to some of the earlier work of Marolf [105–107] but both our

arguments and results are somewhat different as will be evident below.

This paper is organized as follows. In section 2, we describe our setup. Section 3 contains

the main results of this paper—where we state and establish our first two results, subject

to the assumptions explained above. Section 4 describes the relevance of these results for the

information paradox. We discuss some subtleties and future open questions in section 5. Since

the treatment of past and future null infinity is symmetric in our analysis, we will often make

reference only to future null infinity, but this is only to avoid duplicating all statements.

Appendix A reviews the argument for the holographic storage of quantum information in

spacetimes with asymptotically AdS boundary conditions. While this reviews material that
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may be found in [5], we sharpen some of the assumptions of [5] and also clarify some of the

reasoning. If the reader is unfamiliar with these arguments, we urge her to read this self-

contained Appendix, since it may help to explain the logic of the main text of the paper in a

more-familiar and simpler setting.

In Appendix B, we address the argument made in [108] that asymptotic charges should

not be observables at null infinity in the quantum theory.

2 Background

In this section we review the basic ideas that underlie the physics of 4-dimensional asymptot-

ically flat spacetimes. Our emphasis will be on those concepts that are most relevant to our

analysis and for a more detailed analysis, the reader can consult a number of extensive reviews

including [109–111]. We will first review the relevant boundary conditions and constraints

on the dynamical fields at null infinity. Ashtekar [112] first noticed the remarkable fact that

if one considers the covariant phase space of gravity as parameterized by data on null infinity,

then even in the full nonlinear theory, one obtains a remarkably simple symplectic structure.

Upon quantization, this structure leads to a Hilbert space that is the direct sum of an infinite

number of “soft” sectors, and this has received renewed attention in light of the conservation

laws associated to BMS symmetry [113–116].

2.1 Boundary conditions and constraints at null infinity

The space of all asymptotically flat space-times can be parameterized in terms of the retarded

Bondi co-ordinates (u = t − r, r, Ω = (θ ,φ)) as

ds2 = −du2−2dudr+ r2γABdΩAdΩB+ rCABdΩAdΩB+
2mB

r
du2+γDADDCABdudΩB+ . . . , (1)

where γAB is the unit metric on S2, with the corresponding derivative operator DA. CAB(u, Ω)

is known as the shear field and contains complete information about the radiative degrees of

freedom. In the Bondi frame, CAB is trace free, γABCAB = 0. This radiative data, in fact, “lives

at" future null infinity I+ := S2 × R with coordinates (Ω, u). Viewed in this way, S2 is a

sphere at null infinity with the intrinsic metric γAB, and is known as the celestial sphere. We

will denote the S2 that lives at u→−∞ by I+− . mB(u, ΩA) is called the Bondi mass aspect.

In classical discussions of asymptotically flat spacetimes, a distinction is often made be-

tween spacetimes that contain black holes and those that do not. However, since we will be

interested in the quantum theory, where all black holes are expected to eventually evaporate,

we will make no such distinction. In particular, the future conformal boundary of our space-

time will always be I+.

In the presence of massless fields, fall-off conditions on these fields are dictated by the fact

that total energy leaking out at null infinity is finite. For example, for a free massless scalar

field, the large-r expansion in Bondi co-ordinates is given by,

φ(r, u,Ω) =
1

r
O(u, Ω) + O(

1

r2
) . (2)

We will refer to O (and the corresponding leading 1
r coefficients for other fields) as radiative

matter data. When the field is coupled to gravity, this expansion is no longer valid and the

leading classical term falls off as ln r
r [117–119]. This modification arises as the free radiative

data O is dressed by metric perturbations. (In the classical theory, these metric components are

themselves sourced by O.) However even in this context, the independent data is still given

by O and the radiative degrees of freedom of the metric.
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The components of the metric and the matter fields at null infinity are not all independent.

The rate of change of the Bondi mass aspect mB(u,Ω) is determined in terms of the radiative

data via the following constraint

∂umB =
1

4
∂uDADBCAB −

1

8
NABNAB − 4πG TM(0)

uu , (3)

where NAB = ∂uCAB is known as the Bondi news tensor. TM(0)
uu is the leading 1

r2 coefficient of the

matter stress tensor TM(0)
uu = limr→∞ r2T M

uu . It is a function of the radiative data for the matter

fields. In the case of the scalar field, TM(0)
uu = 1

2∂uO∂uO. From eqn.(3), we see that mB(u, Ω)

is determined in terms of radiative data and the integration constant mB(u = −∞,Ω). We

will see below that this integration constant is nothing other than the supertranslation charge

defined at I+ [120,121]. However, we first need to review the phase space of full non-linear

general relativity as defined at I+.

2.2 Phase space and conserved charges

It was shown by [121] that the space of free data CAB(u,Ω) is the radiative phase space of

gravity in which the fall-off conditions on the shear field are given by

CAB(u,Ω)|u → ±∞ = C
(0) ±
AB (Ω) + O

�
1

|u|δ
�

. (4)

It was also shown in [121] that the Poisson bracket structure of the radiative data at I+ is

given by,

{NAB(u,Ω), CMN (u
′,Ω′) } = −16πGδ(u− u′)

1
p
γ
δ2(Ω−Ω′) [ γA(MγN)B −

1

2
γABγMN ]. (5)

We now return to the integration constant for mB. The initial data for (3) is just the value of

mB at u= −∞ and at each point on the sphere, and gives rise to an infinity of supertranslation

charges acting on this phase space. This data is conveniently represented after smearing it with

a spherical harmonic on S2

Qℓ,m =
1

4πG

∫
p
γ d2
Ω mB(u= −∞,Ω)Yℓ,m(Ω). (6)

These are called the supertranslation charges for reasons we explain below. The charge with

ℓ = m = 0 is the Bondi mass at u → −∞, and it was shown in [122] that this coincides

with the standard ADM Hamiltonian [123, 124]. We will treat this charge separately in the

discussion below.

In the absence of massive particles (that reach time-like infinity and hence induce non-

trivial excitations at u = +∞), we can use eqn.(3) to rewrite the infinity of supertranslation

charges as an integrated flux over I+

mB(u= −∞,Ω) = −1

4

∫ ∞

−∞
du [ −DADBNAB +

1

2
NABNAB + 16πG TM(0)

uu ]. (7)

The supertranslation charges can then be written as a sum of two terms

Qsoft
ℓ,m =

1

16πG

∫ ∞

−∞
du d2

Ω
p
γ Yℓ,m(Ω)[ DADB NAB ],

Qhard
ℓ,m = −

1

16πG

∫ ∞

−∞
du d2

Ω
p
γ Yℓ,m(Ω) [

1

2
NAB NAB + 16πGTM(0)

uu ].

(8)
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The soft charge is generated by “zero mode" of the news tensor given by,

lim
ω → 0

∫ ∞

−∞
du e−iωuNAB(u,Ω) =: lim

ω→ 0
ÑAB(ω, Ω), (9)

and the hard charge depends on the total (gravitational and matter) stress tensor at I+.

The action of Qℓ,m on the phase space of the gravitational radiative data is defined through

the following Poisson brackets [125]

{CMN (u,Ω),Qℓ,m} = Yℓ,m(Ω)∂uCMN (u,Ω)− 2(DM DN Yℓ,m(Ω))
TF. (10)

The superscript TF stands for the trace-free component of the tensor. This is precisely the BMS

supertranslation symmetry [126] acting on I+. Apart from the use of the Poisson brackets (5),

to obtain the correct inhomogeneous term above, requires a careful consideration of boundary

conditions that place a constraint on the integrated news as explained in [114].

So we see that parameterizing the space of all asymptotically flat space-times in terms of

the radiative data at I+ reveals a remarkably simple structure where the phase space of the

full non-linear theory is generated by free fields.

The quantization of such a theory was formulated and developed in a series of papers by

Ashtekar [112, 120, 125], and is known as the asymptotic quantization program. The ele-

mentary operators in this approach are given by the news operators NAB.2 The commutation

relations in the quantum theory follow from the Poisson brackets above and are given by,

[ NAB(u,Ω), NC D(u
′,Ω′) ] = i16πG∂uδ(u−u′)

1
p
γ
δ2(Ω−Ω′) [γA(C γD)B −

1

2
γABγC D ]. (11)

One can also define the algebra generated by the shear operators and the zero mode of the

news N
(0)
AB (Ω

′) =
∫

du NAB(u, Ω′) as [109,114,125]

[CAB(u,Ω), CC D(u
′,Ω′)] = −i8πGΘ(u− u′)

1
p
γ
δ2(Ω−Ω′) [γA(C γD)B −

1

2
γABγC D ], (12)

where Θ(x) = sign(x).

In [125] the algebra generated by the news operators was used to define the Hilbert space

of the theory. This was done by first splitting the news operator in terms of creation and

annihilation operator defined with respect to u. This construction involved several subtleties.

It was shown in [125] that the generic Fock states constructed in this manner had divergent

norm unless
∫∞
−∞ du NAB(u, Ω) = 0 ∀ Ω. That is, such Fock spaces were constructed only

out of those news operators which had no “soft" (i.e. zero) mode. This rather severe and

unphysical restriction in quantum theory was overcome by defining the a complete Hilbert

space as direct sum over Fock spaces, each of which is defined with respect to a vacuum that

contain non-trivial soft modes of the news. We summarize the results of this construction

below. We do not detail all the technical subtleties involved in the construction, and more

details can be found in a recent review [109].

2.3 The Hilbert space of the theory

Decomposing the news tensor and also the massless fields into their positive and negative

frequencies via

Ñ±AB(ω,Ω) =

∫
due±iωuNAB(u,Ω),

Õ±(ω,Ω) =

∫
due±iωuO(u,Ω),

(13)

2We use the same notation for the classical news tensor and the corresponding operator.
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defines “creation" and “annihilation" operators which can be used to generate a Fock space.

However, to specify the vacuum for this Fock space, we additionally need to specify the action

of the zero-mode of the news N
(0)
AB (Ω) =

∫∞
−∞ duNAB(u,Ω) on the vacuum.

So a complete specification of the vacuum is obtained not just by demanding that it is

annihilated by all the positive-frequency modes of the news, but additionally by specifying its

eigenvalue under all the supertranslation charges for ℓ > 0,

Qℓ,m|{s}〉= sℓ,m|{s}〉. (14)

This eigenvalue is also the eigenvalue of the “soft” part of the supertranslation charge, since the

“hard” part annihilates all the vacua. So, the set of all possible vacua are given by specifying

a (countably) infinite set of real numbers sℓ,m. We will choose these states to be normalized

according to

〈{s}|{s′}〉=
∏

ℓ,m

δ(sℓ,m − s′ℓ,m). (15)

On top of each such vacuum, one can construct a Fock space comprising the states

H{s} = span of{N( f1)N( f2) . . . N( fn)O(h1) . . . O(hm)}|{s}〉, (16)

where f AB
1 (u,Ω) . . . f AB

n (u,Ω) and h1(u,Ω) . . . hm(u,Ω) are test functions on R× S2 and

N( fi)≡
∫
p
γNAB(u,Ω) f AB

i (u,Ω)dud2
Ω,

O(hi)≡
∫
p
γO(u,Ω)hi(u,Ω)dud2

Ω.

(17)

Each such space gives an irreducible representation of the algebra of news operators and of

the massless matter fields. But the full Hilbert space is obtained by taking the direct sum of all

of these Hilbert spaces

H =
⊕

{s}
H{s}, (18)

where the sum is over all possible values of all soft charges.

Some remarks are in order.

1. In the semiclassical theory, the action of the shear operators does not generate any states

beyondH and moreoverH turns into an irreducible representation when these operators

are included in the algebra. This is because the constant shear mode C
(0)
AB (Ω), which is

independent of u, is conjugate to the soft charge [114]. Its action on one of the vacua is

e−
i
2

∫ p
γFAB(Ω)C

(0)
AB
(Ω)d2

Ω|{s}〉= |{s′}〉, (19)

where

s′ℓ,m = sℓ,m +

∫
p
γ FAB(Ω)

�
DADB −

1

2
ℓ(ℓ+ 1)γAB

�
Yℓ,m(Ω)d

2
Ω. (20)

2. Within the semiclassical theory, acting with the Bondi mass aspect on the vacuum also

does not generate any new states beyond H since it is related by the constraint (3) to the

news operators and the supertranslation charges. So we have not displayed this action

separately either in (16).
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3. To obtain an IR-finite S-matrix, it is convenient to dress the matter fields with soft gravi-

tons according to the Faddeev-Kulish [127] prescription. (This also corresponds to the

fact that the massless matter field develops log-tails at I+ due to the long range gravi-

tational field.) In our description, the matter fields are bare. But the soft-charges of the

vacua we use can be interpreted as arising from a background cloud of soft gravitons.

The relationship between these two descriptions is explored in [116,128,129].

4. The inclusion of massive particles does not invalidate the construction above for massless

particles. Massive particles that reach time-like infinity are dressed by Coulombic modes

of the gravitational field. Thus in the semiclassical theory, the Hilbert space of massive

particles is independent of the Hilbert space of radiative modes of gravitational field

[130].

5. Although we have labelled the vacua only by their supertranslation soft charges, recent

studies in asymptotic symmetries indicate that the so-called superrotation soft charges

commute with the supertranslation soft charges [131,132], and this may further refine

the vacuum structure of the theory. As we explain below, our analysis will not be affected

by such refinements, and so, for the sake of simplicity in presentation, we restrict our

vacuum-labels to supertranslations.

To avoid any confusion due to the points above we make the following definition that we

will use consistently in this paper.

Definition 1. The Hilbert space of massless particles, H, refers to the space obtained by starting

with all possible vacua, exciting each vacuum with operators on I+ and then taking the span of

all states so obtained.

In the semiclassical theory, this leads to the space described by Eqn. (18) but the definition

above holds generally.

2.4 Algebras in the neighbourhood of a cut

We have seen that there is a nice construction of the algebra of diffeomorphism invariant

operators on I+, and the corresponding Hilbert space at I+. However this algebra, A(I+),

involves the news operators at all points of I+ . Since we wish to understand how much

information is available near a given cut of null infinity, we now define the notion of an algebra

in the neighbourhood of a cut that will play a key role in our analysis below.

Definition 2. The algebra associated with an ε-neighbourhood of a cut u0 is denoted by Au0,ε and

consists of all possible functions of asymptotic operators with a u-coordinate lying in (u0, u0+ε).

To avoid any confusion, we now elaborate on this definition. Allowing u ∈ (u0, u0+ε) and

Ω to range over the entire celestial sphere, we take Au0,ε to comprise the set of all possible

functions of mB(u,Ω), CAB(u,Ω), and the massless matter fields collectively denoted as O(u,Ω).

For instance some of the lowest order polynomials that are elements of Au0,ε are

Au0,ε = {mB(u1,Ω), CAB(u1,Ω1), O(u1,Ω1), mB(u1,Ω1)CAB(u2,Ω2),

mB(u1,Ω1)O(u2,Ω2), CAB(u1,Ω1)O(u2,Ω2), O(u1,Ω1)O(u2,Ω2) . . .}, (21)

where ui ∈ (u0, u0 + ε).

In a rigorous treatment, we would consider only bounded functions of the elementary

operators rather than all functions. While we do not see any obstacle to reformulating our

results in that language, we do not adopt that approach here for the sake of simplicity.

We would like to emphasize two points.
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• Apart from the massless matter fields, Au0,ε is generated by the shear operators as well

as the Bondi mass aspect. These are simply the components of the metric in the Bondi

gauge. In the asymptotic quantization program, the Bondi mass aspect is related by

constraints to the integrated square of the news. However, this does not mean that it

ceases to be an observable at u. For instance, if one were to compute the components of

any other composite observable of the metric such as the Riemann tensor in the vicinity

of u, both the Bondi mass and the shear would enter this computation.

• As is standard in the analysis of algebras in quantum field theory, our algebra includes

polynomials and other functions constructed out of the elementary operators as well as

their spectral projections. Indeed, the spectral projections can themselves be obtained

just as limits of functions of the operators.

Finally an important special case of the definition above is the algebra obtained near the

boundary of null infinity.

Definition 3. The algebra near the past boundary of future null infinity, A−∞,ε is the set of all

functions of operators on I+ with u-coordinate in (−∞,−1
ε ).

The algebra near the future boundary of past null infinity is defined similarly. To elaborate

on the definition, A−∞,ε comprises all functions of CAB(u,Ω), O(u,Ω), mB(u,Ω), as shown in

(21) except that the range of u is u ∈ (−∞,−1
ε ).

3 Holographic storage of quantum information at null infinity

In this section we will state and prove the two main results of our paper. While reading this

section, we would like to remind the reader to keep the philosophy of this paper in mind. We

will assume, based on physical justifications, that some properties of the semiclassical theory

reviewed above can be extrapolated to the full theory of quantum gravity. We will first make

a weaker extrapolation, which only relies on low-energy physics and derive result (1) below.

Since this result relies on very weak assumptions, it is very robust. We will then explore a

stronger extrapolation, which allows for the stronger result (2).

3.1 Information at the past of future null infinity

Our first main result is as follows.

Result 1. Any two distinct states in the Hilbert space of massless particles can be distinguished

just by observables in an infinitesimal neighbourhood of I+− .

What we need to prove is as follows. Consider any two states, |Ψ1〉 and |Ψ2〉 and say that

there exists some operator H→H that takes on different values in these states,

〈Ψ1|A|Ψ1〉 6= 〈Ψ2|A|Ψ2〉, A∈A(I+). (22)

Then we need to find an element of the algebra of operators localized near the past of future

null infinity — which we termed A−∞,ε above — that can also distinguish between these two

states.

The first important assumption we will need to prove Result (1) is as follows.

Assumption 1.1. The vacua in the full theory of quantum gravity can be completely identified

by the values of operators near I+−
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As explained in section 2, this assumption is consistent with our current understanding of

the vacuum structure of quantum gravity in asymptotically flat space. The vacua are ground

states of the ADM Hamiltonian, which is defined at I+− , but they carry further charges. In the

analysis below, to lighten the notation, we will assume that these additional charges are only

the supertranslations, which are manifestly defined at I+− . As mentioned in section 2, there

are indications that additional charges may be required to distinguish between the vacua. But

this can be accommodated within Assumption (1.1) provided these additional charges can all

be defined at I+− (as is the case for the so-called super rotation charges).

Assumption (1.1) is a good assumption because it just pertains to the low energy structure

of the full theory of quantum gravity. We believe that this low energy structure is captured by

effective field theory, and while effective field theory may be insufficient to capture the fine

details of the ultraviolet Hilbert space, it does correctly capture the vacuum structure.

We now note a second property of the semiclassical theory: the algebra obtained near the

past boundary of I+ can not only be used to identify the vacua, but also induce transitions

between any two vacua. This can be seen as follows. We first recall that the projector onto

states of zero ADM mass is an element of this algebra. These states are all labelled by a distinct

supertranslation charge and so this projector, P0, can be expanded as

P0 =

∫  
∏

ℓ,m

dsℓ,m

!
|{s}〉〈{s}| ∈A−∞,ε. (23)

Now we can perform a spectral decomposition for each supertranslation charge3

Qℓ,m =

∫
dssPℓ,m[s]. (24)

Now, this supertranslation charge includes both hard and soft parts but by multiplying the

projector onto the space of vacua with an infinite product of Pℓ,m[s] we can select a specific

soft vacuum

P0

∏

ℓ,m

Pℓ,m[sℓ,m] = |{s}〉〈{s}| ∈A−∞,ε. (25)

Second consider starting with a particular soft vacuum, acting with a smeared shear op-

erator and then projecting back onto the space of all vacua. It is easy to see that this leads to

another vacuum with a different value of the soft charges.

P0e−
i
2

∫ − 1
ε
−∞
p
γCAB(u,Ω)GAB(u,Ω)d2

Ω|{s}〉= |{s′}〉, (26)

where we see from (20) that

s′ℓ,m = sℓ,m +

∫ − 1
ε

−∞
du d2

Ω
p
γGAB(u,Ω)

�
DADB −

1

2
ℓ(ℓ+ 1)γAB

�
Yℓ,m(Ω). (27)

Since we can choose G to be arbitrary, we can attain any value of s′
ℓ,m

starting with a given

value of sℓ,m.

Therefore, using operator from the algebra, one can not only select a particular vacuum

but also cause transitions to any other vacuum.

T{s},{s′} = |{s}〉〈{s′}| ∈A−∞,ε. (28)

3The vacuum projector can be constructed explicitly as a limit of a bounded functions on A−∞,ε through

P0 = limα→∞ e−αM(−∞). The operator, Pℓ,m[s], which we use for ease of notation, selects a delta-function normal-

ized state so it is not bounded. But the spectral projector onto any range of values of Qℓ,m can also be constructed

as a limit of bounded functions on A−∞,ε:
∫ s′

s
Pℓ,m[x]d x = limT→∞

1
2π

∫ T

−T
eiθQℓ,m e−iθ s−e−iθ s′

iθ dθ .
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So, in the canonical theory, any operator that maps the space of vacua back to itself can be

written as a linear combination of the transition operators above, and this proves the lemma.

The argument above crucially used the low-energy behaviour of the news-shear commu-

tator in equation (27). We expect this to be robust since the UV-theory should not change

low-energy physics. Moreover, the argument above only uses bounded operators at each step.

Nevertheless, it may be the case that the detailed form of this commutator is modified in the

full theory of quantum gravity, so that (27) receives corrections. However, we will need to

assume that in the full theory at least the following property holds.

Assumption 1.2. All operators that map the space of vacua back to itself are contained in A−∞,ε.

As argued above, this assertion is true in the canonical theory. It appears reasonable to

assume that the full theory of quantum gravity will share this property since it again only

involves low energy physics.

Finally, we need a third physical assumption.

Assumption 1.3. The spectrum of the Hamiltonian of the full theory of quantum gravity is

bounded below.

This seems, to us, to be a very natural assumption, and so we do not justify it any further.

We merely note that the assumption above is weaker than any of the commonly used energy

conditions since it says nothing about the local positivity of energy but merely about its global

positivity. For convenience, we will choose this lower bound to be 0 and simply assume, below,

that the energy eigenvalues are positive.

The assumption (1.3) immediately leads to the following Lemma.

Lemma 1. The Hilbert space H can also be generated by starting with all possible vacua and

acting with operators from an infinitesimal neighbourhood of the the past of future null infinity.

First consider the sector built on top of a particular vacuum as displayed in Eqn. (16) by

smeared news and matter operators. What we need to prove is that all these states can be

generated just by acting with operators near the past of future null infinity

H{s} = span of {N(ef1)N(ef2) . . . N(efn)O(
eh1) . . . O(ehm)}|{s}〉, (29)

where the notation is the same as (17) except that efi and andehi have support only for u ∈ (−∞,

− 1
ε ). Note that this support is very different from the support of the functions fi and hi in

equation (16) that could be the entire real line.

We will prove the statement via contradiction. Imagine that there exists a state, |Ψ⊥〉, that

belongs to the Hilbert space but is orthogonal to all states of the form above. This implies that

whenever ui ∈ (−∞,−1
ε ), the following correlator vanishes.

κ(ui) = 〈Ψ⊥|NA1B1
(u1,Ω1) . . . NAnBn

(un,Ωn)O(un+1,Ωn+1) . . . O(un+m,Ωn+m)|{s}〉= 0. (30)

We may now insert a complete set of eigenstates of the full Hamiltonian to evaluate the cor-

relator above.

κ(ui) =
∑

Ei

〈Ψ⊥|E1〉〈E1|NA1B1
(0,Ω1)|E2〉 . . . 〈En+m|O(0,Ωn+m)|{s}〉ei

∑n+m
i=1 Eizi , (31)

where the variables zi are defined as

z1 = u1; z2 = u2 − u1; . . . zn+m = un+m − un+m−1. (32)

As a function of these variables, and as a result of our assumption about the positivity of the

Ei above, we find that κ is analytic when we extend the zi to the upper half plane.
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Now, by the edge of the wedge theorem [133], if κ vanishes for all ui ∈ (−∞,−1
ε ), it must

vanish for all real ui . But this is impossible since, by assumption, |Ψ⊥〉 is itself generated by

acting with news operators on the vacuum. Therefore, we have reached a contradiction with

our initial assumption. So |Ψ⊥〉 cannot exist. This proves the lemma. �

We would like to make two short remarks. Although we have focused on a neighbourhood

near I+− , the same argument above shows that any sector of the Hilbert space can be generated

by acting with operators from any infinitesimal neighbourhood of future null infinity. Second

the argument above shows that Assumption 1.2 can also be phrased as an assumption about

A(I+) rather than an assumption about A−∞,ε.

Proof of result (1) We now move to the proof of result (1). Let us expand the operator that

distinguishes between the two states as

A=
∑

s,s′,n,m

c(n, m, s, s′)|n{s}〉〈m{s′}|, (33)

where the state |n{s}〉 belongs to the sector of the Hilbert space built on top of the soft vacuum

|{s}〉 i.e. |n{s}〉 ∈ H{s}, the state |m{s′}〉 belongs to the sector of the Hilbert space built on top

of the soft vacuum |{s′}〉 i.e. |m{s′}〉 ∈H{s′}, and the coefficients c(n, m, s, s′) are c-numbers.

But, by the result above, we can write

|n{s}〉= Xn|{s}〉; |m{s′}〉= Xm|{s′}〉, (34)

where the operators Xn, Xm both belong to the algebra that lives near the past boundary of

future null infinity: Xn, Xm ∈A−∞,ε. Combining this with the assumption about operators in

the space of vacua above, we find that we can write the entire operator as

A=
∑

c(n, m, s, s′)XnT{s},{s′}X
†
m. (35)

Since every operator on the right hand side of (35) belongs to the algebra A−∞,ε, and

since the algebra is closed under products and linear combinations by construction, we find

that A∈A−∞,ε.

Therefore the states, |Ψ1〉 and |Ψ2〉 can be distinguished just by elements of A−∞,ε, which

only comprises operators in the neighbourhood of spatial infinity. �

3.2 The nested structure of information on cuts of null infinity

We now turn to our second main result. The second result states that if information is available

at any cut of I+, it is also available in the past of that cut. However, the converse statement is

not true.

Result 2. Any two states that are distinguishable by operators in Au1,ε can be distinguished by

operators in Au2,ε for any u2 < u1.

The careful reader will note that result (2) is stronger than result (1) and, in fact, result

(1) may be understood as a special case of result (2) when we take u2 → −∞. But, as we

will see below, to prove result (2) also requires stronger assumptions about the UV-complete

theory.

To motivate this result, we first need to massage the commutators and constraints reviewed

in section 2. First by integrating the constraint equation for the Bondi mass aspect, given in

(3), over the sphere we find that the Bondi mass, M(u) defined as

M(u) =

∫
p
γmB(u,Ω)d2

Ω, (36)
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satisfies the constraints

∂uM(u) = −
∫
p
γd2
Ω

�
1

8
NABNAB + 4πGTM(0)

uu

�
. (37)

Using the news-news commutators and the constraint equation given in (3), we see immedi-

ately that

[∂uM(u), CAB(u
′,Ω)] = 4πGi∂u′CAB(u

′,Ω)δ(u− u′). (38)

The stress-tensor of the matter fields that appears in (3) has simple commutators with the

matter field

[TM(0)
uu (u,Ω), O(u′,Ω′)] =

−i
p
γ
∂u′O(u

′,Ω)δ(u− u′)δ2(Ω−Ω′). (39)

Therefore we see that the commutator of the derivative of the Bondi mass with any matter

field also has the same form as its commutator with components of the metric

[∂uM(u), O(u′,Ω)] = 4πGi∂u′O(u
′,Ω)δ(u− u′). (40)

Note that no factor of γ appears in this expression.

We now need to set initial conditions to derive the commutator of the Bondi mass with

dynamical fields. We assume that, even in the full quantum theory, as u→−∞, the integrated

Bondi mass tends to the canonical Hamiltonian

lim
u→−∞

1

4πG
M(u) = H. (41)

We expect that the commutator of the Hamiltonian with the metric and matter fields at null

infinity simply generates translations along null infinity

[H, CAB(u,Ω)] = −i∂uCAB(u,Ω),

[H, O(u,Ω)] = −i∂uO(u,Ω).
(42)

Then using the constraint equation on M(u) above and the commutators of M(u) with the

news, this leads to the following commutators of M .

[M(u), CAB(u
′,Ω)] = −4πGi∂u′CAB(u

′,Ω)θ (u′ − u),

[M(u), O(u′,Ω)] = −4πGi∂u′O(u
′,Ω)θ (u′ − u).

(43)

The commutators above can be simply generalized to any polynomial in the metric and matter

fields, and have a very simple form. Taking a commutator of any observable at u′ with the

Bondi mass at u is just like taking a u′-derivative of the observable if u′ > u; otherwise the

commutator vanishes.

The commutators (43) are exact in the full nonlinear Einstein theory. To prove our second

result above, we will need to make the following assumption.

Assumption 2.1. In the full theory of quantum gravity, the commutators of the Bondi mass,

M(u), with other asymptotic fields (given in (43)) and the evolution equation for the Bondi mass

(given in (3) ) are exact up to possible corrections by local operators in the algebra at u.

This may seem like a strong assumption, but it can be demonstrated to all orders in effective

field theory. The reason for this is that since the commutators in (43) are derived at null infinity,

they depend just on the weak-field structure of the theory and therefore only on those terms

in the action that are quadratic in the fields. So even if one adds an infinite number of higher-

derivative interactions to the Lagrangian, provided all of these terms modify only the nonlinear
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interaction-terms, they all become unimportant at null infinity. Within effective field theory,

this captures all possible terms that can appear in the effective action. Now, the assumption

above may fail nonperturbatively. But, in this case, the results that we derive below would still

be valid at all orders in perturbation theory. We once again recall that from our perspective,

the infrared effects do not alter the commutator algebra and only affect the vacuum structure

of quantum gravity.

Proof of result (2) Subject to the assumption above, result (2) now follows in a single step

from our analysis. The commutators (43) lead to a differential equation for the dynamical

fields in the theory. Consider two points u0, u′0 ∈ (u2, u2+ε) with u′0 > u0. Since the algebra in

the vicinity of the cut at u2 includes both M(u0) and the matter and metric fields at u′0, we can

use these to set the initial conditions for the differential equation. This differential equation

has a unique solution as we evolve towards the future of null infinity. Explicitly, we have

CAB(u
′
0 + U ,Ω) = e

iM(u0)

4πG U CAB(u
′
0,Ω)e

−iM(u0)

4πG U ;

O(u′0 + U ,Ω) = e
iM(u0)

4πG UO(u′0,Ω)e
−iM(u0)

4πG U ;
(44)

for any U > 0.4 Once we have the operator values for all the matter fields, we may obtain the

value of M(u0 + U) by solving the constraint equation (3). By taking U = u1 − u2 we obtain

all the operators in the algebra obtained near the cut u1. �

Note that this process is not reversible and the equation (44) does not hold for U < 0

because the differential equation ceases to be valid in that domain due to the θ -function in

(43). So, the structure of future null infinity is asymmetric in its information content. As we

move towards the future, we lose information.

Of course, an analogous result holds at past null infinity. There, the information in any cut

of past null infinity is also contained in any cut to the future.

3.3 Some subtleties and explanations

The results above are very surprising. They indicate that even in asymptotically flat space,

all the information that is available within gravitational radiation and the radiation of other

massless particles can be obtained in the vicinity of spatial infinity without waiting for this

radiation to physically reach null infinity. Since this is very different from the manner in which

quantum information is stored in local quantum field theories, we now discuss some subtleties

and provide explanations for some potentially confusing points.

The Importance of Gravity.

The result above crucially requires gravity. This is an elementary consistency check since it

is clear that no result of the form of result (1) or result (2) can hold in ordinary local quantum

field theories. In a local quantum field theory with massless particles, one should be free to

specify the quantum wavefunction separately on different parts of I+. So in such theories it

clearly cannot be the case that all information about the wavefunction is already contained in

a vicinity of I+− . The results above are also false in nongravitational gauge theories.

From a technical perspective, this happens because Assumption 1.1 is false in any nongrav-

itational theory. In no theory, except for quantum gravity can one project onto the vacuum

purely using operators near I+− . In a nongravitational gauge theory while one can project onto

states of zero charge, there is an infinity of such states. So asymptotic operators are insufficient

to pinpoint a vacuum and then the rest of the argument that leads to result (1) falls apart.

4We start evolving the fields from u′
0
> u0 rather than u0 to avoid any subtleties with the the value of the theta

function when its argument is exactly 0.
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The argument that leads to result (2) also cannot be generalized to a nongravitational

setting since there is no analogue of the Bondi mass at a cut in a nongravitational theory that

can be used to evolve operators into the future,

Indeed in nongravitational theories it is easy to construct a counterexample to (1) and (2).

Consider any states |Ψ〉 and another state U |Ψ〉 obtained by exciting the original state with a

gauge-invariant unitary operator from the algebra near the cut at u = 0. For instance, in QED

we may take

U = ei limr→∞ r2
∫ p
γFµν(r,u,Ω)Fµν(r,u,Ω) f (u,Ω)d2

Ωdu, (45)

where f smears the operator in a small region near u = 0. In the absence of gravity, such an

operator commutes with all operators in the algebra near any cut except for the algebra near

the cut at u = 0. So it is impossible to distinguish |Ψ〉 and U |Ψ〉 either at I+− or at any cut at

negative u.

The results established above show that, in gravity, the constraints are much stronger and

contain much more information than they do in any other theory. In fact we explain below

why an attempt to “hide” information from spatial infinity using a construction of the form

(45) fails in gravity.

Perturbative verification

The reader may have found our results somewhat formal. However these results can be

verified already in perturbation theory. We will discuss this in detail in forthcoming work [134]

but we provide a limited preview of these results here.

Consider a vacuum, |Ω〉 formed by taking an arbitrary superposition of the soft vacua

detailed above and normalized so that 〈Ω|Ω〉= 1. Now, we excite this vacuum by acting on it

with a unitary operator that comprises the news insertion smeared with a function of compact

support near u= 0.

| f 〉= eiλ
∫

dud2
Ω
p
γNAB(u,Ω) f AB(u,Ω)|Ω〉. (46)

The challenge is to back-calculate the function f AB using observations only in the vicinity of

u = −∞. The construction above is just like (45) but in gravity, unlike QED, the challenge

can be met.

A simple calculation shows that this can be done by considering the two-point function of

the Bondi mass at I+− and news operator insertions in the interval (−∞,−1
ε ).

〈 f |M(−∞)NC D(u,Ω′)| f 〉= λ
∫

d x16G
f AB(x ,Ω′)

(x − u− iε)3
[ γA(MγN)B −

1

2
γABγMN ]+O

�
λ2
�

. (47)

Since the function on the right hand side is analytic when u is extended in the upper half plane

given its value for u ∈ (−∞,−1
ε ) we can reconstruct f AB. A similar calculation allows one to

extract f AB from the neighbourhood of any cut for negative u.

This calculation also explains why we need an infinitesimal interval rather than a cut. Us-

ing the value of the two point correlator, (47), for only for a fixed value of u it is not possible

to reconstruct f AB. It may still be possible to reconstruct f AB by using correlators of arbitrarily

complicated complicated operators at a single value of u. But using a small interval obviates

the need for such complicated correlators and allows a perturbative examination of how holo-

graphic information is stored. As explained above, this computation crucially relies on gravity

and on the nonvanishing commutators of the Bondi mass with other operators.

The Importance of Quantum Mechanics.

The discussion above makes it clear that the results (1) and (2) do not hold in the classical

theory.
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In fact the states discussed in the previous paragraph already provide a counterexample

in the classical theory. Consider a time-reversed Vaidya solution that consists of an expand-

ing shell that crosses I+ at some value of retarded time. We may consider another classical

solution comprising a shell that crosses I+ at a different value of the retarded time. These

solutions provide the classical description of a state obtained by exciting the vacuum with a

news operator in the vicinity of a cut and they are characterized by the location of this cut.

But, in the classical theory in the vicinity of spatial infinity, except for the total mass of the

solution we cannot determine any of its other details or the retarded time at which it will cross

I+.

It is not surprising that there is no classical analogue of our quantum mechanical results.

Classically, the constraints can only determine the expectation value of the Bondi mass, 〈M(u)〉.
However, to obtain information about the state we need the quantum correlators of the Bondi

mass with other operators and there is no classical analogue of this quantity.

The non-uniqueness of classical boundary data near spatial infinity is well known in the

literature [135] and a nice discussion of the contrast between the amount of information avail-

able classically and quantum mechanically is also given in [136].

Nongravitational limit.

We have emphasized that in quantum gravity, information about the state is already con-

tained in the vicinity of spatial infinity and moreover information available at a future cut is

already available in all cuts to its past.

However, it is important to also understand the settings for which this result is not relevant:

in the limit where we take Mpl→∞ and ignore the information in gravitational correlators, we

recover the usual picture of local quantum field theory where information is stored locally rather

than holographically. When such a decoupling limit is possible, results (1) and (2) remain true

but may not be relevant from a practical perspective.

All quantum-information experiments that are feasible with current technology fall into

the category above. For instance, if one is given a sealed box of qubits, in the real world, it is

not practical to read off the qubits just by making measurements of the quantum fluctuations

of the metric around the box, and the only practical possibility is to open the box and directly

examine the qubits.

This is an obvious point but nevertheless we urge the reader to keep it in mind. Our

everyday intuition about the localization of quantum information is built by our experiences

in a regime where Mpl is very large compared to other energy scales. Results (1) and (2) are

in conflict with this intuition because they are relevant in a regime where effects suppressed

by Mpl are important.

4 Relevance for the information paradox

A significant amount of attention has been devoted to the question of “how information emerges

from a black hole.” This discussion is strongly predicated on our everyday intuition for quan-

tum information. In both local quantum field theory and classical physics, if we consider some

object that forms and breaks up, the only way to recover information about the object is by

slowly collecting its pieces as they emerge.

However, the analysis of the previous section suggests that this is entirely the wrong ques-

tion in quantum gravity. Since an infinitesimal neighbourhood of I+− already has all infor-

mation about massless particles, nothing is achieved by waiting for the black hole radiation

to physically arrive at null infinity. This is a manifestation of the fact that the information is

already outside in quantum gravity and never “goes in”!
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This can be formalized in the following two results, which follow immediately from our

previous results.5

Result 3. The fine-grained von Neumann entropy of the segment (−∞, u0) of I+ is independent

of u0 for any pure or mixed state on H.

This result requires only result (1) as we show below. If we also assume result (2), we find

a stronger result

Result 4. The fine-grained von Neumann entropy of the segment (u1, u2) of I+ with u2 > u1 is

independent of u2 for any state.

We first establish these results and then discuss their interpretation.

Proof of result 3

First, we review how the von Neumann entropy of the state at future null infinity up to a

cut at u0 is defined.

The first step is to consider the algebra, B−∞,u0
, formed by considering all possible func-

tions of operators on I+ that lie in (−∞, u0). The definition is precisely analogous to the

definition of the algebras in the vicinity of a cut that we have considered previously, except

that we allow the operators to be localized within a larger interval.

B−∞,u0
={m(u1,Ω1), CAB(u1,Ω1), O(u1,Ω1), m(u1,Ω1)CAB(u2,Ω2),

m(u1,Ω1)O(u2,Ω2), CAB(u1,Ω1)O(u2,Ω2) . . .} ,
(48)

where ui ∈ (−∞, u0).

Now consider any density matrix from the Hilbert space H, which we denote by σ. Recall

that by the definition of H above that the algebra B−∞,u0
maps H back to itself. Now the

reduced density matrix associated with a segment is defined to be the element of the algebra

of the segment B−∞,u0
that, when traced with any other observable in the algebra, reproduces

the expectation value of the observable given by the density matrix σ. More precisely, we

choose the reduced density matrix of the segment, ρ−∞,u0
, to satisfy

Tr(ρ−∞,u0
b) = Tr(σb), ∀ b ∈ B−∞,u0

, (49)

subject to the condition that ρ−∞,u0
∈ B−∞,u0

. The von Neumann entropy of the segment is

now defined as

S−∞,u0
= −Tr(ρ−∞,u0

log(ρ−∞,u0
)). (50)

However, in result 3 we proved that any operator that mapped H → H could be approx-

imated arbitrarily well by an operator in A−∞,ε. So σ ∈ A−∞,ε. Therefore, we can always

choose

ρ−∞,u0
= σ ∈A−∞,ε, (51)

but this choice is independent of u0. Therefore

S−∞,u0
= −Tr(σ log(σ)), (52)

which is manifestly independent of u0! �

5We frame these results in terms of density matrices, traces and and von Neumann entropy since we anticipate

that these concepts are more familiar to most readers even if they need to be carefully defined and regulated. For

the more rigorously-minded reader, we note that similar results hold for the relative-entropy of two states: it is

independent of the upper-bound of the segment of I+ on which it is evaluated.
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Proof of result 4

The proof of result 4 is precisely analogous to the proof above and so we only sketch it.

To define the reduced density matrix associated with a segment, we first define the algebra

Bu1,u2
in precisely the same fashion as above. Now consider a density matrix, µ, in the full

quantum theory and for the purposes of this result, such a state may have both both massless

and massive excitations. Then the reduced density matrix we are looking for is defined by the

condition

Tr(ρu1,u2
b) = Tr(µb), ∀ b ∈ Bu1,u2

, (53)

subject to the constraint ρu1,u2
∈ Bu1,u2

. But since, by result (2) any in Bu1,u2
can be written as

an operator in Au1,ε we can always choose

ρu1,u2
∈Au1,ε. (54)

This choice is manifestly independent of u2 and so the von Neumann entropy of this density

matrix is also independent of u2. �.

The only reason we separate results (3) and (4) is that they depend, respectively, on result

(1) and result (2). So if the stronger assumptions that are required to establish the result (2)

fail, the result (3) would still remain valid.

Tf

S

u

Smax

Figure 2: The naive Page curve. If one incorrectly assumes that the Hilbert space fac-

torizes into degrees of freedom outside and inside the black hole, the von Neumann

entropy of the radiation that has emerged till retarded time u on I+ is expected to

obey the curve above indicating that “information is gradually returned to the exte-

rior.”

u

ρ(u)

Tf

S

u

Figure 3: The fine-grained von Neumann entropy (right) of any state of massless

excitations reduced on a segment that extends till the cut at u marked on the left

figure. The result directly follows from the arguments above. The information is

always outside, and so the entropy never goes up or comes down!

While we expect the von Neumann entropy associated with a segment of future null infinity

to be independent of the upper limit of the segment, we do not expect this entropy to be zero

even when the lower limit is−∞. This is because our current definition of the algebra, B−∞,u0

includes observables only at null infinity and therefore excludes observables that can detect

massive particles. The state at null infinity is expected to be entangled with the quantum state

of massive particles, and this is displayed by the finite intercept above.

We now discuss some aspects of the results above.
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4.1 Discussion

Failure of Page’s argument

The reader may be surprised at Figure 3, since it contradicts the common idea that the von

Neumann entropy should obey a “Page curve” [137]. However, a little reflection will show that

there is no real reason for surprise. The Page curve is derived by assuming that the Hilbert space

factorizes into the degrees of freedom inside the black hole and the degrees of freedom outside.

We already know that this assumption is not only wrong, it fails in the worst possible manner:

holography implies that the information inside the black hole is just a copy of the information

outside. There is no reason to expect that an expectation based on an incorrect assumption

will correctly describe the von Neumann entropy of black hole radiation, and indeed it does

not do so.

Black hole evaporation in AdS

The results above have an immediate analogue for anti-de Sitter space, which may also help

the reader place them in a more familiar setting.

Consider a small black hole that evaporates in a spacetime with asymptotically AdS bound-

ary conditions. The analogue of a cut at spatial infinity is now a cut of the timelike boundary.

Corresponding to the algebra associated with the neighbourhood of a cut, we may now asso-

ciate an algebra of asymptotic operators smeared over an ε-extent in time.

The analysis of appendix A now tells us that if we measure all operators in this algebra,

this completely specifies the state. Therefore, if we start with a pure state, and measure the

von Neumann entropy of the asymptotic region, that von Neumann entropy always remains

zero.

This result is obviously what is expected by holography. If we consider a small black hole

that forms and evaporates with asymptotically AdS boundary conditions, the von Neumann

entropy of the boundary does not obey the Page curve but instead remains fixed. This is just

like Figure 3 except that in this case the constant value is also 0.6

Cloning and strong subadditivity paradoxes

Some versions of the information paradox are framed in terms of the “cloning” of informa-

tion. For instance, if one considers a black hole formed from collapse, then it is possible to draw

a nice slice that intersects the infalling matter and also a large fraction of the Hawking radia-

tion. It is possible to argue that the late Hawking radiation must have information about the

infalling matter. If one adopts a naive perspective on information-localization, where informa-

tion on different parts of a spacelike slice is distinct, and then travels along causal trajectories,

this leads to a paradox.

A closely related paradox, first described by Mathur [141] and later popularized by AMPS

[142], is the strong subadditivity paradox. Here, the early Hawking radiation appears to be

entangled both with the late Hawking radiation, and also the part of the black hole interior

just behind the horizon. This appears to be in conflict with the monogamy of entanglement

but it can again be viewed as the duplication of information. (We refer the reader to section

6.1 of [143] for a review of these paradoxes.)

However, from our perspective, not only is the resolution to the paradox clear, its physics

is not even surprising. We have explained that the degrees of freedom localized on later cuts

of null infinity are already contained in the degrees of freedom localized on earlier cuts. One

can think of the degrees of freedom in the interior as corresponding to later cuts, and degrees

6It is worth nothing that this is also the result that follows by using the RT/HRT formula [138–140]. So, if one

declares that the RT/HRT formulae are “semi-classical”, then this gives an independent “semi-classical” derivation

of the trivial von Neumann entropy curve.
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of freedom in the early radiation as corresponding to earlier cuts. Therefore, it is clear that if

one makes the mistake of thinking of these degrees of freedom as independent, this will lead

to paradoxes involving cloning or the loss of the monogamy of entanglement. This resolution

is, of course, not new and the same as the resolution suggested by the ideas of black hole

complementarity [144–146] and ER=EPR [147].

4.2 The Page curve in AdS/CFT

We have argued above that the Page curve is not the correct curve for understanding the von

Neumann entropy of black hole radiation in flat space or the radiation of a small black hole in

AdS. We now explain how this is consistent with several recent papers that examine the Page

curve in the context of black hole evaporation. The key to obtaining a Page curve is to find a

setting in which the Hilbert space factorizes.

Conceptually, the simplest setting is to consider a plasma ball solution in AdS/CFT. The

plasma ball is a black hole solution that is localized in some of the transverse directions, and

therefore behaves like a “small black hole” in AdS/CFT. This solution was found explicitly

in [148], and figure 4a shows a schematic representation. The plasma ball solution can be

thought to be dual to a collection of a quark-gluon plasma that is localized in some region

D in the boundary gauge theory. This plasma slowly decays by emitting glueballs into the

surrounding region C .

(a) A plasma ball solution is a black

hole localized in the transverse dimen-

sions (depicted by the localized yellow

bump.) On the boundary, it corresponds

to a localized lump of the deconfined

phase (depicted by the blue region).

Since the boundary Hilbert space factor-

izes, as the deconfined phase decays by

emitting glueballs, the entropy of C obeys

a Page-like curve.

BH

CFTCFT

(b) A black hole in AdS coupled to

a non-gravitational theory. Since the

Hilbert space factorizes into the Hilbert

space of the gravitational theory and the

auxiliary CFT, it can be argued that the

entanglement entropy of the red slices

obeys a “semi-Page” curve that saturates

at late times [10].

Figure 4

On the boundary, the Hilbert space now factorizes into the degrees of freedom in C and

its complement: HC ⊗ HD. Therefore if one considers the entropy of the region C , we indeed

expect it to obey the naive Page curve of Figure 2 as was explained in [145]. However, it
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would be misleading to interpret this as the entropy of the black hole “radiation”. The region

C carries information about a complicated combination of the exterior and the interior of the

black hole in the bulk. But crucially, the region C excludes some of the radiation that is near

the region D. So this Page curve is best understood purely on the boundary: it is the standard

Page curve of the boundary quantum field theory as energy in one region (D) spreads into the

surrounding region (C).

The setups of [8–11] are all essentially of this type, and one setup is displayed in 4b. In all

of them, we couple the CFT to an external system so that the Hilbert space again factorizes as

H = HCFT⊗Hexternal. Once again the physics is best interpreted just on the boundary: we have

some energy in a CFT, which we couple to an external reservoir. As the energy leaks from the

CFT into the reservoir, it is indeed expected that the von Neumann entropy of the reservoir

will obey the ordinary Page curve.

Once again, it is somewhat misleading to identify the reservoir as the radiation and the

original CFT as the black hole. This is because the bulk dual of the reservoir necessarily ex-

cludes some of the radiation, which continues to be described by the original CFT. One way to

bring out the significance of this point more vividly is to try and define what one includes in the

“radiation” independently of the boundary description. For instance one reasonable definition

of the radiation would be to consider the algebra of all operators that are localized outside the

black hole. Such an algebra would always have a zero von Neumann entropy and it does not

coincide with the algebra of operators that act purely on Hexternal.
7

Leaving aside this question of interpretation, out results are not in contradiction with those

of [8–11] since their setting is different.

The Page curve in flat space?

On the other hand, it was suggested in [149] that the setup of Figure 4b may have “phe-

nomenological” applications in that the entropy of the radiation outside a near-extremal four-

dimensional black hole in asymptotically flat space may obey a Page-like curve. However, in

a real four-dimensional theory of gravity, our results suggest that the von Neumann entropy

of Figure 4b should obey the trivial Page curve shown in Figure 3 and moreover that the con-

stant value of this entropy should be 0. This is because, at each point of time, not only do the

red slices of Figure 4b capture the region near I+− , the bulk of these slices also captures the

information present in massive degrees of freedom. Gravity may be weak on these slices but

it would nevertheless be erroneous to ignore gravitational effects in the computation of the

fine-grained von Neumann entropy. Indeed, it is precisely this erroneous assumption — the

idea that when gravity is weak, we can ignore its novel storage of quantum information—that

has led us into several paradoxes in the past including the cloning and strong subadditivity

paradoxes.

So does the Page curve have any relevance for flat-space black holes? We would like to

eschew discussions of “quantum computers” that “collect Hawking radiation”, since such sce-

narios are extremely imprecise. But perhaps the Page curve is relevant for some subalgebra of

A(I+). One possibility is to consider only the algebra of news operators discarding both the

shear and the Bondi mass. This is not very natural, from a physical perspective, since all of

these are just components of the metric. On the other hand, it has the advantage that the alge-

bra of news operators on null infinity factorizes into a product of the algebras associated with

its cuts. Indeed the news, at null infinity, can be decomposed through a spherical harmonic

decomposition into an infinite set of free-fields. The formulas of [150] can then be used to

7If we think of gauge fixing operators by dressing them to the boundary, it is clear that there is no sense in

which an operator can be localized purely inside the black hole since the dressing necessarily makes reference to

the region outside. In contrast, there is a precise sense in which we can consider operators “outside” the black

hole: these are operators whose location and dressing lies outside the horizon.
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compute the von Neumann entropy of any segment of null infinity. But since the news oper-

ators commute with the soft charge, this restricted algebra of observables cannot extract the

information present in the soft-part of the wavefunction. So these observations will always

perceive the state to be a mixed state. It would be interesting to understand how much of the

information is present in the soft-part of the wavefunction—an issue that was also discussed

in [151].

Another interesting question is to examine how the von Neumann entropy of a segment

of future null infinity varies with the lower limit of the segment. Once again, a quantitative

analysis requires us to understand how much information is present in the soft-modes.

To the extent that the Page curve is an answer in search of a question, we do not rule out

the possibility that an appropriate question can be found, in the context of flat space black

holes, for which the answer is given by the Page curve. But, it seems to us, that rather than

finding ways of justifying the Page curve, which is based on assumptions known to be incorrect,

it may be more fruitful to focus on the striking and novel aspects of quantum information in

quantum gravity.

5 Conclusion

Summary of results

In this paper, we have described how quantum information is stored holographically at null

infinity. We showed, subject to reasonable physical assumptions, that all information about

massless excitations could be obtained from observables in an infinitesimal neighbourhood

near spatial infinity, even though it naively seems that such information requires observations

over all of null infinity. With stronger assumptions, we showed that this information obeyed

a nested structure: observables at a cut of future null infinity could always extract the same

information as observables on a later cut. These results have direct implications for the infor-

mation paradox: they imply that the von Neumann entropy of the state defined on a segment

of null infinity (−∞, u) remains constant and so does not obey the Page curve. (As we noted,

it may be possible to frame an alternate appropriate question for which the Page curve is an

answer.)

Comparison with other proposals for flat-space holography

One way to understand the difference in focus in this paper with much of the extant liter-

ature on flat-space holography, is by analogy to AdS/CFT. AdS/CFT was first made precise by

relating CFT correlators to asymptotic bulk correlators. This has been a remarkably fruitful

program but, at leading nontrivial order, this map works even without making reference to

gravity in the bulk. In fact, gravity enters only at a later stage because the CFT must have a

stress-tensor that, in the bulk, must be dual to a graviton. On the other hand, as emphasized

in the introduction, there is a striking fact about the storage of quantum information in asymp-

totically AdS spacetimes, which does crucially require gravity and stands somewhat apart from

the program of matching bulk and boundary correlators. This is that bulk operators near the

boundary, at any given time, already know about what is happening deep in the interior.

This is similar to the complementary relationship between the program initiated in this pa-

per, of understanding how information is stored at null infinity, and other interesting questions

such as the problem of rewriting flat-space S-matrix elements as correlators of a dual confor-

mal field theory on the celestial sphere [15–17]. In fact, just as in AdS, the S-matrix/celestial

CFT map appears not to use any features that are unique to gravity, whereas gravity is crucial

for the results in this paper. One consequence of this is that the S-matrix/celestial CFT map

uses information along the entire null boundary even though this information is, in principle,
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accessible from just a thin slice in a theory of gravity.

On the other hand, since a complete description of the state is possible both at future and

past null infinity, our results hold independently for these two null boundaries. So, while the

results in this paper crucially rely on the constraints that come from gravity, they also do not

make immediate contact with the dynamical aspects of bulk gravity. These dynamical aspects

are what control the S-matrix, which tells us how in-states map to out-states. It would be nice

to understand the constraints, if any, that our observations impose on the bulk dynamics.

Another natural question is whether flat-space holography can be understood by taking a

limit of AdS/CFT. Here, we are not referring to the question of extracting perturbative S-matrix

elements from AdS correlators, which has been studied extensively. A complete flat-space limit

would involve keeping gs fixed, while taking the AdS radius to infinity in string units. It is clear

that this takes us out of the ’t Hooft limit; in the N = 4 theory, for instance, this requires us to

take the gauge theory coupling, λ→∞, while keeping gYM finite. It is somewhat remarkable

that the BMS algebra can indeed be recovered as a limit of a (non-relativistic) conformal

algebra in this manner [13,14]. However, it seems to us that some simple geometric questions

remain unclear. For instance, should the cylindrical boundary of AdS map to null infinity,

or to the blowup of spatial infinity described in [152]? If the answer is the latter, it should

be possible to generalize our results to argue that a theory on this blowup of spatial infinity

contains not only all information about the bulk, but also captures all bulk dynamics.

Such a conjecture was, in fact, described by Marolf in a set of interesting papers [105–107].

While our work is similar in spirit, there are several important differences in our assumptions

and results that we now explain. The analysis of [105–107] assumed that the Hamiltonian

would remain a boundary term in the full theory of quantum gravity — this is similar to what

we called assumption (2.1) — to arrive at a result analogous to our result (1). We have

emphasized that the same result can be obtained through considerably weaker assumptions

that rely only on the low energy structure of the theory and its vacua. Our argument for

this result is entirely independent. Moreover, we argued that if one does make the stronger

assumption that the commutators of canonical gravity can be carried over to the full theory,

then one can obtain the novel result (2), which provides an interesting and intricate picture

of the storage of information at null infinity.

To avoid confusion, we also clarify that our use of perturbation theory is different from its

use in [106]. We mentioned that perturbation theory could be used to check our results by

computing simple correlation functions involving the Bondi mass, as explained near equation

(47). But, in [106], perturbation theory was used to relate operators on the past boundary of

I+ to the future boundary of I−. This latter proposal is much more ambitious since it seems

to use perturbation theory to relate the future boundary of the blowup of spatial infinity to its

past boundary, which requires evolution for an infinite amount of time.

A broader program

The results (1) and (2) hint at the following general picture in quantum gravity. In a local

quantum field theory, we are free to specify the quantum wavefunction of a state separately

on different parts of a spatial slice. For instance, referring to Figure 5, in a nongravitational

theory, we are free to put some feature in the middle of the spatial slice without affecting

the wavefunction outside a bounded region. However, in gravity, our results suggest that the

constraints are so strong that if we specify the wavefunction everywhere outside a bounded

region, we also specify it inside that region!

The picture above seems rather robust for asymptotically AdS spacetimes. But while we

have made some progress in this paper, we have not completely established such a picture

for asymptotically flat spacetimes. One key missing ingredient is the treatment of massive

particles. While classical data for massive particles cannot be specified at null infinity, we
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Figure 5: In ordinary local quantum field theories we can specify some feature in the

wavefunction inside a bounded region (depicted by the bump) without affecting the

wavefunction outside. But, in gravity, not only is one forced to modify the wavefunc-

tion outside the region (shown by the wiggles), the constraints are so strong that the

detailed wavefunction outside completely fixes it inside.

suspect that it should be possible to include massive particles in our framework if, instead of

looking at null infinity, we consider a “thickened boundary” that also includes an infinitesimal

portion of the bulk.

Future directions

Apart from the inclusion of massive particles, a clear future direction is to extend our story

to other spacetime dimensions. There is some debate in the literature on the vacuum structure

of gravity in other spacetime dimensions. However, regardless of the answer to this question,

it appears likely that the vacuum— or degenerate vacua, as the case may be— should be

identifiable by charges supported near spatial infinity. If so, the program outlined in this paper

should carry through to other spacetime dimensions.

The results that we present here are the flat-space analogues to the statement that a cut

of the AdS boundary contains all information about the bulk. However, there are more fine-

grained statements that can be made in AdS/CFT: the entanglement wedge conjecture is that

a subregion on the boundary contains information about the entanglement wedge in the bulk.

How can this conjecture be understood from a canonical perspective? And what is its flat space

analogue? These appear to be interesting questions for future work.
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Appendix

A A canonical perspective on AdS holography

In this appendix, we provide a lightning review of a canonical perspective on holography with

asymptotically anti-de Sitter boundary conditions. This appendix largely follows the treat-

ment of [5] but we sharpen some of the assumptions in that analysis, and elaborate on some

intermediate steps. We have written this Appendix to be self-contained and so there is some

overlap with the discussion in the main text.

We would like to establish the following statement

Result 5. If, in asymptotically anti-de Sitter space, two states |Ψ1〉 and |Ψ2〉 are distinct then, in

a theory of quantum gravity, they can be distinguished purely through asymptotic operators in an

infinitesimal time band.

This shows that all quantum information about the state lies within asymptotic operators.

We will make the statement precise below, and prove it, subject to some plausible assumptions.

As in the main text, this discussion should be understood from the following perspective. Even

if we do not know the details of the full UV-complete theory of gravity, using low energy obser-

vations and some reasonable extrapolations (which we detail precisely below), it is possible

to conclude that the full theory will be holographic.

Setup and boundary conditions

The metric of global AdS in d + 1 spacetime dimensions is given by

gAdS
µν d xµd xν = −(r2 + 1)d t2 +

dr2

r2 + 1
+ r2dΩ2

d−1. (55)

We are interested in spacetimes that may differ from this spacetime at finite r but tend to

global AdS asymptotically. More precisely, we consider metrics of the form

gµν = gAdS
µν + hµν. (56)

As r →∞, we choose the Fefferman Graham gauge hrµ = 0, and on the remaining compo-

nents of the metric, we impose the boundary conditions

hi j −→
r→∞

1

rd−2
. (57)

We may have other propagating degrees of freedom in the theory, and their boundary

falloffs are set as is standard in AdS/CFT. For instance, if we consider a scalar field of mass m,

then we demand that the fluctuations of this field die off asymptotically as

φ −→
r→∞

1

r∆
, (58)

where ∆ = d
2 +

�
d2

4 +m2
� 1

2
. This corresponds to what is usually called the “normalizable”

mode in AdS/CFT.

The boundary of the spacetime considered above has topology Sd−1 × R, and we use the

coordinates (Ω, t) to specify a point on the boundary.
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Physical observables and boundary algebra

Good physical observables in a theory of quantum gravity are those that are invariant under

small diffeomorphisms i.e. those diffeomorphisms that die off near the boundary. In particular,

the boundary values of propagating fields give a set of well-defined physical observables. The

asymptotic fluctuations of the metric yield the observables

t i j(Ω, t) = lim
r→∞

rd−2hi j(r,Ω, t). (59)

The asymptotic fluctuations of a scalar field also yield observables through

O(Ω, t) = lim
r→∞

r∆φ(r,Ω, t). (60)

The observables above are labeled by a time and a point on the Sd−1.

Now consider the set of all possible functions of such observables in a small time band

(0,ε) but with arbitrary values of Ω. We will call this algebra Abdry. Some of its lowest order

terms are

Abdry = {t i1 j1
(t1,Ω1), O(t1,Ω1), t i1 j1

(t1,Ω1)t i2 j2
(t2,Ω2),

t i1 j1
(t1,Ω1)O(t2,Ω2), O(t1,Ω1)O(t2,Ω2) . . .},

(61)

where all the t i ∈ (0,ε) and ε can be any finite number.

The Hilbert Space

We now describe the Hilbert space of the theory. An analysis of low-energy fluctuations

about the global AdS metric tells us that this Hilbert space has a unique vacuum, which is

separated from the nearest excited state by a gap.

Assumption 5.1. We assume that in the full theory of quantum gravity, this low energy structure

is preserved. In particular, we assume that the full theory has a unique vacuum, which we denote

by |0〉.

We now consider the space of states obtained by exciting this vacuum with all possible

asymptotic operators at arbitrary values of time and with arbitrary coordinates on the Sd−1.

This leads to the Hilbert space

H = {t i1 j1
(t1,Ω1)|0〉, O(t1,Ω1)|0〉, t i1 j1

(t1,Ω1)t i2 j2
(t2,Ω2)|0〉,

t i1 j1
(t1,Ω1)O(t2,Ω2)|0〉, O(t1,Ω1)O(t2,Ω2)|0〉 . . .},

(62)

where t i ∈ (−∞,∞) and Ωi are points on the Sd−1.

The set of operators that appear in (62) may appear to be very similar to those that appear

in (61). However, there is a crucial difference: in the definition of the Hilbert space, (62), we

have not restricted t i to a small time band (as we did while defining the boundary algebra in

(61)) but instead have allowed t i to range over all possible real values.

Physically this Hilbert space corresponds to states that can be generated through the fol-

lowing process: we start with the vacuum in the far past, and then excite the vacuum by means

of asymptotic operators. This space of states is very large and, in particular, includes all black

holes that can be formed from collapse.

Closure under time evolution

The key mathematical reason why we expect to be able to completely formulate the theory

within the Hilbert space (62), is that it is manifestly closed under time-evolution. Consider

evolving the set of states in (62) with the Hamiltonian of the full theory. Even though this
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Hamiltonian may be very complicated, since |0〉 is the vacuum of this Hamiltonian, this time-

evolution only shifts the coordinates t i . Since we have allowed all possible values of t i in

the definition (62), we see that time-evolution cannot take us out of the space above. So,

considerations of unitarity, by themselves, cannot force us to enlarge the Hilbert space defined in

(62).

This is a key difference from flat space. In flat space, one must be very careful in restricting

the Hilbert space either on future or past null infinity since unitarity requires the two spaces

to be mapped to each other under evolution through the bulk. But, in AdS, which has a single

boundary, it appears very reasonable to make the following assumption.

Assumption 5.2. We assume that the theory can be completely formulated within the Hilbert

space H.

The Hamiltonian

Within effective field theory, the Hamiltonian of the theory is itself an asymptotic operator.

A standard analysis tells us that the effective field theory Hamiltonian is given by

H =
d

16πG

∫
dd−1

Ω t t t , (63)

where t t t is the boundary value of the metric fluctuation defined above [153].

The fact that the semiclassical Hamiltonian is given by a boundary term is expected. In

the standard canonical analysis of gravity, we consider wavefunctions that are invariant under

small diffeomorphisms. This is reflected in the Hamiltonian constraint. This directly implies

that, on any valid wavefunction (i.e. one that satisfies the Hamiltonian constraints), the Hamil-

tonian reduces to a boundary term.8

We now make an important assumption.

Assumption 5.3. We assume that the asymptotic operator (63), remains a positive operator in

the full theory of quantum gravity, and moreover that its vacuum coincides with the exact vacuum,

|0〉, of the full theory.

Note that we are not assuming that formula above, (63), is an exact formula for the Hamil-

tonian in the full quantum gravity theory. Rather we are only assuming that the boundary value

of the metric gives us the correct Hamiltonian within the space of low-energy states and, in

particular, that it identifies the correct vacuum for us. This is only an assumption about low

energy physics. Moreover, if even this assumption holds only approximately and not exactly

then our statements below will continue to be valid at the same approximate level.

As we explained in the main text, if an operator belongs to the algebra then so do all of

its spectral projectors. In particular the projector on the vacuum of H belongs to the algebra,

Abdry. Since this projector is the same as the projector onto the vacuum of the full Hamiltonian,

our assumption above implies that

P0 = |0〉〈0| ∈Abdry. (64)

Squeezing the generators of the Hilbert space

The Hilbert space above was generated by acting with asymptotic generators at arbitrary

time values on the vacuum, and we argued that this was sufficient to formulate the theory

since it was manifestly closed under Hamiltonian evolution.

8For the reader who is familiar with AdS/CFT, we would like to point out that the formula (63) is just a man-

ifestation of the “extrapolate” dictionary. The boundary value of the metric fluctuation, t i j is dual to the CFT

stress-tensor and integrating the stress-tensor gives us the Hamiltonian. However, we emphasize that we are not

assuming this dictionary anywhere in this Appendix and our reasoning just follows canonical principles.
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We now argue that same space can be generated by the action of the boundary algebra

defined in (61) on the vacuum.

H =Abdry|0〉. (65)

Although this may seem surprising at first sight since the boundary algebra only contains op-

erators in the infinitesimal time band (0,ε), this statement is not difficult to prove.

We will prove the claim above through contradiction. Imagine that there exists some state,

|Ψ〉 ∈ H, that is orthogonal to all states generated by the action of the boundary algebra on

the vacuum. This means that

C(t1 . . . tn) = 〈Ψ|O(t1,Ω1)O(t2,Ω2) . . . O(tn,Ωn)|0〉= 0, (66)

for any t i ∈ (0,ε). Now by inserting a complete set of energy eigenstates in between the

operators, and by assuming the positivity of the full Hamiltonian, we find that

C(t1 . . . tn) =
∑

Ei

ei
∑

j E jz j 〈Ψ|E1〉〈E1|O(0,Ω1)|E2〉 . . . 〈En|O(0,Ωn)|0〉, (67)

where the variables z j are given by

z1 = t1; z2 = t2 − t1; . . . zn = tn − tn−1. (68)

It is clear that the function C is analytic when all the z j are extended in the upper half plane.

But now if C vanishes when all the t i ∈ (0,ε), by the edge-of-the-wedge theorem, it must

vanish for all real t i . But this is impossible, since we assumed that |Ψ〉 was an element of H,

and so it was created by the action of asymptotic operators at some times. This implies that

|Ψ〉 cannot exist.

Therefore all the states in the Hilbert space can be created by the action of asymptotic

operators in an infinitesimal time interval.

Completing the proof

We now move to the final step in our argument. We want to prove that if we have two

distinct states, |Ψ1〉 6= |Ψ2〉, then we can find an asymptotic operator within the infinitesimal

time band (0,ε) that can distinguish these two states.9

Since the states are distinct, there must exist some operator Q that can distinguish between

them, i.e. 〈Ψ1|Q|Ψ1〉 6= 〈Ψ2|Q|Ψ2〉.
Now, we can expand Q in some basis of states, which we denote by |n〉, so that

Q =
∑

nm

cnm|n〉〈m|. (69)

By the argument above, each element in the basis can be generated by the action of some

element of Abdry on the vacuum. So

|n〉= Xn|0〉; |m〉= Xm|0〉, Xn, Xm ∈Abdry. (70)

Therefore

Q =
∑

nm

cnmXn|0〉〈0|X †
m =

∑

nm

cnmXnP0X †
m. (71)

9We emphasize that being able to distinguish all states through an operator in Abdry is much stronger than the

statement that all states can be generated by the action ofAbdry on the vacuum. For instance, if we consider ordinary

local quantum field theory in flat space, then all states can be generated by the action of the algebra belonging

to any open set. But of course, it is not true that in local quantum field theories, all states can be distinguished

through observables from the algebra from any open set.
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But since Xn, P0, Xm all belong to Abdry and since Abdry is an algebra, which must be closed

under products and linear combinations, the entire sum on the right hand side belongs to

Abdry. So Q ∈ Abdry. Therefore any distinct states can be distinguished by the action of an

element of Abdry. �.

Most aspects of the discussion that we presented in flat space also applies here. The argu-

ment above does not work in a non-gravitational theory, because it is only in a theory of gravity

that the projector on the vacuum can be written as an asymptotic observable on a single time

slice. So, only gravitational theories are holographic whereas nongravitational theories, in-

cluding gauge theories, are not. Moreover, the argument above does not work classically.

Finally, as we will explain in [134] this argument can be verified in perturbation theory. This

perturbative verification is impossible unless we take ε > 0. This is the reason that we consider

asymptotic operators in a finite time-band rather than asymptotic operators at just an instant

of time.

B Asymptotic charges as observables

In this section, we will address the argument of [108] and explain how the ADM mass and

other asymptotic charges should be viewed as observables at null infinity.

The argument of [108] is quite simple, and can be understood by considering even a free

scalar theory. Usually, we define the vacuum as an eigenstate of the Hamiltonian which (after

a possible shift in the zero-point point energy) annihilates it.

H|0〉= 0. (72)

In a local theory, the operator H above is an integral of a Hamiltonian density, H(~x , t) over an

entire Cauchy slice. However, now consider integrating the Hamiltonian density only inside

some ball of large radius, B(R),

H(R, t) =

∫

B(R)

H(~x , t)d3~x . (73)

The point made in [108] is that this truncated operator has large fluctuations: in fact,

〈0|H(R)2|0〉 grows with R and so it appears that a naive R →∞ limit will of H(R) will not

yield the correct Hamiltonian, H.

Now, if one couples the scalar to gravity, the gravitational constraints relate some compo-

nents of the metric on a sphere of radius R to the energy contained inside the sphere. There-

fore [108] argued that these metric components would also have large fluctuations that could

only be tamed by smearing H(R) over a large time.

In this Appendix, we show that the large quantum fluctuations can also be avoided by

smearing H(R, t) radially before taking the R → ∞ limit. So to obtain asymptotic charges

at null infinity, we first smear the bulk metric radially and then take its large-radius limit.

We discuss the Hamiltonian in this section, but the same prescription can be used to define

any supertranslation charge by integrating the radially smeared metric with an appropriate

spherical harmonic.

Another way to view this is to recognize that interval u ∈ (−∞,−1
ε ) actually contains an

infinite amount of retarded time. Since the retarded time is u = t − r, by smearing over a

large radial extent we are taking advantage of this to obtain a well-defined notion of the ADM

mass and other asymptotic charges at I+− . In forthcoming work, we will explore the utility of a

similar smearing prescription for defining the exponentiated Bondi mass operator in equation

(44).
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The ADM mass defined in this manner is related by the constraints to the following operator

H.

H = lim
R→∞

Hsm(R) = lim
R→∞

∫
d t ′dR′g(t ′)FR(R

′)

∫

B(R′)

H(~x , t)d3~x . (74)

The smearing in time is controlled by g(t) and has support over a small user-defined length

scale, η around t = 0. The smearing function in the radial direction, FR, varies the radius of

the ball in the range R±R1−δηδ, where δ can be chosen to be any number satisfying 0< δ < 1
3 .

We show that the fluctuations of Hsm(R) in a massless scalar field theory are then suppressed

as

〈0|Hsm(R)
2|0〉= 1

120π

1

Rη

�
R

η

�3δ

, (75)

up to terms that fall off even faster with R. So this has a good limit as R→∞. We derive this

result below.

(a) (b)

Figure 6: Our protocol (left) reduces quantum fluctuations by averaging over the

radial direction. This allows us to associate asymptotic charges at I+− by smearing

the metric over the thick red region. In particular, we avoid having to smear the

metric up to a finite value of u on I+ (right), which would have made the asymptotic

charges ill-defined at I+− .

B.1 Fluctuations of the smeared Hamiltonian

Consider the free massless scalar field in 3+ 1−dimensional spacetime.

φ(x) =

∫
d3k

(2π)3/2
1p
2ω~k

�
a~k eik·x + a

†

~k
e−ik·x

�
. (76)

The field satisfies canonical commutation relations provided

[a~k, a
†

~k′
] = δ3(~k− ~k′). (77)

The Hamiltonian density is

H(x , t) =
1

2
:
�
(∂tφ(x))

2 + ( ~∇φ(x))2
�

: . (78)
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As usual, we normal order the Hamiltonian so that the divergent contribution of the zero-point

energies is removed. Using the mode expansion we find

H(R, t) = −1

2

∫

|~x |≤R

d3 x
d3k d3p

(2π)3

�
ω~kω~p +

~k · ~p
�

2
p
ω~kω~p�

a~k a~p ei(k+p)·x + a
†

~k
a

†

~p
e−i(k+p)·x − a

†

~k
a~pe−i(k−p)·x − a

†

~p
a~kei(k−p)·x

�
.

(79)

Usually, we integrate over all ~x to define the Hamiltonian and then we just drop the terms with

two creation and two annihilation operators. However, if we integrate over a finite region,

these terms remain and the discussion here has to do with their effect.

H(R, t) =

∫
d3kd3p

(2π)2

�
ω~kω~p +

~k · ~p
�

2
p
ω~kω~p

�
D(k− p, R, t)a

†

~p
a~k −D(k+ p, R, t)a~ka~p + h.c.

�
, (80)

with

D(q, R, t) =
sin(|~q|R)− |~q|R cos(|~q|R)

|~q|3 e−iq0 t . (81)

In the large R limit, the function D(q, R, t) is sharply peaked around |~q| → 0.

As discussed earlier, we are interested in the smeared operator (74). We make the following

choices for the smearing functions.

FR(R
′) =

1

λ
p
π

e
− (R
′−R)2

λ2 ; g(t) =
1

η
p
π

e
− t2

η2 , (82)

where

λ = R1−δηδ, (83)

and η is chosen to be a small length scale that does not scale with R.

Now we proceed to the computation of fluctuations of smeared Hamiltonian.

〈0|H2
sm(R)|0〉=

∫
d t1 d t2 dR1 dR2 FR(R1)FR(R2)g(t1)g(t2) 〈Ω|H(R1, t1)H(R2, t2)|Ω〉. (84)

Expanding out both factors of H in creation and annihilation operators, we see that the only

term that contributes towards vacuum fluctuations is the one which picks up creation operators

from the second factor and annihilation operators from the first. This leads to correlators of

the form 〈0|a~ka~pa
†

~k′
a

†

~p′ |0〉= δ(~k− ~k
′)δ(~p− ~p′) +δ(~k− ~p′)δ(~p− ~k′). We then find

〈Ω|H2
sm(R)|Ω〉=

∫
d3kd3p

(2π)4

�
ω~kω~p +

~k · ~p
�2

2ω~kω~p
D(k+ p, R1, t1)D

∗(k+ p, R2, t2)

× FR(R1)FR(R2)g(t1)g(t2)dR1dR2d t1d t2.

(85)

Now we will perform all the smearing integrals to get the following.

〈Ω|H2
sm(R)|Ω〉=

∫
d3kd3p

(2π)4

�
ω~kω~p +

~k · ~p
�2

2ω~kω~p
e−

1
2η

2(ω~k+ω~p)
2 1

4
e−

1
2λ

2(|~k+~p|)2 1

|~k+ ~p|6

×
�
(2+λ2(|~k+ ~p|)2) sin(|~k+ ~p|R)− 2|~k+ ~p|R cos(|~k+ ~p|R)

�2
.

(86)

To simplify the above integral, we change variables to ~q = ~k + ~p and ~r = ~k − ~p. Then we

see that the integral above only receives contributions from the range where |~q|η ≪ 1. This
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allows us to series expand all terms in a series in |~q| (except for those that involve |~q|R) and

do the integrals explicitly leading to

〈0|H2
sm(R)|0〉=

R2

120πηλ3

�
1+O

�
λ

R

��
=

1

120π

1

Rη

�
R

η

�3δ �
1+O

�
λ

R

��
, (87)

as advertised.

While we also required a small smearing over time, this only provided us with a UV-

momentum cutoff. However, our radial smearing was over a parametrically larger region.

This provided us with another momentum cut-off that was parametrically smaller than the

cutoff provided by the time-smearing. This is the crucial difference with [108]. In fact, we can

recover the results of [108] just by taking λ = O (η) in our calculation. Then the fluctuations

of our smeared Hamiltonian again start to diverge with R as is evident above.

The discussion here has had to do with the definition of asymptotic observables as limits

of bulk observables and not with the “difficulty” of measuring them practically. To summarize,

we do not see any, in-principle, obstacle to taking this limit and obtaining asymptotic charges

as observables in a quantum theory, provided the limit is taken carefully.
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