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Abstract

The Holographic Principle and the Emergence of Spacetime

by

Vladimir Rosenhaus

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

Results within string theory and quantum gravity suggest that spacetime is not
fundamental but rather emergent, with the fundamental degrees of freedom living on a
boundary surface of one lower dimension than the bulk. This thesis is devoted to studying
the holographic principle and its realization for spacetimes with both negative and positive
cosmological constant.

The holographic principle is most explicitly realized in the context of the AdS/CFT
correspondence. We examine the extent to which AdS/CFT realizes the holographic prin-
ciple and study the UV/IR relation. We study aspects of how bulk locality emerges within
AdS/CFT. To this effect, we study how to reconstruct the bulk from boundary data. We
study how such a reconstruction procedure is sensitive to large changes in the bulk geom-
etry. We study if it is possible to reconstruct a subset of the bulk from a subset of the
boundary data. We explore both local and nonlocal CFT quantities as probes of the bulk.
One nonlocal quantity is entanglement entropy, and to this effect we construct a framework
for computing entanglement entropy within the field theory.

The most ambitious application of the holographic principle would be finding the
holographic dual to the multiverse. We investigate properties of this putative duality. We
extend the UV/IR relation of AdS/CFT to the multiverse, with the UV cutoff of the theory
on future infinity being dual to a late time cutoff (measure) in the bulk. We compare various
measure proposals and examine their predictions.
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region far from the boundary. This illustrates that there is no preferred
coordinate system that would uniquely pick out a region described by the
boundary, particularly if the bulk is not in the vacuum state. . . . . . . . . . 26

3.2 The boundary of AdS; the dashed lines should be identified. Examples of
globally hyperbolic subsets b are shown shaded. A causal diamond is a set
of the form I−(q) ∪ I+(p), where q is boundary event in the future of the
boundary event p. Let τ be the time along a geodesic from p to q in the
Einstein static universe of unit radius (ds2 = −dt2 + dΩ2

d−1). With τ = 2π, the
causal diamond is the boundary of the Poincaré patch. A causal diamond
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Chapter 1

Introduction

One of the outstanding problems in theoretical physics has been how to quantize
gravity. Early attempts at quantizing gravity tried to quantize the gravitational field using
the same procedure that had been successfully used to quantize all other fields. These
attempts failed for a number of technical and conceptual reasons. The reason for this failure
is now understood at a much more basic level: the gravitational field is not fundamental.
Quantizing gravity is like trying to quantize sound waves in a fluid - one is quantizing the
wrong thing. What has been learned is that spacetime is an emergent concept. The purpose
of this thesis is to further our understanding of how spacetime emerges.

Early Hints of the Holographic Principle

That spacetime is not fundamental but rather emergent is a radical idea and one
which emerged after decades of studies of black holes and string theory. In normal contexts,
gravity is weak and so our lack of an understanding of quantum gravity is not a hindrance.
However, in situations when matter is made sufficiently dense, gravity can become strong.
The most dramatic signature of gravity is a black hole. A black hole forms when an object
becomes sufficiently dense to induce complete gravitational collapse. Hence, it is the arena
of black holes that can be expected to reveal some of quantum gravity’s central features.

The study of the quantum properties of black holes developed rapidly in the 1970s.
Hawking’s area theorem [92] demonstrated that the area of a black hole never decreases,
giving a resemblance to the second law of thermodynamics in which the entropy never
decreases. Going further, Bardeen, Carter and Hawking [8] developed the four laws of
black hole thermodynamics, demonstrating a striking analogy between the behavior of a
black hole and a thermodynamic system. At a mathematical level, it appeared that if one
identified the black hole’s horizon area with entropy and the inverse mass of the black hole
as temperature, then Einstein’s equations for the black hole’s behavior could be recast as
the standard equations for the laws of thermodynamics. At this point, as the name suggests,
a black hole was believed to be black. Consequently, it was thought it had no temperature
and no entropy, and that the analogy with thermodynamics was purely a mathematical one.

At the same time, Bekenstein [10, 11, 12, 13] was disturbed that as a result of
a black hole the concept of the second law of thermodynamics would lose its operational
meaning. A black hole gave one a mechanism to destroy entropy - one simply drops it into
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the black hole. The need to uphold the second law motivated Bekenstein to propose that
black holes do in fact have an entropy, and it is given by their area in Planck units. The
statement that emerged is one of the generalized second law: the matter entropy plus the
black hole entropy can never decrease.

In 1975, Hawking discovered [93, 94] that black holes are not truly black but rather
very slowly emit radiation. This discovery set off the study of the quantum properties of
black holes. What had merely been a mathematical analogy had now become a reality:
black holes are true thermodynamic systems with an entropy and a temperature.

Bekenstein had considered thought experiments in which an entropic object was
dropped into a black hole. In 1994 Susskind [166] considered a different thought experiment.
Any static object can be converted into a black hole - one simply adds matter to it. Yet,
once we have a black hole we know that its entropy is given by its area in Planck units. The
second law of thermodynamics forces us to conclude that the object we initially had must
have also had an entropy bound by its area in Planck units. What seemed to be emerging
then was the following concept: gravity produces fundamental limitations on how densely
information can be packed. If we try to squeeze too much entropy into too small of a region,
the whole system will collapse into a black hole.

’t Hooft and Susskind went further [172, 166]. If the entropy of any object is
bound by its area, should it not be the case that the correct fundamental theory is one
whose number of degrees of freedom scales as an area rather than an entropy? Without
the black hole thought experiments, this seems completely counter-intuitive. The world
we observe is local, and degrees of freedom at different locations are independent. Indeed,
quantum field theory is a local theory and the number of degrees of freedom scales as a
volume. On the other hand, it appears that with gravity present most of these degrees of
freedom are fictitious – one can not actually excite them because a black hole forms if one
tries. This practical limitation was used as motivation for the much more radical conjecture
of ’t Hooft and Susskind: the world is a hologram, and the fundamental description lives
on the boundary. This holographic principle was a major step towards the demise of the
concept of spacetime being fundamental.

Emergent Negative Cosmological Constant Spacetime: the AdS/CFT cor-
respondence

In 1997 the Holographic Principle was realized by Maldacena within string theory
for a particular class of spacetimes [127]. The spacetimes for which it was realized are
those that are asymptotically Anti-de Sitter (AdS). AdS spacetimes are those with negative
cosmological constant (Λ < 0). AdS space can be thought of as particular kind of confining
box: near the center of the space, the cosmological constant is not felt and a probe particle
behaves as if it were in flat space. If one gives the particle some energy so that it moves
outward, it will eventually begin to feel the cosmological constant and will be attracted
back towards the center. In this way, massive particles moving along geodesics in AdS will
oscillate about the origin. The boundary of AdS, which is a sphere, is therefore inaccessible
to massive particles, although it can be reached by massless particles.

The Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence makes
the following statement: the full string theory in AdS space is exactly dual to a particular
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field theory that can be thought of as living on the sphere that is at the boundary of AdS.
AdS/CFT is perhaps the simplest and cleanest way to realize holography. An important
question is to what extent AdS/CFT has fully realized the holographic principle. In par-
ticular, the holographic principle states that the theory describing the interior of a sphere
lives on the surface of the sphere and also has a Hilbert space dimension set by the area
of the sphere. AdS/CFT has clearly realized the first of these conditions because the CFT
lives on the boundary. On the other hand, the later condition is more difficult since the
boundary of AdS space has infinite area. This is consistent with the CFT having an infinite
dimensional Hilbert space, but not very informative for trying the match the number of
degrees of freedom. In chapter 2 we address this question of to what extent AdS/CFT has
fully realized holography.

Before the AdS/CFT correspondence, string theory provided a quantum theory
of gravity, but only in the perturbative regime. To address many of the fundamental
questions in quantum gravity, one needs to know the nonperturbative structure of theory.
The AdS/CFT correspondence both provided this nonperturbative definition, and at the
same time realized and confirmed the Holographic Principle.

Although AdS/CFT was discovered 15 years ago, many aspects of the dictionary
relating bulk observables to boundary observables have remained elusive. It will be our goal
to make progress in filling in this dictionary. In particular, one of the central mysteries of
holography is if spacetime is emergent and not fundamental, how does it do such a good
job of emerging so that we perceive a local world?

One way to make progress towards understanding how the bulk emerges is to pose
the question: is it the case that the CFT on some subset of the boundary is dual to some
subregion of the bulk? This question is intimately tied to the question of how nonlocal
holography is. An affirmative answer to our question is not guaranteed, but if it were the
case that portions of the boundary could be associated with portions of the bulk in some
way, it would not only provide an important ingredient in the bulk-boundary dictionary,
but would also give us clues for how to apply holography in other contexts. In chapter 3 we
first establish what the candidate bulk and boundary subregions would actually be. Then,
in chapter 4 we try to establish to what extent the subregion duality can be realized.

An even more elementary question is how mysterious is holography. In particular,
can one give a simple prescription for which CFT quantities encode the various aspects of
the bulk? One can ask: if we consider a family of bulk observers in AdS who are near
the boundary, can they do experiments to reconstruct the bulk? A priori, it is unclear if
the answer should be positive or negative. By the nature of the AdS/CFT dictionary, the
extent to which these observers can reconstruct the bulk is the same as the question of
the extent to which local CFT operators are enough to reconstruct the bulk. One should
recall that a field theory has many quantities which are inherently nonlocal (for instance,
entanglement entropies or Wilson loops). Consequently it is important to establish when
local CFT operators are sufficient to reconstruct the bulk, and when these more exotic
nonlocal objects need to be used. In chapter 5 and 6 we turn to this question. Finally, in
contexts that local CFT operators are not sufficient to reconstruct the bulk, one would like
to understand which nonlocal objects one should use instead. Entanglement entropy has
emerged as a particularly good candidate due to the work of Ryu and Takayanagi [154, 104]
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relating boundary entanglement entropy to the area of extremal bulk curves. If the Ryu -
Takayanagi conjecture is true, it gives a remarkable way in which to probe the bulk. To
test their conjecture one needs to know how to compute entanglement entropy within the
CFT, and this is what we turn to in chapter 7.

Emergent Positive Cosmological Constant Spacetime

While AdS/CFT is a beautiful realization of holography, the spacetime we inhabit
has a positive cosmological constant rather than a negative one. What we would really like
then would be to have a holographic description of a de Sitter spacetime (dS). This is a far
more challenging task. Indeed, it is even unclear where the holographic theory should live,
as the full de Sitter space is itself spatially closed. Although, a natural possibility is the
hologram lives on the spatial sphere at future infinity.

The main difficulty, however, to understanding emergent Λ > 0 spacetimes is the
difficulty of realizing them in string theory. In particular, the same arguments leading to
the AdS/CFT correspondence are not applicable to a putative dS/CFT correspondence
[163, 164, 186, 131]. Nevertheless, one could conjecture there exists a CFT dual to de Sitter
space and then try to understand this correspondence without knowing the details of what
the actual boundary theory is. Unfortunately, it is unclear if such a correspondence can be
realized [168].

The potential absence of a holographic duality for pure stable de Sitter space may
mean we must directly find the holographic dual of the full multiverse. It is believed that
the effective potential within string theory is one with an enormous number of metastable
minima. One therefore has not just one universe, but an infinite number of them. One can
start with a region that is de Sitter, yet tunneling events will cause it to decay to other
universes which can have either positive of negative Λ. The structure of the theory on future
infinity is therefore a fractal rather than just a sphere. One is forced to define a theory on
this fractal. In chapter 8 we take some first steps towards doing this.

Unlike the case of AdS/CFT where we know the theory that is dual to string theory
in AdS space, we do not yet know what the theory is that is dual to the multiverse. At this
stage, one of the hopes is to extract pieces of the bulk-boundary mapping in AdS/CFT and
apply them to the multiverse context. Concretely, in AdS/CFT (as discussed in chapter
2) when comparing bulk quantities with CFT quantities one must typically impose an IR
regulator in the bulk and correspondingly a UV regulator on the boundary. The AdS/CFT
dictionary relates these regulators. In the context of a multiverse duality, a UV regulator
on the theory on future infinity would correspond to a late time regulator in the bulk.

The most basic question that needs to be answered is how to relate this boundary
UV regulator to a bulk late time regulator. In the context of the multiverse, the question of
the late time regulator is known as the measure problem, and predates holography. While in
the context of the multiverse we do not have a theory telling us what the correct regulator
is, we instead have experimental observations. The hope then is to work in the reverse
direction - we guess a bulk measure and see what predictions it gives us. The requirement
that predictions match observation then gives us clues about what the correct analog of
UV/IR is for the multiverse. In chapter 9 we test various measure proposals to see how well
their predictions match observation. Finally, in chapter 10 we point out a serious difficulty
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that is encountered with measures in the multiverse - the bulk late time regulator (measure)
never decouples. As a field theory statement for the putative theory on future infinity, this
means the UV cutoff never decouples.
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Part I

Emergent Spacetime with Λ < 0:
AdS/CFT
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In this first part we study the holographic principle as realized in the AdS/CFT
correspondence. This part is devoted to studying to what extent AdS/CFT realizes holog-
raphy, what the dictionary is between the bulk theory and the boundary theory, and in
what way bulk locality emerges. This part is organized as follows.

In chapter 2, based on [152], we study to what extent AdS/CFT has realized the
holographic principle. The holographic principle asserts that the complete description of
the interior of a sphere is a theory which not only lives on the surface of the sphere, but also
has A/4 binary degrees of freedom. In this context we revisit the question of UV/IR that
was initially studied by Susskind and Witten [165]. We construct states which are localized
deep in the interior yet are encoded on short scales in the CFT, seemingly in conflict with
the UV/IR prescription. We make a proposal to address the more basic question of which
CFT states are sufficient to describe physics within a certain region of the bulk.

In chapter 3, based on [40], we ask whether the CFT restricted to a subset b of the
AdS boundary has a well-defined dual restricted to a subset H(b) of the bulk geometry. The
Poincaré patch is an example, but more general choices of b can be considered. We propose
a geometric construction of H. We argue that H should contain the set C of causal curves
with both endpoints on b. Yet H should not reach so far from the boundary that the CFT
has insufficient degrees of freedom to describe it. This can be guaranteed by constructing
a superset L of H from light-sheets off boundary slices and invoking the covariant entropy
bound in the bulk. The simplest covariant choice is L = L+∩L−, where L+ (L−) is the union
of all future-directed (past-directed) light-sheets. We prove that C = L, so the holographic
domain is completely determined by our assumptions: H = C = L. In situations where
local bulk operators can be constructed on b, H is closely related to the set of bulk points
where this construction remains unambiguous under modifications of the CFT Hamiltonian
outside of b. Our construction leads to a covariant geometric RG flow. We comment on the
description of black hole interiors and cosmological regions via AdS/CFT.

In chapter 4, based on [31], we investigate the nature of the AdS/CFT duality
between a subregion of the bulk and its boundary. In global AdS/CFT in the classical
GN = 0 limit, the duality reduces to a boundary value problem that can be solved by
restricting to one-point functions of local operators in the CFT. We show that the solution of
this boundary value problem depends continuously on the CFT data. In contrast, the AdS-
Rindler subregion cannot be continuously reconstructed from local CFT data restricted to
the associated boundary region. Motivated by related results in the mathematics literature,
we posit that a continuous bulk reconstruction is only possible when every null geodesic in a
given bulk subregion has an endpoint on the associated boundary subregion. This suggests
that a subregion duality for AdS-Rindler, if it exists, must involve nonlocal CFT operators
in an essential way.

In chapter 5, based on [118], we study more generally the bulk - boundary map-
ping. In Lorentzian AdS/CFT there exists a mapping between local bulk operators and
nonlocal CFT operators. In global AdS this mapping can be found through use of bulk
equations of motion and allows the nonlocal CFT operator to be expressed as a local oper-
ator smeared over a range of positions and times. We argue that such a construction is not
possible if there are bulk normal modes with exponentially small near boundary imprint.
We show that the AdS-Schwarzschild background is such a case, with the horizon intro-
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ducing modes with angular momentum much larger than frequency, causing them to be
trapped by the centrifugal barrier. More generally, we argue that any barrier in the radial
effective potential which prevents null geodesics from reaching the boundary will lead to
modes with vanishingly small near boundary imprint, thereby obstructing the existence of
a smearing function. While one may have thought the bulk-boundary dictionary for low
curvature regions, such as the exterior of a black hole, should be as in empty AdS, our
results demonstrate otherwise.

In chapter 6, based on [149], we further study the bulk -boundary dictionary and
bulk reconstruction from boundary data. We establish resolution bounds on reconstructing
a bulk field from boundary data on a timelike hypersurface. If the bulk only supports
propagating modes, reconstruction is complete. If the bulk supports evanescent modes, local
reconstruction is not achievable unless one has exponential precision in knowledge of the
boundary data. Without exponential precision, for a Minkowski bulk, one can reconstruct
a spatially coarse-grained bulk field, but only out to a depth set by the coarse-graining
scale. For an asymptotically AdS bulk, reconstruction is limited to a spatial coarse-graining
proper distance set by the AdS scale. AdS black holes admit evanescent modes. We study
the resolution bound in the large AdS black hole background and provide a dual CFT
interpretation. Our results demonstrate that, if there is a black hole of any size in the
bulk, then sub-AdS bulk locality is no longer well-encoded in boundary data in terms of
local CFT operators. Specifically, in order to probe the bulk on sub-AdS scales using only
boundary data in terms of local operators, one must either have such data to exponential
precision or make further assumptions about the bulk state.

In chapter 7, based on [153], we would like to start using the entanglement entropy
as a probe of bulk geometry. We therefore develop a framework for computing entanglement
entropy for the CFT. We provide a framework for a perturbative evaluation of the reduced
density matrix. The method is based on a path integral in the analytically continued space-
time. It suggests an alternative to the holographic and ‘standard’ replica trick calculations
of entanglement entropy. We implement this method within solvable field theory examples
to evaluate leading order corrections induced by small perturbations in the geometry of the
background and entangling surface. Our findings are in accord with Solodukhin’s formula
for the universal term of entanglement entropy for four dimensional CFTs.
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Chapter 2

Holography for a Small World

2.1 Introduction

The spherical entropy bound [14, 15] gives a remarkable bound on the number of
states contained within a sphere of area A. The holographic principle [172, 166, 20, 23]
builds on it to make the far more extraordinary assertion that there exists a theory that
lives on the sphere and describes all of physics within the sphere, and accomplishes this feat
while only having a Hilbert space of dimension exp(A/4l2pl).

AdS/CFT has only partially realized the holographic principle. The CFT does
live on the boundary of AdS, but its Hilbert space is infinite-dimensional. The boundary of
the region described has an area which is also infinite, and comparing two infinities is not
meaningful.

To confirm the holographic principle in AdS we must extract from the CFT a
theory of the appropriate dimension that is capable of fully describing the innermost region
of AdS, out to a sphere of area A (see Fig. 2.1). The CFT on a lattice is a natural candidate,
and was the basis of the UV/IR proposal of Susskind and Witten [165]. However, the UV/IR
proposal is known to have some limitations, motivating us to analyze its validity in a range
of contexts.

In the first part of this chapter we will construct certain states which explicitly
violate UV/IR; the bulk states will be within the sphere of area A, yet their boundary
image will have features on scales far smaller than the lattice spacing. Our examples will
demonstrate UV/IR is violated for both particles which stay inside the sphere and those
which enter and leave; for particles that are both relativistic and non-relativistic; for both
static states and dynamic states.

In the second part of the chapter we start afresh in looking for the correct theory
describing the interior of the sphere of area A. We make a proposal for an answer to the
question: what CFT states should this theory contain? This is a much easier question than
constructing a full theory; a full theory requires having not only the states, but also the
observables and a way of doing time evolution. It is, however, a more difficult question than
finding just the states confined within the sphere that the Bekenstein bound specializes to.
If the interior of the sphere is truly a holographic image, the hologram must be able to
describe relativistic particles which enter and leave the sphere. We will discuss how our
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(a)

Figure 2.1: The interior of the larger cylinder represents AdS. The vertical direction is time
and the radial direction is ρ. The CFT lives on the boundary (R×Sd−1) which is at ρ = π/2.
In order for AdS/CFT to fully realize the holographic principle, some theory which has a
Hilbert space of dimension exp(A/4ld−1pl ), where A is the area of the sphere at ρ = π/2 − δ,
must be extracted from the CFT. This theory would live on the sphere at ρ = π/2− δ (inner
cylinder) and would need to be able to fully describe the interior: 0 < ρ < π/2 − δ.
proposal avoids the difficulties UV/IR encountered. We also comment on the necessity of
excluding ultraboosted states from the description.

The chapter is organized as follows. In Sec. 2.2.1 we review the UV/IR proposal.
In Sec. 7.2 we review the well-known example of a relativistic particle oscillating inside
of AdS. The boundary image of the bulk gravitational field induced by the particle is the
energy-momentum tensor concentrated to a thin shell, and consequently strongly violating
UV/IR. In Sec. 2.4.1 we begin our study of scalar field wave packets. We construct a well
localized and highly relativistic wave packet which goes inside the bulk IR cutoff, yet on
the boundary the expectation value of the CFT operator dual to the scalar field is localized
to a region well below the lattice spacing. In Sec. 7.4 we consider a scalar field with large
mass (in AdS units), and consider a mode with angular momentum much larger than the
inverse of the lattice spacing but much smaller than the mass. The mode is localized within
the central AdS radius, yet the boundary image is on scales below the lattice spacing. In
Sec. 2.4.3 we consider a general solution of the Klein-Gordon equation and show that in
order for the CFT to not lose information about it when placed on a lattice would require
a lattice spacing far smaller than the one prescribed by UV/IR. In Sec. 2.5 we discuss the
possibility that the information contained in local CFT operators which went missing when
a UV cutoff was placed is in fact retained in some other “precursor” operators. In Sec. 2.6
we present our proposal for which CFT states are sufficient to fully describe the interior of
the sphere of area A.

The question of the validity of the “scale/radius” relation is related but somewhat
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different from the question of the validity of the UV/IR proposal. As a side note, in
Sec. 2.2.2 we comment that scale/radius does not follow from the rescaling isometry of the
Poincare patch metric, nor is it generally valid. Our example in Sec. 2.4.1 explicitly violates
scale/radius.

2.2 UV/IR

2.2.1 Review of UV/IR

In this section we review the UV/IR proposal [165]. Consider AdS in global
coordinates

ds2 =
L2

cos2 ρ
(−dτ2 + dρ2 + sin2 ρ dΩ2

d−1). (2.1)

The CFT lives on the boundary of AdS, at ρ = π/2, on a sphere that has been conformally
rescaled to have radius 1. The UV/IR prescription seeks to provide a theory that can
describe the interior of AdS for all ρ < π/2−δ, where δ ≪ 1. The full CFT is of course capable
of doing this, however it has an infinite-dimensional Hilbert space and the holographic
principle tells us a finite-dimensional Hilbert space should suffice.

In many computations in AdS/CFT, a bulk quantity that is IR divergent is dual to
a CFT quantity that is UV divergent. For instance, the divergence of the length of a string
ending on the boundary is dual to the divergent self-energy of a quark. This observation
motivated [165] to propose that the theory we are looking for is the CFT placed on a lattice.
Since the CFT is an SU(N) gauge theory, [165] wanted to count N2 degrees of freedom
per lattice site. The lattice spacing is then fixed by having the number of CFT degrees of
freedom match the area in Planck units of the sphere at ρ = π/2 − δ:

1

ld−1
pl

(L
δ
)d−1 . (2.2)

Using the relation N2
= (L/lpl)d−1, we see that the lattice size is fixed to be δ.

Since each of these degrees of freedom has, like a harmonic oscillator, an infinite-
dimensional Hilbert space, [165] needed to further impose that each oscillator can only be
excited to the first few energy levels. This amounts to imposing an energy density cutoff
of (1/δ)d. The energy density cutoff will not be important for us since UV/IR will face
difficulties already at the stage of the spatial lattice.

We should note that the terminology “UV/IR” is used in a range of contexts. For
us, UV/IR will mean the specific proposal reviewed above of how to truncate the CFT and
still be able to describe the portion of the interior, 0 < ρ < π/2 − δ.
2.2.2 Comments on Scale/Radius

In this section we include a few comments on the “scale/radius” relation and how
it relates to UV/IR. The scale/radius relation is the statement that an object close to the
boundary should be dual to a CFT state with small spatial extent, whereas an object deep
in the bulk should be dual to a CFT state of large spatial extent.
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The degree to which the scale/radius relation is generally valid is somewhat or-
thogonal to the one of UV/IR we are interested in. In particular, that a CFT state may have
a certain spatial extent does little in terms of telling us on what scale the state has features,
and hence what kind of lattice on the CFT would be sufficient to accurately describe this
state.

In fact, we see no basis for even scale/radius being valid in any dynamical context.
The scale/radius relation is motivated by the isometry of AdS under the rescaling of Poincare
coordinates: (t, x, z) → (λt, λx, λz). Consider some bulk solution; for instance a solution
Φ0(x, t, z) of the scalar wave equation. This configuration will have a boundary imprint
φ0(x, t) which is obtained by extracting the coefficient of the decaying tail of Φ0 near the
boundary. The AdS/CFT dictionary tells us φ0(x, t) is equal to ⟨O(x, t)⟩ on the CFT.
The isometry of AdS means one can construct a one-parameter family of bulk solutions
Φ0(λx,λz, λt) and these will have a boundary imprint φ0(λx,λt). Thus as λ is increased,
Φ0 will be peaked deeper in the bulk and the boundary imprint grows in spatial extent by
a factor λ.

However, for the scale/radius relation to be relevant in explaining the emergent
radial direction as an energy scale in the CFT, it would need to be true as a dynamical
statement. AdS/CFT is a complete duality; not only can a bulk state be mapped to a
boundary state, but also the equivalence must be maintained under time evolution. So it
is not sufficient to show that processes characteristically closer to the the boundary have a
smaller boundary size at some point in their evolution. One must show that throughout the
evolution of a localized bulk object, its radial location is correlated with the spatial extent
of the CFT image. The isometry of AdS under rescalings only implies the former and not
the later.

Our example in Sec. 7.2 of an oscillating particle (and the growing/contracting
shell to which it is dual) is generally regarded as consistent with scale/radius. However,
this is true in a trivial way: the oscillating particle is obtained from the static one at ρ = 0
through a scale transformation in Poincare coordinates. Our example in Sec. 2.4.1 will
explicitly violate scale/radius.

2.3 Oscillating Particle

In this section we review the example of a relativistic particle oscillating inside
of AdS (see Fig. 2.2). The backreaction of the particle changes the metric and induces a
nonzero ⟨Tµν⟩ on the boundary. As the particle passes through the center, ⟨Tµν⟩ remains
concentrated on a thin shell. It was pointed out in [148] that this example is in tension
with UV/IR.

It will be convenient to consider AdS in coordinates

ds2 = −(1 + r2
L2
)dτ2 + dr2

1 + r2

L2

+ r2dΩ2
d−1. (2.3)

These coordinates are related to the (2.1) coordinates by r = L tanρ. The boundary of AdS
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(a) (b)

Figure 2.2: (a) A relativistic particle following a radial geodesic inside of AdS. Its closest
approach to the boundary is ρ = π/2 −m/E. (b) The sphere shown is the Sd−1 of the CFT
(it is represented as an S2; in (a) we were only able to draw the boundary as an S1). On
the CFT the particle is represented by a thin shell of ⟨Tµν⟩. This shell is shown at multiple
instances of time. As the particle starts near the boundary, the shell is small and near the
right pole of the sphere. The shell grows as the particle falls towards smaller ρ. As the
particle passes through ρ = 0 the shell wraps the entire Sd−1. As the particle moves out
again to larger ρ, the shell contracts. Crucially, the thickness of the shell is m/E.

is at r →∞. In this limit the metric (2.3) asymptotes to

ds2 = r2 (−dτ2
L2
+ dΩ2

d−1) . (2.4)

The metric of the Sd−1
×R on which the CFT lives is obtained by conformally rescaling

(2.4) by a factor of 1/r2, giving a sphere of radius equal to 1.
A particle of mass m oscillating in AdS (Fig. 2.2a) satisfies the geodesic equation

ṙ2 = (E
m
)2 − 1 − ( r

L
)2 , (2.5)

where E is the energy of the particle with respect to the timelike Killing field,

E/m = (1 + r2/L2)τ̇ . (2.6)

The proper energy of the particle at the center of AdS is equal to E, and the CFT energy of
this state is EL. The largest r the particle reaches is rmax ≈ LE/m, where we have assumed
E ≫ m. In terms of coordinates (2.1), ρmax = π/2 − α, where we defined α ≡ m/E. Since
the particle is relativistic, α≪ 1.

The computation of ⟨Tµν⟩ for this state was done by Horowitz and Itzhaki [99], and
we collect their results in Appendix 2.8. In Fig. 2.2b we have sketched how ⟨Tµν⟩ evolves.
The energy of the CFT state is concentrated on a shell of thickness α. As the particle falls
into the bulk the shell expands, reaching a maximum size when the particle reaches r = 0.
The shell then contracts as the particle moves out towards larger r. Crucially, the thickness
of the shell is equal to α.
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Figure 2.3: (a) The profile of a localized wave packet (2.10) traveling away from the bound-
ary (q0 = 106, σx = σz = 10−3) shown at time t = 10−2. It is composed of modes highly
oscillatory in the z direction, of wavenumber peaked around q0. (b) The CFT image ⟨O(x)⟩
at this time (given by (2.20)).

UV/IR tells us that the CFT on a lattice with spacing δ should describe the bulk
out to ρ = π/2 − δ. Thus, it must describe the oscillating particle which goes through ρ

smaller than the cutoff. Yet, if we choose α≪ δ, then the shell has a width far smaller than
the lattice spacing. The extent to which the cutoff CFT fails to describe the particle can be
made arbitrarily large by making α small. The extreme case would be a massless particle
traveling through the bulk. Its boundary dual is a shell that is completely localized on the
lightcone θ = τ .

2.4 Scalar Field Solutions

The example in Sec. 7.2 of an oscillating particle presents a constraint on imposing
any kind of lattice on the CFT. However, this example is a bit special and we would like to
have a larger set of examples to test UV/IR. That is what we do in this section. Instead of
working with the gravitational field, we will consider a free scalar field φ,

(◻ +m2)φ = 0. (2.7)

The CFT operator O is dual to φ. Throughout this section we will consider some solutions
of (2.7) and look at ⟨O⟩ for these states. We will be interested in solutions of (2.7) which
either at some time, or for all time, are contained within the bulk region ρ < π/2− δ. In our
examples we will construct states that do this and also have ⟨O⟩ that is concentrated on
scales much less than δ.

2.4.1 Relativistic Wave Packet

In this section we would like to construct a wave packet that travels from near the
boundary of AdS into the bulk. We would like this packet to remain well concentrated and
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have negligible spread as it propagates into the bulk. It is familiar from wave physics that
packets with large momentum in one direction have, for a long period of time, negligible
spreading in the transverse directions. In AdS we can construct packets with a similar
property (shown in Fig. 2.3a). For these packets we will want to find how ⟨O⟩ evolves with
time. Near the boundary (ρ ≈ π/2), the field value will decay as (cosρ)∆. The AdS/CFT
dictionary tell us that the coefficient in front of this term determines ⟨O⟩. So to find ⟨O⟩
we need to find the behavior of the tail of the wave packet at ρ ≈ π/2. It should be pointed
out that just because the peak of the packet in the bulk has negligible transverse spread
does not yet imply the tail will also have negligible spread with time; although we will see
this is what occurs in AdS.

The packets we will construct can be used to violate UV/IR by arbitrarily large
amounts. For some given lattice spacing δ, we make a packet with transverse spread much
less than δ. We then make it sufficiently energetic so that it doesn’t spread for a long time.
On the CFT, ⟨O⟩ remains concentrated to a region much less than δ, even when the packet
is at ρ < π/2 − δ.

To construct the packets it will be convenient to use Poincare coordinates, which
are a good approximation to global coordinates near the boundary and for small angular
spread. Inserting ρ = π/2 − z into (2.1) gives

ds2 =
L2

z2
(−dt2 + dz2 + dx2) , (2.8)

where the angular coordinate is now x and the time coordinate has been relabeled t = τ . In
these coordinates the mode solutions to (2.7) are

ϕqk(x, t, z) = zd/2Jν(qz)eikx−iωqkt, (2.9)

where 0 < q <∞, the energy is ω2
qk = q

2
+ k2, and ν = ∆ − d/2. The conformal dimension ∆

is taken to be of order 1, and is related to the mass m through ∆(∆ − d) =m2L2.
We now construct our packet out of the modes (2.8) peaked around a large q = q0

with spread in q of σ−1z , and peaked around k = 0 with spread in k of σ−1x :

Φ(x, t, z) = ∫ dq dk
√
q ϕqk(t, x, z) e−k2σ2

x/4 e−(q−q0)
2σ2

z/4, (2.10)

where q0 ≫ σ−1z , σ−1x ≫ 1. To verify the packet has the behavior we desire, we make some
simplifications to allow us to evaluate the integrals in (2.10). First we notice that particles
in AdS only behave differently from those in Minkowski space when they get close enough
to the boundary such that the gravitational potential energy becomes comparable to their
kinetic energy. In terms of the modes (2.9) this is reflected in the the z component:

Jν(qz) ∼ 1√
qz
eiqz, for qz ≫ ν . (2.11)

This means we can think of q as a kind of radial momentum. From the form of (2.10) we see
that q is peaked around q0 with spread σ−1z which is much less than q0. Thus for z ≫ ν/q0
we can approximate (2.10) by

Φ(x, t, z) ≈ z(d−1)/2∫ dq dk eiqz e−k
2σ2

x/4 eikx e−(q−q0)
2σ2

z/4 e−iωqkt. (2.12)
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Aside from the uninteresting power of z in front, (2.12) is of the same form as a packet
propagating in the z direction in Minkowski space. Since in (2.12), k ≲ σ−1x ≪ q0, we
approximate

ωqk =

√
q2 + k2 ≈ q +

k2

2q0
. (2.13)

This allows us to separate the q and k integrals in (2.12), and easily evaluate the integral
over q,

Φ(x, t, z) = z(d−1)/2 ψ(x, t) e−(z−t)2/σ2
z eiq0(z−t), (2.14)

where

ψ(x, t) = ∫ dk eikx e−k
2σ2

x/4 e
−i k

2t
2q0 . (2.15)

We have dropped constants and have labeled the transverse spread as ψ because, as can
be seen from the energy (2.13), it satisfies the non-relativistic Schrodinger equation for a
particle of mass q0. Evaluating (2.15) thus gives the familiar answer,

ψ(x, t) = 1

σx
√

1 + 2it
σ2
xq0

exp
⎛⎝− x2

σ2x(1 + 2it
σ2
xq0
)
⎞⎠ , (2.16)

showing the packet’s spread with time is the expected,

σx(t) = σx
¿ÁÁÀ1 + ( 2t

q0σ2x
)2. (2.17)

This shows that the transverse spread is negligible for times t ≲ q0σ
2
x.

We would now like to evaluate ⟨O(x, t)⟩. Noting that for small z the Bessel function
can be approximated as

Jν(qz) ∼ (qz)ν for qz < ν , (2.18)

we obtain ⟨O(x, t)⟩ from the z → 0 limit of z−∆Φ(x, t, z). Using (2.10) we find,

⟨O(x, t)⟩ = ∫ dq dk qν+1/2 e−k
2σ2

x/4 eikx e−(q−q0)
2σ2

z/4 e−iωqkt . (2.19)

We now perform the same simplifications we used on (2.10), separating the integrals over q
and k, and finding ⟨O(x, t)⟩ = e−iq0tψ(x, t), (2.20)

where ψ(x, t) is given by the same expression as (2.15) before, and we have ignored terms
that are independent of x, t. Eq. 2.20 shows that ⟨O(x, t)⟩ remains localized within ∣x∣ ≲ σx
for a time t ≲ q0σ

2
x, as well as being highly oscillatory with time.1 A wave packet and its

1Since our interest is the CFT defined on the sphere of the global AdS boundary, our equations should
only be used for small times, t≪ 1, where the approximation of the Poincare patch metric is valid. To follow
the packet deeper into the bulk we would need to use the true global AdS evolution. Since it will take the
packet a time of π/2 to reach the center of AdS, we expect its transverse spread even at the center to remain
comparable to σx (with a sufficiently large choice of q0). It is interesting to consider what would happen if
we were actually interested in the CFT theory on the Minkowski boundary of the Poincare patch. Then as
the packet moves towards the Poincare horizon located at infinite z, the CFT profile would spread over the
entire x axis. This is not surprising; in this case the packet is traveling for an infinite amount of Poincare
time.
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Figure 2.4: A plot of the radial modes f0l(ρ) in (2.21) for fixed l (l = 100) and several
different choices of ∆ (∆ = 10, 100, 500, in colors red, green, blue, respectively). The
variable on the horizontal axis is the radial coordinate r/L = tanρ. The plot shows that
increasing ∆ leads to stronger confinement to the center of AdS. To violate UV/IR we
choose a mode with ∆≫ l≫ 1/δ.
dual ⟨O⟩ at an instant of time are shown in Fig. 2.3. We see that the UV/IR prescription
can be violated by arbitrarily large amounts with this example. To decrease the boundary
size, σx, we simply need to increase q0 in order to maintain q0 ≫ σ−1x .

Since we are taking q0 to be large, one might worry that if there is other matter
around then gravitational effects might invalidate the use of the free wave equation (2.7).
However, any such effects would occur on scales set by the Planck scale. The Planck scale
is related to the AdS scale by a power of 1/N . Crucially, the lattice size on the boundary
that UV/IR prescribes is independent of N , allowing us to take N as large as we want.

2.4.2 Non-relativistic Mode

In Sec. 7.2 and Sec. 2.4.1 we considered relativistic particles with large momentum
in the radial direction. In this section we go to the other extreme of a non-relativistic
particle with angular momentum. The radial location of the particle is determined by two
competing forces. AdS is confining, and the more massive the particle, the more it is confined
to the center of AdS. On the other hand, the centrifugal barrier from the particle’s angular
momentum pushes it out to larger radius. We will see that in order for the boundary image
to have features on small scales, the particle needs to be given large angular momentum.
By dialing the particle’s mass to be sufficiently large, we make the particle well-confined to
the center of AdS, and hence violate UV/IR.

As in the previous section, we consider a scalar field and for simplicity our equa-
tions are in AdS3. The mode solutions of the Klein-Gordon equation (2.7) in global coor-
dinates (2.1) are given by,

ϕnl(ρ, τ, θ) = fnl(ρ)eilθe−iωnlτ . (2.21)

The energy ωnl =∆+2n+ l, where ∆ ≈mL for large mass, and the radial part fnl(ρ) is some
hypergeometric function whose explicit form we have suppressed. For small ρ AdS looks
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like Minkowski space in spherical coordinates, and the radial modes reduce to the familiar
spherical Bessel functions.

Consider a bulk solution that consists of just a single mode, (2.21). On the bound-
ary, the expectation value of O for this state is simply proportional to (2.21) with the radial
portion removed, ⟨O(θ, τ)⟩∝ eilθe−iωnlτ . (2.22)

Let us now put the CFT on a lattice of size δ. Since the CFT lives on a circle of radius
1, this amounts to restricting to modes with l ≲ δ−1. Thus, to violate UV/IR we simply
need to consider a bulk solution ϕ0l with l≫ δ−1 and take the mass of the field sufficiently
large to have this mode confined near the center. In other words, ∆ ≫ l ≫ δ−1. Since this
example consists of an energy eigenstate, it illustrates that UV/IR is insufficient even for
describing static bulk physics which remains confined within ρ < π/2 − δ.
2.4.3 General Solution

We have seen examples of both relativistic and non-relativistic wave packets that
cause difficulties for UV/IR. But perhaps these examples are special and for a generic bulk
field configuration, the UV regulated CFT will be able to describe it fairly well. This is the
question we address in this section.

Consider some solution Φ(ρ, τ, θ) of the wave equation (2.7). Expanding Φ in
terms of modes (2.21),

Φ(ρ, τ, θ) =∑
n,l

cnl fnl(ρ) eilθ−iωnlτ . (2.23)

Assuming the modes are normalized with respect to the standard bulk Klein-Gordon norm,
near the boundary fnl(ρ) takes the form dnl(cosρ)∆, where

dnl = (−1)n
¿ÁÁÀΓ(∆ + n + ∣l∣)Γ(∆ + n)

n!Γ(∆)2Γ(n + ∣l∣ + 1) . (2.24)

We can now find the boundary imprint of this solution,

⟨O(τ, θ)⟩ =∑
n,l

cnl dnl e
ilθ−iωnlτ . (2.25)

The question now is: for a solution Φ relevant to the region ρ < π/2 − δ, are the
important features of the corresponding ⟨O⟩ on scales larger than δ? On the boundary, a
spatial lattice of size δ is equivalent to cutoff on l of δ−1. In order to be able to truncate the
sum in (2.25) to l < δ−1, it would need to be the case that cnl is suppressed at these large l.
However, this is clearly not generally true. At any fixed ρ in the bulk we need a complete
basis of modes in the angular direction, which requires retaining modes of arbitrarily high
l.

To be more precise, since we don’t expect local field theory to be valid in the
bulk below the Planck scale, the highest l we would actually need in order to describe r < R
would be R/lpl. However, this would require a lattice spacing on the CFT that is far smaller
than in the UV/IR prescription: in AdSd+1/CFTd, the lattice we would need to describe
ρ < π/2 − δ would need to have a spacing of δ/N2/(d−1).
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2.5 Precursors

We have seen examples of states for which the CFT would lose some of the infor-
mation contained in ⟨O⟩ if it were placed on a lattice. However, perhaps all the information
about the state is still present in the CFT on a lattice, but instead of being contained
in ⟨O⟩ is contained in the expectation value of some other operators? Without a better
understanding of the AdS/CFT dictionary this remains a possibility, but one that is dif-
ficult to test. In this section we will just make two comments. The first is that we see
no compelling reason why upon placing the CFT on a lattice, ⟨O⟩ would lose information
while these other operators retain it. The second is that if this possibility is realized, then
the UV/IR regulated version of AdS/CFT may not be very useful since the aspects of the
bulk-boundary dictionary that we knew in the full AdS/CFT would not be applicable to
the regulated version.

To discuss how the CFT encodes the bulk it is useful to ask the following question:
how would a collection of CFT observers reconstruct some bulk field configuration Φ(ρ, τ, θ)?
Expanding Φ in terms of modes ϕnl as in (2.23), the goal of the CFT observers would be
to determine all the coefficients cnl. Measuring the expectation value of O over the whole
sphere at one instant of time, ⟨O(θ, τ0)⟩, would give them some of the information, but not
all of it. In particular, since the boundary imprint in ⟨O⟩ of a single mode is proportional
to exp(ilθ − iωnlτ0), the CFT observers would be able to distinguish among the different
l quantum numbers. However, all the modes ϕnl of a fixed l but differing n would give
the same imprint in ⟨O(θ, τ0)⟩. By measuring ⟨O(θ, τ)⟩ over a range of times, the CFT
observers could start distinguishing the modes with different n. Having ⟨O(θ, τ)⟩ for all θ
and a time of ∆τ = π would allow for a full reconstruction of Φ.

If AdS/CFT is complete then there should be a faster way of reconstructing the
bulk; there should exist some CFT operators, named “precursors” in [148], which can be
measured at one instant of time and immediately fully determine Φ. The precursor operators
are expected to be highly nonlocal and their actual form has remained a mystery. In certain
dynamical contexts precursors are essential. For instance, if two wave packets collide in the
center of AdS, it takes a time of π/2 before causality allows the result of the collision to
propagate to the boundary and become encoded in ⟨O⟩. During that π/2 interval of time,
the result of the collision is encoded exclusively in the precursors.

These considerations lead us to believe that if we were to consider the CFT on
some subset of the boundary, R × Sd−1, that does not contain the full time direction, then
the only way to reconstruct some portions of the bulk would be by measuring precursors.
However, this is not the situation UV/IR presents: the UV regulated CFT in UV/IR still
lives on the full time direction.2 Thus it would be unclear why precursors are essential in
the UV/IR regulated version of AdS/CFT in contexts where they were not needed in the
full AdS/CFT.

Nevertheless, it may be that precursors save UV/IR. In this case, we should ask
what the bulk-boundary dictionary would be for the UV/IR regulated AdS/CFT. In the

2In UV/IR an energy density cutoff is prescribed for the CFT in addition to the spatial lattice. The
energy cutoff can be regarded as making the time direction into a lattice. Thus, if in our examples UV/IR
had failed due to the energy density cutoff, then the need for precursors might have been a good explanation.
However, UV/IR failed already at the stage of imposing the spatial lattice.
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full AdS/CFT one can construct a mapping, perturbatively in 1/N , between local bulk
operators φ̂(ρ, τ, θ) and the CFT operator O smeared over space and time with some kernel.
To leading order in 1/N , this takes the form

φ̂(ρ, τ, θ) = ∫ dτ ′dθ′ K(ρ, τ, θ∣τ ′, θ′) O(τ ′, θ′). (2.26)

The actual form of K was worked out in [90, 89], where the authors also pointed out that
a UV cutoff on the CFT would destroy the mapping (2.26). Namely, [90] showed that the
divergence in the two-point function of φ̂ at coincident points can only occur from the UV
divergence of the two-point function of O. Thus, if the theory dual to the inner portion of
AdS is the CFT with a UV cutoff, then the only way to express the bulk operators φ̂ in
terms of CFT operators is directly in terms of the precursors.

2.6 A Proposal for Finding the States

We are interested in finding a theory which is capable of describing all the physics
that can occur in the interior of a sphere of area A in AdS, while having a Hilbert space of
the appropriate dimension. The proposal the UV/IR prescription gave is that the theory
describing the interior ρ < π/2−δ is the CFT on a lattice of size δ. We have seen in previous
sections that this proposal faces difficulties. In this section we initiate a new search for the
desired theory.

Finding such a theory is a difficult problem, and we will only try to address a
more elementary question: what are the CFT states that this theory would contain? In
other words, what is the set of CFT states that are sufficient to cover everything that could
possibly happen in the region 0 < ρ < ρ0?

We need to know what CFT states are dual to a chair in the center of AdS, or a
star, or any object contained within ρ < ρ0. But we also need much more than that. The
sphere at ρ = ρ0 that we are discussing is imaginary; we aren’t literally putting a shell there.
So a particle can fly in and out of the region ρ < ρ0, or two particles can come in, collide,
and leave. We must include the CFT states dual to these processes. This is an essential
point: if this “small world” consisting of ρ < ρ0 is truly a holographic image, every physical
process which occurs inside should be encoded in the hologram. The difficult part is that
we should choose carefully which CFT states we are keeping, since the holographic principle
only allows us to include exp(A/4ld−1pl ) independent states. We should note that there is
no guarantee the question being posed has an answer. It may just be that one really needs
more states, even an infinite number, and there is no hologram for a small world.

We begin this section by reviewing the Bekenstein bound. We then make our
proposal for what the CFT states are that we want, and discuss how it passes the tests
of the previous sections that UV/IR struggled with. We then discuss a puzzling aspect of
our proposal, and indeed any proposal which keeps a finite number of states: ultraboosted
states which pass through ρ < ρ0 must be excluded from the description.
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2.6.1 Proposal

Consider some weakly gravitating object that has energy E and can be enclosed
in a sphere of radius R.3 For instance, the object could be a planet, or a gas inside of a
spherical cavity with reflecting walls. The Bekenstein bound gives a bound on the entropy
of the object,

S ≤ 2πER . (2.27)

The requirement that the object not be within its Schwarzschild radius requires E < R/2l2pl,
and transforms (2.27) into

S ≤
A

4l2
pl

. (2.28)

Eq. (2.28) can be interpreted as saying that if we have a spherical box with enclosing walls,
then specifying A/4l2pl numbers is sufficient to completely specify what is inside the box.

We now return to AdS, and consider placing one of these bound systems inside
of AdS. Since AdS is confining, placing the system anywhere except the center will incur
an energy cost. If we do place it in the center then in order for it to not undergo gravi-
tational collapse, its energy must be bound by its size. These considerations motivate our
proposal for the answer to the question of what CFT states are in the holographic theory.
In coordinates (2.1), with the AdS radius L, and with the CFT living on a sphere of radius 1,

Proposal: The CFT states sufficient to fully describe the bulk for all ρ < ρ0 are
those with CFT energy less than ML, where M is the mass of a black hole of radius ρ0.

Let us discuss a few aspects of our proposal. First, we would like to make sure it
covers all the states we considered in previous sections. The non-relativistic particle with
angular momentum (Sec. 7.4) stays confined within ρ < ρ0 and so is the kind of bound
state the Bekenstein bound includes, and is easily covered. In Sec. 7.2 and Sec. 2.4.1 we
considered a relativistic particle which enters and leaves our sphere. UV/IR had difficulty
with it even in the case the particle’s energy is measured in AdS units, regardless of how
small lpl is. In our proposal, the energy cutoff is in Planck units, and so these relativistic
particles are included.

We also need to verify that our proposal has the correct number of states prescribed
by the holographic principle. This follows from consistency of AdS/CFT. On the CFT side
we want to count the number of states with energy less than ML. This will be dominated
by states with energy close to ML, and up to order 1 factors, can be calculated from the
standard thermodynamics of a free gas of N2 species. For CFT4 for large M , the log of the
number of such states is of order N1/2(ML)3/4. We need to compare this with the area in
Planck units of a large AdS5 black hole of mass M . This is given by (Ml3plL

2)3/4/l3pl. Using
the relation N2

= (L/lpl)3, we see they are equal.4

3In this paragraph we are in 4-dimensional Minkowski space.
4Although our proposal should be applicable even for small spheres with sub-AdS radius, it is not partic-

ularly useful in this case since the number of CFT states is larger than what we want. In particular, there
will be states which are dual to graviton energy eigenstates that are delocalized over the entire central AdS
region.
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Figure 2.5: A highly boosted state for which the center of mass energy, and hence backre-
action, is small. In order for the theory on the sphere to only have a finite number of states,
we must exclude this state. A plausible reason is that any attempt to probe it would form
a black hole that is much larger than the sphere.

We note that our proposal is more concrete than the heuristic statement that CFT
states of low energy are associated with bulk regions of small ρ and states of high energy
are associated with the near boundary region, ρ ≈ π/2. In particular, we are not proposing
that CFT states of high energy are sufficient to describe the portion of the bulk that is near
the boundary. This would obviously be wrong; a relativistic particle oscillating in AdS, like
the one in Sec. 7.2, transverses nearly all of AdS while having constant energy. All we are
saying is that the low energy states may be sufficient to completely describe the small ρ
region.

2.6.2 Ultraboosted states

Having discussed the successes of our proposal, in this section we push it to the
brink of failure. Namely, our proposal excludes the high energy states (those with energy
greater than ML), and we need to know if this is valid. It is certainly justified to exclude
a state if it has large backreaction, and this is the first avenue we pursue. Our discussion
will focus on the two different frames of reference that are relevant: that of the sphere on
which the theory lives, and the center of mass frame.

Consider the state inside the sphere at some instant of time as an object is passing
through. The energy, E, with respect to the reference frame of the sphere is the energy
that appears in our proposal as the cutoff energy determining which states are kept. There
is also the center of mass reference frame, and we will let ECM denote the energy in this
frame. The backreaction, as characterized by curvature invariants, can be computed in any
frame of reference and is easiest to analyze in the center of mass frame.

There are therefore two different possibilities: (a) E and ECM are comparable.
(b) E ≫ ECM . In Case (a) our proposal does well, since the states of large energy also have
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large center of mass energy ECM and consequently collapse into a black hole larger than
our sphere. On the other hand, Case (b) (see Fig. 2.5) is more interesting. By taking some
system of small energy and boosting it by an enormous amount, its energy E can be made
arbitrarily large. By going to sufficiently large boost, we can make states which the theory
living on the sphere can no longer describe.

Although it appears odd that sufficiently energetic states are invisible to the theory
on the sphere, it is perhaps reasonable. The observables of the theory should correspond to
some kind of physical probe of the interior. For instance, the sphere theory could send in
particles to probe the interior. These probes will naturally be of low energy, as measured
in the sphere reference frame. Now consider the state of an ultraboosted object passing
through the interior. Any attempt to probe it in this way will form a large black hole, of
radius much larger than where the sphere theory was living. So, in a physical sense, there
is no way for the hologram to be able to describe these states.

2.7 Conclusion

Our goal has been to see the extent to which UV/IR gives us a theory, with
A/4ld−1pl degrees of freedom, that can fully describe the central AdS region out to a sphere
of area A. We presented some examples which are in tension with UV/IR. We therefore
took a step back, turning to the more basic question of which CFT states are sufficient
to describe the interior of the sphere. The states of lowest energy seem like a promising
candidate, which passes the tests UV/IR struggled with. Interestingly, an ultraboosted
particle passing through would be invisible to the theory on the sphere.

One may wonder: is there any reason a region of spacetime should be described
by a holographic theory with so few degrees of freedom? The most straightforward inter-
pretation of entropy bounds would be that they do nothing more than quantify the simple
observation that information requires energy, and too much energy confined to too small of a
region leads to gravitational collapse. From this perspective, the holographic principle is an
unbelievable extrapolation. And yet, AdS/CFT has partially realized the holographic prin-
ciple; so perhaps it fully realizes it. Or, perhaps it doesn’t and there only exist holograms
with infinite information content.

2.8 Equations for Energy Shell

In this appendix we collect several equations from [99] relevant for finding ⟨Tµν⟩
for the oscillating particle in Sec. 7.2. The result was already sketched in Fig. 2.2 b.

To find ⟨Tµν⟩ we need to first find the gravitational field caused by the oscillating
particle. The tail of this field at large r will then be proportional to ⟨Tµν⟩. Horowitz and
Itzhaki [99] did this calculation in a more elegant way. They first found ⟨Tµν⟩ for a stationary
particle at r = 0 and then applied a boost. Their answer is presented in Poincare patch
coordinates, since in these coordinates a boost is just a dilatation and easy to implement.
The Poincare patch metric is

ds2 =
L2

z2
(−dt2 + dx2 + dz2) . (2.29)
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Defining u = t −
√
x2 and v = t +

√
x2, the result of [99] for AdS5/CFT4 is

⟨Tuu⟩ = 8mα4

3π2
1(α2 + u2)3(α2 + v2) (2.30)

⟨Tvv⟩ = 8mα4

3π2
1(α2 + v2)3(α2 + u2) (2.31)

⟨Tuv⟩ = 4mα4

3π2
1(α2 + u2)2(α2 + v2)2 . (2.32)

In Poincare patch coordinates, the particle starts at z = α at t = 0 and then falls towards
larger z. For fixed v, ⟨Tµν⟩ can be seen to be peaked on the lightcone (u = 0) with width of
order α.

Since our real interest is in the boundary theory on R × S3, we need to do a
conformal transformation and coordinate change to get from R3,1 to R×S3. The Minkowski
metric is

ds2 = −dudv +
(v − u)2

4
dΩ2

2. (2.33)

Conformally rescaling by a factor of 1
4
(1+ v2)(1+u2) and changing coordinates: u = tanU ,

v = tanV , where U = 1
2
(τ − θ) and V = 1

2
(τ + θ) gives the desired

ds2 = −dτ2 + (dθ2 + sin2 θdΩ2
2). (2.34)

Applying these transformations to theR3,1 stress tensor (2.30) gives theR×S3 stress tensor:

⟨TUU ⟩ = 2mα4

3π2
(1 + u2)3(1 + v2)(α2 + u2)3(α2 + v2) (2.35)

⟨TV V ⟩ = 2mα4

3π2
(1 + v2)3(1 + u2)(α2 + v2)3(α2 + u2) (2.36)

⟨TUV ⟩ = mα4

3π2
(1 + u2)2(1 + v2)2(α2 + u2)2(α2 + v2)2 , (2.37)

where u and v were written above in terms of τ and θ. If we are interested in the energy
component, then this is given by

⟨Tττ ⟩ = 1

4
(⟨TUU ⟩ + 2⟨TUV ⟩ + ⟨TV V ⟩). (2.38)
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Chapter 3

Light-sheets and AdS/CFT

3.1 Introduction

In the study of the Lorentzian AdS/CFT correspondence [127, 185, 6, 89, 91],
one may consider the boundary theory defined on a proper subset of the global conformal
boundary. In this case, it is natural to expect that the bulk dual spacetime manifold may
be extendible. That is, the theory on the subset should describe less than the maximally
extended global bulk solution.

The most common example is the CFT on Minkowski space, Rd−1,1, which is dual
to the Poincaré patch of the bulk, with metric

ds2 = R2−dt
2
+ dx⃗2d−1 + dz

2

z2
. (3.1)

These bulk and boundary regions are shown as subsets of global AdS in Fig. 3.1a. The
Poincaré patch seems a “natural” choice for the bulk, at least in the above warped-product
coordinate system, where the boundary corresponds to z = 0 and the Poincaré patch to
z > 0. However, there is nothing special about this choice of coordinates. One could easily
write down coordinates that cover a larger or smaller portion of the bulk that is bounded
by the same portion of the conformal boundary as z → 0 (see Fig. 3.1b). So what selects
the Poincaré patch as the bulk dual of the CFT on Minkowski space?

The bulk dual region should be well-defined not only in the vacuum, but for
arbitrary states in the semiclassical regime, perturbatively in 1/N . Deep in the bulk, the
metric will not be that of empty AdS space. In general all Killing symmetries will be broken,
so they cannot be used to pick out a preferred bulk region. For example, consider a global
bulk solution corresponding to a pair of neutron stars orbiting around the origin of the
standard global coordinates. At what time (say, along its worldline) does each star enter
and exit the bulk region dual to the CFT on Rd−1,1?

Another well-known example is the maximally extended Schwarzschild-AdS black
hole. The global conformal boundary consists of two disconnected copies of R × Sd−1. In
the Hartle-Hawking state (the Euclidean vacuum), the two components can be thought of
as slices in a single complex manifold and are related by analyticity. However, one can
consider more general states, for example by adding neutron stars near the left boundary
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(a) (b)

Figure 3.1: (a) The Poincaré patch of AdS, with the usual time slicing in the coordinates
of Eq. (1.1). (b) Time slices of an arbitrary bulk coordinate system that covers the same
near-boundary region as the Poincaré patch but a different region far from the boundary.
This illustrates that there is no preferred coordinate system that would uniquely pick out
a region described by the boundary, particularly if the bulk is not in the vacuum state.

(far from the black hole), and white dwarfs near the right boundary. Restricting attention
to the CFT living on the left boundary, one would expect it to encode the nearby neutron
stars, but not the white dwarfs on the far side of the black hole. But what is the basis
of this expectation? And where does the reach of the left theory end: at the black hole
horizon, or somewhere inside the black hole/white hole regions? Again, there should be an
answer to this question that does not rely on special bulk symmetries or coordinate choices.

There are many other possible choices of subsets b of the global boundary, some
of which are shown in Fig. 3.2.1 Let us suppose that the CFT on b describes some portion
H(b) of the bulk. We will call H(b) the holographic domain of b. It should be possible to
construct this bulk region geometrically from b. The goal of this paper is to provide such a
construction. 2

1We consider only subsets b which, viewed as manifolds in their own right, are globally hyperbolic and
have the same number of spacetime dimensions as the global boundary. Otherwise the initial value problem
of the CFT would be ill-defined. If b is a proper subset of the global boundary, then it is not obvious that
the CFT on b must have a bulk dual, and we do not set out to prove this or establish under which conditions
a bulk dual exists. The question we seek to address is: if b did have a bulk dual region, what would it
be? In all cases, a semiclassical bulk dual can be assigned only to some subset of CFT states (excluding,
for example, the equal superposition of two global CFT states corresponding to different bulk metrics), and
only perturbatively in 1/N . In the case of a small diamond, the bulk dual is the AdS-Rindler patch, so one
would expect the geometric states to have a thermal character.

2In the special case that b is a diamond, motivated by the Ryu- Takayanagi proposal [154, 173, 68] for
computing holographic entanglement entropy, one could try constructing H(b) out of minimal surface which
start and end on b. We will not explore this approach here, however it would be interesting to study how it
relates to our construction. We will note however that Ryu - Takayanagi only applies for static situations;
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Minkowski
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de Sitter space 
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short strip 
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Figure 3.2: The boundary of AdS; the dashed lines should be identified. Examples of
globally hyperbolic subsets b are shown shaded. A causal diamond is a set of the form
I−(q) ∪ I+(p), where q is boundary event in the future of the boundary event p. Let τ
be the time along a geodesic from p to q in the Einstein static universe of unit radius
(ds2 = −dt2 + dΩ2

d−1). With τ = 2π, the causal diamond is the boundary of the Poincaré
patch. A causal diamond with τ < 2π (τ > 2π) is called “small” (“large”). An open interval(t1, t2) with t2 − t1 < π (t2 − t1 > π is called “short strip” (“tall strip”).

Outline Our strategy will be to bound the bulk dual region H(b) by a subset C(b) and
a superset L(b):

C(b) ⊂H(b) ⊂ L(b) . (3.2)

We choose C(b) to be the minimum region the CFT needs to describe to be consistent with
bulk causality and locality properties near the boundary. The set L(b) will be constructed
from light-sheets in a way that ensures that the bulk dual does not have more degrees
of freedom (higher maximum entropy) than the CFT. We will then show that under some
additional assumptions on L(b), all three sets are equal. This fully determines H(b) subject
to the stated assumptions.

In Sec. 3.2, we propose a lower bound on the holographic domain. We argue that
H(b) ⊃ C(b), where C(b) = J+(b) ∩ J−(b) is the set of bulk points which lie both in the
causal past and in the causal future of the conformal boundary region b. Otherwise, the
boundary would fail to describe regions that can be explored by a bulk observer localized
near the boundary.

In Sec. 3.3, we propose an upper bound on the holographic domain: H(b) ⊂ L(b),
for time dependent situations one must use the proposal [104] of (minimal) extremal surfaces, which has
been less well established. Additionally, as we will find in Section 6, allowing sufficient modifications of
the boundary theory makes the bulk ambiguous in large regions. In this sense, the bulk dual naturally
constructed from extremal surfaces would generally be too large.
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determined by the requirement that the boundary theory should contain enough degrees of
freedom to describe the bulk. The number of CFT degrees of freedom is controlled by the
area A of the regulated boundary [165]. In order to ensure that the CFT can describe the
holographic domainH, H must be contained in a bulk region that satisfies an entropy bound
S ≲ A. In Sec. 3.3.1, we review the covariant entropy bound, which states that the relevant
entropy lies on light-sheets emanating from the boundary area. There are no generally valid
bounds on the entropy at equal time, so light-sheets should play a preferred role in any
holographic duality. A light-sheet is a null hypersurface generated by nonexpanding light
rays orthogonal to a codimension two surface.

The boundary is of codimension one, so the construction of a bulk region out of
light-sheets off the boundary first requires a foliation of the boundary b into time slices
(which are codimension two surfaces from the bulk viewpoint). In Sec. 3.3.2, we examine
whether it is nevertheless possible to define a covariant, slicing-independent upper bound
L(b) from light-sheets.3

Given a boundary time slicing, one may consider the union L+(b) of all future-
directed light-sheets (one from each slice), or the union L−(b) of all past-directed light-
sheets. However, both of these sets depend on the slicing of b, and the same is true for the
union L+(b) ∪L−(b). Thus, neither defines an upper bound on H(b) covariantly.

We then consider the intersection L(b) ≡ L+(b)∩L−(b) as a candidate for an upper
bound on H(b). There are two apparent problems with this choice. The first is that L(b),
too, would appear to depend on the time slicing of the boundary set b. Secondly, it is easy
to see that L(b) ⊂ C(b). This would conflict with our expectation that C(b) ⊂H(b) ⊂ L(b),
unless it can be shown that L(b) = C(b). That is, the consistency of our arguments requires
that any point that lies on a causal curve that begins and ends on the boundary region bmust
also lie on both a past and a future-directed light-sheet emanating from b, independently
of the time slicing of b.

We prove this nontrivial result in Sec. 3.4. As a corollary, the slicing independence
of C(b) implies the slicing independence of L(b). Assuming this is the correct choice of
L(b), it follows that the holographic domain H(b) is completely determined:

H(b) = C(b) = L(b) . (3.3)

The description of H(b) in terms of light-sheets allows us to define a holographic
bulk RG flow, and the equivalence with C(b) makes the RG flow manifestly covariant.
Combining the focussing theorem with the covariant entropy bound guarantees that the
number of degrees of freedom is strictly nonincreasing along the flow. We discuss this
construction in Sec. 3.5.

In Sec. 3.6 we consider natural definitions of the bulk dual region from the perspec-
tive of the field theory, which contains nonlocal operators that can probe deeply into the
bulk. This approach is less general than our geometric approach, because the construction

3Light-sheets were used in Ref. [42] to determine the holographic domain of (effectively) half of the
global boundary. This region is not globally hyperbolic and the theorem of Sec. 3.4 does not apply; but
the division of the boundary selects for a preferred slicing. Recently, Hubeny has examined which bulk
regions are explored by extremal surfaces of various dimensions in static situations; she finds, as we do for
the holographic domain H, that black hole interiors are never included [101].
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of such operators is not known for arbitrary b. In cases where it is known we find that
a region H̄, very similar to H(b), is picked out as the region with an unambiguous bulk
interpretation.

Sec. 3.7 is largely independent of the rest of this paper. We consider the extent to
which AdS/CFT adds to our understanding of quantum gravity in regions with dominant
self-gravity, such as black hole interiors and cosmological regions. We describe a thought-
experiment involving the formation and evaporation of (smaller) black holes in such regions,
and we argue that its description requires a nonperturbative bulk theory.

3.2 The Causally Connected Region C

In this section, we argue that the CFT on the boundary portion b must at least
describe the set C(b) of bulk points that are both in the past and in the future of b:
H(b) ⊃ C(b).

Consider a bulk excitation very close to the boundary, e.g. at π
2
− ρ = ǫ ≪ 1 in

global coordinates,

ds2 =
R2

cos2 ρ
(−dτ2 + dρ2 + sin2 ρdΩ2

d−1) . (3.4)

Such an excitation is represented on the boundary by excitations with support on a region
of size ǫ, at the same transverse position [165]. Here we take the boundary theory to live
on a unit sphere, but this property is essentially local. It holds in Poincaré as well as global
coordinates. One expects, therefore, that it should hold for any boundary region b, as long
as ǫ is much smaller than the characteristic temporal and spatial size of b. This implies
that the boundary theory on b must describe at least the state and the dynamics of a bulk
region sufficiently close to b. We will exploit the fact that this near-boundary region, in
turn, is causally connected to the larger bulk region C(b) to show that the CFT must at
least describe C(b).

Consider now a family of bulk observers localized at π
2
− ρ = ǫ ≪ 1. They will

require a finite proper acceleration of order R−1, where R is the AdS curvature radius. The
proper time for which this acceleration must be maintained is

∆tproper =
R

ǫ
∆τ . (3.5)

This diverges in the limit as ǫ → 0, but we will only need to consider the case of small
but finite ǫ. Thus there appears to be no obstruction, in principle, to the existence of such
bulk observers. What region can they explore? We will treat the observers as a collective,
imagining that they densely fill Cauchy surfaces of the boundary b, moved into the bulk
by ǫ. Such observers can receive signals from the causal past of b in the bulk, and they
can send signals to the causal future of b. However, they cannot determine the state in the
entirety of either of these regions without making additional assumptions.

The only region that can be actively explored and manipulated by observers near
the boundary is the intersection of the past and the future of b,

C(b) ≡ J+(b) ∩ J−(b) . (3.6)
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Figure 3.3: The four null hypersurfaces orthogonal to a spherical surface B in Minkowski
space. The two cones F1, F3 have negative expansion and hence correspond to light-sheets.
The covariant entropy bound states that the entropy of the matter on each light-sheet will
not exceed the area of B. The other two families of light rays, F2 and F4, generate the skirts
drawn in thin outline. Their cross-sectional area is increasing, so they are not light-sheets,
and the entropy of matter on them is unrelated to the area of B.

This region can be probed by preparing local probes at an early time, allowing them to
travel deeper into the bulk and then back to the observer at a late time. The outcome
of such an experiment is completely determined by the state in C(b), by causality. And
conversely, local fields at any point in C(b) can be manipulated by such an experiment.
Since the experiments of these near-boundary observers are described by the CFT, then for
a consistent duality to hold the CFT must describe at least the region C(b):

C(b) ⊂H(b) . (3.7)

If the near boundary region can both probe and be affected by C(b), then the same must
be true for the boundary theory itself.

By contrast, knowledge of the state in J−(b)−J+(b), say, is not necessary in order
to compute the dynamics near the boundary or in any region that can be explored from the
boundary. It is sufficient to specify initial conditions on the past boundary of C(b) in the
bulk. Conversely, since its past boundary need not be a Cauchy surface for J−(b) − J+(b),
the state in J−(b) − J+(b) is not determined by the state in the region C(b) which can be
explored from the boundary.

3.3 The Light-sheet Region L

In this section we construct a region L(b) which is guaranteed to be encodable
in the CFT on the boundary portion b, in the sense that holographic entropy bounds
guarantee that the maximum entropy of matter in L(b) does not exceed the number of
degrees of freedom of the CFT on b. For an exact duality to hold, H(b) must be contained
in some region with this property, and we will conjecture that H(b) ⊂ L(b).

The holographic principle [172, 166, 21, 22] is a universal relation between area and
quantum information. This relation manifests itself empirically as the Covariant Entropy
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Figure 3.4: Penrose diagram of a collapsing star (shaded). At late times, the area of the
star’s surface becomes very small (B). The enclosed entropy in the spatial region V stays
finite, so that the spacelike entropy bound is violated. The covariant entropy bound avoids
this difficulty because only future directed light-sheets are allowed by the nonexpansion
condition. L is truncated by the future singularity; it does not contain the entire star.

Bound [21]: Let A be the area of an arbitrary (open or closed) codimension-two surface B,
and let S be the entropy of the matter on any light-sheet ℓ of B:

S[ℓ(B)] ≤ A
4
. (3.8)

At the core of the covariant entropy bound is the notion of a light-sheet (Fig. 3.3).
Light-sheets are null hypersurfaces generated by nonexpanding light rays orthogonal to the
surface B. There are four orthogonal directions at every point, since the surface has two
sides and we can consider past and future directed light rays. If the null energy condition
is satisfied, at least two of these directions will have nonpositive expansion and thus give
rise to light-sheets. The covariant entropy bound holds separately on each light-sheet. (For
a review, see Ref. [23].)

3.3.1 Spacelike Holography vs Light-Sheets

The holographic principle is not the statement that the entropy in any spatial
region V is limited by the area of the surface bounding that region. This “spacelike”
entropy bound follows from the covariant bound in certain special cases [21], but in general
it is false. Counterexamples are easily found in cosmology, inside black holes, and even
in weakly gravitating systems [23]. As a general statement valid in all spacetimes, one
must not think of holography as effectively projecting out a spacelike direction. Holography
projects along a null direction, just as it does in a conventional hologram.

To illustrate the falsehood of any spacelike notion of holography, consider the
surface area of a collapsing star (Fig. 3.4). The area approaches zero near the singularity,
but the entropy of the star starts out finite and cannot decrease. Thus, S(V )≫ A at late
times: a violation of the spacelike entropy bound. However, a light-sheet off of a late-time
surface will not penetrate the whole star, so the covariant bound, Eq. (3.8), is upheld.

Another example is shown in Fig. 3.5: It is possible to surround any matter system
with a surface of arbitrarily small area. (For weakly gravitating systems the surface will
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Figure 3.5: (a) A square system in 2+1 dimensions, surrounded by a surface B of almost
vanishing length A. The entropy in the enclosed spatial volume can exceed A. (b) [Here
the time dimension is projected out.] The light-sheet of B intersects only with a negligible
(shaded) fraction of the system, so the covariant entropy bound is satisfied.

consist of elements that are highly boosted with respect to the rest frame.) Thus, the
spacelike entropy bound is violated. By contrast, the light-sheets off of such surfaces do not
contain most of the system, evading violation of the covariant entropy bound. Details and
further examples are given in Ref. [23].

Notice that the above counterexamples to a spacelike entropy bound can easily
be embedded into an asymptotically AdS spacetime. In particular, consider a timelike
hypersurface that is a direct product, b = R × S2. (For definiteness, we consider AdS4 but
our arguments hold in any number of dimensions.) In the limit where the spatial two-spheres
are large, b encloses a very large spacetime region. We can think of b as a regulated version
of the conformal boundary. The bulk spacetime it encloses is described by a conformal field
theory living on b, with a UV cutoff on a length scale comparable to the AdS curvature
radius [165].

Yet, the hypersurface b can also be foliated into two-dimensional slices which have
arbitrarily small area; and each such slice bounds a global bulk slice. With this slicing, a
naive “spacelike” interpretation of holography would seem to imply that the bulk can be
described by a theory with an arbitrarily small Hilbert space. This interpretation is clearly
incorrect, as the bulk can have arbitrarily large entropy in the limit where b approaches the
boundary.

Another example is furnished by the eternal Schwarzschild-AdS black hole solution.
Let us again consider the regulated global boundary given by the direct product of time
with a sphere of fixed radius larger than the black hole, b = R × S2. As shown in Fig. 3.6,
this sphere encloses an infinitely large spatial region that extends all the way to the second,
disconnected conformal boundary on the far side of the black hole. This region contains
arbitrarily large entropy: for example, a dilute gas of n → ∞ photons can be added near
the second boundary with negligible backreaction. Of course, our intuition tells us that the
CFT that lives on the second boundary should be “responsible” for those photons. The
only problem is that spacelike holography does not tell us this. In fact, it cannot possibly
tell us any such thing. Black hole event horizons are global objects; for example, if we
decide much later to add mass to the black hole, this will affect the location of the horizon
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Figure 3.6: An AdS-Schwarzschild black hole. A sphere on the regulated boundary en-
closes an infinitely large spatial region that extends all the way to the second, disconnected
conformal boundary on the far side of the black hole.

at all earlier times. Thus, there is no local criterion that can prevent us from extending a
spacelike holographic domain to the far side of the black hole.

As the above examples illustrate, the light-like nature of the holographic relation
between entropy and area is crucial for making sense of AdS/CFT as a manifestation of
the holographic principle. This relation is captured by the geometric construction of light-
sheets.

3.3.2 Bounds on the Holographic Domain

As shown by Susskind and Witten [165], the CFT with a UV cutoff δ has a
maximum entropy equal to the proper area of the spatial boundary of AdS in standard
global coordinates. The latter is considered to be located in the bulk, a coordinate distance
δ away from the true conformal boundary. This observation tells us that the CFT manifestly
has the correct number of degrees of freedom demanded by the holographic principle, given
by the area of the boundary, not by the size of the enclosed volume.

In this argument one assumes, of course, that the CFT describes no more and no
less than the spacetime region “enclosed” in the regulated boundary. This is plausible in
the case of global AdS with the standard slicing of the boundary into round spheres. The
analysis of the previous subsection has shown, however, that this assumption is coordinate-
dependent at best, and that it is ill-defined for cases such as the Poincaré patch, where the
boundary slices do not “enclose” any particular region.

In order to claim more generally that the CFT uses an area’s worth of degrees of
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freedom to describe the bulk, we must characterize some relevant bulk region, given the
boundary. Note that the UV/IR connection is not the issue; by construction, the Susskind-
Witten argument suffices to ensure that the maximum entropy on the CFT agrees with the
area of the regulated boundary. This remains true for arbitrary foliations of the boundary,
as long as the short-distance regulator in the CFT is imposed with respect to the chosen
time-slices. We can always remove the UV cutoff at the end and think of the CFT as living
on the true conformal boundary.

The nontrivial question is how far from the boundary (how deep into the bulk)
the CFT description is valid. If this region is taken to extend too far from the boundary,
then the bulk entropy might be larger than the boundary area, and thus larger than the
maximum entropy of the CFT. In that case, the CFT Hilbert space would be too small to
capture the bulk physics. The only way to ensure that the bulk entropy is sufficiently small
is to appeal to the covariant entropy bound. This is why the relevant bulk region must be
related to the boundary by light-sheets. We will now explore possible concrete proposals
for this relation.

Consider a timelike hypersurface b embedded in an asymptotically AdS and a
foliation into spacelike hypersurfaces. We may view b as a spacetime in its own right, with
one less spatial dimension than the AdS spacetime it is embedded in. In order for the theory
living on b to be well-defined, we require that b be globally hyperbolic and that each time
slice be a Cauchy surface. Most relevant for the present discussion is the limiting case where
b lies on the conformal boundary of global AdS: b ⊂ I. (b can be a proper subset of I, for
example if b is the boundary of the Poincaré patch of AdS.) In this case, the metric of b is
defined only up to conformal transformations. We will be interested only in situations where
each time slice of b is “normal”, i.e, each slice t admits both a past-directed light-sheet ℓ−t
and a future-directed light-sheet ℓ+t . This is automatically the case for b ⊂ I, as we show in
appendix 3.8.

Let us consider the regions L+(b) and L−(b). L+(b) is defined as the union over t
of the future-directed light-sheets ℓ+t of each slice. Similarly, L−(b) is the union of all past-
directed light-sheets. Two natural looking possible bounds on the holographic domain are
H(b) ⊂ L+(b) and H(b) ⊂ L−(b). At the fundamental level, there is no distinction between
the past and the future, so L+(b) and L−(b) should play a symmetric role as bounds on the
holographic domain. Let us therefore consider the candidate bounds H(b) ⊂ L+(b)∪L−(b),
and H(b) ⊂ L+(b)∩L−(b). The former bound guarantees that every point in L+(b)∪L−(b)
lies either on a future-directed or a past-directed light-sheet from some time slice of b. The
latter bound is stronger: if H(b) ⊂ L+(b) ∩L−(b), then every point in H(b) lies on at least
one past- and one future-directed light-sheet.

The choice of time slicing on b is a coordinate choice and so cannot have funda-
mental significance. Remarkably, the set L(b) ≡ L+(b)∩L−(b) is indeed independent of how
b is foliated, even though L+(b) and L−(b) individually do depend on the time slicing of
b. In the following section we will prove a stronger theorem: L(b) = C(b). (Recall that
C(b) ≡ J+(b)∩J−(b) is the region causally connected to b, which we discussed in the previ-
ous section.) The fact that L(b) is slicing-independent follows as a corollary, since C(b) is
slicing-independent by construction. The simplicity and slicing-independence of L(b) make
it especially attractive, and we will see in Sec. 3.5 that it also leads to a useful formulation
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Figure 3.7: The union of all future directed light-sheets, L+(b), coming off the usual slicing
of the boundary Minkowski space (left) covers precisely the Poincaré patch (the wedge-
shaped region that lies both in the future of the boundary point A and in the past of D).
On the right, we show a a different time slicing of the same boundary region. One of these
slices is shown in blue in the bulk Penrose diagram (center); it curves up at B and down at
C. The future-directed light-sheet coming off the portion of the slice near C is nearly the
same as the future lightcone of C (shown in red/short-dashed), which reaches far beyond
the Poincaré patch to the far side of AdS. The bulk region covered by L+(b) will thus be
nearly two Poincaré patches, consisting of the points that lie in the future of A but not in
the future of D (long-dashed).

of holographic RG flow.
The other set that we were led to consider, the union L+(b) ∪ L−(b), is slicing-

dependent (see Fig. 3.7). This disqualifies it from further consideration, if we insist, as we do
in this paper, that a unique upper bound on the holographic domain should be constructed
from light-sheets off a single, arbitrary slicing of the boundary region b.

It is important to note that there are other, more complicated ways of constructing
a bulk region covariantly from light-sheets. We will not analyze such sets here, but we
mention some of them for completeness and future consideration. For example, to treat the
possible time-slicings in a democratic way, one could form the union, or the intersection,
over all possible time-slicings T , of the sets L+(b) ∪ L−(b): L′(b) = ⋂T (L+(b) ∪ L−(b))
and L′′(b) = ⋃T (L+(b) ∪ L−(b)). Clearly, L(b) ⊂ L′(b) ⊂ L′′(b). However, the restriction
H(b) ⊂ L′′(b) seems too weak to ensure that the boundary theory has enough degrees of
freedom to describe the bulk. For a given time slicing, it may not be the case that a given
point in L′′(b) lies on any light-sheet emanating from a slice. Worse, there may not exist
any choice of time slicing for which all of L′′(b) is covered by the light-sheets from the slices.
The stronger bound H(b) ⊂ L′(b) (which however is weaker than the bound we examine
here) does ensure these properties, and we intend to investigate it further in future work.

In summary, the requirement that the bulk have no more degrees of freedom than
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the boundary, combined with arguments of symmetry and simplicity, has led us to propose
the upper bound

L(b) ⊃H(b) (3.9)

on the holographic domain, where L(b) ≡ L+(b) ∪ L−(b) and L+(b) (L−(b)) is the union of
all future-directed (past-directed) light-sheets of the time-slices that foliate the boundary
region b.

3.4 Proof that L = C

In the previous two sections we have argued that the holographic bulk domain H
dual to the boundary region b must satisfy

C(b) ⊂H(b) ⊂ L(b) . (3.10)

In this section, we will prove that
C(b) = L(b) . (3.11)

This implies that
C(b) =H(b) = L(b) , (3.12)

so the holographic dual H is completely determined by our assumptions.4

It is obvious that L(b) ⊂ C(b). But the converse inclusion is nontrivial, particularly
since L(b) is constructed from two sets L±(b) that depend on the slicing of b, whereas C(b)
is slicing-independent. By Eq. (3.12), C(b) ⊂ L(b) is required for the consistency of the
arguments we have put forward in the previous section. Thus, our proof also serves as a
nontrivial consistency check. It is the main technical result of this paper.

We begin by stating our assumptions and definitions. Let B be a manifold with
boundary, and let b ⊂ ∂B be a timelike embedded submanifold in B. We will require
that b is globally hyperbolic when considered as a spacetime on its own. We also assume
that B has the property that J±(P ) is closed for every P ∈ B. Note that we are not
assuming inextendibility of either b or B, nor global hyperbolicity of B (from which the
latter assumption would follow).

In the application of our theorem to AdS/CFT, we take b to be a portion of the
conformal boundary of AdS. In this case, the spacetime B should be taken as the union of
the unphysical conformally rescaled AdS spacetime and its boundary. Since our theorem
only relies on properties of the spacetime which are preserved by conformal transformations,
we are free to construct the proof in this unphysical spacetime.

An additional assumption is that the causal relation between any two points in b
computed according to the causal structure of the lower-dimensional spacetime is the same
as that according to the causal structure of B itself. This is essential for a physical duality
to hold: the only way to guarantee that causality is preserved on both sides of the duality is
to make the causal structures compatible in this way. (In asymptotically AdS spacetimes,

4For certain choices of b, H thus excludes bulk points that can be represented on b [148, 96]; see, however,
Sec. 3.6. Our result is consistent with the fact that only C is needed to compute CFT correlation functions
in b [134].
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Figure 3.8: Consider an arbitrary boundary region b (enclosed by the solid line), and a
point P in the bulk region C(b) (orthogonal to the page). The causal future of P , J+(P ),
intersected with b is shown hatched. Roughly, the strategy of the proof is to demonstrate
that there exists a time slice st∗(P ) on the boundary that is tangent to the lower boundary
of future of P in b. We show that st∗(P ) is the earliest time slice that has any intersection

with the future of P , and that P lies on the past light-sheet of st∗(P ).

this assumption follows from a theorem of Gao and Wald [69]. However, this theorem relies
on additional assumptions that we have no reason to make here.)

Let τ ∶ b → R be an arbitrary time function5 on b such that the equal time slices
are Cauchy surfaces of b. The existence of τ is guaranteed by theorem 8.3.14 of Ref. [180].
Let K ⊂ R be the image of τ . Note that K is an open interval. Let st ⊂ b be the Cauchy
surface consisting of points with time t, st = {p ∈ b∣τ(p) = t}. Note that each st is spacelike.
We will not demand that τ extends to a time function on B.

For the purpose of this theorem, we shall define ℓ+t ⊂ B (ℓ−t ⊂ B) as the set of
future-directed (past-directed) null geodesics which are orthogonal to st with no conjugate
points between st and the endpoint. (ℓ±t is a light-sheet associated to st if it is initially
nonexpanding away from st. For the case of interest, where b is a portion of the conformal
boundary of AdS, this always holds in the physical spacetime; see Appendix 3.8. In the
proof we will not make use of the nonexpansion property and so will not demand that ℓ±t
be a true light-sheet in the unphysical spacetime.) Let L± = ⋃t ℓ

±

t , and L = L
+
∩L−.

Theorem L = C for any choice of time function on b. where C ⊂ B is the set of points P
that lie on a causal curve that begins and ends on b.

Corollary L does not depend on the choice of time function, even though L+ and L− do.

Proof Trivially, L ⊂ C. It remains to be shown that C ⊂ L, for all time functions τ (i.e.,
foliations of b). We will show that C ⊂ L−, and similar arguments show that C ⊂ L+. Let

5That is, τ is differentiable on b, and ∇aτ is a past-directed timelike vector field.
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P ∈ C (and P is not contained in b) .
Definition. Let K+(P ) be the subset of the real numbers consisting of all t such

that st ∩ I
+(P ) is not empty. That is, {st∣t ∈K+(P )} is the set of all time slices on b which

contain endpoints of future-directed timelike curves from P .
Lemma A. K+(P ) is nonempty. Proof. Since P ∈ C, there is a point p ∈ b ∩

J+(P ). All points in b∩I+(p) are necessarily in I+(P ) (corollary following theorem 8.1.2 of
Ref. [180]). Since K is an open interval, there exists t ∈K with t > τ(p). Any inextendible
timelike curve passing through p intersects st because st is a Cauchy surface, which shows
that st ∩ I

+(p), and consequently b ∩ I+(P ), is nonempty. Therefore K+(P ) is nonempty.
Lemma B. For any t ∈ K+(P ), the set At = b ∩ J

+(P ) ∩ J−(st) is compact. Proof.
Since P ∈ C, b ∩ J−(P ) is not empty. Let q ∈ b ∩ J−(P ). Let j+(q) be the causal future
of q within the spacetime b, and define j−(st) similarly. Then j+(q) ∩ j−(st) is compact
(theorem 8.3.12 of Ref. [180]). But because the causal relation between points in b is the
same whether we treat them as events in the spacetime b or the spacetime B, we also
have that j+(q) ∩ j−(st) = b ∩ J+(q) ∩ J−(st). Since this set is compact, it is closed as a
subset of B. J+(P ) is a closed subset of J+(q), and it follows that b ∩ J+(P ) ∩ J−(st) =
J+(P )∩(b∩J+(q)∩J−(st)) is a closed subset of b∩J+(q)∩J−(st). Therefore b∩J+(P )∩J−(st)
is compact.

Definition. Let t∗(P ) = inft∈K+(P ) t.
Lemma C. For any t ∈ K+(P ), t∗(P ) = minp∈At τ(p). In particular, this means

that there is a surface st∗(P ) and that st∗(P )∩J
+(P ) is not empty. Proof. By Lemma B, At

is compact and hence τ(p) attains a minimum value τmin. Consider a point p ∈ sτmin
∩J+(P )

and an inextendible future-directed timelike curve γ in b starting at p. All points on γ other
than p are necessarily in b ∩ I+(P ) (corollary following theorem 8.1.2 of Ref. [180]), and γ
necessarily intersects st′ for every t

′
∈K with t′ > τmin because st′ is a Cauchy surface. This

implies that all such times t′ are in K+(P ), and hence τmin ≥ t∗(P ). If τmin > t∗(P ), then
there is some t′ ∈ K+(P ) with τmin > t

′. Then t > t′, and so st′ ∩ At is not empty by the
definition of At. But then τmin ≤ t

′ by the definition of τmin, which contradicts τmin > t
′.

Therefore we conclude that τmin = t∗(P ).
Lemma D. K+(P ) is an open subset of the real numbers. This implies that st∗(P )∩

I+(P ) is empty. Proof. Let γp be an inextendible timelike curve in b which passes through
a point p ∈ b ∩ I+(P ). We can choose to parametrize γp by the time function τ , which
means that γp ∶ K → b is a continuous function satisfying τ(γp(t)) = t. Since I+(P ) is
open, it follows that the inverse image γ−1p [I+(P )] is open in K, and therefore open in R

because K is an open interval. By applying τ ○ γ, we see that γ−1p [I+(P )] ⊂ K+(P ). Then

⋃p∈b∩I+(P ) γ
−1
p [I+(P )] is an open subset of R equal to K+(P ).

Proof of theorem. Lemma C and Lemma D together demonstrate that there is
a surface st∗(P ) such that st∗(P ) ∩ I

+(P ) is empty while st∗(P ) ∩ J
+(P ) is nonempty. Let

p ∈ st∗(P ) ∩ J+(P ). By the corollary following theorem 8.1.2 of Ref. [180], there is a null
geodesic connecting p to P . Furthermore, since st∗(P ) ∩ I

+(P ) is empty, this null geodesic
cannot be deformed to a timelike curve connecting st∗(P ) to P . Then by theorem 9.3.10
of Ref. [180], this null geodesic must be orthogonal to st∗(P ) and have no conjugate points
between P and p. This shows that P ∈ ℓ−

t∗(P ) ⊂ L
−.
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3.5 Covariant Renormalization Group Flow

We repeatedly made use of the UV/IR connection [165] in motivating our con-
structions. Entropy bounds play a very important role in UV/IR: the bulk region within
the IR cutoff must have entropy limited by the area in Planck units of a time slice on the
cutoff surface. However, as we have stressed, this only holds true for very special time slices
and the covariant entropy bound must be used in general to bound the bulk entropy. Holo-
graphic renomalization group flows [5, 52, 61, 98] aim to refine UV/IR, but in all standard
approaches manifest covariance is lost and the status of entropy bounds is unclear. Here
we outline an approach which reproduces the standard results and remedies both of these
problems. Our construction gives an improved bulk radial flow, however it does not address
the open question of finding a precise field theory RG representation of the bulk flow.

Figure 3.9: The covariant bulk RG flow presented here reproduces the standard bulk RG
flow in certain coordinate systems. Here we illustrate the construction in global coordinates
of Anti-de Sitter space. For a given coordinate time cutoff δ, the union over t of the
intersection surfaces sδt = ℓ

−

t+δ/2 ∩ ℓ
+

t−δ/2 form a timelike hypersurface bδ in the bulk (left).

The cross-sectional area of a given light-sheet will be greater on the surface bδ than on bδ
′

(right). The difference (A−A′)/4 bounds the entropy on the red light-sheets going from bδ

to bδ
′

, meaning that the bound applies to the entire darkly shaded wedge between them.
The lightly shaded region between the hypersurfaces bδ

′

and bδ is covered by such wedges.

Choose a time function τ on b. Then for any t1, t2 the set b[t1, t2] = {p ∈ b∣t1 <
τ(p) < t2} satisfies the conditions of our theorem and we can associate to it the region
H(b[t1, t2]). Now introduce a cutoff timescale δ to the theory. In the bulk, we should
remove the union (over t) of the sets H(b[t − δ/2, t + δ/2]) from H(b). The remaining bulk
region, Hδ, is the region described by the cutoff CFT. This prescription is similar to the
construction of [26], where it was shown that the IR cutoff surface as normally defined can
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be reproduced using only causality.
Denote the boundary of Hδ by bδ. The time function on b automatically induces a

time function on bδ:6 By construction, bδ is the union of sets of the form sδt = ℓ
−

t+δ/2 ∩ ℓ
+

t−δ/2,

which we can take as time slices on bδ. The maximum proper time in bδ between sδt and
sδt+δ will be of order the AdS time. More generally, we can let δ depend on t.

To change the cutoff from δ to δ′, we have two equivalent options: First, we can
return to the true boundary b and repeat the construction with δ′ in place of δ. Second,
we can use the surface bδ, together with its induced time function, as the starting point
for the construction, with cutoff δ′ − δ. The geometry is the same either way, because the
light-sheets from bδ are continuations of the light-sheets from b.

By the definition of the L, and since H = L, all time slices of bδ are normal. That
is, their orthogonal light-rays are everywhere nonexpanding in the direction of the bulk RG
flow. A generic time slicing on bδ will not admit ingoing past- and future-directed light-
sheets at all points on all time-slices; only the slicing induced by the flow has this property.
And generic hypersurfaces other than those induced by the flow may not admit any slicing
with this property. Note that this property is inherited from the remarkable property of
the conformal boundary described in the Appendix: any slicing of the conformal boundary
is everywhere normal in the physical metric.

The fact that all time slices of bδ are normal is highly nontrivial. It leads to two
additional, attractive features that distinguish this geometric flow from, say, the flow along
spacelike geodesics:

● Entropy bounds hold for both the UV and the IR regions.

● These bounds guarantee that the effective number of degrees of freedom is nonincreas-
ing along the flow.

Consider first the IR region. The covariant entropy bound guarantees that any
future- or past-directed light-sheet from any slice sδt has entropy less than the area of that
slice, in Planck units. Since the area of the light-sheet is nonincreasing as it moves away
from the boundary, the number of degrees of freedom is nonincreasing along the RG flow.

Now consider the UV region, i.e., follow the light-sheet from sδ
′

t backward to some
cutoff δ < δ′ closer to the true boundary. The cross-sectional area will be larger on bδ and
we can consider the area difference A −A′. A generalized version of the covariant entropy
bound [65] implies that the entropy on the partial light-sheet between A and A′ is bounded
by (A−A′)/4. Note that this bound applies to both light-sheets bounding the wedge-shaped
region between the slices sδ

t+(δ′−δ)/2 and sδ
t−(δ′−δ)/2 on bδ and sδ

′

t on bδ
′

, and hence to the

entire information content of the regions that are integrated over in the RG flow.7

RG flows are normally defined in terms of proper distances, times, or energies,
whereas the above construction is in terms of an arbitrary coordinate time. To define

6This will be true for sufficiently well-behaved time functions t; the precise conditions will be investigated
elsewhere.

7In general, the area A(t) of different slices on bδ will not be independent of t. It seems likely that
requiring this independence will lead to preferred choices of δ(t) and thus for the flow. Also, while the areas
will be automatically finite at finite δ in the case of the global boundary, they will be infinite in general and
must be regulated.
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proper distances on the boundary, one has to choose a conformal frame, and the choice of
time function in our construction is analogous. Heuristically, one can imagine choosing the
conformal factor so that τ becomes proper time, which means that it is conjugate to energy.

We have emphasized the geometric aspects of the RG flow, i.e., the bulk side. The
question of what precisely the removal of near-boundary regions corresponds to in the CFT
remains subtle, and it will be interesting to revisit it in light of the geometric flow we have
described. In particular, it would be nice to understand whether a duality holds for the
wedge-shaped regions associated with thin boundary strips, and for the Rindler portion of
the bulk dual to small causal diamonds on the boundary.

As the example of the global boundary (Fig. 3.9) illustrates, the description of
the bulk region H(b[t − δ/2, t + δ/2]), for small time intervals δ, cannot involve the full
set of CFT degrees of freedom, since approximately exp(A/4) CFT states correspond to
bulk states localized to the interior of the bulk hypersurface bδ . If a duality exists, the
CFT degrees of freedom relevant for H(bδ) will not involve certain nonlocal operators that
occupy scales larger than δ.

3.6 Nonlocal Operators and the Bulk Dual

We constructed a candidate for a bulk region H(b) dual to b geometrically, using
considerations of causality and holographic entropy bounds. Except for appealing to the
UV/IR relation [165], we did not make use of detailed properties of the AdS/CFT duality
or the boundary theory. In this section we will explore a different approach to this question,
namely the use of nonlocal operators in the CFT to probe deeply into the bulk region. We
will examine the relationships between this approach and the geometric one. Note that
the operator approach is available only for choices of b where the construction of boundary
duals to local bulk operators is known, so it is less general than our geometric construction.

The methods of the operator approach were recently discussed by Heemskerk,
Marolf, and Polchinski [96], and we refer the reader to that work for further details. The
problem is to identify a subset of operators {φ(x)} within the set of all operators in the
CFT on b, indexed by a position x in a semiclassical spacetime of higher dimension, which
can be identified as local bulk operators. An important point is that the definition of the
local bulk operators depends on the background metric. Our analysis below pertains to
the case where this metric is held fixed up to perturbative corrections in 1/N , so this issue
should not pose difficulties.

The CFT definition of φ(x) will involve nonlocal CFT operators known as precur-
sors [148, 171, 66]. An (in principle) explicit construction is available in the case of global
AdS, and the resulting operators make use of an entire Cauchy surface of the global bound-
ary. For this reason, and also for simplicity, we will spend most of this section focused on
the case of a short strip b = S,

S = (−τ0, τ0) × Sd, with τ0 ≪ 1 , (3.13)

which we normally think of as being embedded in the global boundary (see Fig. 3.10), using
the coordinates of Eq. 3.4. From the global point of view, the set of operators on the Cauchy



42

surface τ = 0 of the boundary is complete, and so in particular contains the operator φ(x)
for every point x in the entire global bulk.

=0

=/2

Figure 3.10: A cross-section of Anti-de Sitter space, showing a short strip region S centered
around τ = 0 on the boundary, and the bulk region S(S) spacelike separated from S. A
local operator at the origin of the bulk can be written in terms of local operators on the
boundary smeared over the boundary region spacelike-related to the origin, within the green
wedges. This region is much larger than S (red thick line), stretching from τ = −π/2 to
τ = +π/2.

Now consider modifications of the CFT Hamiltonian H outside b, and let us define
H̄ as the largest bulk region such that operators φ(x) for x ∈ H̄ can be represented in
terms of CFT operators in b in an unambiguous way. There are some modifications of the
CFT Hamiltonian which continue to yield a well-defined bulk Hamiltonian. For instance,
we can insert a local source in the CFT whose effect in the bulk is to cause a particle to
propagate causally inward from the boundary. As we discuss below, certain modifications
of the CFT Hamiltonian which make use of nonlocal operators can lead to ambiguities
in the bulk Hamiltonian. In the case where we allow only those modifications leading to
well-defined bulk Hamiltonians, we identify a region S on which the operators φ(x) have
unambiguous CFT representations in b. In the more general case of modifications which
lead to an ambiguous bulk Hamiltonian, we will identify H̄ as the subset of S for which
φ(x) still has an unambiguous CFT representation in b. We will note that H̄ is closely
related to H.

The region S The only known construction of φ(x) in the boundary theory consists of
two steps and applies either in global AdS or the Poincaré patch. In the first step, one
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writes a local bulk operator φ(x) as a smeared local operator on the boundary:

φ(x) = ∫ dy′K(x∣y′)O(y′) +O(1/N) . (3.14)

Here y′ denotes a boundary coordinate, while x is the bulk coordinate.8 The smearing
function K(x∣y) is not unique, but a convenient choice is nonzero if and only if y spacelike-
related to x [90, 89, 107]. One can think of K(x∣y) as providing the solution to the equation
of motion for φ(x) given boundary data on the asymptotic boundary; this is a spacelike
analogue of the standard initial value problem. Note that for any choice of x in global
AdS, the boundary support of K(x∣y) is larger than the region S. The second step of the
construction uses unitary evolution in the CFT to write all of the local CFT operators
O(y′) appearing in Eq. 3.14 in terms of nonlocal operators defined at τ = 0 (or some other
timeslice within the short strip S).

Now let us identify a subset S(S) of the bulk such that the above construction of
the CFT operator φ(x) is independent of modifications of the boundary Hamiltonian outside
b,9 provided that these modifications continue to lead to a well-defined bulk Hamiltonian.
In Ref. [96], it was shown that S consists of the bulk points that are neither in the causal
future of the future boundary of S, nor in the causal past of its past boundary. We will
refer to such points somewhat loosely as being “spacelike-related” to S (see Fig. 3.10).

At first, this result may seem surprising, so it is worth reviewing the argument
for it [96]. First, fix a fiducial CFT Hamiltonian H over the entire global boundary, and
follow the above procedure to construct an operator O satisfying φ(x) = O, for some x
spacelike-related to S (the special case x = 0 is pictured in Fig. 3.10). But there is another
way we can produce the operator O: We can use causal bulk evolution to write φ(x) in
terms of φ(x′) for points x′ in the future of the x:

φ(x) = ∫
Σ
dx′ [φ(x′)∇Gadv(x∣x′) −∇φ(x′)Gadv(x∣x′)] +O(1/N) , (3.15)

where Σ consists of a bulk Cauchy surface and, possibly, a portion of the global boundary.
We can use Eq. 3.14 to write the φ(x′) appearing here in terms of operators on the boundary.
By evolving φ(x) sufficiently far forward into the future, the y′-support of K(x′∣y′) will lie
in the region τ > 0 for every x′ appearing in Eq. 3.15. Now we evolve this new smeared
operator back to τ = 0 to obtain a second operator O′. However, O′ = φ(x) = O, and so
these two procedures actually give the same answer. Now suppose we modify the CFT
Hamiltonian from our fiducial choice H to H̃, and we stipulate that H̃ only differs from
H for τ < 0. We can repeat the procedure to compute new operators Õ and Õ′, which
are equal to each other and to φ(x). The claim is that, since the calculations of O′ and
Õ′ refer only to the τ > 0 region of the bulk and boundary, and H = H̃ in that region,
the computations are identical and so manifestly we have O′ = Õ′. Therefore Õ = O, and
the change in fiducial Hamiltonian did not change the operator assignment. An analogous
argument can be made for modifications to the CFT Hamiltonian for τ > 0.

8The presence of a source will modify this equation in the appropriate way given by Green’s identity.
9We impose the boundary condition that the boundary state at τ = 0 remain unchanged.
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Figure 3.11: According to the Hamiltonian on the boundary strip S, no source acts at the
origin in the bulk, so the expectation value of φ vanishes everwhere. At the time τ0 outside
the strip, a source term for the nonlocal boundary operator dual to φ(0,0) can be added
to the boundary Hamiltonian. This causes the expectation value of φ to be nonzero in the
future of (0,0), in contradiction with the earlier conclusion about the same bulk points.
Thus, unless we possess information about the exterior of S on the boundary guaranteeing
that such operators do not act, the bulk interpretation of regions outside H̄(S) = C(S) is
potentially ambiguous.

The region H̄ The above argument relied crucially on the existence of a well-defined
bulk Hamiltonian. However, there are reasonable modifications of the CFT Hamiltonian H
for which this will not be the case (see Fig. 3.11). At the time τ0 on the boundary, let us
add to H a source for the nonlocal CFT operator O dual to a local bulk operator at the
origin, φ(τ = 0, ρ = 0):

H →H + Jδ(τ − τ0)O (3.16)

We are working perturbatively, so the operator O is the one constructed using the above
method and the unmodified Hamiltonian H. In the bulk, this source acts completely locally
as a source for φ at the origin at τ = 0. Note that this bulk point is spacelike related to the
boundary slice τ0.

Now let us compute the expectation value of the bulk operator φ at the origin, at
some infinitesimal time ǫ after the source acts. This operator can be constructed by the
usual methods, but those methods require a knowledge of the bulk Hamiltonian in the region
S(S). This Hamiltonian is ambiguous: from the viewpoint of the strip S, the source does
not act, since it acts in the CFT only at τ0. Then the bulk evolution should be computed
from the usual bulk Hamiltonian without source, and we obtain ⟨φ(ǫ,0)⟩ = 0. From the
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viewpoint of the CFT at the time τ0, the bulk region near (0,0) contains a source. Then
the bulk evolution should take this source into account and we obtain ⟨φ(ǫ,0)⟩ ≠ 0. Thus,
there is no unique assignment of a bulk field value at (ǫ,0). In this sense, (ǫ,0) should not
be considered a bulk point dual to the strip.

Let us now consider a general boundary region b and construct a bulk region H̄ such
that the interpretation of what happens in H̄ is unambiguous (Fig. 3.12). The ambiguities
we discussed arise from inserting nonlocal CFT operators into the Hamiltonian on Cauchy
surfaces of the boundary which do not intersect the region b. A modification of the CFT
Hamiltonian on such a Cauchy surface σ can lead to an ambiguous bulk Hamiltonian in the
region S(σ) spacelike-related to σ. Thus we find that H̄ is the compliment of the union of all
S(σ), where σ is any Cauchy surface for the global boundary which lies in the complement
of b.

Figure 3.12: The shaded region shows bulk points spacelike related to a global boundary
Cauchy surface σ. The union of all such sets over the collection of boundary Cauchy surfaces
which do not intersect S has an ambiguous bulk interpretation when the boundary Hamil-
tonian is allowed to vary outside of S. The unambiguous region, H̄(S), is the complement
of this union. In this example, we see that H̄(S) = C(S).

The region H̄ is closely related to C(b) and hence to H(b). It is easy to see that
H = C ⊂ H̄. The study of a number of examples suggests that H ≠ H̄ if and only if an event
horizon is present in the bulk. It would be nice to study H̄ and its relation to H further.
The discussion in the following section may be relevant.
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3.7 Quantum Gravity Behind Event Horizons

In this section we discuss an issue that is somewhat orthogonal to the main subject
of this paper: the degree to which the reconstruction of bulk regions, perturbatively in
1/N , allows us to claim that AdS/CFT provides a full quantum gravity theory for regions
behind event horizons, such as the interior of a black hole, or cosmological regions. We will
construct an experiment behind the horizon whose outcome is known but not captured by
such methods.

The CFT provides a full quantum gravity theory for observers near the boundary.10

It completely settles the issue of whether the formation and evaporation of a black hole is a
unitary process. It is crucial for this argument that the time evolution is carried out on the
boundary, where it is manifestly unitary; the duality is used only at early and late times in
order to recover the in and out states in the bulk [167, 146, 78, 64].

To what extent can we regard the CFT also as a full quantum gravity theory for
an observer falling into the black hole? Perhaps, by reordering the degrees of freedom, one
could interpret the CFT as providing a nonperturbative definition of quantum gravity for
the infalling observer? This would require that the bulk dual region is ambiguous, at the
nonperturbative level. This may be the case, but the dictionary that would provide this
definition is not known at the required level of precision.

The black hole interior is clearly encoded in the CFT if one makes use of bulk
equations of motion to evolve the infalling data back out of the black hole and to the
boundary. But in the same approximation, we can also generate a xeroxing paradox [169]:
at the semiclassical level, there is no manifest obstruction to evolving to global bulk slices
that contain both the black hole interior and the Hawking cloud.

Perhaps we should restrict the bulk evolution by hand to the causal patch of an
infalling observer, and settle for this approximate description of the black hole interior? The
finiteness of entropy bounds inside black holes imply that there cannot be exact observables
associated with the infalling observer at late times. Thus, the description of the infalling
observer should be less precise that that of the observer near the boundary, who has access
to exact observables. Perhaps the need to use bulk evolution is simply a reflection of this
intrinsic limitation?

In fact, however, it is clear that the infalling observer requires a theory that goes be-
yond semiclassical bulk evolution. This can be seen from the following thought-experiment.
Consider an infalling observer who performs scattering experiments inside a Schwarzschild-
AdS black hole of radius R, after crossing the event horizon. The scattering occurs at high
enough energy to produce a (smaller) black hole of mass m, which then evaporates. We are
free to choose parameters so that the scattering effectively takes place in flat space:

RAdS ≫ R≫ f(m)≫ 1 , (3.17)

where f(m) is at least the evaporation timescale of the black hole (md in d spatial bulk
dimensions). For sufficiently large but finite R/f(m), the infalling observer can confirm

10Note that all observers that remain outside the black hole have the same causal diamond, consisting of
the exterior of the black hole. The covariant RG flow we described in Sec. 3.5 can be thought of as moving
the observers deeper into the bulk, but note that the flow never enters the black hole.
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the unitarity of black hole formation and evaporation to any required precision. But this
conflicts with the result that would be obtained from the semiclassical analysis (Hawking’s
calculation).

We conclude that the proper description of an infalling observer requires a quantum
gravity theory beyond the semiclassical approximation. The CFT on the boundary does
not provide us with that theory, since its application to the infalling observer relies on
semiclassical bulk evolution. No other way of relating local operators inside the black hole to
boundary operators is known; therefore, we cannot replace this bulk evolution by boundary
evolution, as we did in the case of scattering experiments performed by a near-boundary
observer.

Of course, in the limit used in the thought-experiment, one could imagine “cutting
out” the spacetime region of size f(m) that contains the scattering experiment. One could
embed this region in an asymptotically AdS spacetime with RAdS ≫ f(m) and use the flat
space S-matrix, which can be computed using AdS/CFT [167, 146, 78, 64]. In fact, this
argument is what gives us confidence that the process is indeed unitary. But how would
this prescription generalize? A theory of the infalling observer that relied on this type of
cutting and pasting would not be applicable to the highly dynamical regions deeper inside
the black hole, nor to the spacelike singularity, which cannot be so transplanted.

An exact version of this cut-and-paste process is available if the black hole is
formed by sending in a spherical null shell from the boundary of AdS [100]. By causality,
the bulk region in the past of the shell is the same no matter whether we decide to send
in the shell or not. If we do send in the shell, then this region includes a portion w of the
black hole interior. If we do not, then the same bulk region w is dual to operators on the
boundary, which can be evolved to nonlocal operators W on a single global boundary time
slice preceding the insertion of the shell. This illustrates that cut-and-paste is well-defined
precisely in the limit where it yields no information about regions that could only exist in
the interior of black holes, such as singularities and a highly dynamical geometry.

The absence (so far) of an intrinsic bulk theory at the nonperturbative level appears
to impose crucial limitations on our ability to describe black hole interiors and cosmological
regions11 via AdS/CFT, beyond what follows from the approximate methods that were
already available to generate bulk evolution.

3.8 Light-sheets from the conformal boundary of AdS

In this appendix we show that the light-rays orthogonal to any spacelike slice of
the conformal boundary of AdS have nonpositive expansion into the bulk in the physi-
cal metric, and thus generate light-sheets. This is an important property of light-sheets
in asymptotically AdS spacetimes. It guarantees that the maximum entropy of the bulk
holographic domain H is nonincreasing under the covariant RG flow described in Sec. 3.5.

11A similar conclusion [75] applies to the interior of other event horizons, such as an FRW universe [128].
In this case there are two natural choices of conformal frame on the boundary [7]: one in which the CFT is
well-behaved, and another in which the coefficient of a relevant operator diverges in finite time. It is tempting
to interpret this violent behavior in terms of an infalling observer hitting the big crunch singularity behind
the horizon, but it can be understood more simply as the arrival of the bulk domain wall on the boundary.
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In Poincaré coordinates, the AdS metric is:

ds2 =
1

z2
(dz2 + ηµνdxµdxν) , (3.18)

where ηµν is the metric for d dimensional Minkowski space. Consider the conformally
rescaled metric

ds̃2 = dz2 + ηµνdx
µdxν , (3.19)

which is d + 1 dimensional Minkowski space. Take some small region of the boundary and
let θ̃ be the expansion of some congruence of infinitesimally neighboring light rays in this
space. That is

θ̃ =
d log Ã

dλ̃
, (3.20)

where Ã is the infintesimal area spanned by the light rays and λ̃ is the affine parame-
ter. In order for the null geodesics to remain affinely parameterized after the conformal
transformation, the affine parameter must transform as (Appendix D of [180])

dλ̃

dλ
= cz2 , (3.21)

where c is a constant and z2 is the conformal factor. The area will transform as

A =
Ã

zd−1
. (3.22)

Using (3.20), (3.21), and (3.22) we find that the expansion in the AdS spacetime
(3.18) is

θ = cz2θ̃ − c(d − 1)zk̃z , (3.23)

where

k̃z =
dz

dλ̃
.

Since both θ̃ and k̃z are defined in d + 1 dimensional Minkowski space using a congruenece
of null rays orthogonal to a spacelike (and hence nowhere null) foliation, they are finite.
Thus, at the boundary (z = 0), we have θ = 0.
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Chapter 4

Null Geodesics, Local CFT
Operators, and AdS/CFT for
Subregions

4.1 Introduction

The AdS/CFT correspondence [127, 185] provides an important tool for obtaining
insight into quantum gravity. Yet even today, the seemingly basic question of how bulk
locality is encoded in the boundary theory—in other words, which CFT degrees of freedom
describe a given geometrical region in the bulk—has resisted a simple, precise answer.

In this chapter, we investigate the related question of AdS/CFT subregion duali-
ties. That is, we consider the possibility that a CFT restricted to a subset of the full AdS
boundary is dual to a geometric subset of the AdS bulk. There is no obvious reason that a
geometric region on the boundary has to correspond to a geometric region in the bulk, but
there are strong arguments for such a subregion duality in certain simple cases [48], and
intriguing hints [165, 154, 104] that it may be true more generally.

The problem of precisely what bulk region should be associated with a given
boundary region is complicated and has been explored recently by [40, 51, 103]. We will
not propose or adopt a rule for constructing such an association. Instead, we focus on
one nice feature of the global AdS/CFT duality which does not generalize to arbitrary
subregions, namely the ability to reconstruct the bulk using local CFT operators in the
classical limit [90, 89, 107, 96]. Specifically, we will emphasize the role of continuity of the
bulk reconstruction, and propose a simple geometric diagnostic testing whether continuous
reconstruction holds for a given subregion.

To motivate our investigation, first consider the full global AdS/CFT duality. We
will work in Lorentzian signature and fix the Hamiltonian of the CFT, which corresponds
to fixing all the non-normalizable modes in the bulk. Now take the GN → 0 limit in the
bulk; the bulk theory reduces to solving classical field equations in a fixed background.
The non-normalizable modes are fully determined and non-dynamical, but there are still
many allowed solutions because of the normalizable modes. CFT data on the boundary
should be sufficient to specify a particular bulk solution. Normalizable modes in the bulk
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Figure 4.1: Here we show the AdS-Rindler wedge inside of global AdS, which can be defined
as the intersection of the past of point A with the future of point B. The asymptotic
boundary is the small causal diamond defined by points A and B. The past lightcone of
A and the future lightcone of B intersect along the dashed line, which is a codimension-
2 hyperboloid in the bulk. There is a second AdS-Rindler wedge, defined by the points
antipodal to A and B, that is bounded by the same hyperboloid in the bulk. We refer to
such a pair as the “right” and “left” AdS-Rindler wedges.

approach zero at the boundary, but a nonzero boundary value can be defined by stripping
off a decaying factor,

φ(b) ≡ lim
z→0

z−∆Φ(b, z) , (4.1)

where z is the usual coordinate that approaches zero at the boundary, b stands for the
boundary coordinates, and Φ is a bulk field. We will also use the notation B = (b, z) where
convenient. By the “extrapolate” version of the AdS/CFT dictionary [6], these boundary
values are dual to expectation values of local operators,

φ(b) = ⟨O(b)⟩ . (4.2)

We can now ask a classical bulk question: do the boundary values φ determine the bulk solu-
tion everywhere? This is a nonstandard type of Cauchy problem, because we are specifying
data on a surface that includes time.

In a simple toy model where the bulk contains only a single free field with arbitrary
mass, Hamilton et al. [90, 89] showed explicitly that this boundary data does specify the
bulk solution completely in global AdS. The fact that the boundary data specifies the
bulk solution can be considered the classical, non-gravitational limit of AdS/CFT. It is a
nontrivial fact that expectation values of local CFT operators are sufficient to reconstruct
the bulk field in this case.

A proposed subregion duality must pass the same test. Is the CFT data in a
boundary subregion sufficient to reconstruct the bulk solution within the corresponding
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bulk subregion? In principle, the CFT data is quite complicated. The simplification that
occurred in global AdS/CFT, that expectation values of local boundary operators were
sufficient, may or may not carry over to other cases, and our task is to properly account for
when it does. This is a problem in the theory of classical differential equations which we can
hope to solve. Simple examples show that the problem is subtle, however, and to properly
capture the physics of the problem we need to differentiate between bulk reconstruction and
continuous bulk reconstruction.

The simplest illustration comes from AdS-Rindler space, which can be described
as follows. In the global duality, the CFT is formulated on a sphere cross time and the
associated bulk is global AdS. Let us divide the boundary sphere at some time across the
equator. In the bulk, the extremal surface ending on the boundary equator is a hyperboloid,
and we can use Rindler-type coordinates in AdS so that this extremal surface is a Rindler
horizon. The northern hemisphere on the boundary extends naturally into a small causal
diamond on the boundary, namely the region determined by time evolution of the data
in the northern hemisphere. The corresponding bulk region is a Rindler wedge, shown in
Fig. 4.1, which we will call AdS-Rindler space.

Does the global boundary data, restricted to the small boundary diamond, deter-
mine the bulk solution in the corresponding AdS-Rindler wedge? Hamilton et al. [89] also
addressed this question. They determined that a particular analytic continuation of the
boundary data was necessary to reconstruct the bulk. Here we provide a different answer
that does not rely on analytic continuation of the boundary data. We claim that there is a
direct map from the boundary data to the bulk field, but that the map is not continuous.
This leaves the physical interpretation open to doubt.

There are two reasons to focus on the question of continuity. First, if the subre-
gion duality is correct, we would expect that measuring boundary data to finite precision
should determine the bulk data to a corresponding precision. This is only true if the bulk
solution depends continuously on the boundary data. Second, the question of continuous
reconstruction seems to be mathematically robust; we will be able to make heuristic contact
with nice mathematical theorems about when continuous reconstruction is possible.

Continuous reconstruction fails because there are finite excitations in the bulk
Rindler wedge with an arbitrarily small imprint on the boundary data. The physics of
these excitations is simple: there exist null geodesics that pass through the bulk Rindler
wedge, but avoid the boundary diamond. One can construct solutions where geometric
optics is an arbitrarily good approximation and the energy is concentrated along such a
null geodesic. In this way, we can construct solutions that are finite in the bulk but have
arbitrarily small boundary data in the Rindler wedge.

We can also ask a slightly different mathematical question, which is closely related
to bulk reconstruction from the boundary data but simpler to analyze: the question of
unique continuation. Suppose we are given the bulk solution in some region near the
boundary, and we want to continue the solution further into the bulk. In the AdS context,
evolution inward is roughly dual to RG flow in the CFT. This question is closely related to
the previous one, and again can be diagnosed with null geodesics [174]. In the case of the
bulk Rindler wedge we find that unique continuation fails as well. We cannot evolve the
solution radially inward in this case.
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Given the connection to continuity and local reconstruction, as well as geometrical
simplicity, we are motivated to propose a diagnostic for continuous bulk reconstruction from
local CFT operators:

Does every null geodesic in the bulk subregion have an endpoint on the corre-
sponding boundary subregion?

Despite the failure of this diagnostic for AdS-Rindler, there are good reasons to
think that this particular subregion duality actually holds. The Rindler wedge can be
thought of as an eternal black hole with a hyperbolic horizon. This suggests that a duality
holds, by analogy with the ordinary eternal black hole: the CFT in the Hartle-Hawking
state may be restricted to one boundary component, and the resulting thermal state is dual
to one of the two exterior region of an eternal AdS-Schwarzschild black hole [48].

Since continuous reconstruction from CFT one-point functions fails for this subre-
gion, we learn that nonlocal boundary operators must play an important role in the duality
even in the classical limit. Generalizing this result, we learn that nonlocal CFT opera-
tors [148, 171] are important when subregions are small enough that the boundary region
no longer captures all null rays passing through the bulk.

The remainder of the chapter is organized as follows. In Section 4.2 we review
the general procedure for reconstructing the bulk solution from boundary data which was
employed by Hamilton et al. in their work. We also show how to determine continuity of
the reconstruction map. The general method is applied to global AdS, AdS-Rindler space,
the Poincare patch, and Poincare-Milne space. In Section 4.3 we formulate the geometric
diagnostic of capturing null geodesics and relate it to continuity of the reconstruction map,
making contact with results in the mathematics literature. We apply the diagnostic to
the black hole geometries, as well, without finding an explicit reconstruction map. In
Section 4.4, we exhibit arguments that a subregion duality does exist for AdS-Rindler
space. In Section 4.5, we note that this can be reconciled with the failure of continuous
reconstruction from local fields if the duality involves nonlocal boundary operators in an
essential way.

4.2 The Reconstruction Map

4.2.1 General Formulas

We begin this section by reviewing the procedure for obtaining a bulk solution
from boundary data using eigenmodes of the wave equation, generalizing the approach of
Ref. [89]. A classical, free bulk field Φ can be expanded in terms of orthonormal modes Fk

which depend on a collection of conserved quantities k:

Φ(B) = ∫ dk akFk(B) + c.c. (4.3)
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Near the boundary, the modes Fk have the asymptotic form Fk(B) ∼ r−∆fk(b). Thus we
find the boundary field φ = limr→∞ r

∆Φ has the expansion

φ(b) = ∫ dk akfk(b) + c.c. (4.4)

Given φ(b), we can ask whether it is possible to reconstruct Φ(B). Recall that φ(b) is dual
to a one-point function in the CFT, hence this is equivalent to asking whether the bulk field
is determined by CFT one-point functions. This is possible when the ak can be extracted
from φ through an inner product of the form

ak =Wk ∫ db f∗k (b)φ(b) , (4.5)

where Wk is a weighting factor. Equivalently, the boundary mode functions should satisfy
the orthogonality relation

∫ db f∗k (b)fk′(b) =W −1
k δk,k′ . (4.6)

There is no guarantee that a relation such as (4.6) will hold in general. We will see both
possibilities in the examples below.

Given (4.5), it is a simple matter to solve for Φ(B):
Φ(B) = ∫ dk [Wk ∫ db f∗k (b)φ(b)]Fk(B) + c.c. (4.7)

We emphasize that at this stage (4.7) is, in principle, a recipe for computing the bulk field
in terms of the boundary field.

However, there is an important simplification when the order of integration over
k and b can be exchanged. Then we have

Φ(B) = ∫ db K(B∣b)φ(b) , (4.8)

where
K(B∣b) = ∫ dk Wkf

∗

k (b)Fk(B) + c.c. (4.9)

This is a nontrivial simplification which does not occur in all cases. We will see below
that when the order of integration is illegitimately exchanged, as in the example of the
AdS-Rindler wedge, the integral over k in (4.9) does not converge [89].1

Non-convergence of the integral in (4.9) is due to growth of the eigenmodes at
large k. The large k behavior of the modes is closely related to the question of continuity of
the reconstruction map, φ(b)↦ Φ(B). To examine continuity, we need to adopt definitions
for the bulk and boundary norms. On the boundary, we will follow Ref. [9] and use the
norm ∣∣φ∣∣2b = ∫ db ∣∇bφ∣2 + ∣φ∣2 . (4.10)

Here ∣∇bφ∣2 is positive-definite, not Lorentzian, even though we are in a Lorentzian space-
time. In other words, the norm looks like an integral of an energy density (over both space

1With certain extra assumptions on the fields, however, [89] is able to construct a complexified smearing
function.
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and time), not an action. We will leave its exact form unspecified here, but will be explicit
in the examples below. The correct norm to choose is an open question, and a different
choice may affect the answer. Our choice is motivated by related results in the mathematics
literature, but it may not be a natural choice for this problem. For now, this norm will
serve to illustrate the possible answers to the continuity question. Because of (4.6), we will
find that ∣∣φ∣∣2b ∝ ∫ p(k)W−1

k ∣ak∣2, where p(k) is a quadratic polynomial in the conserved
momenta.

In the bulk, a convenient and natural norm is given by the energy of the solution.
Adopting the standard Klein-Gordon normalization for the modes Fk(B), the energy is
given by ∣∣Φ∣∣2B = E[Φ] = ∫ dk ∣ω(k)∣∣ak∣2 , (4.11)

where ω(k) is the frequency written as a function of the conserved quantities (one of which
may be the frequency itself). The reconstruction map is continuous if and only if there is
a constant C > 0 such that ∣∣Φ∣∣2B ≤ C ∣∣φ∣∣2b . (4.12)

That is, a bulk solution of fixed energy cannot have arbitrarily small imprint on the bound-
ary. Equivalently, by going to momentum space, the product ω(k)Wk/p(k)must be bounded
from above. In the remainder of this section we apply these general formulas to several
specific cases to find smearing functions and check continuity. We restrict ourselves to a
2+1-dimensional bulk for simplicity.

4.2.2 Global AdS

The AdS2+1 metric in global coordinates is

ds2 = −
1

cos2 ρ
dt2 +

1

cos2 ρ
dρ2 + tan2 ρdθ2 . (4.13)

The Klein-Gordon equation in these coordinates reads

− cos2 ρ∂2tΦ +
cos2 ρ

tanρ
∂ρ (tanρ∂ρΦ) + 1

tan2 ρ
∂2θΦ =m

2Φ . (4.14)

The normalizable solutions are

Fnl = Nnle
−iωteilθ cos∆ ρ sin∣l∣ ρFnl(ρ) (4.15)

where

Nnl =

¿ÁÁÀΓ(n + ∣l∣ + 1)Γ(∆ + n + ∣l∣)
n!Γ2(∣l∣ + 1)Γ(∆ + n) , (4.16)

Fnl(ρ) = 2F1(−n,∆ + n + ∣l∣, ∣l∣ + 1, sin2 ρ) , (4.17)

and the frequency is ω =∆ + 2n + ∣l∣. The boundary modes are

fnl = lim
ρ→π/2

cos(ρ)−∆Fnl = (−1)neilθ−iωt
¿ÁÁÀΓ(∆ + n + ∣l∣)Γ(∆ + n)

n!Γ2(∆)Γ(n + ∣l∣ + 1) . (4.18)
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Following the general procedure outlined above, we can compute the smearing
function

K(θ, t, ρ∣θ′, t′) =∑
n,l

1

4π2
Γ(∆)Γ(n + ∣l∣ + 1)

Γ(∆ + n) (−1)ne−iω(t−t′)eil(θ−θ′) cos∆ ρ sin∣l∣ ρFnl(ρ) + c.c.
(4.19)

This can be summed to obtain the result of Ref. [89].
The boundary norm in this case is given by2

lim
T→∞

1

T
∫

T /2

−T /2
dtdθ ((∂tφ)2 + (∂θφ)2 + φ2) = 4π2∑

nl

(ω2
+ l2 + 1)Γ(∆ + n + ∣l∣)Γ(∆ + n)

n!Γ2(∆)Γ(n + ∣l∣ + 1) ∣anl∣2 .
(4.20)

The reconstruction map is continuous if and only if the following quantity is bounded:

ωWnl

1 + ω2 + l2
=

ω

4π2(1 + ω2 + l2) n!Γ
2(∆)Γ(n + ∣l∣ + 1)

Γ(∆ + n + ∣l∣)Γ(∆ + n) . (4.21)

This ratio clearly remains finite for all values of n and l, thus proving continuity.

4.2.3 AdS-Rindler

We now turn to the AdS-Rindler wedge, which in 2+1 dimensions has the metric

ds2 =
1

z2

⎡⎢⎢⎢⎢⎢⎣
−(1 − z2

z20
)dt2 + dz2

1 − z2

z2
0

+ dx2
⎤⎥⎥⎥⎥⎥⎦
. (4.22)

The Rindler horizon is located at z = z0, while the AdS boundary is at z = 0. The Klein-
Gordon equation is

−
z2

1 − z2/z20 ∂2tΦ + z3∂z (
1

z
(1 − z2

z20
)∂zΦ) + z2∂2xΦ =m2Φ . (4.23)

The normalizable solutions are

Fωk = Nωke
−iωteikxz∆ (1 − z2

z20
)−iω̂/2 2F1 (∆ − iω̂ − ik̂

2
,
∆ − iω̂ + ik̂

2
,∆,

z2

z20
) (4.24)

where ω̂ = ωz0, k̂ = kz0, and

Nωk =
1√

8π2∣ω∣
RRRRRRRRRRRR
Γ(∆+iω̂+ik̂

2
)Γ(∆+iω̂−ik̂

2
)

Γ(∆)Γ(iω̂)
RRRRRRRRRRRR . (4.25)

The boundary modes are then

fωk = lim
z→0

z−∆Fωk = Nωke
ikx−iωt . (4.26)

2In global coordinates, the norm in position space is properly defined as an average over time. This is
related to the fact that the frequencies are discrete.
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We can attempt to construct the smearing function following Eq. 4.9, but, as discussed
below that equation, we will find that the integral over k does not converge:

K(x, t, z∣x′, t′) = (4.27)

1

4π2
∫ dkdω eik(x−x

′)e−iω(t−t
′)z∆ (1 − z2

z20
)−iω̂/2 2F1 (∆ − iω̂ − ik̂

2
,
∆ − iω̂ + ik̂

2
,∆,

z2

z20
)
(4.28)

=∞ . (4.29)

This divergence is due to the exponential growth in k of the hypergeometric function when
k ≫ ω [89],

2F1 (∆ − iω̂ − ik̂
2

,
∆ − iω̂ + ik̂

2
,∆,

z2

z20
) ∼ exp[k̂ sin−1(z/z0)] . (4.30)

The boundary norm is given by

∫ dtdx ((∂tφ)2 + (∂xφ)2 + φ2) = ∫ dωdk 4π2N2
ωk(1 + ω2

+ k2)∣aωk∣2 . (4.31)

We see that the ratio which must be bounded in order that continuity hold is

ωWnl

1 + ω2 + k2
=

2ω2

1 + ω2 + k2

RRRRRRRRRRRR
Γ(∆)Γ(iω̂)

Γ(∆+iω̂+ik̂
2
)Γ(∆+iω̂−ik̂

2
)
RRRRRRRRRRRR
2

. (4.32)

This ratio remains bounded for fixed k, but when k ≫ ω it grows like exp(πk̂) . So we find
both that the smearing function does not exist and that continuity fails.

Physical Interpretation In this case, the problem with reconstructing the bulk solution
occurs regardless of the bulk point we are interested in. The discontinuity can be understood
physically. At first, it is surprising that modes with ω < k are even allowed; in the Poincare
patch, obtained as the z0 →∞ limit of AdS-Rindler, they are not.3 Near the Rindler horizon
frequency is redshifted relative to its value at infinity, while momentum is unaffected. So
a local excitation with proper frequency comparable to its proper momentum appears at
infinity as a mode with ω < k. The modes with ω < k are confined by a potential barrier that
keeps them away from the boundary; for large k the height of the barrier is proportional to
k2. This causes the boundary data to be suppressed relative to the bulk by a WKB factor
exp(− ∫ √V ) ∼ exp(−πk).

We have seen that there is no smearing function in this case because a divergence
at large momentum prevents us from exchanging the order of integration. To understand the
physical meaning of this divergence, we can ask about computing a more physical quantity,
which will regulate the divergence. Instead of trying to find an expression for the bulk field

3In Ref. [162], in the context of the BTZ black hole, it is suggested that these modes are connected with
finite temperature effects, and the associated exponential factors are interpreted as Boltzmann weights. We
consider this to be very suggestive, but have not found a concrete connection to this work.
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at a specified bulk point, consider instead a bulk field smeared with a Gaussian function of
some width σ in the transverse direction,

Φσ(t, x, z) ≡ ∫ dx′ exp(−(x′ − x)2
σ2

)Φ(t, x′, z) . (4.33)

We only smear in the x direction because the only divergence is in k, and we drop various
numerical factors and polynomial prefactors that will be unimportant for our conclusion.
We will also set z0 = 1 (which is always possible by an appropriate scaling of coordinates)
for the remainder of this section.

The smeared field has a perfectly fine expression in terms of local boundary fields.
We can use symmetries to place the bulk point at t = x = 0; then

Φσ(0,0, z) = ∫ dt′dx′Kσ(0,0, z∣x′, t′)φ(x′, t′) (4.34)

with

Kσ(0,0, z∣x′, t′) =
∫ dωdk eiωt

′
− kx′ − k2σ2 (1 − z2)−iω/2 2F1 (∆ − iω − ik

2
,
∆ − iω + ik

2
,∆, z2) . (4.35)

The important question is the large k behavior of this function. To get a feeling for it,
replace the hypergeometric function by its large k limit,

2F1 ≈ g(ω,∆, z)k∆−1 cosh(2kθ) (4.36)

where θ depends on the distance from the boundary, sin θ = z, and g a function that does not
depend on k. We ignore the polynomial prefactor and focus on the exponential dependence.
Performing the integral, we get

Kσ(0,0, z∣x′, t′) “ = ” g̃(t,∆, z) exp( θ2
σ2
−
x′2

σ2
− 2i

θ

σ2
x′) (4.37)

where the quotation marks indicate that this is only a cartoon of the correct answer that
captures the large momentum behavior of the smearing function. Now we can write the
smeared bulk field in terms of the boundary values,

Φσ(0,0, z) = ∫ dx′dt′Kσ(0,0, z∣x′, t′)φ(x′, t′) . (4.38)

What is the behavior of this function as we localize the bulk field by taking the
width small, σ → 0? Kσ is strongly dependent on σ: the maximum value of Kσ is exponen-
tially large at small σ, Kmax

σ = exp(θ2/σ2), where again θ is related to the distance from
the horizon, ranging from θ = π/2 at the horizon to θ = 0 at the boundary. It varies rapidly,
with characteristic wavenumber θ/σ2, and has a width set by σ.

The physical length over which the bulk point is smeared is σphys = σ/z, and up
to an order-one factor we can approximate θ ≈ z. Restoring factors of the AdS radius L, we
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find that the smeared smearing function Kσ is a rapidly oscillating function with maximum
value

Kmax
σ ∼ exp

⎛⎝ L2

σ2
phys

⎞⎠ . (4.39)

Note that the dependence on the radial location has disappeared upon writing things in
terms of the physical size. Attempting to measure the bulk field at scales smaller than the
AdS radius requires exponential precision in the boundary measurement, because we are
trying to compute an order-one answer (the bulk field value) by integrating an exponentially
large, rapidly oscillating function multiplied by the boundary field value.

We note here an interesting technical feature of this construction. We chose to
compute a bulk operator smeared with a Gaussian profile in the transverse direction. Nor-
mally, the exact form of a smeared operator is not physically relevant. In particular, we can
ask whether it is possible to construct an analogous function K for smeared bulk operators
which have smooth but compact support in the transverse direction. Unfortunately this is
impossible. In order to overcome the exponential divergence at large k in the mode func-
tions, we had to smear against a bulk profile which dies off at least exponentially fast at large
k. Such a function is necessarily analytic in x, and hence will not have compact support.
Therefore we cannot truly localize our smeared bulk operators in the above construction;
some residual leaking to infinity is required.

4.2.4 Poincare Patch

The Poincare patch is the canonical example of a subregion duality that works.
With our chosen norms, we will find that continuity actually fails in the Poincare patch,
even though a smearing function exists. This suggests that the Poincare patch may already
reveal subtleties that we claim exist in the AdS-Rindler case. However, we will see that the
nature of the discontinuity is very different from that of the AdS-Rindler wedge. Later, in
Section 4.3, we will argue that this discontinuity may be a harmless relic of our choice of
norm, and that a more reliable answer is given by the geometric criterion presented there.

The metric of the Poincare patch is

ds2 =
dz2 − dt2 + dx2

z2
, (4.40)

and the Klein-Gordon equation in these coordinates reads

−z2 ∂2tΦ + z
3∂z (1

z
∂zΦ) + z2∂2xΦ =m2Φ . (4.41)

In this case we label the eigenmodes by k and q, with q > 0. The frequency is given by
ω =
√
q2 + k2. Properly normalized, the modes are Fqk = (4πω)−1/2eikxz√qJν(qz). We have

introduced the notation ν =∆ − 1 =
√
1 +m2. Then the boundary modes are

fqk = lim
z→0

z−∆Fqk =
qν+

1
2

2νΓ(∆) e
i(kx−ωt)√
4πω

. (4.42)
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The smearing function can easily be computed,

K(x, t, z∣x′, t′) = ∫ dqdk
2νΓ(∆)
4π2qν−1ω

eik(x−x
′)e−iω(t−t

′)zJν(qz) + c.c. , (4.43)

and this matches with the result of Ref. [89].
The boundary norm is

∫ dtdx ((∂tφ)2 + (∂xφ)2 + φ2) = ∫ dqdk
πq2ν

4νΓ2(∆)(1 + ω2
+ k2)∣aqk∣2 . (4.44)

The ratio which must remain bounded for continuity to hold is

ωWqk

1 + ω2 + k2
=

4νΓ2(∆)ω
πq2ν(1 + ω2 + k2) . (4.45)

For large q, k this remains bounded, but as q → 0 it does not. The physics of the problem is
the following. Starting with any solution, we can perform a conformal transformation that
takes

z → λz, x→ λx, t→ λt . (4.46)

For large λ, this moves the bulk solution towards the Poincare horizon and away from the
Poincare boundary, resulting in a small boundary imprint. Under this scaling, q → λ−1q, so
it is exactly the small q behavior above that allows for such an “invisible” solution.

As stated above, we believe that this discontinuity may merely be a problem of
the choice of norm. In particular, this is an “infrared” discontinuity, and the difficulties of
the AdS-Rindler wedge were “ultraviolet” in character. The smearing function seems to be
sensitive only to the ultraviolet discontinuities, which suggests that those are more trouble-
some. Furthermore, in Section 4.3 we will see that the Poincare patch (marginally) passes
the geometric test of continuity while the AdS-Rindler wedge clearly fails. A remaining
problem for future work to provide a more concrete connection between “ultraviolet” and
“infrared” discontinuities and the existence or non-existence of a smearing function.

4.2.5 Poincare-Milne

Poincare-Milne space is the union of the collection of Milne spaces at each value of z
in the Poincare patch. It is useful to contrast the Poincare-Milne case with the AdS-Rindler
case considered above. The reason is that the conformal boundary of Poincare-Milne space
is identical to that of the AdS-Rindler wedge, but the Poincare-Milne bulk is larger, as
shown in Fig. 4.2.4 We expect that the boundary theory of the AdS-Rindler boundary is
dual to the AdS-Rindler bulk space and not more [40, 51, 103], and so it is an important
check on our methods that they do not provide false evidence for a Poincare-Milne subregion
duality. While we have no proof that the free theory constructions we have considered so
far cannot be extended to Poincare-Milne, we can show that the most obvious construction
breaks down in a very curious way.

4For definiteness we discard the future light cone of the point E in the figure, so that the boundary is
exactly AdS-Rindler, with no extra null cone.
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A

B

C

D

E

Figure 4.2: Here we depict Poincare-Milne space, together with an AdS-Rindler space that
it contains. The bulk of Poincare-Milne can be defined as the intersection of the past of
point A with the future of line BE. Clearly this region contains the AdS-Rindler space
which is the intersection of the past of A and the future of B. Furthermore, the asymptotic
boundary of the Poincare-Milne space and the AdS-Rindler space is identical, being the
causal diamond defined by A and B on the boundary.

The metric of Poincare-Milne space is

ds2 =
dz2 − dt2 + t2dx2

z2
, (4.47)

where we restrict to t > 0. The Klein-Gordon equation in these coordinates reads

−z2t−1∂t(t∂tΦ) + z3∂z (1
z
∂zΦ) + z2t−2∂2xΦ =m2Φ . (4.48)

The z-dependence and x-dependence of the normalizable eigenmodes are identical to the
Poincare patch case, and the t-dependence comes from solving the equation

−t−1∂t(t∂tψ) − t−2k2ψ = q2ψ . (4.49)

The general solution to this equation is a linear combination of Hankel functions, ψ =

AH
(1)
ik
(qt) +BeπkH(2)

ik
(qt) = AH(1)

ik
(qt) +B[H(1)

ik
(qt)]∗.

As we will demonstrate, no equation like 4.6 can hold for solutions to this equation.
To see this, it is convenient to define ψ̃ = (qt)1/2ψ. Then we have

−∂2t ψ̃ −
k2 + 1/4
t2

ψ̃ = q2ψ̃ . (4.50)

This is a Schrödinger equation for a scattering state in an attractive 1/t2 potential. To
simplify the calculation, we will normalize the solutions so that A = 1 always. The standard
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expectation from quantum mechanics is that B is then completely determined as a function
of q, and in particular we will only have a single linearly independent solution for a given
value of q. However, from the bulk point of view there should always be two solutions for
any q, corresponding to the positive and negative frequency modes. Indeed, the coefficient
B is usually determined by the boundary condition ψ̃(0) = 0, but here that is trivially
satisfied for all B. Hence B is a free parameter. We will now demonstrate another strange
fact about this potential, that eigenmodes with different values of q are not orthogonal,
which shows that Eq. 4.6 does not hold.

To see this, consider two solutions ψ̃1 and ψ̃2 corresponding to q1 and q2. We have

(q21 − q22)∫ ∞

0
dt ψ̃∗1 ψ̃2 = ψ̃

∗

1∂tψ̃2 − ∂tψ̃
∗

1ψ2∣∞0 . (4.51)

We can compute the inner product once we know the asymptotic behavior of the solutions
near t =∞ and t = 0.

First, we use the large argument asymptotic form of the Hankel function,

H
(1)
ik
(qt) ≈√ 2

πqt
ei(qt−π/4)ekπ/2 , (4.52)

so that

ψ̃i ≈

√
2

π
ekπ/2 (ei(qit−π/4) +Bie

−i(qit−π/4)) . (4.53)

Then we find

lim
t→∞

1

q21 − q
2
2

(ψ̃∗1∂tψ̃2 − ∂tψ̃
∗

1 ψ̃2) = 2eπk (1 +B∗1B2) δ(q1 − q2) , (4.54)

where we have used the fact that limx→∞ e
−iqx/q = πδ(q) and δ(q1 + q2) = 0 when q1 and q2

are both positive. The result is proportional to a δ-function, as it had to be. For large t the
solution approaches a plane wave, and plane waves of different frequencies are orthogonal.

Near t = 0 we use the small argument expansion

H
(1)
ik
(qt) ≈ 1 + cothπk

Γ(1 + ik) (qt2 )
ik

−
Γ(1 + ik)

πk
(qt
2
)−ik , (4.55)

so that
ψ̃i ≈ Cit

ik+1/2
+Dit

−ik+1/2 , (4.56)

where Ci and Di are determined in terms of Bi and qi. Then we have

lim
t→0

ψ̃∗1∂tψ̃2 − ∂tψ̃
∗

1 ψ̃2 = 2ik (C∗1C2 −D
∗

1D2) . (4.57)

In order to ensure orthogonality, this combination has to vanish for arbitrary choices of
the parameters. This is clearly not the case. We note in passing that imposing an extra
constraint of the form D = eiδC, with δ a new independent parameter, will make the
wavefunctions orthogonal. Tracing through the definitions, one can see that this also fully
determines B in terms of q and δ, and that ∣B∣ = 1 as expected by unitarity. The choice of δ
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corresponds to a choice of self-adjoint extension, necessary to make the quantum mechanics
well-defined (for additional discussion of this point see Ref. [59], and see references therein
for more on the 1/t2 potential in quantum mechanics). As we pointed out above, however,
such a prescription is not relevant for our current task, as it would eliminate a bulk degree
of freedom.

4.2.6 AdS-Rindler Revisited

We would like to emphasize that the above analysis of Poincare-Milne space is
not a no-go theorem. As an example, we now show that AdS-Rindler space, analyzed in a
certain coordinate system, suffers from the same pathologies. By a change of coordinates,
one can show that the AdS-Rindler wedge can be written in a way that is precisely analogous
to Poincare-Milne:

ds2 =
dz2 − x2dt2 + dx2

z2
, (4.58)

where we restrict to the region x > 0. Using this coordinate system, and following the usual
procedure, we encounter problems very similar to those of Poincare-Milne space discussed
above. The x-dependence of the eigenmodes is found by solving

−x−1∂x(x∂xψ) − x−2ω2ψ2
= −q2ψ . (4.59)

This is equivalent to a Schrödinger equation in the same potential as before, except now we
are finding bound states instead of scattering states. The analysis is completely analogous
to the Poincare-Milne case. There is a continuous spectrum of bound states (unusual for
quantum mechanics!), and they are not generically orthogonal. Thus we cannot carry out
the program of mapping boundary data to bulk solutions. In this scenario, the choice of a
self-adjoint extension would involve quantizing the allowed values of q, and by restricting
q correctly we can find a set of orthogonal states. While that is appropriate for quantum
mechanics, here the bulk physics is well-defined without such a restriction.

4.3 A Simple, General Criterion for Continuous Classical Re-

construction: Capturing Null Geodesics

In this section, we propose a general, geometric criterion for classical reconstruc-
tion of the bulk from the boundary. To our knowledge, the case of AdS has not been
analyzed explicitly. However, mathematicians such as Bardos et al. [9] have analyzed the
analogous situation in flat spacetime: Consider a field that solves the classical wave equa-
tion in some region Ω of Minkowski space with a timelike boundary ∂Ω, with Neumann
boundary conditions everywhere on the boundary. Now suppose the boundary value of the
field is given in some region R ⊂ ∂Ω of the boundary. When is this sufficient to determine
the bulk field everywhere in Ω?

The central result is that every null geodesic in Ω should intersect R in order
for continuous reconstruction to be possible. The basic intuition is that if there is some
null geodesic that does not hit R, then by going to the geometric optics limit we can
construct solutions that are arbitrarily well localized along that geodesic. These solutions
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Figure 4.3: This is one of many null geodesics which passes through AdS-Rindler space
without reaching the AdS-Rindler boundary. The four highlighted points on the trajectory
are (bottom to top) its starting point on the near side of the global boundary, its intersection
with the past Rindler horizon, its intersection with the future Rindler horizon, and its
endpoint on the far side of the global boundary.

are “invisible” to the boundary observer who only can observe φ in the region R, in the
sense that the boundary imprint can be made arbitrarily small while keeping the energy
fixed.

It is not surprising that capturing every null geodesic is a necessary condition for
continuous reconstruction, and this will be the important point for us. In many situations,
however, the null geodesic criterion is actually sufficient. As long as every null geodesic
hits R, the entire bulk solution can be reconstructed. (The theorems are quite a bit more
general than we have described here, applying to general second-order hyperbolic partial
differential equations, and generalizing to nonlinear problems.)

We propose to extrapolate this condition to AdS and its asymptotic boundary, and
subregions thereof. The statement is that continuous reconstruction of a bulk subregion is
only possible if every null geodesic in that subregion reaches the asymptotic boundary of
that subregion. Applying this to a small diamond on the boundary, we conclude that there is
no bulk region for which boundary data on the small diamond can be continuously mapped
to a bulk field. As shown in Fig. 4.3, it is possible to find a null geodesic through any bulk
point that does not intersect a small diamond on the AdS boundary.

A rigorous generalization of the null geodesic criterion to the case of AdS is desir-
able. In global AdS, at least for the special case of the conformally coupled scalar field, the
theorems of Ref. [9] are already strong enough in their current form to ensure continuity.
That is because the problem is equivalent to a particular wave equation in a (spatially)
compact region with boundary, i.e., the Penrose diagram. And indeed, there we found that
the reconstruction was continuous in the way predicted by the theorems.

As stated above, a subtlety arises for the Poincare patch. From the point of
view of null geodesics, the Poincare patch is a marginal case. In the Penrose diagram, the
boundary of the Poincare patch seems to be just barely large enough to capture all null
geodesics passing through the bulk. Why, then, did we find that the reconstruction map is
discontinuous, in apparent violation of the theorems of Ref. [9]? In fact, the Poincare patch
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just barely fails the criterion because the boundary region is not an open set, as required
by the theorem that guarantees continuous reconstruction. We believe this may explain the
“infrared” discontinuity we found, and we also believe that a different choice of norm could
cure the problem. The existence of an explicit smearing function shows that the problems
of the Poincare patch are not fatal.

AdS-Rindler space is of an entirely different character. As we mentioned above,
it is clear that there are null geodesics which pass through the bulk and do not intersect
even the closure of the boundary. We believe that this is why the discontinuity is in the
“ultraviolet,” and also why the smearing function does not exist.

4.3.1 Unique Continuation, Null Geodesics, and RG Flow

There is another important physical question which brings null geodesics to the
fore, and it is less subtle than continuity. The trouble with continuity, as we have seen, is
that precise statements depend on a choice of boundary norm, and we have been unable
to specify a natural choice for this problem. However, even without a boundary norm, we
can ask the bulk question of unique continuation of a solution in the radial direction. In
AdS/CFT, the radial evolution of the fields is related to a renormalization group flow of
the CFT [5, 52, 61, 98]. Let r be a radial coordinate such that r = ∞ is the boundary,
which represents the UV of the CFT. In the CFT, the IR physics is determined by the UV
physics, which suggests that a bulk field configuration near r = ∞ can be radially evolved
inward and determine the field configuration for all r. This intuition can be checked for any
given proposed subregion duality.

It is a well-studied problem in mathematics to take a classical field, which solves
some wave equation, specified in the region r > r∗ and ask if it can be uniquely continued
to the region r < r∗. If we ask the question locally, meaning that we only ask to continue
in a neighborhood of r = r∗, then the answer is simple and apparently very robust: the
continuation is unique if and only if all null geodesics that intersect the surface r = r∗ enter
the known region r > r∗. (This is usually stated by saying that the extrinsic curvature
tensor of the surface, when contracted with any null vector, should have a certain sign.)
The intuition here is the same as with continuous reconstruction: if a null geodesic grazes
the surface but does not enter the region where we are given the solution, then we can
construct geometric optics type solutions that are zero in the known region, but nonzero
inside [174].

By this same reasoning, one might conclude that reconstruction from the boundary
is not unique when there are null geodesics which avoid the boundary, as opposed to the
reconstruction being merely discontinuous as stated previously. The resolution has to do
with the technical definitions behind the phrasing, which differ slightly between the two
questions. In the present context, the non-uniqueness of the solution comes from going all
the way to the geometric optics limit along some geodesic which does not enter r > r∗.
But this is a singular limit, and one might wish to exclude such configurations from being
solutions to the equation. That is the choice we implicitly made in previous sections when
we talked about continuity. Continuity is broken because of the same type of geometric
optics solutions with a singular limit, but we do not have to include the limiting case itself;
continuity only depends on the approach to the limit. So the null geodesic criterion, and
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the reasoning behind it, is the same even though certain technical aspects of the description
change based on convenience for the particular question being asked. The point of discussing
unique continuation at all is that the boundary is not involved in the question, and so a
boundary norm need not be chosen.

For the case of the AdS-Rindler wedge, the same analysis of null geodesics as above
indicates that unique continuation fails as well. Knowing the solution for r > r∗ does not
determine the solution for smaller r. Furthermore, the Poincare patch is again a marginal
case for this question. Using the standard z coordinate, then for any z∗ there are null
geodesics which do not deviate from z = z∗.

4.3.2 The Diagnostic in Other Situations

To get a sense for how seriously to take our diagnostic, we can apply it to a variety
of familiar situations to test its implications.

AdS black hole formed in a collapse Suppose we begin at early times with matter
near the AdS boundary, and then at some later time it collapses to make a large black hole.
In this case, every null geodesic reaches the boundary. For a given geodesic, just follow it
back in time: at early times there is no black hole and no singularity, and we know that all
null geodesics in AdS hit the boundary. So for a black hole formed in a collapse, every null
geodesic is captured by the boundary, and it is likely that continuous reconstruction of the
bulk is possible, both inside and outside the horizon.

Eternal AdS black holes and black branes In the case of an eternal black hole, there
are some null geodesics that never reach the boundary; they go from the past singularity
to the future singularity. The bulk can be continuously reconstructed from the boundary
data only outside r = 3GNM . (3 is the correct numerical factor in 3+1 dimensions. More
generally, the bulk can be reconstructed down to the location of the unstable circular orbit.)

We will show this explicitly, focusing initially on a spherical black hole in 3+1
dimensions. The metric is

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2 (4.60)

with f(r) = 1 + r2/L2
− 2GNM/r. The null geodesics are extrema of the action

S = ∫ dλgµν ẋ
µẋν = ∫ dλ (f ṫ2 − ṙ2

f
− r2Ω̇2) . (4.61)

Identifying the conserved quantities E = f ṫ and l = r2Ω̇, the equation of motion
can be read off from the condition that the worldline is null:

0 = gµν ẋ
µẋν =

E2

f
−
ṙ2

f
−
l2

r2
. (4.62)

This derivation leads to a simple equation for null geodesics,

ṙ2 + Veff(r) = E2 with Veff =
fl2

r2
. (4.63)
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Figure 4.4: On the left we show the effective potential for a null geodesic in a spherical
black hole, and on the right the same for a planar black brane. In the case of a spherical
black hole, there is a potential barrier which traps some null geodesics in the r < 3GNM

region. Therefore continuous reconstruction from the boundary is not possible for the
region r < 3GNM . In the planar case, there are null geodesics reach arbitrarily large finite r
without making it to the boundary. Hence there is no bulk region which can be continuously
reconstructed from the boundary data.

The effective potential has a maximum at r = 3GNM , independent of l (see Fig. 4.4). So
null geodesics that begin outside this radius will inevitably reach the boundary, either in
the past or the future. But there are null geodesics that exit the past horizon, bounce off
the potential barrier, and enter the future horizon. Because of these, it will be impossible
to reconstruct the bulk region near the horizon.

In this case, rather than conclude that there is anything wrong with the corre-
spondence, the natural interpretation is that our classical analysis is breaking down. The
“lost” null geodesics are being lost because they fall into the singularity. To recover this
information, we will need to go beyond the classical approximation and resolve the singu-
larity.

We can also ask about unique continuation. Starting with the data at large r, we
can try to integrate in to find the solution at smaller r. This process will work fine down
to r = 3GNM . However, trying to continue the solution across 3GNM will be impossible.

In the case of a black brane with a planar horizon in AdSD, the effective potential
for the null geodesics becomes

Veff = a −
b

rD−1
(4.64)

where a and b are positive constants. Unlike the spherical black hole, there is no local
maximum in the effective potential. For every value of r, there are null geodesics which exit
the past horizon, travel to that value of r, then exit the future horizon. So there is no bulk
region that can be continuously reconstructed from the boundary data.

General conclusion about black hole reconstruction In the cases of eternal black
holes and black branes, the presence of singularities led to the existence of null geodesics
which did not reach the boundary, and consequently regions of the bulk which could not
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be reconstructed from the boundary data. This is not a sign that AdS/CFT is breaking
down, but rather an indication that our classical reconstruction procedure is not valid.
We know that classical physics breaks down in the neighborhood of the singularity, but
the null geodesic criterion suggests that there is a problem even in low-curvature regions.
Since the problematic null geodesics begin and end on singularities, it is possible that the
physics of singularities needs to be resolved before this question can be answered. A second
possibility is that nonlocal boundary operators in the CFT encode the physics of the missing
bulk regions. As we emphasize in Section 4.4, this latter possibility is the expected outcome
for AdS-Rindler space, where we believe there is an exact duality between particular bulk
and boundary subregions.

4.4 Arguments for an AdS-Rindler Subregion Duality

In this section we exhibit several arguments in favor of a subregion duality for
AdS-Rindler space, despite the failure of continuous reconstruction from local boundary
fields.

4.4.1 Probing the Bulk

In the previous section, we asked whether we could classically reconstruct the
bulk field Φ(B) from data on the boundary φ(b). In essence, we restricted ourselves to
considering only one point functions ⟨O(b)⟩ on the boundary, and sought to reconstruct
bulk fields from integrals of these local boundary operators. However, from an operational
standpoint, there is no reason to expect this to be the most efficient way of reconstructing the
bulk in general. The boundary theory is equipped with many inherently nonlocal operators.
For instance, higher point correlation functions such as ⟨O(b1)O(b2)⟩ could provide a much
better probe of the bulk than one point functions.5

From a physical standpoint, basic properties of AdS/CFT and causality [165,
42] are enough to argue that the theory on the boundary diamond should be capable of
reconstructing, at the very least, the AdS-Rindler bulk [40, 51, 103]. Consider a bulk
observer Bob who lives near the boundary. The boundary theory should be able to describe
Bob, and thus it would be inconsistent for Bob to have information about the bulk which
the boundary theory does not. Since Bob can send and receive probes into regions of the
bulk which are in the intersection of the causal future and causal past of his worldline,
he can probe the entire bulk diamond. Thus, it should be the case that the entire bulk
diamond can reconstructed from data on the boundary.

The question of classical reconstruction—restricting to one-point functions on the
boundary—amounts to only allowing Bob to make measurements of the field value at his
location. If the value of the field decays rapidly near the boundary, Bob would need ex-
tremely high resolution to resolve the field. Allowing higher point functions on the boundary
amounts to allowing Bob to send and receive probes into the bulk which directly measure

5It may be the case that higher point functions, which can be obtained by solving classical bulk equations
of motion with quantum sources, encounter similar obstructions in the classical limit. However the boundary
theory also contains many additional nonlocal operators, such as Wilson loops, which we expect to behave
differently in this regime.
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Figure 4.5: The geometry defining the Hartle-Hawking state for AdS-Rindler. Half of the
Lorentzian geometry, containing the t > 0 portion of both the left and right AdS-Rindler
spaces, is glued to half of the Euclidean geometry. The left and right sides are linked by
the Euclidean geometry, and the result is that the state at t = 0 is entangled between the
two halves.

the field away from the boundary. This could potentially be a far more efficient way of
reconstructing the bulk.

4.4.2 Hyperbolic Black Holes

A CFT dual for AdS-Rindler arises as a special case of the AdS/CFT duality
for hyperbolic black holes. The conformal boundary of AdS-Rindler can be viewed as the
Rindler patch of Minkowski space, by Eq. 4.58. The CFT vacuum, when restricted to the
Rindler patch, appears as a thermal Unruh state, indicating the presence of a thermal object
in the bulk. Indeed, the AdS-Rindler metric in Eq. 4.22 with the replacement z = 1/r is
exactly the µ = 0 case of the metric of the hyperbolic black hole studied in Ref. [57]:

ds2 = −( r2
L2
− 1 −

µ

rd−2
)dt2 + ( r2

L2
− 1 −

µ

rd−2
)−1 dr2 + r2dH2

d−1 , (4.65)

where the spatial hyperbolic plane has the metric

dH2
d−1 =

dξ2 + dx2i
ξ2

. (4.66)

A CFT dual for hyperbolic black holes follows from an adaptation of Maldacena’s
analysis of the eternal AdS black hole [130], which generalizes easily to the hyperbolic
case. In particular, hyperbolic black holes have a bifurcate Killing horizon, allowing for
a definition of a Hartle-Hawking state from a Euclidean path integral (Fig. 4.5). The
boundary consists of two disconnected copies of R ×Hd−1 (the boundary diamonds). The
boundary Hartle-Hawking state is defined through a Euclidean path integral performed on
Iβ/2×H

d−1, where Iβ/2 is an interval of length β/2 and β is the inverse Rindler temperature.



69

I

II

III

IV r = ∞r = ∞

singularity

singularity

Figure 4.6: The Penrose diagram for a hyperbolic black hole. In the µ = 0 case, regions I
and IV become the right and left AdS-Rindler wedges. In this case, the singularity is only
a coordinate singularity, so the spacetime can be extended to global AdS.

(Of course, the Hartle-Hawking state for AdS-Rindler is equivalent to the global vacuum.
This follows since Iβ/2 ×H

d−1 is conformal to a hemisphere, which is half of the boundary
of Euclidean AdS.) The right and left wedges, regions I and IV in Fig. 4.6, are entangled:

∣ψ⟩ =∑
n

e−βEn/2 ∣En⟩R ∣En⟩L . (4.67)

Restricting to only region I or IV therefore yields a thermal density matrix.
Excitations above the Hartle-Hawking vacuum can be constructed through op-

erator insertions in the Euclidean geometry. In these states, all particles that enter and
leave region I through the Rindler/hyperbolic black hole horizon will be entangled with
particles in region IV. One may therefore question to what extent region I can be recon-
structed without access to region IV. Small excitations above the Hartle-Hawking vacuum,
with energy below the temperature 1/2πL, will appear as an indiscernible fluctuation in the
thermal noise when restricted to region I. More energetic states, however, are Boltzmann-
suppressed. The density matrix in I will, to a good approximation, accurately register the
presence of particles with energy above 1/2πL. Hence, the boundary theory of region I, i.e.,
its density matrix, should encode at least the high-energy states in the bulk region I [50].

4.5 Discussion

If an AdS/CFT duality to is to make sense physically, it should be the case that a
physicist with a large but finite computer can simulate the CFT and learn something about
the bulk. Knowing particular boundary observables to some accuracy should determine the
bulk to a corresponding accuracy. In the case of global AdS/CFT, Hamilton et al. [89]
found simple boundary observables—local, gauge invariant operators—which are sufficient
to reconstruct the bulk. We have shown that this reconstruction is continuous, meaning
that it is a physical duality in the above sense.
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In the case of the proposed AdS-Rindler subregion duality, we have seen that
these operators are not sufficient to perform the same task. We have shown that, given
Eq. 4.10 as our choice of boundary norm, the classical reconstruction map in AdS-Rindler
is not continuous. This indicates that we must specify the boundary theory to arbitrary
precision to learn anything about the bulk, signaling a breakdown in the physicality of the
correspondence.

It is true that our argument for the breakdown depends on the specific boundary
norm we choose. We are always free to pick a different norm, for instance one which better
respects the symmetries of the boundary theory, and it may be useful to investigate this
possibility further. However, the null geodesic criterion gives a simple and intuitive picture
of the failure of classical reconstruction, and we would find it surprising if a natural choice
of norm could cure the difficulties.

The failure of our diagnostic does not necessarily signal the death of a AdS-Rindler
subregion duality. The crucial point is that besides taking the classical limit, we addition-
ally assumed that bulk operators could only be expressed as integrals of local boundary
quantities. By removing this extra assumption, a full duality may be recovered—and it
would seem surprising if, in general, local boundary quantities were always sufficient for
classical reconstruction in all situations. The CFT contains many nonlocal operators, such
as complicated superpositions of Wilson loops [148, 171], in addition to local ones. Our
results suggest that these additional operators are necessary to see locality in the bulk,
even in the classical limit.
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Chapter 5

AdS Black Holes, the
Bulk-Boundary Dictionary, and
Smearing Functions

5.1 Introduction

The Lorentzian AdS/CFT [127, 185, 79] dictionary in extrapolate form gives a
simple relation between a bulk operator close to the boundary, and a boundary operator.
If Φ(B) is a bulk operator, where B denotes a bulk coordinate B = (r, t,Ω), and b is a
boundary coordinate b = (t,Ω), then [6, 78, 91]

lim
r→∞

r∆Φ(B) = O(b). (5.1)

This relates a local bulk operator at large r to a local boundary operator. But what is the
CFT dual of Φ(B) at finite r? A natural proposal is

Φ(B) = ∫ db′ K(B∣b′)O(b′) +O(1/N), (5.2)

where K(B∣b′) is some smearing function.
There is no reason a dictionary as simple as (5.2) has to be true. Our goal in

this chapter will be to make progress on establishing when a mapping like (5.2) is and isn’t
possible. In pure global AdS, the smearing function K(B∣b′) was found in [89]. We will
show a smearing function as in (5.2) does not exist in AdS-black hole backgrounds, for any
bulk point B.

Eq. 5.2 is in some ways an extraordinary statement. It allows us to express an
n-point function of bulk operators Φ in terms of smeared n-point functions of boundary
operators O. Thus it says that the entire bulk state is encoded in terms of operators O.
Yet, the operators O are special: they are related via (5.1) to the large r limit of local bulk
operators. Most field theory operators, for instance Wilson loops, are not of this form.1

1One should keep in mind that in (5.2) we are smearing on the boundary over both space and time; if one
were to use the CFT Hamiltonian to evolve the right side of (5.2) to a single time then one would generate
an operator with Wilson loops. Nevertheless, the ability to avoid Wilson loops if one is allowed to compute
correlation functions of the O for different times is in itself nontrivial.
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Having the precise form of the smearing function K(B∣b′) is an important compo-
nent of the AdS/CFT dictionary. For any bulk point B, K(B∣b′) will presumably have most
of its support on some subregion of the boundary. Thus, K(B∣b′) would tell us, independent
of the state, which subregion [40, 51, 103] of the global AdS boundary is “responsible” for
a bulk point B.2

As a result of (5.1), Eq. 5.2 has a purely bulk interpretation. It states that a bulk
operator at point B can be expressed in terms of smeared bulk operators at large radius.
Alternatively, in the Schrödinger picture it states that the bulk wavefunction restricted to
a large but fixed r = R and provided for some sufficient time extent, completely encodes the
bulk state for all r < R. It is not obvious if this is a true or false statement. If a particle
is sitting at the center of AdS, its wavefunction at large r will be small but nonvanishing;
perhaps that is enough to determine the wavefunction everywhere? Or perhaps there are
some states for which the wavefunction has vanishingly small support at r = R, making
(5.2) impossible?

While (5.2) is an operator statement, determining K(B∣b′) is a classical field the-
ory problem: Given ϕ(b′) ≡ Φ(r = R, t′,Ω′), how does one reconstruct Φ(B)? This is
a nonstandard boundary value problem, with data being specified on a timelike surface.
However, having a smearing function is a more stringent requirement than simply having
an algorithm for deterimining Φ(B) for any given ϕ(b′). For instance, it may be the case
that for any particular bulk solution, even if ϕ(b′) is extremely small, one can pick an
appropriate resolution so as to see it and reconstruct Φ(B). However, it could be that
no matter how good a resolution one picks, there always exist field configurations having
a near boundary imprint ϕ(b′) that is below the resolution scale. In such a case there
wouldn’t be a smearing function; for a smearing function implies a state-independent way
of reconstructing. In a sense one has to pick the resolution beforehand without knowledge
of which field configurations will be under consideration. As a CFT statement, the absence
of a smearing function means that certain aspects of the bulk are not well encoded in the
smeared CFT operators O(b′), but rather in the more general Wilson loops.

Constructing a smearing function is straightforward in static, spherically symmet-
ric spacetimes. One solves the bulk equations of motion through a mode decomposition:
Φωlm(r, t,Ω) = φωl(r)Ylm(Ω)e−iωt. The bulk is reconstructed mode by mode, using the
boundary imprint to extract the coefficient of each mode. In some cases this can be used
to construct a smearing function. However in other cases, for reasons discussed above and
which we will make precise in Sec. 5.2, the candidate smearing function is a divergent sum.
Pure AdS falls into the first category, while AdS-black holes are in the second.

In AdS, just like in flat space, at small r there is a centrifugal barrier which reflects
the modes. However, black holes have the property that at a finite distance from the horizon
the centrifugal barrier peaks and the potential dies off as the horizon is approached. Unlike
in pure AdS, modes with ω ≪ l become admissible, and are trapped behind the centrifugal
barrier. As l is increased with ω kept constant, the barrier grows, and the imprint of the
modes at large r decays exponentially in l.

In Sec. 5.2 we review the mode sum approach to obtaining a smearing function.
In Sec. 5.3 we rewrite the Klein-Gordon equation for a scalar field in a static, spherically

2We should note that in general K(B∣b′) will not be unique.
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symmetric background as a Schrödinger equation. For large l, the potential has roughly
two competing terms: the centrifugal barrier and the AdS barrier ∼ r2. For any radius r, no
matter how large, there is an l sufficiently high so that the centrifugal barrier dominates.
In Sec. 5.4 we use WKB to show that in AdS-black hole backgrounds this effect gives rise
to the exponential behavior in l for the modes.

It may seem surprising that our ability to describe the bulk at large r, where
the metric is well approximated by pure AdS, could be affected by the presence of a
small black hole deep in the bulk. In Sec. 5.4.1 we show that while it is true the be-
havior of the modes near the boundary is always well approximated by Bessel functions
r−d/2Jν(√ω2 − l(l + d − 2)/r), the relation between ω and l depends on the entire bulk ge-
ometry. In pure AdS, ω is quantized as ωn = 2n + l +∆, while in the AdS-black hole ω is
continuous and independent of l. As a result, ω ≪ l is allowed for AdS-black holes, leading
the Bessel function to have imaginary argument and correspondingly exhibit exponential
growth.

In Sec. 5.5 we take the first steps towards generally establishing for which asymp-
totically AdS spacetimes a smearing function exists. In Sec. 5.5.1 we consider a static,
spherically symmetric spacetime and argue that only the behavior of the high l modes is
relevant for this question. We find in this limit the potential in the Schrödinger-like equa-
tion describing the modes simplifies significantly. We find that any barrier in the large l
potential leads to exponential behavior in l of the modes and prevents a smearing function.
Here the appropriate limit leading to an exponentially suppressed tail involves sending ω
to infinity as well sending l to infinity, while keeping the ratio ω/l constant. Thus, we will
find that even a small, dense star in AdS can prevent a smearing function from existing for
some bulk points. However, unlike the black hole, we are not necessarily prevented from
constructing a smearing function at large r in general. In Sec. 5.5.2 we consider general
spacetimes and examine the possibility of the existence of trapped null geodesics (geodesics
with neither endpoint on the boundary) as a proxy for the smearing function not existing.
We find that in static spherically symmetric spaces the null geodesic equation is that of
a classical point particle moving in a potential identical to the one found in Sec. 5.5.1 as
being relevant for the smearing function question. Therefore a smearing function does not
exist if there are trapped null geodesics.

5.2 Smearing functions

We work in Lorentzian AdSd+1/CFTd with fixed boundary Hamiltonian, and cor-
respondingly all nonnormalizable bulk modes turned off. We let B denote a bulk coordinate,
B = (r, t,Ω), and b a boundary coordinate b = (t,Ω). If we consider a scalar field Φ(B)
in the bulk, then excited states are obtained by acting with Φ(B) on the vacuum. As the
boundary is approached, Φ(r → ∞) will decay to 0. However, we can extract the leading
term ϕ in the decay, Φ(B)→ ϕ(b)/r∆, where the conformal dimension ∆ = d/2+√d2/4 +m2.
The extrapolate version of the AdS/CFT dictionary instructs us to identify ϕ with a local
boundary operator: ϕ(b)↔ O(b).

As a result we can construct a relation between Φ(B) and the CFT operators
O(b) by relating the tail ϕ of Φ at the boundary to Φ(B) through use of bulk equations
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of motion. This is a nonstandard boundary value problem where the data is specified on a
timelike surface. Unlike usual time evolution where the field at point is determined by the
field in the causal past of that point, here we have little intuition about which portion of
the boundary is needed to determine Φ(B).
Smearing function as a mode sum

In the limit of infinite N , the bulk field operator Φ(B) obeys the free wave equation
and its reconstruction from boundary data can be implemented through Fourier expansion.
Letting Φk(B) be the orthogonal solutions to the Klein-Gordon equation (where k is a
collective index), we do a mode expansion of Φ(B) in terms of creation and annihilation
operators ak,

Φ(B) = ∫ dk akΦk(B) + h.c. (5.3)

Taking B to the boundary and letting ϕk = Φkr
∆ gives

O(b) = ∫ dk akϕk(b) + h.c. (5.4)

In some cases the boundary mode functions ϕk(b) are orthogonal. If they are we can invert
(5.4)

ak = ∫ db O(b)ϕ∗k(b), (5.5)

where we have with hindsight chosen to normalize the modes Φk so that ϕk are orthonormal.3

Inserting (9.12) into (5.4) gives

Φ(B) = ∫ dk [∫ db′ ϕ∗k(b′)O(b′)]Φk(B) + h.c. (5.6)

Exchanging the integrals over k and b gives

Φ(B) = ∫ db′ K(B∣b′)O(b′), (5.7)

where
K(B∣b′) = ∫ dk Φk(B)ϕ∗k(b′) + h.c. (5.8)

Potential divergences of the smearing function

Eq. 6.6 is the equation for a smearing function and will be the focus of the rest
of the chapter. In all the cases we will consider, (9.12) will exist, but the integral in (6.6)
may or may not converge. In the limit of infinite N the question of the existence of a
smearing function in some background can therefore be equivalently stated as the question
of convergence of the integral in (6.6).4 In cases when a smearing function exists in the

3One is of course free to choose any normalization for the Φk; however if the ϕk are not orthonormal,
(6.6) will get modified by the appropriate factor.

4There is a potential loophole. The smearing function could exist without the integral (6.6) converging.
If this were the case, the smearing function would have to be a function whose Fourier transform is not
well-defined.
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N =∞ limit, one can then include corrections to (5.7) perturbatively in 1/N [107, 96]. We
will only be concerned with the smearing function at infinite N .

The bulk modes Φk that appear in (6.6) need to be normalized so that the boundary
modes ϕk they asymptote to are orthonormal. This is at the heart of the problem of
constructing smearing functions. When we decompose some bulk solution Φ(B) in terms
of modes, we generally don’t expect each mode to be weighted equally. Rather, there are
some modes which may have small coefficients. However, the smearing function is state
independent and has no way of knowing which modes will get small weight.

When working in a general background, not all modes are equal. Some modes
may need to pass through enormous barriers in the potential on their way to the boundary
and consequently suffer a huge damping. All the modes Φk are normalized so that the
ϕk ≡ Φkr

∆ they asymptote to on the boundary are orthonormal. As a result, modes that
had to pass through a large barrier will be extremely large at small r. For any particular
solution this wouldn’t bother us, as these modes would have a small expectation value of
ak. As a result, (5.6) would converge. However, without having the small ak to dampen the
modes at small r, the integral (6.6) appearing in (5.7) might diverge. As we will see later,
this is precisely what happens in AdS-Rindler and in AdS-Schwarzschild.

Pure AdS smearing function

The metric for global AdSd+1 can be written as

ds2 = −(1 + r2)dt2 + dr2

1 + r2
+ r2dΩ2

d−1. (5.9)

The smearing function K(B∣b′) was constructed in [89] (see also [16, 90]).5 Notably, it
has support on boundary points b′ that are spacelike (or null) seperated from B (shown in
Fig. 5.1). It takes a different form in even and odd dimensions, and is simpler when d + 1
is even:

K(B∣b′) = [√1 + r2 cos(t − t′) − r cos(Ω −Ω′)]∆−d . (5.10)

The spacelike support of K(B∣b′) gives it some peculiar features. If one uses
K(B∣b′) to construct Φ(B) through (5.7) and considers the limit of taking B to the bound-
ary, it is not manifest that Φ(B) → r−∆O(b). In fact, UV/IR [165] seems to suggest one
should only need some compactly supported portion of the boundary to construct Φ(B)
if B is close to the boundary. However, the smearing function (5.10) does not reflect this
intuition. Indeed, the limit of (5.10) when B is close to the boundary,

K(r →∞, t,Ω ∣b′)→ r∆−d [cos(t − t′) − cos(Ω −Ω′)]∆−d (5.11)

is not at all peaked at small t − t′ and Ω −Ω′.

5To avoid any potential confusion, we note that in Lorentzian AdS/CFT the smearing function problem
is distinctly different from the one Witten’s bulk-boundary propagator [185] addressed in Euclidean space.
The Lorentzian version of Witten’s bulk-boundary propagator is a bulk Green’s function with one point
taken to the boundary (as a result, unlike (5.10) it does manifestly approach a delta function for coincident
points). However, it is a smearing function for the nonnormalizable modes, which are dual to sources for
the CFT; whereas we are interested in a smearing function for normalizable modes.
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Figure 5.1: To construct the bulk operator Φ(B), the CFT operator O(b′) is smeared with
the smearing function K(B∣b′) as indicated in (5.7). (a) The support of the pure AdS
smearing function K(B∣b′) is all boundary points b′ spacelike separated from B (hatched
region). (b) Had the AdS-Rindler smearing function existed, it would have only made use
of the boundary region that overlaps with J+(q) ∩ J−(p) (the intersection of the causal
future of q and causal past of p), where q and p are chosen so that J+(q)∩J−(p) just barely
contains B. Any changes outside this bulk region J+(q)∩J−(p) would have been manifestly
irrelevant for computing Φ(B).
AdS-Rindler smearing function

Perhaps the smearing function (5.10) is not optimal and uses more boundary data
than actually necessary? The minimal possible boundary region (shown in Fig. 5.1b) can be
found by picking boundary points p, q such that B is just barely contained in the intersection
of the causal future of q with the causal past of p, J+(q)∩J−(p). The intersection of J+(q)∩
J−(p) with the boundary yields the smallest boundary region allowed by causality [26]. A
convenient coordinate system to use which covers only this region is AdS-Rindler, which in
AdS3 takes the form

ds2 = −(r2 − 1)dt2 + dr2

r2 − 1
+ r2dx2. (5.12)

In Ref. [89] construction of a smearing function of this form was attempted, but the
procedure fails. The solution for the modes in terms of a hypergeometric function is [112]

Φωk(r, t, x) = r−∆ (r2 − 1
r2
)−iω/2 F (∆ − iω − ik

2
,
∆ − iω + ik

2
,∆,

1

r2
) ei(kx−ωt). (5.13)

For k ≫ ω the modes have an exponential growth in k. As a result, the integral (6.6) doesn’t
converge. Note that although AdS-Rindler asymptotes to the Poincare Patch at large r,
modes with k ≫ ω are forbidden in Poincare Patch but allowed in AdS-Rindler.

Had an AdS-Rindler smearing existed, it would have guaranteed a smearing func-
tion for points B in the large r region of any asymptotically AdS geometry. The field and
metric at any point outside of J+(q)∩ J−(p) would have been manifestly irrelevant. In the
absence of an AdS-Rindler smearing function, all we have is the global smearing function.
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Since it makes use of the entire spacelike separated region from B, changes to the field any-
where in the bulk could potentially have an impact on reconstruction of Φ(B). While we
wouldn’t expect a small perturbation of the metric at the center of AdS to have a significant
impact on the form of the smearing function, a black hole in the center is a major change
to metric and the existence of a smearing function is no longer guaranteed.

Our goal will be to understand in which circumstances the smearing function does
and doesn’t exist; when (6.6) does and doesn’t converge. In the following section we analyze
the bulk modes in an AdS-Schwarzschild background.

5.3 Solving the wave equation

In this section we rewrite the wave equation for a scalar field in the form of a
Schrödinger equation, allowing us to easily analyze the solutions.

We consider a scalar field Φ(B) in a static, spherically symmetric background,

ds2 = −f(r)dt2 + dr2

h(r) + r2dΩ2
d−1. (5.14)

To leading order in 1/N the field Φ satisfies the free wave equation

1√
g
∂µ(√ggµν∂νΦ) −m2Φ = 0. (5.15)

Separating Φ as

Φ(r, t,Ω) = φ(r)Y (Ω)e−iωt (5.16)

gives for the radial field φ(r),
ω2

f
φ +

1

rd−1

√
h

f
∂r(√fhrd−1∂rφ) − l(l + d − 2)

r2
−m2φ = 0. (5.17)

Letting φ(r) = u(r)/r d−1
2 and changing variables to a tortoise-like coordinate dr∗ = dr/√fh

turns (5.17) into a Schrödinger-like equation

d2u

dr2
∗

+ (ω2
− V (r))u = 0, (5.18)

with a potential

V (r) = f [(d − 1)
4r

(fh)′
f
+
(d − 1)(d − 3)

4

h

r2
+
l(l + d − 2)

r2
+m2] . (5.19)

We examine the form of the potential in global AdS and AdS-Schwarzschild:
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Figure 5.2: The wave equation can be recast as a Schrödinger equation (5.18). We plot the
global AdS4 potential (5.21) for l = 3 for a massless field. The plot on the left is in terms of
the radial coordinate r appearing in the AdS metric (5.20). The plot on the right is in terms
of the tortoise coordinate r∗, and is the one relevant for solving (5.18). The two are related
through r = tan r∗. The tortoise coordinate has the effect of compressing the potential at
large r, while leaving small r unaffected. The AdS barrier occurs at r∗ very close to π/2;
its narrowness allows the modes to decay only as a power law: φ ∼ r−∆.

Global AdS

Global AdSd+1 has the metric

ds2 = −(1 + r2)dt2 + dr2

1 + r2
+ r2dΩ2

d−1, (5.20)

and correspondingly a potential

VGlobal(r) = (1 + r2) [d2 − 1
4
+m2

+
(d − 1)(d − 3) + 4l(l + d − 2)

4r2
] . (5.21)

The potential for global AdS is plotted in Fig. 5.2. The potential is dominated at
small r by the angular momentum barrier l(l + d− 2)/r2, and at large r by the AdS barrier
proportional to r2. At intermediate radius, these terms balance and the potential attains a
minimum set by the angular momentum l. The minimum of the potential, which at large l
is approximately l(l + d − 2), sets the lower bound on ω.

AdS-Schwarzschild

AdS- Schwarzschild is of the form

ds2 = −(1 + r2 − (r0
r
)d−2)dt2 + dr2

1 + r2 − ( r0
r
)d−2 + r2dΩ2

d−1. (5.22)

giving a potential

VBH(r) = [1 + r2 − (r0
r
)d−2] [d2 − 1

4
+m2

+
(d − 1)2

4

rd−20

rd
+
(d − 1)(d − 3) + 4l(l + d − 2)

4r2
] .

(5.23)
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Figure 5.3: A plot of the AdS4-Schwarzschild (r0 = 1) potential (5.23) as a function of the
radial coordinate r. The plot on the left is for l = 4, and the one on the right for l = 10.
Unlike for pure AdS, ω is not bounded from below by l; for a fixed ω, l can be arbitrarily
high. The barrier an ω mode must pass through grows as l increases. This results in the
ω ≪ l modes having exponential behavior in l. Intuitively, these modes become ever more
confined near the horizon with increasing l.

The potential for AdS-Schwarzschild is shown in Fig. 5.3. For large r the behavior
is the same as for pure AdS. However, the behavior is different for r close to the horizon: the
factor of f vanishes at the horizon, forcing the potential to vanish as well. The vanishing of
the AdS-Schwarzschild potential at the horizon allows ω to be arbitrarily small, regardless
of the value of l. This is in contrast with pure AdS.

BTZ

A nonrotating BTZ black hole has a metric similar to AdS-Rindler (5.12). In the
form of (5.14), f(r) = h(r) = r2 −M , giving a potential

VBTZ(r) = (r2 −M)(3
4
+m2

+
l2 +M/4

r2
) . (5.24)

The BTZ potential has similar properties to that of AdS-Schwarzschild.

5.4 Black hole smearing functions and large angular momen-
tum modes

In this section we explain why global AdS admits a smearing function while AdS-
black hole backgrounds do not. The reason is simple: if a black hole is present, modes
with l ≫ ω (and l arbitrarily large) become allowed. These modes are highly suppressed
at large r by the centrifugal barrier. An attempt to calculate the smearing function via a
mode sum immediately gives a divergence when performing the sum over l at a fixed ω.
We will show there is no smearing function in two ways. First in Sec. 5.4.1 we show the
existence of these l ≫ ω modes in itself, independent of the details of the metric, prevents
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a smearing function for bulk points at large r. In Sec. 5.4.2 we use WKB to directly solve
for the modes, showing there is no smearing function for any bulk point B. We should note
that there are other cases where a smearing function fails to exist, even without a horizon
and the associated l≫ ω modes, as we will show in Sec. 5.5.

In Sec. 5.4.1 we review how in pure AdS modes oscillate as eiqz where z = 0 is the
boundary and q2 = ω2

− l(l + d − 2). If modes existed with q2 < 0, then they would grow
exponentially as eκz where κ2 = −q2. Since black hole backgrounds asymptotically approach
pure AdS, their q2 < 0 modes will display this exponential behavior in l. Connecting with
the discussion in Sec. 5.2, this means the sum in (6.6) will not converge, and hence these
modes forbid a smearing function for bulk points near the boundary.

In Sec. 5.4.2 we show that in the limit of high l, the potential (5.19) considerably
simplifies, with only the centrifugal barrier remaining. Using WKB we solve to find the
modes. The result shows an exponential behavior in l for these l ≫ ω modes, for any bulk
point. Thus we find there is no smearing function for any point in any static spherically
symmetric spacetime with a horizon.

5.4.1 Asymptotic behavior of the wave equation

For an asymptotically AdS space, at large r the f(r), h(r) in (5.14) have the limit
f(r), h(r)→ r2. Changing variables to z = 1/r, we write the metric as

ds2 =
−dt2 + dz2 + dΩ2

z2
. (5.25)

For small angles (5.25) resembles the metric of the Poincare Patch. The wave equation for
the radial modes is

z2φ′′ − z(d − 1)φ′ + (z2q2 −m2)φ = 0, (5.26)

where q2 = ω2
− l(l + d − 2). Substituting φ(z) = zd/2ψ(z) yields

z2ψ′′ + zψ′ + (z2q2 − ν2)ψ = 0, (5.27)

where we defined ν2 =m2
+ d2/4. For ω2

> l(l + d − 2) this gives ψ(z) = Jν(qz) and hence

φ(z) = zd/2Jν(qz), (5.28)

which resembles the usual solution in the Poincare Patch.6 Modes with ω2
< l(l + d − 2)

have negative q2. Of course these modes don’t exist in pure AdS, but they do in AdS-
Schwarzschild. Defining κ2 = −q2, we get ψ(z) = Jν(iκz) ≡ eiνπ/2Iν(κz).7 Since the Bessel
function Jν(x) oscillates, Iν(x) grows exponentially. We can see the exponential growth

directly. Letting φ(z) = z d−1
2 u(z), (5.26) becomes

6The other solution, Yν(qz), is discarded because it doesn’t have the correct behavior φ → z∆ near the
boundary that is expected of a normalizable mode.

7In the context of Euclidean AdS/CFT in the Poincare Patch one has this scenario of q2 < 0. There
are two solutions: Iν(κz) and Kν(κz). The Kν(κz) solution is kept while the Iν(κz) is discarded precisely
because of its exponential growth in the bulk. Of course, for us Kν(κz) cannot be kept since it grows
exponentially as the boundary is approached and so is nonnormalizable.
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u′′ − [κ2 + ν2 − 1/4
z2

]u = 0 . (5.29)

In the limit of z ≫
√
ν2 − 1/4/κ, Eq. 5.29 is solved by u = eκz. Thus, we see that for large l

and l≫ ω the modes behave as
φ(z) = z d−1

2 elz. (5.30)

Our use of the pure AdS metric is justified for sufficiently small z. However for
any z > 0, there exists an l sufficiently large such that z ≫

√
ν2 − 1/4/κ is satisfied. Since

computing a smearing function involves summing over l arbitrarily large, we are guaranteed
to reach regime (5.30) at sufficiently high l.

Smearing function for static spherically symmetric spacetimes

In the case of static spherically symmetric spacetimes, the solutions (5.16) can be
inserted into the smearing function (6.6), giving

K(r, t,Ω∣t′,Ω′) = ∫ dωeiω(t−t
′) ∑

l,mi

φω,l(r)Ylmi
(Ω)Y ∗lmi

(Ω′) , (5.31)

where mi denotes all the angular quantum number, m1, ...,md−2, and we have normalized
the time dependent piece with respect to the boundary Klein-Gordon norm. The radial
modes φω,l are solutions to the radial wave equation (5.18) and should be normalized so
that φωl → r−∆ as r →∞. For AdS-Schwarzschild, the energies ω are continuous and so we
have written an integral over ω; for global AdS this would be replaced by a discrete sum
over n as ωn = 2n + l +∆.

If only modes with ω >
√
l(l + d − 2) are allowed then, as we saw above, the near

boundary solution (5.28) is, when properly normalized,

φωl(r) = 2νΓ(ν + 1)Jν(q/r)
rd/2qν

. (5.32)

Inserting the φωl(r) into (5.31), we see the sum converges. On the other hand, for modes
with ω <

√
l(l + d − 2), and in particular the high l ones with solution (5.30), the sum over

l in (5.31) is hopelessly divergent.

5.4.2 Large angular momentum and WKB

Our goal here is to directly show the exponential behavior in l of the modes φωl(r)
for large l and l ≫ ω for any bulk point. The smearing function doesn’t exist due to the
modes with arbitrarily large l, which is why this is a sufficient limit to consider. We will also
see how the details of the metric become irrelevant in the large l limit, with the centrifugal
barrier dominating the potential (5.19).

Modes with energy ω have a turning point at r = rt which satisfies V (rt) = ω2. In
the limit of l ≫ ω, the turning point approaches the horizon, rt ≈ rh. For r > rt the modes
always have ω2

< V and thus decay. For r > rt, we can use WKB:
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u(r) = 1√
p
exp(−∫ r

rt
p dr∗), (5.33)

where p2 = V − ω2.
We will only be interested in the exponential term, so we drop the 1/√p prefactor.

As discussed in Sec. 5.2, in order to compute the smearing function we need to normalize
all the bulk modes so that their boundary limit (upon stripping off r∆) is normalized with
respect to the boundary norm. In terms of u(r), we need its coefficient to approach 1 as
r →∞. Thus,

u(r) = exp⎛⎝∫
∞

r

dr′√
f(r′)h(r′)

√
V (r′) − ω2

⎞⎠ , (5.34)

where we used the relation between the radial coordinate and the tortoise coordinate, dr∗ =
dr/√fh.

The key point is that for any point outside the horizon, r > rh, there is an l

sufficiently large such that the potential (5.19) can be approximated by

V (r) = f l2
r2
, (5.35)

where for simplicity we used l(l + d − 2) ≈ l2. In (5.34) it is sufficient to only integrate for
some finite distance δ away from r to see the exponential behavior in l,

u(r) > exp⎛⎝∫
r+δ

r

dr′√
f(r′)h(r′)

√
V (r′) − ω2

⎞⎠. (5.36)

For any δ we want, there is an l sufficiently large such that the potential (5.19) can be
approximated by (5.35) for all radii between r and r + δ. Thus, using the approximate
potential (5.35) and neglecting ω2 we get,

u(r) > exp⎛⎝l∫
r+δ

r

dr′

r′
√
h(r′)

⎞⎠. (5.37)

This demonstrates the exponential growth in l of the modes. This is true for any bulk point
r; the only difference is the larger r, the greater the l before the exponential growth (5.37)
sets in.

In the limit of large r we can approximate f(r) ≈ h(r) ≈ r2. This yields u(r) →
el/r. Recalling φ = u/r(d−1)/2, this reproduces (5.30). Additionally, (5.37) matches the
exponential growth in l of the exact hypergeometric function solution (5.13) found in [112]
for the BTZ black hole.

5.5 Smearing functions for other spacetimes

We have seen if there is a horizon the potential (5.19) vanishes at the horizon and
consequently any frequency ω > 0 is allowed. The arguments of the previous section show
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Figure 5.4: We are interested in finding for which static spherically spacetimes without
horizons a smearing function exists. The smearing function involves the sum (5.31) over
modes, which can be grouped into 3 different regimes. Only A posses a threat to the
convergence of (5.31). At large r the metric, and consequently the potential (5.19), looks
like that of pure AdS (5.38). At smaller r, in regime A the angular momentum l is so large
that all terms in the potential except for the centrifugal barrier (5.40) are irrelevant.

there is no smearing function. In this section we examine more generally when a smearing
function exists. In Sec. 5.5.1 we consider a general static spherically symmetric spacetime
(5.14), and find a simple criteria on the metric (5.41) which gaurantees there will be modes
with exponential behavior in l for high l, and hence there will not be a smearing function
for some bulk points. In Sec. 5.5.2 we examine the possibility of trapped null geodesics as a
proxy for a smearing function not existing for an arbitrary spacetime. In the special case of
static spherically symmetric spacetimes we demonstrate that the existance of trapped null
geodesics prevents a smearing function.

5.5.1 Static spherically symmetric spacetimes

In this section we examine the existence of a smearing function for spacetimes of
the form (5.14) which do not possess horizons.

The question of the existance of a smearing function is the question of the conver-
gence of the sum (5.31) over ω and l at a given value of r. To answer this question, we will
need to estimate the size of each mode with a given ω and l, for every ω that is allowed. It
is convenient to divide the (ω, l)-plane into three regions, shown in Fig. 5.4, according to
the sizes of ω and l relative to certain large values ω0 and l0 which depend only on f and
h and will be defined carefully below. Region A consists of all modes with l > l0, region B
consists of all modes with ω > ω0 and l < l0, and region C consists of the remaining modes
with ω < ω0 and l < l0.
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l(l+d-2)

(a)

Figure 5.5: The wave equation can be recast as a Schrödinger equation (5.18) with a
potential V (r) and an energy ω2. Here we sketch a possible potential (5.19) for which a
smearing function doesn’t exist. At large r, r > R, the the potential looks like that of pure
AdS (the figure has been compressed; the distance between r2 and R is really much larger).
At smaller r the potential, for large l, is approximated by (5.40). If f(r)/r2 ever has positive
slope, as shown above, some of the modes ω (dashed line) will have to tunnel through the
barrier. Consequently, the sum (5.31) will diverge for r < r2.

Approximating the potential

To aid our calculation, we will approximate the behavior of the potential for large,
small, and intermediate values of r.

Large r
Since the metric approaches pure AdS at large r, we can approximate f(r) ≈

h(r) ≈ r2 for r > R, where R is some sufficiently large radius that depends on f and h. The
potential for r > R thus takes the form

V (r) ≈ l(l + d − 2) + (d2 − 1
4
+m2) r2, r > R. (5.38)

Small r
As r → 0, h(r)→ 1 to avoid a conical singularity, and f(r)→ f0 > 0. Thus we can

find some small ǫ > 0 such that

V (r) ≈ f0 ( l(l + d − 2) + (d − 1)(d − 3)/4
r2

) , r < ǫ. (5.39)

Note that the form of the potential implies that ω is quantized. Aside from the constant
f0, the potential for r < ǫ does not depend on the details of the geometry.

Intermediate r
For ǫ < r < R it will be useful to do a separate analysis for modes lying in the three

different (ω, l)-regions shown in Fig. 5.4.
A: Since f , h, and their derivatives are bounded functions for r < R, we can find

an l0 sufficiently large so that for all l > l0 all terms in the potential (5.19) except the
centrifugal barrier are irrelevant for all r < R,

V (r) ≈ f(r) l(l + d − 2)
r2

, r < R and l > l0. (5.40)
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This potential agrees with our small-r approximation above when r < ǫ. Note that the
potential in this region has an overall scaling with l.

B: We choose an ω0 sufficiently large such that ω2
0 ≫ V (r) for all ǫ < r < R and

l < l0. For modes in region B the potential is negligible at intermediate values of r.
C: For modes in region C all of the details of the potential are important, and

there is no useful approximation.

Convergence of sum for smearing function

Since ω and l are quantized, there are only a finite number of modes in region
C, so that part of the sum (5.31) converges. In region B the modes experience the same
potential as in pure AdS (aside from an inconsequential scaling of f0 at small r), so that
part of the sum will converge as well. This only leaves region A to analyze.

Let us suppose the potential (5.40) has positive slope for some range of r,

d

dr
(f(r)
r2
) > 0 for some r. (5.41)

We will now show if this occurs then there is no smearing function for some bulk points due
to an exponential divergence in region A. In Fig. 5.5 we sketch an example of potential for
which (5.41) occurs. Consider the limit of large ω and large l. This is the classical limit of
the Schrödinger equation (5.18), as can be seen from the fact that the range of r∗ is finite
and fixed, while the potential V (r) and energy ω are getting large. Thus, it is guaranteed
that there exists a mode ω lying within any classically allowed energy interval. If (5.41) is
satisfied in a neighborhood of r = r1, then that neighborhood consists of classical turning
points for an interval of possible values of ω. Let r2 > r1 be any point in the classically
forbidden region for these values of ω.8 Then the field at any r in the range r1 < r < r2 (or
any r in the classically allowed region r < r1) is larger than that at r2 by a WKB factor of

exp(∫ r2

r

dr√
fh

√
V − ω2) = exp⎛⎝l∫

r2

r

dr√
fh

√
f

r2
− (ω

l
)2⎞⎠ . (5.42)

There is a subtlety here: in addition to this decaying solution, there is also an
exponentially growing solution and the eigenstate will in general be a linear combination
of the two if there is a second classically allowed region when r > r2 (as in the scenario of
Fig. 5.5). If both solutions contribute with comparable coefficients, then the eigenstate will
not be exponentially larger at r than it is at r2 as we have claimed. That phenomenon occurs,
for instance, in the symmetric double well potential familiar from quantum mechanics.
However, that kind of behavior is special to the symmetric, degenerate case. As long as the
energy differences between approximate eigenstates localized on either side of the barrier is
larger than the exponentially small tunneling factor, the true eigenstates of the system will
be exponentially well localized on one side of the barrier, and we can restrict attention to
those localized in the r < r1 region.

8We treat r1 and r2 as if they are less than R for the puprose of approximating the potential. However,
if they are larger than R it makes little difference. In the large-l limit the extra terms in (5.38) become
irrelevant for r < r2.
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It is clear that (5.42) can be made arbitrarily large by making l large. Speficially,
let α = ω/l where ω and l are the modes considered above which are suppressed and give
behavior (5.42). Now consider the portion of the sum (5.31) concentrated on the line of
fixed α. Thus, (5.31) will not converge and there will not be a smearing function for points
r < r2. We should note that unlike the black hole case considered earlier, which did not have
a smearing function for any bulk point, for a potential like in Fig. 5.5 there is a smearing
function for bulk points at large r.

A remaining question is the converse of our statement: if f(r)/r2 has non-positive
slope for all r, is the smearing function guaranteed to exist? In this case there are no turning
points at intermediate values of r, and hence no opportunity for exponential WKB factors.
However, it is possible that the magnitude of the slope of f(r)/r2 is small for some range
of r, and then the 1/√p factor in (5.33) can become large. It is conceivable that one could
still make sense of (5.31), despite power law growth in the summand, through regulation
and analytic continuation. This requires further analysis, and is something we intend to
investigate in subsequent work.

5.5.2 Trapped null geodesics

We have established a smearing function does not exist in a black hole background.
In a general static spherically symmetric spacetime, we have shown that it does not exist
if the metric has the property (5.41). In a more general spacetime without a high degree
of symmetry, the mode sum approach to constructing a smearing function is inapplicable.
This motivates us to search for a simply proxy for the existence of a smearing function.
In this section we explore the following proposal: there is a smearing function iff all null
geodesics have at least one endpoint on the boundary.

A smearing function allows one to make the statement (5.2) about the mapping
between bulk and boundary operators. However, finding a smearing function is a classical
field theory problem. At the level of individual modes we saw a smearing function for
a point B in the bulk fails if there are modes whose imprint on the regulated boundary
is exponentially small compared to their value B. Throughout this chapter we held the
boundary imprint fixed and saw the value at B grow arbitrarily large, causing (6.6) to
diverge. Keeping the field value at B fixed, this would correspond to modes with boundary
imprint becoming arbitrarily small.

Since field configurations are built out of modes, we can state this as: a smearing
function fails to exist if there are bulk field solutions Φ(B) with arbitrarily small boundary
imprint. When one takes the geometric optics limit, field solutions become arbitrarily well
localized along null geodesics. At a heuristic level, this motivates the simple criterion of
trapped null geodesics, which we will now explore quantitatively..9

9In [9, 174] it was shown for a large class of hyperbolic differential equations that the diagnostic if
reconstruction of a bulk field depends on boundary data continuously (for a particular choice of boundary
norm) is that there not be any trapped null geodesics. In [31] null geodesics were explored in the context of
subregion dualities due to these results and with the motivation of establishing if a collection of boundary
observes can physically reconstruct the bulk field in a subregion of AdS. This question is of secondary concern
to us here; our interest is rather in the nature of the bulk-boundary dictionary (if (5.2) is possible).
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Figure 5.6: The equation for a null geodesic is that of a particle traveling in a 1-d potential
(5.44). The potential is plotted for (a) pure AdS and (b) AdS-Schwarzschild (M = 1 in
AdS4). In pure AdS all null geodesics have an endpoint on the boundary, as can be seen
from the figure on the left. This is in contrast to spacetime with horizons (right figure)
which have some null geodesics which are trapped as a result of the potential U vanishing
at the horizon. More generally, whenever there are trapped null geodesics, then there is no
smearing function for some points in the bulk.

Geodesic equation

To find the motion of null geodesics in the spacetime (5.14), we note that the
timelike Killing vector gives the conserved quantity E = f ṫ, and the Killing vector in one of
the angular directions, θ, gives L = r2θ̇. Here we are using the notation ẋµ ≡ dxµ/dλ where
λ is the affine parameter.

The geodesic equation can be written as

f

h
ṙ2 +L2 f

r2
= E2. (5.43)

This is just the Newtonian energy conservation equation for a particle with position-
dependent mass moving in a potential

U = L2 f

r2
. (5.44)

In black hole backgrounds the potential (5.44) vanishes at the horizon, leading to trapped
null geodesics. More generally, (5.44) tells us there are no trapped geodesics iff U ′ < 0 for
all r.

It is interesting to note that even a small dense star in AdS can have trapped null
geodesics. All the star needs is to have a radius R which lies in the range 2M < R < 3M .
The metric for r >R is described by the Schwarzschild metric. Since for the Schwarzschild
metric U ′(r) > 0 for r < 3M , null geodesics will get trapped at small r.

Trapped null geodesics ⇒ no smearing function

In 5.1 we saw that for the question of the existence of a smearing function, only
the behavior of the high l modes was relevant. In this regime (labeled A in Fig. 5.4)
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the potential in the Schrödinger equation for the modes was well approximated by (5.40).
Yet this is exactly the same as the classical particle potential (5.44) for a null geodesic.
Our condition for a smearing function not existing (5.41) is the same as the condition for
the existence of trapped null geodesics. Thus we conclude that if there are trapped null
geodesics, then a smearing function does not exist.

We note that since null geodesics are only sensitive to the local metric, trapped
null geodesics cannot tell us for which regions of the bulk there is no smearing function. If a
null geodesic is confined to r < rt, this indicates there is no smearing function for r < rt, but
it says nothing about a smearing function for r > rt. The existence of a smearing function
for r > rt depends, as we explained above, on the existence of additional classically allowed
regions with V (r) < ω2 for r > rt. A classical null geodesic confined to r < rt cannot probe
these aspects of the potential.

5.6 Conclusions

In this chapter we have further explored one of the approaches to establishing
the dictionary between bulk and boundary operators. In this approach, a bulk operator is
expressed in terms of bulk operators at asymptotically large radius, which are then mapped
to local boundary operators through (5.1). While this approach works in pure global AdS,
we have argued it can fail if there are bulk modes which have an arbitrarily small tail at large
radius. We have shown that AdS-Schwarzschild backgrounds are a case where this smearing
function approach fails as a result of modes with arbitarily high angular momentum l, but
fixed boundary energy, ω.

Understanding in general when a spacetime has a region for which a bulk operator
cannot be expressed in terms of smeared local boundary operators remains an important
future problem. We have shown that for static, spherically symmetric spacetimes, this ques-
tion can be answered by considering the behavior of modes with large ω and large l. These
modes satisfy a Schrödinger-like equation with a potential that is the same as the potential
experienced by classical null geodesics. These results suggest that a smearing function may
not exist for some bulk points in any spacetime which has trapped null geodesics .

The extent to which the absence of a smearing function modifies the bulk-boundary
dictionary remains to be seen. It is possible one can obtain an approximate smearing
function by imposing a cutoff in the bulk and excluding high l and high ω modes from the
sum (5.31) defining the smearing function. Additionally, as we discussed, the existance of a
smearing function is a more stringent requirement than simply being able to reconstruct a
bulk field solution given some particular boundary data. To this extent, even though (5.7)
may not exist, (5.6) exists at N =∞. However, unlike a smearing function, it is unclear that
(5.6) can be generalized to situations with broken spherical and time-translation symmetry,
and so may be of limited use. Another option would be to try to construct a smearing
function which uses the complexified boundary, as done in [89] for AdS-Rindler, and perhaps
this would gives clues as to what the real spacetime representation of the bulk-boundary
map is.

When a smearing function does exist, it means that bulk data provided at large
radius for a sufficient time extent completely determines the bulk everywhere. In a way, it
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makes holography seem less powerful; a spatial direction has just been replaced by a time
direction. Of course, the power of AdS/CFT is due to the CFT Hamiltonian which one
can use to evolve the right side of (6.6) to a single time. The resulting operator is highly
nonlocal and known as a precursor [148]: an operator which encodes what happened deep
in the bulk long before casuality allows a local operator O(b) to know about it.

The absence of a smearing function makes the holographic dictionary more elusive.
Bulk evolution combined with boundary evolution are not even in principle sufficient to
answer the question of what the precursers are. Other methods must be developed to find
the dictionary between bulk operators and nonlocal boundary operators.
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Chapter 6

Scanning Tunneling Macroscopy,
Black Holes, and AdS/CFT Bulk
Locality

6.1 Introduction

This chapter concerns reconstructing the state of the anti-de Sitter (AdS) bulk
from the conformal field theory (CFT) boundary. Finding which CFT quantities encode
the bulk and, if so, in what ways has been actively pursued recently, e.g. [106, 97, 152,
111, 116, 60, 58, 102, 4, 31, 118, 110]. One standard approach is to start with local CFT
data and use bulk equations of motion to evolve radially inward. The questions we seek
to answer are: under what circumstances is this evolution possible, how deep into the bulk
can we evolve, on what scales can the bulk be reconstructed, and what assumptions about
the bulk state must be made?

We first address these questions in a simpler context: the electromagnetic field in
Minkowski spacetime. Given boundary field data on a timelike codimension-1 hypersurface
(z = 0), can the electromagnetic field be determined everywhere (z > 0)? Suppose the
bulk is filled with homogeneous air. The only solutions to the wave equation consistent
with translation symmetries are traveling waves, and reconstruction is trivially achieved.
On the other hand, suppose that the bulk is filled with air for 0 ≤ z < zg and with glass
for z > zg. The translation symmetry being broken, there is now a new class of solutions:
waves which are traveling for z > zg but evanescent for 0 ≤ z < zg. Evanescent modes
are solutions with imaginary momentum. While legitimate solutions of the wave equation,
these modes are forbidden in vacuo because of exponential growth at large z and hence non-
normalizability. The presence of glass at finite z cuts off this unboundedness and renders
the mode permissible. Reconstructing the field inside the glass from measurements at z = 0
is hopeless; a small mistake will get exponentially amplified. It would be like trying to
measure the electromagnetic field inside a waveguide while standing a kilometer away. In
fact, even reconstruction of the field for 0 ≤ z < zg from the boundary data at z = 0 is
no longer straightforward. If we do not measure the evanescent modes (in the absence of
assumptions on the form of the solution), we can not reconstruct the field anywhere. We
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can, however, measure the evanescent modes at z = 0 to some extent without resorting to
exponential precision. If we do then the field, coarse-grained in x over a scale σ, can be
reconstructed, but only for z < σ.

We next address the reconstruction question in the context of the AdS/CFT cor-
respondence: we consider a free scalar field in a fixed asymptotically AdS background. A
background which is pure AdS, or a perturbation thereof, is like the electromagnetic field in
the vacuum - exact reconstruction using boundary data is possible. Thus, local CFT opera-
tors give a probe of the bulk on the shortest of scales. A background with a small AdS black
hole is like putting in a region with glass. The geometry in the black hole atmosphere, the
region from 2M to 3M , changes the boundary conditions and permits evanescent modes.
Analogously to the case with glass, reconstructing the field in the atmosphere is hopeless.
Reconstructing the field far from the black hole is possible to some extent, and like in the
case of the electromagnetic field, requires measuring the evanescent data. The condition
z < σ translates into the ability to resolve the bulk on AdS scales and no shorter. The mea-
surement of evanescent modes forms the basis of the functioning of a Scanning Tunneling
Microscope (STM). In this sense, the CFT is acting like an STM for macroscopic scales.

It may seem puzzling that a small black hole deep in the bulk should have any
impact on our ability to reconstruct the bulk close to the boundary. One may pretend
the evanescent modes don’t exist and work only with the propagating modes. This might
be a good approximation for some states and for regions close to the boundary, but it
is one that is violated by legitimate finite energy solutions having a significant coefficient
for an evanescent mode. Even in the Hartle-Hawking vacuum, the CFT Green’s function
G2(ω,k) ( given by the Fourier transform of the finite temperature two-point correlator⟨O(t,x)O(0,0)⟩T ) is nonzero but exponentially small ∼ exp(−α̃∣k∣/T ) in the evanescent
regime k ≫ ω. The evanescent modes are part of the spectrum of states, so even if one
might opt to ignore them for two-point correlators, they necessarily contribute to any finite-
temperature n−point function as intermediate states.

We have organized the chapter as follows. In Section 6.2, we formulate in Minkowski
spacetime the problem of spacelike reconstruction from timelike boundary data. We show
that reconstruction is exact in situations with only propagating modes but requires expo-
nential precision in situations with evanescent modes. In the latter situation, reconstruction
without exponential precision is possible but only at the cost of averaging over directions
parallel to the boundary, and only out to a distance set by this averaging scale. In Section
6.3, we formulate the reconstruction problem in AdS space and demonstrate that the situ-
ation is exactly parallel to the Minkowski spacetime counterpart. In pure AdS, all modes
are propagating and the reconstruction is exact. In an AdS black hole background, evanes-
cent modes open up near the black hole horizon and reconstruction requires exponential
precision. Here again, reconstruction without exponential precision is possible but only at
the cost of an AdS scale averaging over directions parallel to the boundary. In Section
6.4, via the AdS/CFT correspondence, we discuss the impact of evanescent modes on bulk
reconstruction from the CFT viewpoint. We show that in general precise determination of
a Green’s functions at finite temperature requires exponential precision. In the Appendix
6.6 we review evanescent modes in optics, the principles of a microscope, and scanning
tunneling (optical) microscopy (STM).
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Figure 6.1: The setup of bulk reconstruction in (2 + 1)-dimensional Minkowski half-space
R

2,1
+

. We have a bulk field φ(x, t, z) obeying the wave equation, which we wish to reconstruct
from the data φ(x, t,0) on a timelike hypersurface at z = 0.

6.2 Bulk reconstruction in Minkowski space

In this section we pose the question: for a field φ(x, t, z) satisfying the wave equa-
tion in (2+ 1)-dimensional Minkowski spacetime 1, is the boundary data φ(x, t,0) specified
at a timelike hypersurface z = 0 sufficient to reconstruct the field φ(x, t, z) everywhere?
(See the setup shown in Fig. 6.1.) The wave equation admits solutions with both real
and complex momentum. The solutions with real momentum are the propagating waves,
e±ikzz. If the space is everywhere homogeneous, such as pure Minkowski space, then these
are the only admissible delta-function normalizable modes. In this case, reconstruction of
φ(x, t, z) from the boundary data φ(x′, t′,0) works perfectly — we show in Sec. 6.2.1 that
the smearing function K(x, t, z∣x′, t′) whose convolution with φ(x′, t′,0) yields φ(x, t, z) is
well-defined everywhere in the bulk. On the other hand, if the space is inhomogeneous by,
for instance, having a spatially varying index of refraction, then modes with imaginary mo-
mentum can become permissible. Instead of propagating, these modes grow exponentially
in the z direction: e±κzz. They are known as “evanescent modes”. Our goal is to point
out that the evanescent modes cause serious difficulties in reconstructing the field anywhere
from given boundary data.

6.2.1 Success with propagating modes

We consider the wave equation in (2 + 1)-dimensional Minkwoski spacetime R2,1:

(−∂2t + ∂2x + ∂2z) φ(x, t, z) = 0. (6.1)

We will be interested in reconstructing φ(x, t, z) from boundary data φ(x, t,0) specified on
a timelike hypersurface b at z = 0. To accomplish this, we decompose the solutions to (6.1)
in terms of the propagating wave basis:

φ(x, t, z) = ∫ ∫ dkx dω φ(kx, ω) e−ikxx−ikzz−iωt, (6.2)

1Extension to higher dimensions is straightforward and does not reveal any new physics.



93

where the delta-function normalizability condition puts

kz ≡
√
ω2 − k2x ∈ R

+ → ∣ω∣ ≥ ∣kx∣. (6.3)

We chose kz to be positive, as we will for simplicity assume there are only left-movers.2

The decomposition (6.2) is slightly nonstandard as ω is one of the independent variables
as opposed to kz. This is a convenient choice here as the boundary data is specified on a
timelike hypersurface. The Fourier transform of φ(x, t, z = 0) yields

φ(kx, ω) = ∫ ∫
b
dx′dt′ eikxx

′
+iωt′φ(x′, t′,0). (6.4)

Inserting (6.4) into (6.2),

φ(x, t, z) = ∫ ∫
b
dx′dt′ K(x, t, z∣x′, t′)φ(x′, t′,0). (6.5)

Here, K is the smearing function given by

K(x, t, z∣x′, t′) = ∫ ∞

−∞

dω∫∣kx∣≤∣ω∣ dkx e
−iω(t−t′)e−ikx(x−x

′)e−i
√
ω2
−k2x z

= ∫
∞

−∞

dkx∫∣ω∣≥∣kx∣ dω e−iω(t−t
′)e−ikx(x−x

′)e−i
√
ω2
−k2x z. (6.6)

The integral in (6.6) is convergent, so (6.5) realizes our goal of reconstructing φ(x, t, z) in
terms of the boundary data φ(x, t,0). This is not surprising, as for every mode the field at
some value of z is related to the field at z = 0 by the phase-factor eikzz associated with the
translation, where kz is given by (6.3).

It will be useful for later to first reconstruct per each monochromatic ω mode and
then combine them together. We then use

φω(x,0) ≡ ∫ ∞

−∞

dt eiωt φ(x, t, z = 0) (6.7)

to reconstruct φω(x, z),
φω(x, z) = ∫ ∞

−∞

dx′ Kω(x, z∣x′) φω(x′,0) (6.8)

where
Kω(x, z∣x′) = ∫∣kx∣≤∣ω∣ dkx e−ikx(x−x′)e−i

√
ω2
−k2x z. (6.9)

The full smearing function is then recovered through the spectral sum

K(x, t, z∣x′, t′) = ∫ ∞

−∞

dω Kω(x, z∣x′)e−iω(t−t′). (6.10)

2Assuming there are only left-movers allows us to connect more directly with the analogous problem
in AdS space. The more general case in Minkowski space for which right-movers are also included is a
straightforward extension and requires specifying ∂zφ(x, t, z = 0) in addition to φ(x, t, z = 0) at the boundary
b.
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6.2.2 Reality with evanescent modes

In the above discussion we restricted kz to be real-valued as a consequence of the
delta-function normalizability condition for the modes. If one were to consider kx > ω such
that kz is imaginary: kz ≡ iκz, a mode would take the form

e−ikxxe−iωteκzz. (z ≥ 0) (6.11)

This solution diverges at large z, and is therefore not admissible. We were thus correct
to discard it. However, if the Minkowski space is inhomogeneous in the z-direction, often
solutions such as (6.11) become admissible. In Appendix 6.6, we give two situations which
generate evanescent modes: (1) a wave traveling in a medium with a z dependent index of
refraction, and (2) a wave scattering off a material that has an x-dependent transmission
coefficient and is located at some fixed z.

If evanescent modes are present, then they pose a serious challenge for reconstruct-
ing the field from the z = 0 boundary data. Unlike propagating modes, evanescent modes
will have an exponentially suppressed imprint on the z = 0 boundary compared to their
value at z > 0. This exponential behavior renders the reconstruction procedure of Sec. 6.2.1
inapplicable: the smearing function K (6.6) is ill-defined because of the divergence from the
kx ≫ ω region of integration. For the rest of this section, we simply assume that evanescent
modes are present and do not inquire as to their origin. An exemplary situation to keep
in mind is the one where the index of refraction of the background changes at some large
value of z > 0. For simplicity, we will assume the change made at large z is such that all
possible evanescent modes are produced so that the mode solutions now contain all values
of kx regardless of ω. We would like to understand the impact this has on reconstructing
the field from boundary data.

We can take two approaches in dealing with evanescent modes. We may ignore
the modes from the outset, contending that they are not propagating. Or we may include
the modes. We now argue that in both cases we will face unavoidable limitations on the
resolving power of the reconstruction.

6.2.3 Ignoring evanescent modes

Consider first the approach of ignoring the evanescent mode data at the boundary:
we will not try to extract their coefficient from the boundary data provided at z = 0. In
the procedure of Sec. 6.2.1, we are now in the situation that the Fourier decomposition
of φ(x, t, z) (6.2) extends over all kx and ω, but we truncate the Fourier decomposition of
the smearing function K in (6.6) to ∣ω∣ ≥ ∣kx∣ . Reconstruction of φ(x, t, z) can be done
monochromatically per each frequency ω, first reconstructing φω(x, z) and then combining
them to get φ(x, t, z). Reconstruction of φω(x, z) is the same problem as the one encountered
in optics when one tries to resolve features of a sample by shining monochromatic light on
it. (For those who need to refresh optics, consult Appendix 6.6.) Ignoring the evanescent
modes is the standard assumption in optical microscopy: the detector (playing the role of
the boundary) is far from the sample, so the magnitude of the evanescent modes at the
screen is exponentially small and is zero for all practical purposes. For this reason, we only
have knowledge of features of the sample, T (kx), for ∣kx∣ ≤ ∣ω∣. This is the standard result
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we would expect: detecting light of frequency ω, we can probe the features of a sample but
only on scales larger than the resolution power set by ω−1.

Specifically, we assume the boundary data specified at the z = 0 hypersurface
tells us nothing about the coefficients φω(kx) for ∣kx∣ ≥ ∣ω∣. Clearly, we can then not
hope to confidently reconstruct φω(x, z), as the coefficient φω(kx) for the large kx could
be arbitrarily large. To ameliorate this, we may ask for reconstructing the field φω(x, z)
coarse-grained over x with the Gaussian window function of resolution scale σ. We denote
this coarse-grained field as φσω(x, z):

φσω(x, z) = ∫ ∞

−∞

dx′ e−(x−x
′)2/σ2

φω(x′, z) . (6.12)

We would expect that reconstructing φσω(x, z) should only require knowledge of modes with∣kx∣ ≲ ∣σ∣−1. To verify this, we rewrite (6.12) as

φσω(x, z) = ∫ dkx φω(kx, z) e−k2xσ2

e−ikxx. (6.13)

Unless φω(kx, z) grows exponentially in k2x for large kx, its value is irrelevant for ∣kx∣ ≳ ∣σ∣−1.
Therefore, if we are only interested in reconstructing the field φω(x, z) coarse-grained over
x with resolution scale σ, then we can reconstruct it using only the propagating mode data
at the z = 0 boundary as long as ∣ω∣ ≳ 1/σ (and provided a reasonable assumption is made
about the behavior of the ∣kx∣≫ ∣ω∣ modes).

All seems well, but there is a problem. To reconstruct φσ(x, t, z) for all time t, we
need φσω(x, z) for all ω. Yet, there is no σ for which this condition will be satisfied: for any
σ, there is an interval of missing ω, ∣ω∣ < 1/σ. This means that, with the assumption we
made that we ignore the evanescent mode data at z = 0, we can not possibly reconstruct the
temporal evolution of the field at any z location, regardless of how large a coarse-graining
resolution σ in x we are willing to compromise for. In short, for reconstruction relying only
on propagating mode data, coarse-graining over x achieved reconstructability over z but
sacrificed reconstructability over t.

6.2.4 Dealing with evanescent modes

Consider next the approach of retaining all the evanescent mode data at the bound-
ary. If we wish to resolve the field on a scale ∣∆x∣ ≃ σ, we expect to require knowledge of the
field profile with kx ≲ σ

−1. But then, evanescent modes with ω = 0 and kx = σ
−1 behave like

ez/σ, and we would expect we can determine φσ(x, t, z) only for z ≲ σ. At bulk locations z
larger than σ, the evanescent modes grow exponentially large compared to what we have
access to on the boundary. We will show below that one would require exponential accuracy
in the knowledge of the z = 0 boundary data to reconstruct the field at bulk regions as deep
as z ≫ σ. To foreshadow considerations in Sec. 6.3 for AdS space, let us mention that
the criterion z ≲ σ will turn into σproper(z) ≳ LAdS[1 + ε(z)], where σproper(z) is the proper
distance at a bulk location z corresponding to the coordinate distance σ, up to a correction
factor ε that depends on details of the bulk.

We now redo the computation of Section 6.2.1 but with evanescent modes taken
into account. The monochromatic field φω(x, z) is expressed in terms of φω(x,0) through
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Kω of (6.9). In the expression (6.9) for Kω, we must integrate over all ∣kx∣ < ∞. We
split this integral into contributions of the propagating modes and the evanescent modes,
respectively,

Kω(x, z∣x′) = ∫ ω

−ω
dkx e

−ikx(x−x′)e−i
√
ω2
−k2x z

+∫∣kx∣>ω dkx e
−ikx(x−x′) e

√
k2x−ω

2 z. (6.14)

The second integral is badly divergent. Thus, the evanescent modes have obstructed our
ability to reconstruct the field in the bulk. As before, we instead ask for reconstructing the
more physical quantity: the field coarse-grained over x with a Gaussian window function.
We have

φσω(x, z) = ∫
b
dx′ Kσ

ω(x, z∣x′) φω(x′,0) (6.15)

where
Kσ

ω(x, z∣x′) = ∫
b
dx̄ e−(x−x̄)

2/σ2

Kω(x̄, z∣x′) . (6.16)

Inserting (6.9) into (6.16) yields

Kσ
ω(x, z∣x′) = ∫ dkx e

−ikx(x−x′) e−i
√
ω2
−k2x z e−k

2
xσ

2

. (6.17)

Asking for the field smeared over σ in the x direction thus amounts to coarse-graining the
smearing function (6.14) over momentum kx with the Gaussian window function exp(−k2xσ2)
to suppress large kx. The kx ≫ ω part of the integral in (6.17) gives

[e−2i(x−x′)z/σ2

⋅ ez
2/σ2] e−(x−x′)2/σ2

. (6.18)

Having smeared out in the x-direction, let’s examine the behavior in the bulk z-direction.
As measured at deeper bulk regions z ≫ σ, this function oscillates rapidly in phase and

grows exponentially in amplitude. So, to determine the σ−grained field at a z greater
than σ, one needs to measure the boundary data φω(x, z = 0) with exponential precision. In
short, for reconstruction retaining evanescent mode data, coarse-graining over x ameliorated
reconstructability over z, for a depth of order the coarse-graining scale or so.

6.2.5 Window function

In both approaches to dealing with evanescent modes, bulk reconstruction requires
a choice of a window function for the x-direction to regularize the divergence in (6.14). In
(6.17), we chose a Gaussian window function to achieve the regularization. What about
other choices? One might try a hard-wall window function, Θ(σ−1−∣kx∣), which gives perfect
regularization, and whose x-space window function takes the form

sin (x−x′
σ
)

x − x′
. (6.19)

One might also try a Laplace window function, e−kxσ, but this function would be insufficient
to regulate the divergence. Details of reconstruction certainly depend on the choice of the
window function, but the fact we are limited by resolution bounds do not depend on the
choice.
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The choice of the window function is also a practical matter for the Scanning
Tunneling Microscopy (STM). The basis of STM is the measurement of evanescent modes.
In the problem of resolving the features of a sample (Appendix 6.6), the location of the
sample is held fixed and bringing the STM probe needle a distance σ close to the sample
allows image resolution on a scale σ. From the optics perspective, determining the spatial
features of a sample regardless of the frequency with which it is illuminated, as an STM
allows, is an enormous achievement. We have shown that the ability to do this in the STM
context translates into our ability to reconstruct the bulk field φσ(x, t, z) for z < σ from
boundary data. While the precise depth to which reconstruction is possible would certainly
depend on the chosen window function, the fact that the STM probes to a depth set by the
image resolution scale, is independent of the choice.

One should note that the coarse-grained smearing function, for any coarse graining
other than the hard wall choice (6.19), makes little distinction between σ less than or greater
than 1/ω. This appears in tension with the standard assumption (reviewed in Sec. 6.2.3)
that for σ > 1/ω, reconstruction should still be possible even while ignoring the evanescent
modes. However, regardless of ω, Kσ

ω has the same behavior coming from kx ≫ ω and
leading to the same complications with reconstruction for z ≳ σ. The resolution is that the
smearing function makes no assumption regarding the high kx behavior of the field we aim
to reconstruct, whereas our previous argument that modes with kx > σ are not needed for
the σ-grained field relied on a (very reasonable) assumption about the high kx behavior of
the field.

6.2.6 Conclusions

Let’s summarize what we have learned so far. Our question of interest has been
whether we can reconstruct the field φ(x, t, z) using the data φ(x, t, z = 0) at the z = 0
timelike hypersurface. We assumed we can do this reconstruction monochromatically, re-
constructing φω(x, z) from φω(x,0). If the medium is homogeneous and only propagating
modes are present, then the reconstruction works flawlessly and is given by (6.5, 6.6).
If, however, the medium is inhomogeneous and evanescent modes are present, then recon-
structing φ(x, t, z) point by point in the bulk is not achievable. We could instead reconstruct
φω(x, z) coarse-grained in x with a σ-sized resolution, φσω(x, z). This reconstruction can be
done, while not measuring any of the evanescent modes, but only for σ ≳ 1/ω. Since recon-
structing φσ(x, t, z) for all time t requires reconstructing φσω(x, z) for all ω, we are unable
to reconstruct φσ(x, t, z) for any z. If, on the other hand, we do include the evanescent
modes, the reconstruction of φσ(x, t, z) can be done but only for the bulk depth z ≲ σ. This
is because reconstructing for z ≳ σ would require exponential accuracy in measuring the
value of φ(x, t,0).
6.3 Bulk reconstruction in AdS space

We now turn to AdS space and repeat the bulk reconstruction analysis. In short,
we will find that the conclusion is exactly the same as in the flat Minkowski space case,
except that we now need to understand the resolving power in proper distances. In Sec. 6.3.1
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we make some general remarks regarding the relation between restricting the boundary data
to local CFT operators and reconstructing a bulk AdS field from this data. In Sec. 6.3.2 we
focus on reconstruction in the near-boundary region of the bulk. In Sec. 6.3.3, we consider
evolving deeper into the bulk and find how the resolving power is modified.

6.3.1 Local CFT operators as boundary data

The AdS/CFT dictionary in extrapolate form [6] relates the boundary limit of a
bulk operator φ̂ to a local CFT operator O:

limz→0 z
−∆ φ̂(x, t, z) = O(x, t). (6.20)

Hereafter, the only boundary CFT data we will consider is that of local CFT operators.
We also hold the CFT Hamiltonian fixed, corresponding to the restriction that all non-
normalizable modes of the bulk field φ are turned off. So, different states of the bulk field φ
correspond to exciting different normalizable modes. The CFT operator O(x, t) dual to the
bulk field φ has a scaling dimension ∆ set by the mass of the bulk field φ, ∆(∆ − d) =m2.
In non-vacuum states, the CFT operators acquire nonzero expectation values.

Defining the boundary tail through limz→0φ(x, t, z) = φ0(x, t)z∆, one would like
to express the field φ(x, t, z) in the bulk in terms of the boundary tail φ0(x′, t′). This
question is a nonstandard boundary-value problem of evolving boundary hyperbolic data at
a timelike hypersurface into the bulk along a spacelike ‘radial’ direction. This is precisely
the sort of problem we addressed in section 6.2 in the simpler context of flat Minkowski
space. In normal Cauchy evolution of an initial-value problem, we take a Fourier transform
with respect to the spatial direction x, z of elliptic data on the t = 0 Cauchy surface to
obtain their spectral initial values. Here, we must work with hyperbolic data on the z = 0
timelike hypersurface. So, as in section 2, instead of doing a Fourier transform with respect
to z, we do one with respect to boundary time t and obtain spectral boundary values.

Suppose complete reconstructability of the bulk is possible. Then, the bulk op-
erator φ̂(x, t, z) at a bulk location z is a linear combination of the CFT operator O(x, t),
smeared over the boundary hypersurface b:

φ̂(x, t, z) = ∫
b
dx′ dt′K(x, t, z∣x′, t′) O(x′, t′) +⋯ , (6.21)

where the ellipses refer to nonlinear interactions in the bulk. Although (6.21) is an operator
statement, as a result of (6.20), finding K is reduced to a classical field theory problem. In
the limit of weakly interacting bulk dynamics (corresponding to arbitrarily large CFT cen-
tral charge), the nonlinear bulk interactions denoted by the ellipses in (6.21) are negligible
and the reconstruction can be done mode by mode. In what follows, we will only be inter-
ested in the leading-order term of (6.21). In the bulk, we then have a fixed background on
which the non-interacting bulk field φ(x, t, z) evolves according to the AdS wave equation.

Indeed, we can construct a smearing function for pure AdS space, as was done
in [90, 89]. Using perturbation theory, we can also construct a smearing function for an
asymptotically AdS space connected perturbatively to pure AdS space (such as one with a
planet). In cases when a smearing function exists, through (6.21), the operators O provide
us with a probe of bulk locality on as short of scales as the semiclassical equations of motion
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are valid. In cases when a well-defined smearing function K can be constructed, (6.21) can
be used to express bulk n-point correlators of φ̂ in terms of boundary CFT correlators of
O.

We stress that having a well-defined smearing function is a more stringent require-
ment than simply having an algorithm for determining the bulk field φ(x, t, z) from given
conformal boundary data φ0(x′, t′). For instance, one might suppose that for any particular
bulk solution, even if φ0(x′, t′) is extremely small, one can pick an appropriate resolution for
one’s measuring device so as to see it and reconstruct φ(x, t, z). However, it could be that
no matter how good a resolution one picks, there always exist field configurations having
a near-boundary imprint φ0(x′, t′) that is below the resolution power of one’s measuring
apparatus. In such a case, one does not have a well-defined smearing function as its ex-
istence implies a state-independent way of reconstruction. In a sense, one has to pick a

priori the resolution power without preconceived knowledge of which field configurations
will be under consideration. Indeed, in some cases, there is no smearing function [118]. A
black hole background is such a case – there are modes with ω ≪ l (where l is the linear or
angular momentum measured in units of the AdS-scale) whose relative boundary imprint
e−l is arbitrarily small.

A remark is in order regarding our working assumption on the boundary data.
Nothing we have said so far regarding reconstruction has made use of there actually existing
a dual CFT, except that we assumed from the outset that the boundary conformal data is
spanned by the set of local CFT operators. We can consider a collection of near-boundary
observers who reconstruct the bulk field, their limitation of being confined to z = 0 is
overcome by making measurements over an extended period of time. This setup is the
equivalent of the statement that a complete set of local CFT operators O(x, t) smeared
over space and time is sufficient to reconstruct the bulk. It is important to note that
this is a working assumption. The CFT is equipped with many quantities that local near-
boundary observers are not. For instance, one could reconstruct the bulk by measuring
CFT Wilson loops [150, 129, 148] or entanglement entropy [154]. An important question
is in what situations data provided by expectation values of local CFT operators O(x, t)
is not sufficient to reconstruct the bulk and these other CFT quantities must be invoked.
In situations when local operators O(x, t) are insufficient to exactly probe bulk locality,
we would like to understand if the O(x, t)’s are at least sufficient to probe the bulk fields
coarse-grained over some scale.

6.3.2 Bulk reconstruction near the boundary

Our goal is to study bulk reconstructability for general bulk spacetimes that
asymptote to pure AdS space near the timelike boundary. Let’s first consider the case
of reconstructing the bulk field at locations close to the boundary. There, the metric is ap-
proximated by that of pure AdS space, so we should be able to make universal statements
concerning the reconstruction. The mode solutions on a general asymptotic AdS space can
be classified into propagating and evanescent, depending on whether the the bulk radial
momentum-like quantum number is real or imaginary. If the bulk supports only propagat-
ing modes such as in pure AdS space, one can show that φ(x, t, z) can be reconstructed
exactly. On the other hand, if somewhere in the bulk there is a significant change in the
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geometry, then evanescent modes may become admissible.
In this section, in situations where evanescent modes are present, we will show

that: (1) if we completely ignore boundary data from the evanescent modes, the bulk
can not be reconstructed anywhere or on any scale, and (2) if we include boundary data
from the evanescent modes, but not to exponential precision, we are able to reconstruct the

bulk, but only on AdS-size scales and not shorter; viz. we can reconstruct φσ(x, t, z) for

σproper > LAdS.

AdS smearing function

Let’s first work out the explicit functional form of the smearing function. Consider
the massive scalar wave equation

1√
g
∂µ(√ggµν∂νφ) −m2φ = 0, (6.22)

in the Poincare patch of (d + 1)-dimensional AdS space 3 :

ds2 =
−dt2 + dx2

+ dz2

z2
. (6.23)

The modes are
φω,kx = 2

νΓ(ν + 1)q−ν zd/2 e−ikxx−iωt Jν(qz), (6.24)

where q =
√
ω2 − k2x is like a bulk radial momentum and ν2 = m2

+ (d/2)2. In (6.24),
we normalized the modes so that they approach plane waves of unit amplitude near the
boundary:

z−∆φω,kx → e−ikxx−iωt as z → 0 . (6.25)

We would like to express the bulk field φ(x, t, z) in terms of the conformal boundary
data φ0(x, t) at the z = 0 hypersurface b,

φ(x, t, z) = ∫
b
dx′dt′ K(x, t, z∣x′, t′) φ0(x′, t′) . (6.26)

This equation is essentially identical to the one used in the context of reconstruction in
Minkowski space (6.5). The only difference is that since in AdS space all modes universally
die off near the boundary, on the right of (6.26), we used the conformal data of the field
φ0(x′, t′) ≡ limz→0z

−∆φ(x′, t′, z). We construct the smearing function K in the same way
as in Sec. 6.2.1: a Fourier transform of the hyperbolic boundary b allows us to extract
from φ0(x, t) the boundary amplitudes of all modes. This yields the smearing function
K(x, t, z∣x′, t′) given by

K(x, t, z∣x′, t′) = ∫ ∞

−∞

dω Kω(x, z∣x′)e−iω(t−t′), (6.27)

where
Kω(x, z∣x′) = 2νΓ(ν + 1)∫ ∞

−∞

dkx e
−ikx(x−x′)zd/2 q−νJν(qz) . (6.28)

We reemphasize that (6.28) is the counterpart of (6.9), except that AdS modes have different
behavior in the radial z-direction (6.24) as compared to Minkowski modes. The smearing
function (6.28) accounts for this difference.

3Hereafter, we shall suppress the AdS scale LAdS, and reinstate it in some of the final expressions.
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Figure 6.2: The bulk profile of the modes is found from solving the Schrödinger equation
in the above effective potential V (z). Modes with ω2

> k2 are propagating, whereas those
with ω2

< k2 are evanescent. In pure AdS space, evanescent modes are forbidden due to
their exponential divergence at large z. However, evanescent modes become allowed if there
is a change in the effective potential in the large z interior so as to cause the potential to
dip below k2.

Propagating modes

Let’s analyze in what circumstances the smearing function is well-defined. We
will find that, as in the Minkowski space analysis of section 2, the AdS smearing function
(6.28) is well-defined if there are only propagating modes. From (6.22), we see that the

z-component of the AdS modes, φωkx = u(z)z d−1
2 e−ikxx−iωt, satisfies

−
d2u(z)
dz2

+ V (z)u(z) = ω2u(z), (6.29)

where

V (z) = k2x + ν2 − 1/4z2
. (6.30)

The effective potential is plotted in Fig. 6.2. Toward the z = 0 boundary, the potential
is confining. Toward z → ∞, the potential becomes flat and we recover the behavior of
Minkowski modes. Indeed, in (6.24), the Bessel function asymptotes for qz ≫ ν to a plane
wave:

Jν(qz) ∼ 1√
qz
eiqz. (6.31)

It now remains to understand when the radial z-component of the momentum, q, is
real-valued. In pure AdS space, the effective potential is bounded from below V (z) ≥ k2x, so
the frequency is bounded by ω2

≥ k2x. This translates into the statement that q2 = ω2
−k2x ≥ 0.

We find that, as for homogeneous Minkowski space, pure AdS space has only propagating
modes. If the bulk space deviates from the AdS space, so long as the effective potential
V (z) > k2x for all z, there can only exist propagating modes. With propagating modes only,
the integrals that define the smearing function (6.28) and (6.10) are convergent and the
reconstruction is perfect. We conclude the the simple criteria for exact reconstruction of
the bulk near the boundary is that there are only propagating modes.
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At this point, we point out the need to exercise caution. While the reconstruction
for the near-boundary region appears independent of the geometry deep in the bulk, this is
actually incorrect. For instance, as we will see below, the presence of a black hole deep in
the bulk drastically modifies our ability to reconstruct the field anywhere in the bulk. This
is a consequence of the black hole changing the boundary conditions deep in the bulk and
permitting evanescent modes to appear.

Evanescent modes

Let us now assume that there is a change in the potential deep inside the bulk
such that the effective potential dips to V (z) < k2x and evanescent modes can occur. For
instance, if there is a black brane in the bulk of the Poincaré patch AdS space, then the
effective potential V (z) will vanish at the horizon and a continuum of evanescent modes
will be present just outside the black brane horizon. We will discuss in Sec. 6.3.3 if there
are other geometries for which evanescent modes can occur. For now, we simply assume
that evanescent modes are present and study their impact on the reconstruction.

Choosing kx > ω leads the z-component of the modes (6.24) to become

Jν(qz) = Jν(iκzz) = eiνπ/2Iν(κzz), (6.32)

where κz ≡
√
k2x − ω

2. For large κzz,

Iν(κzz) ∼ eκzz, (6.33)

and so this solution is precisely an evanescent mode. It is clear that the monochromatic
smearing function (6.28) is divergent if evanescent modes are included, and we can no longer
exactly reconstruct the field. This situation is completely analogous to what happened in
the context of Minkowski space in Sec. 6.2.3.

The reader may find it confusing that we can not reconstruct a local field even
close to the boundary, where the bulk asymptotes to pure AdS space. Indeed, the AdS/CFT
dictionary (6.20) tells us that knowledge of the local CFT operator O(x, t) should give the
local bulk field φ(x, t, z) at the boundary z → 0. If we were to regulate this expression at
z = ǫ so as to say that O(x, t) = ǫ−∆φ(x, t, ǫ), then we would appear to have a contradiction.
The resolution is that the proximity to the boundary, in the sense of the z-location at which
modes encounter the confining barrier of the AdS space, depends on the momentum of the
mode. We see from (6.31) that the mode at z ≫ νq−1 behaves as if it is in flat space,
while the mode at z ≲ νq−1 experiences the AdS confining barrier and decays as z∆. It is
the latter region for which (6.20) applies. In other words, the ǫ for which (6.20) starts to
become applicable is momentum-dependent.

AdS locality

If the evanescent modes are present, the spectral integral for the smearing function
(6.28) is divergent and we can not reconstruct φ(x, t, z). The best we can hope for is
to reconstruct a coarse-grained bulk field. As in the Minkowski case, we would like to
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reconstruct the field coarse-grained in the x-direction with resolution scale σ (6.12). Thus,
we should compute the σ-grained smearing function

Kσ
ω(x, z∣x′) = ∫

b
dx̄ e−(x−x̄)

2/σ2

Kω(x̄, z∣x′) , (6.34)

where Kω appearing in the integrand is given by (6.28). Hence,

Kσ
ω(x, z∣x′) = 2νΓ(ν + 1)∫ ∞

−∞

dkx e
−ikx(x−x′) zd/2q−νJν (√ω2 − k2x z) e−k2xσ2

. (6.35)

In the evanescent regime (kx > ω) and at bulk radial position z ≳ ν/√k2x − ω2, the Bessel
function undergoes exponential growth (6.33). Since ν is assumed to be of order 1, evalu-
ating (6.35) leads to the same behavior as in the analogous expression for the Minkowski
case (6.18). Thus, we conclude that we can only reconstruct the σ-grained field in the bulk
to the depth

σ ≳ z . (6.36)

Going to a bulk coordinate distance z deeper than σ would require exponential precision in
the measurements of φ0(x, t) at the timelike boundary hypersurface (z = 0).

So far, the conclusions are qualitatively the same as for the Minkowski space
problem. In AdS space, we need to go one step further and express the resolution bounds
in proper distances. The distance σ in which we have coarse-grained in the x-direction is
a coordinate distance, natural from the viewpoint of boundary data of the dual CFT. The
proper distance between two points (z1, x1, t1) and (z2, x2, t2) in AdS space is given by

(∆s)2 = 1

z1z2
[(z1 − z2)2 + (x1 − x2)2 − (t1 − t2)2] . (6.37)

So, converting the coordinate distance resolution ∆x = σ to the proper one, we have the
proper coarse-graining scale at bulk location z

σproper(z) = σLAdS

z
. (6.38)

Thus, (6.36) translates at radial depth z to a proper resolution bound:

σproper(z) ≳ LAdS. (6.39)

This is one of our main results: with our assumptions, in an asymptotically AdS space

which gives rise to evanescent modes, we can not reconstruct the bulk field any better than

the AdS scale. Moreover, the right-hand side of (6.39) being independent of z, we are able
to reconstruct the AdS bulk without limits on the depth, at least for the near-boundary
region.4

We derived the proper resolution bound (6.39) from analysis of the near-boundary
region of the bulk. For regions deeper in, the bound may be further modified. For instance,
for AdS black holes, the bound could also depend on the black hole horizon scale RBH as

4The result (6.39) was anticipated in [31] in the context of AdS-Rindler.
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well as the bulk depth z. On general grounds, we expect that the resolution bound takes
the form

σproper(z) ≳ LAdS [1 + ε(z,RBH)] , (6.40)

where ε is background-specific correction factor at the bulk depth z. In the next section,
we shall extract this correction for a large AdS black hole.

Once again, we have a clear analogy with Scanning Tunneling Microscopy (STM).
The invention of STM revolutionized microscopy: by placing a needle at a distance σ from
a sample, some of the evanescent modes could be captured, allowing resolution on a scale
σ. Remarkably, in AdS space, the resolution in the bulk is set by the AdS scale and the
reconstruction can be done to arbitrary bulk depth.

6.3.3 Bulk reconstruction deeper in

In this section we evolve deeper into the bulk. Specifically, we take an AdS-
Schwarzschild background and classify the types of modes present, and identify criteria for
the presence of evanescent modes in other backgrounds. We also find the correction ε in
(6.40) that the resolution bound (6.39) receives at locations deeper in the bulk.

Effective potential for modes

Consider a scalar field φ in a general spherically symmetric background that
asymptotes to AdS space,

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1. (6.41)

The field φ satisfies the wave equation (6.22). Separating φ as

φ(r, t,Ω) = ϕ(r)Y (Ω)e−iωt (6.42)

gives for the radial field ϕ(r),
ω2

f
ϕ +

1

rd−1
∂r(f rd−1∂rϕ) − l(l + d − 2)

r2
ϕ −m2ϕ = 0. (6.43)

Letting ϕ(r) = u(r)/r d−1
2 and changing variables to the tortoise coordinate dr∗ = f

−1dr

turns (6.43) into a Schrödinger-like equation

d2u

dr2
∗

+ (ω2
− V (r))u = 0, (6.44)

with the effective potential

V (r) = f [(d − 1)
2

f ′

r
+
(d − 1)(d − 3)

4

f

r2
+
l(l + d − 2)

r2
+m2] . (6.45)
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Figure 6.3: (a) The effective potential (6.45) for a small AdS black hole. The boundary of
AdS space is at tortoise coordinate r∗ = π/2, while the horizon is at r∗ = −∞. Evanescent
modes arise if the potential ever drops below the value at the local minimum present in
the pure AdS space (∼ l2). Here, this occurs because the potential approaches zero at the
horizon. (b) The effective potential for pure global AdS space.

Small AdS-Schwarzschild Black Hole

The AdS- Schwarzschild black hole metric is given by:

ds2 = −(1 + r2 − (r0
r
)d−2)dt2 + dr2

1 + r2 − ( r0
r
)d−2 + r2dΩ2

d−1. (6.46)

Here, we will be interested in a small black hole, so r0 ≪ LAdS and r0 ≈ 2M . In Fig. 6.3(a),
we plotted the effective potential (6.45) for a small black hole. There are four kinds of
modes, and can be classified depending on the ratio of ω to l. We characterize the modes
going from high ω to low ω.

1. ω ≳ l
r0
. These modes are higher than the angular momentum barrier and propagate

into the black hole; they correspond to throwing φ particles into the black hole.

2. l ≲ ω ≲ l
r0
. These modes are directly related to the modes in the pure AdS space

(plotted in Fig. 6.3 (b)). They correspond to the particles having sufficient angular
momentum so that they stay far away from the black hole and do not notice its
presence. They do differ from the pure AdS modes in that they have exponentially
suppressed tails which are propagating near the black hole.

3. l ≲ ω ≲ l
r0
. This is the same regime as type 2 modes, but these modes are the ones that

have most of their support close to the black hole and only an exponentially small
amplitude in the asymptotic region. We will call these modes trapped modes.

4. ω ≲ l. These are the evanescent modes. All possible evanescent modes, with any ω for
any value of l, are present as a result of the potential dropping to zero at the horizon.

As discussed in Sec. 6.3.2, it is only the evanescent modes which inhibit reconstruction
of the region near the boundary. The trapped modes inhibit reconstruction of the field,
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but only for regions close to the black hole (r < 3r0/2). Recall that we normalize all the
modes so that their boundary limit is φωlr

∆ → 1. The trapped modes are propagating in
most of the AdS bulk. Only when they encounter r ∼ 3r0/2, and have to pass under the
centrifugal barrier, do these modes begin to undergo exponential growth. Neither modes of
type (1) or (2) are problematic for reconstruction as they never undergo exponential growth
as compared to their boundary value.

We should emphasize that the difficulties with reconstruction in a black hole back-
ground are not due to the presence of the horizon, per se. One might think there should
be difficulties with reconstruction because there are now things which fall into the black
hole and so can’t be seen from the boundary (in other words, that modes of type (1) cause
difficulties). However, the case of pure Poincaré Patch is a counter-example. There, every-
thing falls into the Poincaré horizon, yet as we showed in Sec. 6.3.2, there are no difficulties
with bulk reconstruction. The only necessary criteria the modes need to satisfy for the bulk
reconstruction is that their magnitude at the bulk point of interest is not exponentially
larger than their boundary value.

It is interesting to ask in which backgrounds, aside from the AdS black hole, are
the trapped modes (type 3) present. For a static, spherically symmetric spacetime,

ds2 = −f(r)dt2 + dr2

g(r) + r2dΩ2, (6.47)

one could write down an effective potential (similar to (6.45)) and see if it has a barrier (a
local maximum). For the question of reconstruction, we are most interested in modes with
large l: if there are trapped/evanescent modes it is these that will be hardest to reconstruct.
So, we can simplify the analysis by taking the large l limit of the effective potential. For
any given r, in the large l limit, the effective potential simplifies to

V = f
l2

r2
, (6.48)

and the criterion for having trapped modes is that

d

dr
( f
r2
) > 0 (6.49)

for some value of r. In [118] it was shown that (6.49) implies that there is no smearing
function for some region in the bulk. The condition (6.49) can be achieved by having a
sufficiently dense planet so that its radius is less than 3M .

It is also interesting to ask in which backgrounds, aside from the AdS black hole,
are the evanescent modes (type 4) present. The criterion for having evanescent modes is
that the effective potential has a new global minimum, different from the one present in
pure AdS space which has the value ∼ l2. From (6.48), this means that

f

r2
< 1 (6.50)

for some value of r. Outside the planet, r > R, the metric takes the form (6.46). Letting rh
denote the would-be horizon of the planet, (6.50) translates into the following condition on
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Figure 6.4: The effective potential for a large black as a function of the tortoise coordinate.
Note that with tortoise coordinates the region near the boundary (large r) gets compressed
near π/2. Thus, the top corner of the plot is the only portion of the potential that is similar
to a portion of the pure AdS potential (Fig. 6.3(b)). Here, the modes are mostly those of
type (1) that propagate into the black hole horizon, and type (4) that have low energy and
hence are evanescent.

the radius R of the planet:

R − rh <
rh

d − 2
( rh

LAdS

)2 . (6.51)

Since rh/LAdS ≪ 1 by assumption, it is nontrivial for physical matter to be so dense. In
particular, if one assumes the density is nonnegative and a monotone decreasing function,
then a general argument [180] gives that one must have R − rh > rh/8 (for 4 spacetime
dimensions).

Large AdS-Schwarzschild black hole

We would like to find corrections to the reconstruction resolution bound σproper >
LAdS for locations deeper in the bulk, where the geometry is no longer pure AdS space. To
find this, we need to solve for the radial profile of the evanescent modes. The evanescent
modes will grow exponentially as one moves from the boundary into the bulk. The distance
into the bulk that we can evolve is set by the rate of the growth: when the coefficient in
the exponential becomes of order one, we are unable to evolve deeper in.

We focus on a large AdS black hole, which is similar to a black brane. In the limit
that the black hole is large, r0 ≫ 1, the metric (6.46) can be simplified by dropping the 1
as it is small relative to r2, so that f(r) = r2 − (r0/r)d−2. If in addition to this we also zoom
in on a small portion of the solid angle, this yields the black brane metric,

ds2 = −(r2 − (r0
r
)d−2)dt2 + dr2

r2 − ( r0
r
)d−2 + r2dx2. (6.52)

The horizon location, rh, and temperature, T , are given by

rdh = r
d−2
0 , T =

d rh

4π
. (6.53)
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The equation for the effective potential satisfied by the radial modes is given by (6.45) with
l(l + d − 2) replaced by k2x,

V = f [d2 − 1
4
+m2

+
(d − 1)2

4

rd−20

rd
+
k2x
r2
] . (6.54)

To solve for the radial profile of the modes, we use the WKB approximation, only keeping
the exponential factor

u(r) = exp(∫ ∞

r

dr′

f(r′)
√
V (r′) − ω2) . (6.55)

We are interested in the mode which is the most evanescent, and this is the one with ω = 0.
Thus, for (6.55), we have

u(r) = exp⎛⎜⎝∫
∞

r

dr′√
r′2 − rd

h
/r′d−2

√
ν̄2 +

k2x
r′2
+
(d − 1)2

4
(rh
r′
)d⎞⎟⎠ , (6.56)

where we defined ν̄2 = m2
+ (d2 − 1)/4. Since rh/r < 1 and ν̄ is of order 1, we can drop the

last term in (6.56). Converting to the z-coordinate, z = 1/r, and setting σ ≡ k−1, (6.56)
becomes

u(z) = exp⎛⎝∫
z

0

dz′√
1 − (z′/zh)d

√
1

σ2
+
ν̄2

z′2

⎞⎠ . (6.57)

In the case of pure AdS space, we have (6.57) but with zh = ∞. In that case, we argued
that for small z (such that z ≪ σ), we can drop the 1/σ2 term in in the square root and
find that u(z) has power law behavior consistent with the conformal scaling, z∆, of the field
near the boundary. For z ≳ σ, we instead drop the ν̄2/z2 term in the square root, leading
to the behavior

u(z) = exp( z
σ
) . (6.58)

With an AdS black hole present, this behavior receives only minor corrections. Since

1√
1 − (z/zh)d > 1 , (6.59)

u(z) has a faster growth in an AdS black hole background than in pure AdS space. We can
find the field at z = zh and in the limit σ ≪ zh. This gives

5,

u(zh) = exp⎛⎝ 1σ ∫
zh

σ

dz√
1 − (z/zh)d

⎞⎠ . (6.60)

Evaluating the integral gives

u(zh) = exp(α zh

σ
) , (6.61)

5Here, we set the lower limit of integration to be σ since this is around where the approximation of
dropping the ν̄2/z2 term becomes invalid. For z ≲ σ, one should instead drop the 1/σ2 term. However, since
by assumption σ/zh ≪ 1, one can just as well set the lower limit of integration to 0.
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where

α =

√
π Γ[1 + 1/d]
Γ[2 + 1/d] . (6.62)

The value of α is larger than 1: for instance, in d = 4, α ≈ 1.3, only slightly larger than
1. This fits with our expectation, since if we had been in pure AdS space, then we would
have had u(z) = exp(z/σ). The exponent α is universal in that it depends only on d but
not on other details of the AdS black hole; it can be considered a nontrivial prediction for
a strongly coupled CFT at finite temperature.

Comparing with (6.40), we now obtain the correction factor ε to the resolution
bound at the horizon:

ε(zh) = α − 1 =
√
π Γ[1 + 1/d]
Γ[2 + 1/d] − 1 ≤ 0.7⋯. (6.63)

In the next section, we will find the physical interpretation of the correction factor ε at the
horizon as a nonperturbative effect in the thermal Green’s functions in the CFT dual.

6.4 Evanescence in CFT Dual

In this section, we turn to the CFT dual of the AdS space and pose the question:
how do evanescent modes manifest themselves in the CFT? The first question is whether
the evanescent modes are part of the CFT spectrum. To be specific, consider the large
AdS black hole we studied in the last section. The black hole is the holographic dual of
the CFT at a high temperature T that equals the black hole’s Hawking temperature. The
T = 0 vacuum is now changed to the T > 0 ground state (this ground state is created out
of the vacuum by OBH). Now, the T > 0 spectrum includes the continuous, evanescent
spectrum in addition to the discrete spectrum. In effect, the continuous spectrum increases
the dimension of the Hilbert space.

One might object that the evanescent states do not propagate to the AdS boundary
and need not to be included. However, they do contribute to CFT correlators at finite
temperature and should be included. For instance, consider the 4-point CFT correlator G4,
as computed holographically in a large AdS black hole background:

G4(1,2,3,4) ≡ ⟨T ∣O1O2O3O4∣T ⟩
CFT

= ∫ ∫
B
dxdy GBb(1, x)GBb(2, x)K2(x, y)GBb(3, y)GBb(4, y) . (6.64)

The point is that the integrals over the bulk x and y in the region close to the black hole
horizon contain contributions from evanescent modes. This is because the evanescent modes
are genuine propagating modes in this region and the bulk-to-bulk propagator K2(x, y)
contains these modes. More generally, propagating modes from or to the AdS boundary
would couple to the evanescent modes whose wave function is localized near the black hole
horizon. This implies that, in the dual CFT, we should expect a new class of 3-point
correlators that involve two local CFT operators O1,O2 and one effective operator ET

associated with the heat bath:

⟨O1O2ET ⟩ ∼ ⟨T ∣O1O2∣T ⟩. (6.65)
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To see (6.65) explicitly, we compute the CFT 2-point function in the evanescent regime
by computing a bulk 2-point function and taking its boundary limit. Let us canonically
quantize the bulk scalar field φ(x, t, z) and expand in terms of modes φωk ,

φ = ∫ ∫ dωdk (φωk aωk + φ∗ωk a❸ωk) , (6.66)

where the creation operators satisfy the usual commutation relation. Here, we normalize
the modes differently from Sec. 6.3 and use the bulk Klein-Gordon normalization, which is
more natural in the present context. 6

The bulk 2-point function can thus be written as: 7

⟨φ(x2, t2, z2)φ(x1, t1, z1)⟩ = ∫ dω dk φωk(x2, t2, z2) φ∗ωk(x1, t1, z1) (6.67)

Writing the modes as
φωk(x, t, z) = fωk(z)e−ikx+iωt , (6.68)

and using the AdS/CFT dictionary (6.20), we get

⟨T ∣O(x2, t2)O(x1, t1)∣T ⟩ = limz→0∫ ∫ dω dk z−2∆∣fωk(z)∣2e−ik(x2−x1)+iω(t2−t1). (6.69)

Let us focus on the portion of the 2-point function (6.69) coming from the evanescent regime
ω ≪ k. Since the Klein-Gordon normalization roughly corresponds to having the mode be
of order 1 at the horizon, to find the z → 0 limit of ∣fωk(z)∣2, we just need the WKB factor
giving the relative suppression at the boundary. This factor was computed in (6.61). We
thus find that, in the regime ω ≪ k and k ≫ T , the bulk 2-point function has the behavior
(ignoring prefactors),

G(ω, k) = e−α̃ k
T . (6.70)

Here, α̃ is a constant factor given by α̃ = (d/2π)α, where α was found in (6.62).8 The result
(6.70) is not surprising. At zero temperature, there is no evanescent mode with ω < k and
so such a correction should vanish. So, at finite temperature, the evanescent modes must
generate a contribution which vanishes in the zero temperature limit. This explains the
Boltzmann suppression (6.70) of the evanescent mode contribution.

In the previous sections, we argued that a black hole in the bulk changes the
boundary conditions so as to permit evanescent modes and that a small error in determining
their coefficient will get exponentially amplified when reconstructing the bulk. Here, we have
just taken the ground state for the large black hole background and found the boundary
imprint of the evanescent modes through CFT 2-point correlators at finite temperature. If

6In Sec. 6.3, in for instance (6.24), we normalized the modes so that when rescaled by z−∆, their z-
component approaches 1 at the boundary. This was a natural normalization in that context since we needed
to use the boundary limit of the field to then do a Fourier transform over space and time on the boundary
to extract the coefficients of the modes. Here, we normalize with respect to the bulk Klein-Gordon norm so
that (6.67) takes a simple form.

7Note that we are taking the bulk state to be the Hartle-Hawking vacuum.
8In [162] the imaginary part of the retarded Green’s function was found in the evanescent regime through

an alternate method. Their result for d = 4 agrees with (6.70).
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the bulk state is a slight deviation from this ground state, then to determine it near the
horizon one must make a boundary measurement precise enough to detect something as
small as (6.70). Of course, we can have an excited state in the black hole background that
has a much larger coefficient for an evanescent mode.

6.5 Discussion

The AdS resolution bound we have found in this chapter has an important impact
on the dual CFT. The first question concerns the boundary CFT data. We showed that,
in an AdS black hole background, bulk fields have evanescent modes. These modes are
exponentially suppressed near the boundary. Translated into the CFT description, this
means that we are unable to reconstruct the bulk on sub-AdS scales if we only have local
CFT data, ⟨O⟩, and do not have it to exponential precision. The next question is what
CFT data naturally encodes the evanescent modes.

Much in the same way as the evanescent modes trapped to a material are regarded
as “part” of the material, the evanescent modes in an AdS black hole background are
naturally part of the semiclassical black hole. Thus, a speculative possibility is that there
exists a theory which describes the near-horizon atmosphere of a black hole and, as a
subsector of the CFT, can be thought of as living on the black hole horizon. 9

An extremal Reissner-Norstrom AdS black hole is a particularly concrete setting
in which to explore this, as the near horizon limit is AdS2 × S

d−1. From the perspective of
the AdS2, the evanescent modes of the underlying AdS black hole are propagating modes
of AdS2. Furthermore, AdS2×S

d−1 should be dual to multiple copies of a CFT1. We would
therefore conjecture that the bulk of the AdS extremal black hole could be reconstructed by
a combination of local operator data coming from both the boundary CFTd and the tower
of horizon CFT1 ’s. 10

6.6 Evanescent Optics

In this appendix, we summarize some central principles of optics that make us
evanescent modes.

Total Internal Reflection

To see how evanescent waves can be generated if homogeneity is broken, consider
the wave equation in a background which has a z-dependent speed of light,

(− 1

c(z)2∂2t + ∂2x + ∂2z) φ = 0. (6.71)

9Note that the black hole horizon would be used as a holographic screen to describe the black hole
atmosphere; we are not discussing anything about the black hole interior.

10AdS2 × S
n has been argued to be problematic [132, 1]. This would not be a problem for us, as we do

not fully take the near horizon limit. The complete near horizon limit would correspond to keeping only
the ω = 0 modes, while we are interested in small but finite ω modes. Alternatively, one could consider our
construction for a black p-brane for which the quoted issues are absent.
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Figure 6.5: The effective potential for the wave equation in a medium that undergoes a
jump in its index of refraction.

The modes are
φ(x, t, z) = e−iωt−ikxx uω,k(z), (6.72)

where u(z) satisfies a Schrodinger-like equation

−u′′ + V (z)u = 0 (6.73)

with an effective potential

V (z) = k2x − ω2

c2(z) . (6.74)

As a simple scenario which generates evanescent modes, we take

c(z) = { c1 z > z1
c0 z ≤ z1.

(6.75)

The potential (6.74) for this choice of c(z) is shown in Fig. 6.5. We see that modes with

ω2

c21
< k2x <

ω2

c20

are evanescent for z < z1. Indeed, the lower limit kx = ω/c1 is precisely the well-known
critical angle for total internal refraction: sin θc = n1. Here θc is the angle between the
incoming wave at z > z1 and the normal in the z direction and n1 is the index of refraction
of the material, n1 = c0/c1.
Microscopes

Another context in which evanescent modes appear is in the use of a microscope.
The microscope is trying to resolve the spatial features of a sample which is thin and
located at z0 (see Fig. 6.6). The sample is projected with monochromatic light of frequency
ω coming from a source at z1 > z0. The sample has some space-dependent transmission
coefficient T (x), which then determines the wave profile that is received at the detector at
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Figure 6.6: Light is shined from the source (z1), interacts with the sample (z0), and is
received at z = 0.

z = 0. As long as the sample has spatial features on scales smaller than ω−1, evanescent
wave which are trapped near the sample will be generated.

The field consists of a monochromatic wave with frequency ω, φω(x, z), which we
will simply denote by E(x, z). We wish to relate the field at the source to the field received
at the detector, and see how the transmission coefficient enters this expression.

The field at the source is denoted by Esource(x, z1), and the generated wave prop-
agates freely from z1 to z0,

Esource(qx, z0) = Esource(qx, z1)e−iqz(z1−z0), (6.76)

where qz =
√
ω2 − q2x. The effect of the sample is to modify the wave at z = z0 by the

transmission coefficient. After passing through the sample the field becomes

Esample(x, z0) = T (x)Esource(x, z0), (6.77)

In Fourier space (6.77) becomes the convolution

Esample(kx, z0) = ∫ dqx T (kx − qx) Esource(qx, z0). (6.78)

From the sample the wave propagates freely to the detector at z = 0,

Edetector(kx,0) = Esample(kz, z0) e−ikzz0 . (6.79)

Combining (6.76), (6.78), and (6.79) yields

Edetector(x,0) = ∫ dkx dqx Esource(qx, z1)e−iqz(z1−z0) T (kx − qx) e−ikzz0 e−ikxx. (6.80)

Eq. 6.80 is the relation we had been seeking between the emitted field at the source, Esource

at z = z1, and the received field at the detector, Edetector at z = 0.
From (6.80) we see that the sample serves to convert the waves impinging on it

with x momentum qx to those with momentum kx, with the conversion amplitude given by
T (px) where px ≡ kx − qx. The incident waves on the sample are propagating; thus ∣qx∣ < ω.
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Figure 6.7: The evanescent modes can be converted into propagating modes by placing, for
example, a piece of glass near them.

For the converted waves to be propagating they need ∣kx∣ < ω. Thus, unless the sample has
no features on any spatial scale smaller than ω−1 (so that T (px) vanishes for all ∣px∣ > ω),
there will be evanescent modes at z < z0. Indeed, to generate evanescent modes one need
only choose a sample which is a reflecting metal sheet with a hole. In this case T (x) has
compact support, requiring T (px) to be nonzero at arbitrarily large px.

Scanning Tunneling Optical Microscope

We have found that the frequency ω of the wave shined on the sample sets the
limit of the scale on which the sample can be resolved: modes with kx > ω are evanescent
and too suppressed at the detector location to be measurable. For a long time this was
believed to set a fundamental limit on the best achievable resolution of a material [136].11

The way to resolve the structure on scales shorter than ω−1 would be to detect
the evanescent modes. Since their magnitude is exponentially small at the location of the
detector, one must instead detect them close to the sample or equivalently, covert them into
propagating waves. This can be achieved by placing some object near the material so as
to change the index of refraction. A sketch is shown in Fig. 6.7. The near-field detection
of evanescent waves is the basis of how an STOM functions. In an STOM, a pointer is
brought close to the sample and some of the evanescent waves hitting it are converted into
propagating waves, which are then able to reach the detector.

Suppose we wish to resolve the sample on a scale σ ≪ ω−1. This requires detecting
evanescent modes with kx ∼ σ

−1, and corresponding kz =
√
ω2 − k2x ≈ −ikx. Since the

evanescent modes decay exponentially (6.11), the pointer tip must be placed no further
than a distance ∆z ∼ σ from the sample. Thus, an STOM allows resolution of features on
arbitrarily short scales σ, regardless of ω. However, the new limitation is set by the distance
of the pointer tip from the sample. To resolve on a scale σ requires placing the tip no more
than a distance σ away from the sample so as to capture the evanescent modes.

11It may appear this hindrance can be overcome by simply using waves of arbitrarily high frequency.
However, sufficiently high frequency waves will damage the sample.
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Chapter 7

Entanglement Entropy: A
Perturbative Calculation

7.1 Introduction

Entanglement entropy is a rapidly developing technique in condensed matter physics
[113, 46] and holography [154]. One of the main theoretical gaps that substantially limits
its studies is the paucity of computational tools. In this chapter we construct a perturbative
framework for computing entanglement entropy of the vacuum purely within the context of
quantum field theory (QFT).

As of today the existing tools for computing entanglement entropy include: the
replica trick, conifolds, and the elegant prescription of Ryu and Takayanagi [154]. The
replica trick, and its generalizations, is the only generic approach to calculating entangle-
ment entropy within field theory [46, 47]. It rests on evaluating the partition function on
an n-folded cover of the background geometry where a cut is introduced throughout the
exterior of the entangling surface. However, evaluation of the partition function on a repli-
cated manifold can only be carried out in a limited number of cases. On the other hand,
the Ryu-Takayanagi prescription is much easier to implement. It plays a central role in
characterizing new properties of holographic field theories, e.g., [114], and provides new
insights into the quantum structure of spacetime [60]. Recently, the generalized replica
trick was successfully implemented in the bulk AdS space to provide strong evidence for the
Ryu-Takayanagi conjecture [119]

In [48] Casini, Huerta and Myers showed that the reduced density matrix for spher-
ical entangling surfaces in flat space is conformally equivalent to a thermal state on the hy-
perbolic geometry, and that the entanglement entropy equals the thermodynamic entropy
of this thermal state. This observation provided an alternative derivation of the holographic
entanglement entropy for spherical regions in flat space. However, their construction tightly
relies on the conformal symmetry of the boundary CFT and on the (spherical) geometry of
the entangling surface. Hence, their work raises a natural question: how does one accommo-
date small disturbances of their framework within a perturbative approach? In this chapter
we propose a Euclidean path integral formalism that addresses this question. In particular,
our method paves the way for an alternative approach to calculating entanglement entropy
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within quantum field theory.
In Section 7.2 we set aside holography, the replica trick, and other existing methods

of calculating entanglement entropy and begin with the ‘standard’ Euclidean path integral
definition of the reduced density matrix. Next, we foliate spacetime in the vicinity of the
entangling surface in such a way as to encode both the geometric structure of the surface
and the geometry of the background. This choice of coordinates is one of the central aspects
of our approach, as any deformation can be now thought of as a background deformation.
As a result, a perturbative framework around systems with known reduced density matrices
is established.

In Section 7.3 we consider the entanglement entropy obtained by dividing the field
theory into two (semi-infinite) regions with a single flat plane separating them. In this
case the entanglement entropy for any QFT equals the thermal entropy observed by an
accelerating Rindler observer [108]. We apply our general formalism to calculate leading
order corrections induced by either slight curvature of the background or mild deformations
of the flat wall separating the two subsystems. In particular, we evaluate the universal
divergence of the entanglement entropy induced by these modifications in four dimensional
spacetimes. The results are in complete agreement with the structure of the universal terms
in entanglement entropy of 4D conformal field theories originally proposed by Solodukhin
[161].

The main focus of Section 7.4 is the analysis of perturbations around spherical
entangling surfaces. The unperturbed case in the context of QFT was studied in [48],
whereas in this work we implement our formalism to investigate consequences of small
perturbations. The resulting corrections to the universal divergence of entanglement entropy
in 4D match known results in the literature [161].

7.2 General framework

We start with a general quantum field theory that lives on a d-dimensional Eu-
clidean manifoldM equipped with a Riemannian metric gµν . The action of the field theory
is given by I0(φ, gµν), where φ collectively denotes all the QFT fields. We assume that the
system resides in the vacuum state1. The entangling surface is chosen to be some general(d − 2)-dimensional surface Σ. Our notation for the rest of the chapter is summarized in
Appendix 7.5.

The degree of entanglement between the QFT degrees of freedom inside and outside
of Σ is encoded in the reduced density matrix ρ0 that can be written as a path integral over
M with a (d − 1)-dimensional cut C, such that ∂ C = Σ

[ρ0]φ−φ+ ≡ ⟨φ−∣ρ0∣φ+⟩ = ∫φ(C+)=φ+
φ(C−)=φ−

Dφe−I0(φ,gµν) , (7.1)

where C± are the two sides of the cut and φ± are some fixed field configurations (see Fig. 7.1).

In general, evaluation of the above path integral is not a tractable problem, but
there are exceptions, e.g., planar and spherical surfaces in Rd that we are going to explore

1For entanglement entropy of excited states in the holographic context see, [104].
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Ʃ

Figure 7.1: Abstract sketch of the two dimensional transverse space to the entangling surface
Σ. C± are the two sides of the cut C where the values φ± of the field φ are imposed.

later. For the rest of this section the details of ρ0 are not crucial, we only need to assume that
it is known, since the main purpose is to get a closed form expression for small perturbations
of ρ0 as a consequence of slight deformations of the background metric gµν and entangling
surface Σ, or perturbations of the QFT by, e.g., a relevant operator.

We start with the normalized density matrix,

ρ̂0 =
ρ0

Trρ0
. (7.2)

The corresponding modular Hamiltonian, K̂0, and the entanglement entropy, S0, are given
by

K̂0 = − log ρ̂0 ,

S0 = −Trρ̂0 log ρ0 . (7.3)

Now let us consider perturbation of ρ̂0 by a small amount δρ̂,

ρ̂ = ρ̂0 + δρ̂ , (7.4)

The new density matrix ρ̂ is assumed to be normalized, and therefore Tr δρ̂ = 0. The cor-
responding modular Hamiltonian, K̂, and the entanglement entropy, S, can be constructed
perturbatively provided that ρ̂0 and δρ̂ are known

K̂ = − log ρ̂ = K̂0 − ρ̂
−1
0 δρ̂ +

1

2
(ρ̂−10 δρ̂)2 +O(δρ̂3) ,

S = −Trρ̂ log ρ̂ = S0 +Tr(δρ̂ K̂0) − 1

2
Tr(δρ̂ ρ̂−10 δρ̂) +O(δρ̂3) . (7.5)

In those examples that we are going to consider, it is possible (but not always
necessary) to implement a conformal transformation that maps the background M, and
hence the path integral (7.1), onto S1

×Hd−1 which we will denote as H. Of course, we
implicitly restrict our consideration here to CFTs. Remarkably, under this transformation
the entangling surface Σ is mapped onto the conformal boundary of Hd−1 while fixed states
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∣φ±⟩ are mapped onto constant slices τE = 0 and τE = β ( see Fig 7.4). The latter condition
ensures that under this map the reduced density matrix ρ̂0 transforms into a normalized
thermal density matrix ρ̂T on H. In particular, S1 plays the role of Euclidean time, τE, and
its period is identified with the inverse temperature β. Additionally,

ρ̂T = Û ρ̂0 Û
−1 , (7.6)

where Û is a unitary CFT operator that implements the conformal transformation. For
example, the primary spinless operators, Ô, of the CFT locally transform as2

ÔH = Ω
∆ Û ÔM Û−1 , (7.7)

where ∆ is the scaling dimension of Ô and Ω is the conformal factor that relates the metrics
on the two manifolds

ds2M = Ω
2ds2H . (7.8)

In what follows we consider separately perturbations of the QFT action, and perturbations
associated with either slight changes in the background geometry or mild deformations of
the entangling surface Σ.

7.2.1 Geometric perturbations

In general, the modular Hamiltonian depends on the background geometry as
well as on the geometry of the entangling surface. The same is true about conformal
transformations ofM onto H that relate the density matrices as in (7.6). Such mappings
are sensitive to changes in the background geometry as well as to deformations of the
entangling surface Σ. While the former sensitivity is obvious, the latter follows from the
fact that (7.6) is valid if and only if the field configurations φ+ and φ− are mapped onto
constant slices τE = 0 and τE = β, respectively. Therefore the mapping, if it exists, certainly
depends on the details of Σ.

These observations lead us to construct a special foliation ofM that encodes both
the background geometry as well as the structure of the entangling surface. Such a foliation
for a genericM and Σ can only be found perturbatively in the distance from the entangling
surface. Sufficiently far from Σ caustics may be encountered and our coordinate system will
break down. However, this region is not relevant for us. We present here the final answer
for the foliation, with the details relegated to Appendix 7.6. To second order in the distance
from Σ, the metric onM is given by

ds2M = (δab − 1

3
Racbd∣Σxcxd)dxadxb + (Ai +

1

3
xbεdeRibde∣Σ)εac xadxcdyi

+ (γij + 2Kaij x
a
+ xaxc(δacAiAj +Riacj ∣Σ +Kc ilK

l
a j))dyidyj +O(x3) ,

(7.9)

where {yi}d−2i=1 and {xa}2a=1 parametrize Σ and the 2-dimensional transverse space, respec-
tively. The entangling surface Σ is located at xa = 0 and γij is the corresponding induced

2The subscript on Ô indicates on which manifold the operator has support.
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metric, εac is the volume form of the transverse space, whereas Rµναβ and Ka
ij are the back-

ground and extrinsic curvatures, respectively. Finally, Ai is the analog of the Kaluza-Klein
vector field associated with dimensional reduction over the transverse space. Note that by
construction the structure of Σ is built into the above ansatz.

The ansatz for the metric with a slightly perturbed background and mildly mod-
ified entangling surface Σ can be obtained by varying (7.9) around the unperturbed back-
ground. In particular, the metric will take the following form

gµν = ḡµν + hµν , (7.10)

where ḡµν is the unperturbed metric of the form (7.9) with known coefficients, while hµν
contains all the information about perturbations that occurred in the background and en-
tangling surface geometries.

If Σ is everywhere a small deformation of the original entangling surface, e.g., if
it is a plane everywhere except that in some localized region there is a small “bump”, then
perturbative analysis applies globally on Σ. However, hµν does not necessarily even need
to be small everywhere on the entangling surface. If, for example, the surface does not
globally look like a plane by having a low curvature but long turn, then we can implement
a cut and paste procedure suggested in [17]. We cut the surface along regions which are
sufficiently flat, compute the entanglement entropy for each section, and then paste the
results together. Of course, this cut and paste procedure is not straightforward and there
are potential computational subtleties that need to be addressed.

Substituting decomposition (7.10) into the path integral representation of the den-
sity matrix, (7.1), and expanding the result around ḡµν yields,

[ρ̂]φ−φ+ = 1

N
∫φ(C+)=φ+

φ(C−)=φ−

Dφe−I0(φ,ḡµν+hµν)

=
1

N
∫φ(C+)=φ+

φ(C−)=φ−

Dφe−I0(φ,ḡµν)(1 + 1

2
∫
M
T
µν
M
hµν + . . . ) , (7.11)

where T
µν
M

is the energy-momentum tensor of the QFT on the unperturbed Euclidean
manifoldM

T
µν
M
= −

2√
ḡ

δI0

δḡµν
. (7.12)

The normalization constant N appearing in (7.11) is given by

N = ∫ Dφ0∫
φ(C+)=φ(C−)=φ0

Dφe−I0(φ,ḡµν)(1 + 1

2
∫
M
T
µν
M
hµν + . . . )

=N0 (1 + 1

2
∫
M
⟨T̂µν
M
⟩0hµν + . . .) , (7.13)

where ⟨T̂µν
M
⟩0 is the expectation value of the stress tensor in the state ρ̂0, while N0 is the

normalization constant of the unperturbed density matrix ρ̂0,

N0 = ∫ Dφ0∫
φ(C+)=φ(C−)=φ0

Dφ e−I0(φ,ḡµν) . (7.14)
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If the path integral representation of ρ̂0 is symmetric under rotations in the trans-
verse space around the entangling surface, then it is convenient to think of it as an effective
evolution from the slice C+ to the slice C− [108, 18, 177]. In this case, based on (7.11), (7.13)
and (7.14), one can write

[δρ̂]φ−φ+ = ⟨φ−∣δρ̂∣φ+⟩ = 1

2
∫
M
⟨φ−, θf ∣Û(θf , θ) T̂µν

M
(θ) Û(θ, θi)∣φ+, θi⟩hµν
−
1

2
[ρ̂0]φ−φ+ ∫

M
⟨T̂µν
M
⟩0hµν(θ) , (7.15)

where we have used the definition δρ̂ = ρ̂ − ρ̂0, θ is the polar angle around the entangling
surface such that θi and θf equal 0 and 2π respectively, and Û is the angular evolution
operator given by,

Û(θ2, θ1) = exp ( − θ2 − θ1
2π

K̂0) . (7.16)

Because of rotational symmetry the expectation value ⟨T̂µν
M
⟩0 is independent of θ. Moreover,

the above formula for δρ̂ can be written as

δρ̂ =
1

2
∫
M
Û(θf , θ) (T̂µν

M
(θ) − ⟨T̂µν

M
⟩0)Û(θ, θi)hµν . (7.17)

Now using eqs.(7.17) and (7.5) we get the following correction to the modular Hamiltonian,

K̂ = K̂0 −
1

2
∫
M
Û(θi, θ)(T̂µν

M
(θ) − ⟨T̂µν

M
⟩0)Û(θ, θi)hµν + . . . . (7.18)

The entanglement entropy across Σ can be evaluated by substituting (7.17) into (7.5). This
gives

S = S0 +
1

2
∫
M
⟨T̂µν
M
K̂0⟩c hµν + . . . , (7.19)

where ⟨. . .⟩c is the connected two point function in the state ρ̂0. We should note that our
results (7.18), (7.19) are valid for a general field theory, and not necessarily restricted to a
CFT.

Moreover, if we restrict our consideration to conformal field theories, then it is
possible to generalize the above results to include the case when the state undergoes a
conformal mapping as in (7.6), (7.8). We first recall the rule for conformal transformation
of the energy-momentum tensor,

T
µν
M
= Ω−d−2

∂xµ

∂Xα

∂xν

∂Xβ
(Tαβ
H
+A

µν) , (7.20)

where Xµ are coordinates on H, xµ collectively denotes (xa, yi) and Aµν is the higher
dimensional analog of the Schwarzian derivative. Hence, from (7.11) we obtain

[Û ρ̂ Û−1]
φ̃+φ̃−

=
1

N
∫ φ(τE=0)=φ̃+

φ(τE=β)=φ̃−

Dφe−I0(φ,ḡµν)(1 + 1

2
∫
H
Ω−2(Tµν

H
+A

µν)hµν + . . .) , (7.21)

where φ̃± are the conformally transformed field configurations φ±,

∣φ̃±⟩ = Û ∣φ±⟩ . (7.22)
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Also note that the normalization constant N in (7.13) can be rewritten as

N =N0 (1 + 1

2
∫
H
Ω−2⟨T̂µν

H
⟩Thµν + 1

2
∫
H
Ω−2Aµνhµν + . . .) , (7.23)

where ⟨T̂µν
H
⟩T is the thermal expectation value of the stress tensor on H. Combining eqs.

(7.28) and (7.23), yields

Ûδρ̂ Û−1 =
1

2
∫
H
ÛT (β, τE)(T̂µν

H
(τE) − ⟨T̂µν

H
⟩T )ÛT (τE,0)Ω−2hµν , (7.24)

where we used the transformation rule (7.6), and ÛT is the evolution operator on H,

ÛT (τ̃E, τE) = exp ( − (τ̃E − τE) Ĥ) , (7.25)

where Ĥ is the Hamiltonian that generates τE translations. It is related to the modular
Hamiltonian onM by K̂0 = Û

−1βĤÛ .
Since the von Newman entropy is invariant under unitary transformations, the

entanglement entropy across Σ can be evaluated using the density matrix onH. Substituting
(7.24) into (7.5), yields

S = ST +
β

2
∫
H
Ω−2⟨T̂µν

H
Ĥ⟩c hµν + . . . , (7.26)

where ST is the thermal entropy of the CFT in the state ρ̂T , while ⟨. . .⟩c is the (thermal)
connected two point function on H. This result is simply a conformal transformation (7.8)
of (7.19), accompanied by the rule (7.20). Finally, using eqs.(7.5) and (7.24), we get the
following correction to the modular Hamiltonian,

K̂ = K̂0 −
1

2
Û−1 (∫

H
ÛT (0, τE)(T̂µν

H
(τE) − ⟨T̂µν

H
⟩T )ÛT (τE,0)Ω−2hµν) Û + . . . . (7.27)

7.2.2 Relevant perturbations

The main goal of this subsection is to investigate the consequences of small per-
turbations of the QFT by, e.g., relevant operators. The general form of the reduced density
matrix (7.11) that undergoes such a perturbation is

[ρ̂]φ+φ− = 1

N
∫φ(C+)=φ+

φ(C−)=φ−

Dφe−I0(φ,ḡµν)+g ∫MO

=
1

N
∫φ(C+)=φ+

φ(C−)=φ−

Dφe−I0(φ,ḡµν) (1 + g∫
M
O +

g2

2
(∫
M
O)2 + . . .) , (7.28)

where g is the coupling constant, the scaling dimension of Ô is ∆ < d, and we assume that
the effect of the deformation is small, e.g., the theory sits sufficiently close to the UV fixed
point. The normalization constant this time is given by

N =N0 (1 + g∫
M
⟨O⟩0 + g2

2
∫
M
∫
M
⟨ÔÔ⟩0 + . . .) , (7.29)
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Figure 7.2: A sketch of a slightly deformed entangling surface (curved line) in three dimen-
sions. (x1, x2) span the transverse space to Σ , while y parametrizes Σ. The foliation (7.9)
is designed to capture the geometry of the neighborhood of a given entangling surface Σ.

where the expectation values are taken in the vacuum state. Following now the same steps
as in the previous subsection, we obtain the leading order correction to S0,

δS = g∫
M
⟨ÔK̂0⟩c . (7.30)

If the unperturbed theory is a CFT then the leading correction to S0 vanishes
since K̂0 ∼ T̂µν and therefore ⟨K̂0Ô⟩c = 0. Hence, we have to resort to the second order
perturbation. Using (7.5) yields,

δS =
g2

2
∫
M
∫
M
(⟨K̂0ÔÔ⟩c − ⟨ÔÔ⟩c) , (7.31)

where certain caution should be taken before evaluating the expectation value of the two
point function in the above expression, since according to (7.5) this correlator is evaluated
using a path integral with an effective interval of evolution that has to be three times bigger
than the interval of evolution used to compute the three point function in (7.31).

We finish this section with a comment that it would be interesting to compare
holographic predictions made in [105] with the results based on (7.31), and we hope to
report on this in a forthcoming publication.

7.3 Perturbations of a planar entangling surface

In this section we explore the leading order correction (7.19) in the case of small
perturbations of a planar entangling surface in flat space. These perturbations could arise
from the entangling surface being slightly deformed (see Fig. 7.2), or if the background
geometry is weakly curved. For simplicity we restrict our discussion to four spacetime di-
mensions and evaluate the logarithmic divergence of entanglement entropy. This divergence
is universal since it is independent of the regularization scheme.

The entanglement entropy of the unperturbed plane in flat space is closely related
to the Unruh effect observed by a uniformly accelerating observer in Minkowski space.
Indeed, the reduced density matrix for the vacuum for the semi-infinite domain x1 > 0 is
obtained by tracing out the region x1 < 0 on a constant zero Minkowski time slice. This is
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ɸ
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Figure 7.3: Transverse space to the entangling surface in the analytically continued space-
time. Σ is located at the origin. The reduced density matrix is given by a path integral
(7.1) with fixed boundary conditions φ+ (φ−) on the upper (lower) dashed blue lines.

precisely the region hidden by Rindler horizon and the resulting reduced density matrix has a
thermal interpretation in the sense of Unruh [177, 108] with a space dependent temperature
that scales as x−11 . A Rindler observer who is confined to the right wedge, and who is passing
through x1 at t = 0, finds himself immersed in a thermal bath of Unruh radiation. The sum
of thermal entropies observed by all Rindler observers is the entanglement entropy, and the
divergence of the temperature as x1 → 0 gives rise to the UV divergence of entanglement
entropy.

Analytic continuation of the Rindler wedge to Euclidean signature maps it onto
the entire Euclidean space with a puncture at the origin. In Minkowski signature, this punc-
ture corresponds to the Rindler horizon. Furthermore, the analytically continued Rindler
Hamiltonian, ĤR , becomes the generator of rotations in the transverse space to Σ, and as
shown in [108] the path integral (7.1) can be written as

[ρ0]φ+φ− = ⟨φ−∣e−2πĤR ∣φ+⟩ . (7.32)

In particular, we immediately deduce that the modular Hamiltonian is proportional to the
Rindler Hamiltonian, K̂0 = 2πĤR, which plays the role of the angular evolution operator in
the transverse space to Σ. (see Fig. 7.3)

What we have said so far is the standard story for flat space. In a general spacetime,
since any region locally looks flat, we expect the leading divergence of the entanglment
entropy will be insensitive to the background, in so much as that it scales as an area.
The subleading terms of the entanglement entropy are dominated by the region near the
entangling surface but have sensitivity to regions slightly away from it as well.

Far away from the surface corrections to the background metric induced by per-
turbations of the system may be large. However, the further away some region is from
the surface, the less relevant it is for the entanglement entropy. Stated in the language of
accelerated observers: those who are highly accelerated and close to the Rindler horizon
are unlikely to notice a large deviation from a thermal spectrum, while those with small
acceleration who are far away find little Unruh radiation and the thermal effect is practically
zero.
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7.3.1 Calculation

The leading order correction to the entanglement entropy of a flat plane is given
by (7.19),

δS = π∫
R4
⟨TµνHR⟩hµν . (7.33)

Here HR is the Rindler Hamiltonian in the unperturbed spacetime3,

HR = −∫
A
Tµνξ

µnν , (7.34)

where A = {x ∈ R4 ∣x2 = 0, x1 > 0}, ξ = x1∂2 − x2∂1 is the Killing vector field associated with
rotational symmetry around the plane at xa = 0, while n = ∂2 is normal to A. Thus,

HR = −∫
A
dy dx1 x1 T22 . (7.35)

Substituting HR into (7.33) gives

δS = −π∫
A
d2x d2y dx̄1 d

2ȳ x̄1 h
µν(x, y) ⟨Tµν(x, y)T22(x̄, ȳ)⟩ . (7.36)

Here the coordinates are xµ = (xa, yi) where xa with a = 1,2 are orthogonal to the entangling
surface (see Fig. 7.3) and yi with i = 1,2 are along the entangling surface. Also, x̄2 = 0. From
(7.9) we find that there are two terms in hµν that are responsible for the logarithmically
divergent contribution to δS. They are

hij = xaxcRiacj (7.37)

hab = −
1

3
Racbdx

cxd . (7.38)

Note that the δγij term in (7.9) is not relevant as it contributes to the ‘area law’ correction.
Also, the cross terms dxdy will give vanishing contributions. Finally, terms proportional
to the extrinsic curvatures contribute at second order within our perturbative expansion
(since the extrinsic curvature of the plane is zero and the contribution of the linear term
vanishes identically).

The connected 2-pt function for the stress tensor for a CFT is given in [139],

⟨Tµν(x, y)T22(x̄, ȳ)⟩ = CT Iµν,22((x − x̄)2 + (y − ȳ)2)4 (7.39)

where

Iµν,22 = Iµ2Iν2 −
δµν

4
, (7.40)

with

Iµ2 = δµ2 −
2(x − x̄)µ x2(x − x̄)2 + (y − ȳ)2 . (7.41)

3The minus sign appears due to the definition (7.12) of the energy-momentum tensor in Euclidean
signature.
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In Appendix 7.7 we preform the integral (7.36) and find

δS =
c

6π
∫ d2y (δacδbdRabcd + δ

ijδacRiacj) log(ℓ/δ) . (7.42)

Here ℓ is the characteristic scale of the perturbations, δ is the UV cut-off, and CT = 40c/π4
with c being the central charge of the CFT defined by the trace anomaly,

⟨Tµ
µ⟩ = c

16π2
∫
M
CµνρσC

µνρσ
−

a

16π2
∫
M
E4 , (7.43)

where Cµνρσ is the Weyl tensor and E4 is the Euler density,

E4 = RµνρσR
µνρσ

− 4RµνR
µν
+R2 . (7.44)

Our correction (7.42) should be compared with Solodukhin’s formula [161] for the
universal part of entanglement entropy in the case of a four dimensional CFT,

SCFT =
1

2π
∫
Σ
[c (δacδbdCabcd +K

a
ijK

ij
a −

1

2
KaKa) − aRΣ] log(R/δ) , (7.45)

where RΣ is the intrinsic curvature of the entangling surface. Of course, for the case of a
planar surface in flat space SCFT vanishes identically.

Varying (7.45) around the flat plane embedded in Rd, we obtain to linear order in
small perturbations

δSCFT =
c

2π
∫
Σ
δacδbdCabcd log(R/δ) = c

6π
∫
Σ
(δacδbdRabcd + γ

ijδacRiâcj + γ
ijγklRikjl) ,

(7.46)
where in the second equality we used the definition of the Weyl tensor. This expression
matches (7.42) since the last term is a total derivative in this case, and therefore its integral
vanishes. Indeed, the first variation of the Gauss-Codazzi relation (7.89) around the flat
plane embedded in flat space gives

γijγklRikjl∣Σ = ∂i(∂jδγij − γmn∂i δγmn) , (7.47)

where we have used the general variational rule

δRΣ = −R
ij
Σ
δγij +∇

i(∇jδγij − γ
mn
∇i δγmn) , (7.48)

where ∇i is covariant derivative compatible with the unperturbed induced metric γij .
Before closing this section let us make a couple of comments. First, we note

that (7.42) and (7.46) are independent of the central charge a. This is a straightforward
consequence of the fact that RΣ is the Euler density of a two-dimensional manifold, and
therefore the last term in (7.45) is a topological invariant that does not change under smooth
deformations of the entangling surface and background, i.e.,

δ∫
Σ
R

Σ
= ∫

Σ
(1
2
γijRΣ

−R
ij
Σ
) δγij = 0 , (7.49)
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Figure 7.4: We conformally transform between H (left) and Rd (right). We first map from
the σ ≡ u + iτ coordinates of H to e−σ (middle); here the origin is u =∞ and the boundary
circle is u = 0. We then map via (7.53) to Rd. Dashed lines on the left represent τE = 0

+, β−

slices of H that are mapped through an intermediate step onto t = 0± sides of the cut
throughout the interior of the sphere r = R on the right

where by assumption the deformed and original setups approach each other at infinity and
we used the fact that Σ is a two-dimensional manifold.

Second, it should be noticed that terms in (7.45) that are quadratic in extrinsic
curvature do not contribute to the leading order correction to the entanglement entropy
since Ka

ij of a flat plane vanishes. To see the effect of extrinsic curvatures one has to study
second order perturbations within our formalism and this will be addressed in a forthcoming
publication. In order to see the effect of extrinsic curvatures at first order, we now turn to
spherical entangling surfaces.

7.4 Perturbations of a spherical entangling surface

In this section the background manifold M will be identified with Rd, and the
entangling surface Σ will be a sphere, Sd−2, of radius R. We first show that there is a
conformal map that transforms between Euclidean path integral representations of ρ̂0 and
ρ̂T and then apply the analysis of Sec. 7.2 to compute the first order corrections to the
entanglement entropy due to slight deformations of Rd and Sd−2.

Let us recall that the partition function on H ≡ S1
×Hd−1 can be evaluated by a

path integral on the Euclidean background

ds2H = dτ
2
E +R

2 (du2 + sinh2udΩ2
d−2) , (7.50)

where the Euclidean time coordinate has period ∆τE = β = 2πR. In the following, it will be
convenient to introduce complex coordinates:

σ = u + iτE/R and ω = r + itE , (7.51)

where the latter will be used below to describe a conformally mapped geometry. Note that
both u and r are radial coordinates, and we must have Re(σ) = u > 0 and Re(ω) = r > 0.
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Figure 7.5: We show the constant τE slices (blue) and constant u slices (red) in the (r, tE)
plane (7.56). The sphere is located at r/R = 1, tE = 0 and corresponds to u → ∞. The
vertical line (r = 0) corresponds to u = 0.

With the first of these new coordinates, the above metric (7.50) can be written as

ds2H = R
2 (dσ dσ̄ + sinh2(σ + σ̄

2
) dΩ2

d−2) . (7.52)

Now we make the coordinate transformation

e−σ =
R − ω

R + ω
. (7.53)

Since we are considering d ≥ 3 there is no guarantee that this holomorphic change of coordi-
nates will result in a conformal transformation. However, one can readily verify the above
metric (7.52) becomes

ds2H = Ω−2 [dω dω̄ + (ω + ω̄
2
)2 dΩ2

d−2]
= Ω−2 [dt2E + dr2 + r2 dΩ2

d−2 ] , (7.54)

where

Ω−1 =
2R2

∣R2 − ω2∣ = cosh u + cos(τE/R) . (7.55)

Hence, after eliminating the conformal factor Ω−2 in the second line of (7.54), we recognize
that the final line element is simply the metric on d-dimensional flat space. Written explicitly
in terms of real coordinates, (7.53) takes the form (see Fig. 7.5)

r = R
sinhu

coshu + cos(τE/R) ,
tE = R

sin(τE/R)
coshu + cos(τE/R) . (7.56)

Note that (7.56) can be obtained by analytic continuation to Euclidean time of the conformal
mapping between causal domain of a sphere in Minkowski space and Lorentzian H [48].
Under this analytic continuation the boundary of the causal domain shrinks to a sphere of
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radius R while its interior spans the rest of Euclidean space. Note also that the conformal
factor (7.55) is everywhere regular on the Euclidean space excluding the sphere of radius
R.

Eq. (7.56) implements a simple bijection between H and Rd. Furthermore, the
conformal boundary of the hyperbolic space Hd−1 is mapped onto a (d − 2)-dimensional
sphere of radius R sitting on a tE = 0 slice of Rd. Finally, constant time slices τE = 0

+ and
τE = β

− are mapped respectively onto tE = 0
− and tE = 0

+ of the cut C = {xµ ∈ Rd ∣0 ≤ r <
R , tE = 0}. Hence we have shown that the conformal map (7.53) transforms between the
thermal state on H and the entangled state ρ̂0 for a spherical region in Rd.

7.4.1 Geometric perturbations

The metric onM is given by

ds2M = dt
2
E + dr

2
+ r2 dΩ2

d−2 . (7.57)

We rewrite it as

ds2M = dx
2
1 + dx

2
2 + (1 + 2

R
x2 +

x22
R2
) ds2Σ , (7.58)

where we defined a new set of coordinates tE = x1 , r = R + x2 with −R ≤ x2 <∞, and ds2Σ
is the line element on a sphere of radius R

ds2Σ = R
2dΩ2

d−2 . (7.59)

The extrinsic curvatures of Σ in this case are given by

K 1̂
ij = 0 , K

2̂
ij =

γij

R
, (7.60)

where γij is the induced metric on a sphere of radius R.
We assume that the background curvature, induced metric, and extrinsic curva-

tures acquire corrections Rµναβ , δγij and δKc
ij parametrized by some infinitesimal param-

eter ǫ
R2
Rµναβ ∼ RδK

c
ij ∼ δγij ∼ ǫ (7.61)

As a result, the slightly perturbed metric can be expressed in the form of (7.10), where ḡµν
is given by (7.58), while hµν takes the form

hµνdx
µdxν = −

1

3
Racbd∣Σxcxddxadxb + (Ai +

1

3
xbεdeRibde∣Σ)εac xadxcdyi

+ (δγij + 2 δKaij x
a
+ xaxc(Riacj ∣Σ + 2

R
δ2̂c δKa ij − δ

2̂
aδ

2̂
c

δγij

R2
))dyidyj +O(ǫ2) .

(7.62)

Here yi are just the standard spherical angles multiplied by R. In what follows we use the
unperturbed induced metric γij to raise and lower the indices on the entangling surface.

To use (7.26) we need the connected correlator ⟨T̂µν
H
Ĥ⟩c. Since the Hamiltonian

is conserved and hyperbolic space is maximally symmetric, the correlator is insensitive to
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where the operators are inserted, and therefore it is constant on H. In particular, it was
shown in [142] that

⟨T̂ τEτE
H

Ĥ⟩c = − (d − 1)
2d+2π2d

Ωd+2

Rd+1
CT , Ωd =

2π
d+1
2

Γ(d+1
2
) , (7.63)

where CT is a “central charge” common to CFTs in any number of dimensions. In four
dimensions this coefficient is related to the standard central charge c which appears as the
coefficient of the (Weyl)2 term in the trace anomaly4 CT = (40/π4)c.

Since the background geometry is conformally flat, all Weyl invariants of the trace
anomaly vanish. Further, the background is the direct product of two lower dimensional
geometries which dictates that the Euler density is also zero. Hence, the trace anomaly
vanishes in this particular background. Using the tracelessness of the energy-momentum
tensor and maximal symmetry of Hd−1 yields

⟨T̂ i
H jĤ⟩c = δij

2d+2π2d

Ωd+2

Rd+1
CT , (7.64)

where indices i, j run over the hyperbolic space Hd−1. It follows from (7.26) that the off
diagonal elements of (7.62) do not contribute to linear order corrections since the connected
correlator ⟨T̂µν

H
Ĥ⟩c is diagonal.

Eqs. (7.26), (7.62), (7.63) and (7.64) give a general solution for linear perturbations
of spherical regions in flat space. In the next subsection we carry out a particular calculation
in d = 4 and show that our formula (7.26) agrees with the known results in the literature.

7.4.2 Calculation

Let us evaluate the logarithmic divergence of entanglement entropy for a four
dimensional CFT using our result (7.26). This divergence is universal since it is independent
of the details of regularization scheme, and it was shown in [48] that for a perfect sphere in
flat space it is entirely fixed by the coefficient of the A-type trace anomaly. In particular,
in d = 4 the universal divergence takes the form

Suniv = −4a log(R/δ) , (7.65)

Here δ is the UV cut-off and a is the central charge defined in (7.43),
As argued in [48], the leading order term in (7.26) satisfies ST = Suniv. The

logarithmic divergence within the thermal computation on H is a result of the divergent
volume of hyperbolic space. This IR divergence emerges because we have a uniform entropy
density, but the volume of H3 is infinite. Hence, to regulate the thermal entropy in H we
integrate to some maximum radius, u = umax where umax ≫ 1. On the other hand, the
divergence of entanglement entropy is entirely due to short distance fluctuations in the
vicinity of Σ. Thus, in order to regulate this divergence we exclude the δ-neighborhood
of the entangling surface Σ, where δ/R ≪ 1. These two UV and IR cut-off’s should be

4See (7.43) for the definition of the central charges that we use throughout this chapter.
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related by the conformal mapping between the two spaces. If we focus on the tE = 0 slice
(or equivalently the τE = 0 slice), then (7.56), yields the following relation [48]

1 −
δ

R
=

sinhumax

coshumax + 1
⇒ umax ≃ log(R/δ). (7.66)

To get corrections to the leading order result we substitute eqs. (7.62), (7.63) and (7.64)
into (7.26) and use eqs. (7.50), (7.55) and (7.56) to carry out the integrals. The final answer
for the logarithmically divergent part of the integrals is given by

δSuniv =
c

6π
∫
Σ
( δγ
R2
−

2

R
δ2̂c δK

c
+ γijδacRiâcj ∣Σ + δacδbdRabcd) log(R/δ) , (7.67)

where Σ is a sphere of radius R, δγ and δKc are the traces of the perturbations δγij and
δKc

ij , and we used (7.56) to evaluate the components of hµν in coordinates (7.50),

huu = −
R2Ω4

6
δacδbdRabcd e

−2u sin2(τE/R) ,
hτEτE = −

R2Ω4

6
δacδbdRabcd (1 + e−u cos(τE/R))2 ,

huτE =
R2Ω4

24
δacδbdRabcd e

−u sin(τE/R)(1 + e−u cos(τE/R)) . (7.68)

Let us now compare (7.67) with Solodukhin’s formula (7.45). For the case of a
sphere in flat space, this formula reduces to (7.65). Corrections to (7.65) can be evaluated
by varying (7.45) around sphere of radius R embedded into Rd. Provided that variations
are small and satisfy (7.61), we get (7.46) again. The latter is not a coincidence, it is a
straightforward consequence of the fact that (7.45) is Weyl invariant while the two setups
(a plane and a sphere in flat space) are conformally equivalent. To see it explicitly, let us
write the metric around flat plane as follows

ds2 = dr2 + r2dθ2 + δijdy
idyj =

r2

R2
(dτ2E + R2

r2
(dr2 + δijdyidyj)) , (7.69)

where we have defined τE = Rθ and used polar coordinates in the transverse space to the
plane. Stripping off conformal factor on the right hand side of this expression leaves us
with the metric on H in Poincare patch. Note that conformal factor is everywhere regular
in the punctured Euclidean space (or analytically continued Rindler wedge), and the plane
at r = 0 is mapped onto conformal boundary of H.

Hence, we have shown that two setups are conformally equivalent to H with entan-
gling surfaces being mapped onto conformal boundary of the hyperbolic space. Therefore
they are conformally equivalent to each other. In particular, it follows that quadratic in
extrinsic curvatures term of (7.45),

I = ∫
Σ
(Ka

ijK
ij
a −

1

2
KaKa) , (7.70)

does not contribute to the first variation of entanglement entropy around spherical region.
This claim can be verified by direct computation, however there is a simple argument based
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on the Weyl symmetry inherent to the problem. Indeed, this term is separately Weyl
invariant and its first variation vanishes in the planar case, therefore the same is true for
conformally equivalent spherical region in flat space. In our forthcoming publication we
are going to explore the second order perturbation theory to uncover the effect of extrinsic
curvatures on the entanglement entropy.

Let us now show that (7.46) agrees with (7.67). Varying the Gauss-Codazzi relation
(7.89) around the unperturbed sphere of radius R embedded in flat space gives

γijγklRikjl∣Σ = 1

R2
δγ −

2

R
δ2̂c δK

c
+∇

i(∇jδγij − γ
mn
∇i δγmn) , (7.71)

where we have used the variational rule (7.48). Substituting this result into (7.46) gives
(7.67)5.

7.5 Notation

In this appendix we explain our notation and conventions. Greek indices run over
the entire background, whereas Latin letters from the ‘second’ half of the alphabet i, j, . . .
represent directions along the entangling surface.

There is a pair of independent orthonormal vectors which are orthogonal to Σ,
we denote them by nµa (with a = 1,2), where the letters from the beginning of the Latin
alphabet are used to denote the frame or tangent indices in the transverse space. Then
delta Kronecker δab = n

µ
an

ν
b gµν is the metric in the tangent space spanned by these vectors

and δab is the inverse of this metric.
We also have tangent vectors tµi to Σ, which are defined in the usual way with

t
µ
i = ∂x

µ/∂yi, where xµ and yi are the coordinates in the full embedding space and along
the surface, respectively. The induced metric is then given by γij = t

µ
i t

ν
j gµν . It can also

be defined as a bulk tensor with γµν = gµν − g
⊥

µν , where g
⊥

µν = δabn
a
µn

b
ν is the metric in the

space transverse to Σ. The second fundamental forms are defined for the entangling surface
with Ka

ij = t
µ
i t

ν
j∇µn

a
ν , where ∇µ is covariant derivative compatible with gµν . We use this

definition to construct the bulk vector Kµ
ij = n

µ
aK

a
ij .

Next we define the volume form in the tangent space spanned by the normal vectors

εab = −εba , ε1̂2̂ = 1 ,

εab = δacδbdεcd = εab . (7.72)

Using this definition the volume form in the transverse space can be written as εµν = εabn
a
µn

b
ν .

We use g⊥µν to raise and lower the indices in the transverse space, while indices along the
direction of the entangling surface are raised and lowered with the induced metric γµν . Note
that the following useful identity holds,

εµνερσ = g
⊥

µρg
⊥

νσ − g
⊥

µσg
⊥

νρ . (7.73)

Finally, our convention for the curvature tensor is given by

Rµνρσ =
1

2
(gµσ,νρ + gνρ,µσ − gµρ,νσ − gνσ,µρ) + Γνρ,χΓ

χ
µσ − Γνσ,χΓ

χ
µρ . (7.74)

5The total derivative in (7.71) does not contribute since Σ in our case has no boundaries.
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7.6 Foliation of M in the vicinity of the entangling surface

In this appendix we build a particular foliation of M in the vicinity of Σ. First,
we choose some parametrization {yi}d−2i=1 for the entangling surface Σ, then for a given point
O ∈ Σ we fill the transverse space with geodesics radiating orthogonally out from O. For
each point p on the resulting two-dimensional manifold, TO, we find a geodesic that connects
it to O, such that p lies a unit affine parameter from O. Tangent vector to such a geodesic at
O can be expanded in terms of a chosen two-dimensional basis nµa . We give its components
the names xa and choose them as coordinates on TO. Together {yi, xa} parametrizeM in
the vicinity of Σ.

Note that we keep the parametrization of the entangling surface unspecified and
therefore the final answer for entanglement entropy will be symmetric with respect to
reparametrizations of Σ. On the other hand, choosing a particular foliation of the trans-
verse space does not destroy general covariance of the entanglement entropy since the final
answer is obtained by integrating out this space.

By construction, the following relations hold

naµ = δ
a
µ , t

µ
i = δ

µ
i , g⊥µν = δac δ

a
µ δ

c
ν , gia = 0 on Σ . (7.75)

In particular, δac plays the role of the transverse metric in this foliation and one can readily
evaluate the extrinsic curvatures of Σ,

Ka
ij = ∇in

a
j ∣Σ = 1

2
δac∂c gij ∣Σ . (7.76)

Hence,
gij = γij + 2Kaij x

a
+O(x2) . (7.77)

Furthermore, geodesics radiating orthogonally out from a given point y ∈ Σ take the form
xa(τ) = vaτ , where va belongs to the two-dimensional tangent space spanned by two normal
vectors at y. Substituting this parametrization into the geodesic equation yields

Γµ
acv

avc = 0 ⇒ Γµ
ac = 0 at O . (7.78)

This identity can be further generalized by differentiating the geodesic equation n times
with respect to τ and setting τ = 0. This gives

∂(d1∂d2⋯∂dnΓ
µ

ac) = 0 at O , (7.79)

where as usual (⋯) denotes symmetrization with respect to the indices within the paren-
thesis. This result (7.79) with index µ in the transverse space can be used to derive the
expansion of the metric on Ty,

gab(x, y) = δab −
1

3
Racbd(y)xcxd − 1

6
∂eRacbd(y)xcxdxe +O(x4) . (7.80)

Moreover, it follows from Γi
ac∣Σ = ∂(dΓi

ac)∣Σ = 0 that Taylor expansion of gic in the vicinity
of Σ can be written as follows

gic = (Ai +
1

3
xbεdeRibde∣Σ)xaεac +O(x3) , (7.81)
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where we have introduced a vector field that lives on Σ

Ai =
1

2
εac∂agic∣Σ , (7.82)

and used the following identity that holds for our foliation

Ribac∣Σ = ∂b∂[a gc]i∣Σ , (7.83)

where [⋯] denotes antisymmetrization with respect to the indices inside the square brackets.
We only need to compute O(x2) term in (7.77) to get the expansion of the full

metric to second order in the distance from the entangling surface. We first note that
Christoffel symbols with at least one index in the transverse space are given by

Γµ
ac∣Σ = 0 , Γa

ic∣Σ = −εacAi , Γa
ij ∣Σ = −Ka

ij , Γj
ia∣Σ =Kj

a i . (7.84)

Now using (7.74), we obtain

Riajb∣Σ = 1

2
εbaFij −

1

2
∂a∂bgij ∣Σ + δabAiAj +Kb ilK

l
a j , (7.85)

where Fij = ∂iAj − ∂jAi is the field strength. Symmetrizing this expression with respect to
a and b, yields

1

2
∂a∂bgij ∣Σ =Ri(ab)j ∣Σ + δabAiAj +

1

2
(Kb ilK

l
a j +Ka ilK

l
b j) , (7.86)

where (⋯) means symmetrization with respect to the indices inside the parenthesis. Hence
(7.77) to second order in xa takes the form

gij = γij + 2Kaij x
a
+ xaxc(δacAiAj +Ri(ac)j ∣Σ) + xaxcKc ilK

l
a j +O(x3) . (7.87)

Altogether eqs. (7.80), (7.81) and (7.87) correspond to the second order expansion of the
full metric gµν in the vicinity of Σ. To linear order in the distance from Σ this metric takes
the simple form,

ds2 = δacdx
adxc + 2Aiεac x

adxc dyi + (γij + 2Kaij x
a)dyidyj +O(x2) . (7.88)

Note that using the definition (7.74) and (7.84), one can evaluate various com-
ponents of the Riemann tensor that were not necessary so far. For instance, considering
directions along the entangling surface Σ yields the well known Gauss-Codazzi identity

Rijkl∣Σ =RΣ
ijkl +K

a
jkKa il −K

a
jlKa ik , (7.89)

where RΣ
ijkl is the intrinsic curvature tensor on Σ.
Furthermore,

Rijab∣Σ = εbaFij +Kb ilK
l
a j −Ka ilK

l
b j , (7.90)

This identity can be used to express the field strength in terms of the background curvature
and extrinsic geometry of Σ.

Finally,

Rijla∣Σ = ∇iKajl −∇jKail + 2 εbaA[iK
b
j]l ,

Rabcd∣Σ = R
T
abcd∣Σ , (7.91)

where ∇i is the covariant derivative compatible with the induced metric on Σ and RT
abcd is

the intrinsic curvature tensor of the transverse space, Ty, at a given point y ∈ Σ.
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7.7 Intermediate calculations for Sec. 7.3

In this Appendix we evaluate the integral (7.36) appearing in the calculation of the
first order correction to the entanglement entropy for a deformed plane in a weakly curved
background. First we consider the contribution of the metric perturbation with indices in
the direction of the entangling surface, i.e., hij = x

axcRiacj . In this case (7.40) is given by,

Iij,22 =
4 x22 (y − ȳ)i(y − ȳ)j((x − x̄)2 + (y − ȳ)2)2 −

1

4
δij (7.92)

We begin evaluating (7.36) by first doing the integral over ȳ through a change of variables
ȳ → ȳ + y giving

δS1 = −
π2

10
CT ∫

x̄1>0
d2xd2y dx̄1 x̄1

δij hij((x1 − x̄1)2 + x22)3 (
x22(x1 − x̄1)2 + x22 −

5

6
). (7.93)

Next, we carry out the x̄1 integral and introduce polar coordinates in the transverse space,
x1 = r cos θ, x2 = r sin θ,

δS1 =
π2

240
CT ∫ d2y dθ

dr

r3
δij hij , (7.94)

As expected, the integral over r exhibits logarithmic divergence close to the entangling
surface at r = 0. Hence, we introduce a UV cut off, δ, to regularize divergence and integrate
over r and θ

δS1 =
c

6π
∫ d2y δijδacRiacj log(ℓ/δ) , (7.95)

where ℓ is characteristic scale of small perturbations, and we used the value of CT = (40/π4)c
in four spacetime dimensions.

Next we calculate the contribution of perturbations in the transverse space, i.e.,
hab = −

1
3
Racbdx

cxd. Using Iab,22 from (7.40) and performing the integral over ȳ in (7.36)
yields

δS2 = −π2CT ∫
x̄1>0

d2x d2y dx̄1 x̄1 hab(x, y)
×
⎛⎝13 δa2δb2 − δab/4((x1 − x̄1)2 + x22)3 −

x2(x − x̄)b δa2((x1 − x̄1)2 + x22)4 +
4

5

x22 (x − x̄)a(x − x̄)b((x1 − x̄1)2 + x22)5
⎞⎠

As before, we preform the x̄1 integral, introduce polar coordinates in the transverse space,
substitute hab, carry out θ integral, and finally get

δS2 =
c

6π
∫ d2y δacδbdRabcd log(ℓ/δ) (7.96)

Combined with (7.95), we have thus recovered (7.42).
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Part II

Emergent Spacetime with Λ > 0



136

In this second part we turn to the harder question of finding the holographic dual
to the multiverse. As the correct theory is not yet known, we seek to make progress by
extracting general lessons about holography from AdS/CFT. We make a proposal for how
to implement the analog of the UV/IR prescription for the mulitverse context so as to
define a bulk measure. We then test our measure and others in the literature to see how
well they match with observation. Finally, we point out a serious difficulty encountered by
all measure proposals. This part of the thesis is organized as follows.

In chapter 8, based on [28], we propose to regulate the infinities of eternal inflation
by relating a late time cut-off in the bulk to a short distance cut-off on the future boundary.
The light-cone time of an event is defined in terms of the volume of its future light-cone on
the boundary. We seek an intrinsic definition of boundary volumes that makes no reference
to bulk structures. This requires taming the fractal geometry of the future boundary,
and lifting the ambiguity of the conformal factor. We propose to work in the conformal
frame in which the boundary Ricci scalar is constant. We explore this proposal in the FRW
approximation for bubble universes. Remarkably, we find that the future boundary becomes
a round three-sphere, with smooth metric on all scales. Our cut-off yields the same relative
probabilities as a previous proposal that defined boundary volumes by projection into the
bulk along timelike geodesics. Moreover, it is equivalent to an ensemble of causal patches
defined without reference to bulk geodesics. It thus yields a holographically motivated and
phenomenologically successful measure for eternal inflation.

In chapter 9, based on [29], we test different measures. We show that the geometry
of cutoffs on eternal inflation strongly constrains predictions for the timescales of vacuum
domination, curvature domination, and observation. We consider three measure proposals:
the causal patch, the fat geodesic, and the apparent horizon cutoff, which is introduced here
for the first time. We impose neither anthropic requirements nor restrictions on landscape
vacua. For vacua with positive cosmological constant, all three measures predict the double
coincidence that most observers live at the onset of vacuum domination and just before the
onset of curvature domination. The hierarchy between the Planck scale and the cosmological
constant is related to the number of vacua in the landscape. These results require only mild
assumptions about the distribution of vacua (somewhat stronger assumptions are required
by the fat geodesic measure). At this level of generality, none of the three measures are
successful for vacua with negative cosmological constant. Their applicability in this regime
is ruled out unless much stronger anthropic requirements are imposed.

Finally, in chapter 10, based on [30], we point out a difficulty with all existing
measures. Present treatments of eternal inflation regulate infinities by imposing a geometric
cutoff. We point out that some matter systems reach the cutoff in finite time. This implies
a nonzero probability for a novel type of catastrophe. According to the most successful
measure proposals, our galaxy is likely to encounter the cutoff within the next 5 billion
years.
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Chapter 8

Boundary Definition of a
Multiverse Measure

8.1 Introduction

String theory gives rise to an enormous multiverse where the constants of nature
are locally constant but vary over extremely large distance scales [41, 109]. In this context,
it is natural to make predictions by counting. The relative probability of two events (for
example, two different outcomes of a cosmological or laboratory measurement) is defined
by their relative abundance,

p1

p2
=
N1

N2

, (8.1)

where N1 is the expectation value of the number of times an event of type 1 occurs in the
multiverse.

There is ambiguity in computing the ratio N1/N2: naively, both numbers are infi-
nite. Starting from finite initial conditions, eternal inflation produces an infinite spacetime
volume in which everything that can happen does happen an infinite number of times. A
procedure for regulating this divergence is called a measure. Different measures can lead to
different relative probabilities starting from an otherwise identical theory.

A number of measures have been proposed, including [125, 123, 71, 72, 70, 76, 179,
178, 24, 121, 122, 141, 73, 182, 183, 184, 126, 26], but over the past several years a vigorous
phenomenological effort (e.g., [77, 62, 145, 63, 159, 157, 37, 43, 137, 33, 158, 38, 140, 53, 34,
155, 35, 144, 39, 87]) has focused attention on a few simple proposals that remain viable. In
this chapter, we will focus on the light-cone time cut-off, which arises from an analogy with
the AdS/CFT correspondence. Given a short-distance cut-off on the boundary conformal
field theory, the radial position of the corresponding bulk cut-off [165] can be obtained from
causality alone [42], without reference to the details of the bulk-boundary correspondence.
In the multiverse, the time of a bulk event can similarly be defined in terms of a scale
on the future boundary of the multiverse [73]. The simplest causal relation is to associate
to each bulk event a boundary scale given by the volume of its future light-cone on the
boundary [26] (see Fig. 8.1).1

1A different bulk-boundary relation was proposed in Ref. [73]. One of us (RB) has argued that this relation
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Figure 8.1: Constant light-cone size on the boundary defines a hypersurface of constant
“light-cone time” in the bulk. The green horizontal lines show two examples of such hy-
persurfaces. They constitute a preferred time foliation of the multiverse. In the multiverse,
there are infinitely many events of both type 1 and type 2 (say, two different values of
the cosmological constant measured by observers). Their relative probability is defined by
computing the ratio of the number of occurrences of each event prior to the light-cone time
t, in the limit as t→∞.

There is a remaining ambiguity: how is the volume of the future light-cone to be
defined? Near the future boundary, physical distances diverge in inflating regions and go
to zero near singularities. Ref. [26] defined boundary volumes by erecting a congruence of
geodesics orthogonal to a fixed, fiducial bulk hypersurface and projecting future infinity onto
the fiducial hypersurface along the geodesics. The definition of Ref. [26] is quite robust2; in
particular, it does not matter whether geodesics expand or collapse or cross.

We would like to find an alternative definition of the boundary volume which does
not rely on such an elaborate bulk construction. The geodesics used to project the light-
cone onto the fiducial hypersurface do only one thing for us: they define boundary volumes.
Yet they encode an enormous amount of geometric bulk information (the exact path of each
geodesic, the expansion and shear of nearby geodesics, etc.), most of which is never used
for any purpose. They bear no apparent relation to any physical system; for example, they
do not represent the worldlines of actual particles. Moreover, the construction takes an
absurdly classical viewpoint of the bulk geometry: because of the exponential expansion of
de Sitter vacua, the projection of a late time light-cone onto the fiducial hypersurface has
subplanckian volume.

There is another reason why it would be nice to eliminate bulk geodesics from the
definition of the measure. Ultimately, one expects that a fundamental description of the

is less well-defined than light-cone time and is not analogous to the UV/IR relation of AdS/CFT [26]. These
concerns aside, it could be combined with the metric we construct on the future boundary. The resulting
measure would be different from the one obtained here.

2In this respect, the definition of volumes explored here remains inferior, for now, since it is completely
well-defined only for homogeneous bubble universes. However, for the reasons stated below, it may ultimately
prove to be more fundamental.
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Figure 8.2: Conformal diagram of de Sitter space with a single bubble nucleation. The
parent de Sitter space is separated from the daughter universe by a domain wall, here
approximated as a light-cone with zero initial radius (dashed line). There is a kink in the
diagram where the domain wall meets future infinity. This diagram represents a portion of
the Einstein static universe, but the Ricci scalar of the boundary metric is not constant.

multiverse will involve its boundary structure in some way. This was a key motivation for
seeking a multiverse analogue of the UV/IR relation of AdS/CFT in the first place. The
equivalence of the causal patch and light-cone time cut-off, along with their phenomeno-
logical successes, encourages us to take seriously the motivations behind the two measures.
In particular, we would like to define the light-cone time cut-off, to the greatest extent
possible, in terms of quantities that are intrinsic to the boundary.

In this chapter we will propose an intrinsic definition of volumes on the future
boundary of the multiverse, and we will explore the resulting time foliation and measure.
Like in AdS, we will render the boundary finite by a conformal rescaling of the bulk metric.
However, we face two difficulties that have no direct analogue in AdS/CFT.

The boundary of the multiverse is naturally a fractal. In the bulk, bubbles of
different vacua keep being produced at later and later times, leading to boundary features
on arbitrarily small scales. If the bulk evolution exhibits attractor behavior (this is common
to many global foliations of the multiverse, though the attractor itself depends on the
foliation), then the boundary will exhibit self-similarity in the short-distance limit. Because
of the abundance of short-distance structure, the boundary must be constructed first on
large scales, and then refined to better and better resolution, corresponding to evolving
the bulk to later and later times. The details of this procedure have not been carefully
formulated and will concern us greatly.

The fractal structure leads to a number of difficulties for defining a metric on the
future boundary:

● Generically, when a new bubble forms at late times in the bulk, one would like to
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include this information on the boundary, for example by coloring a small disk on the
boundary which is enclosed by this bubble. But the new vacuum will also change the
metric in the bulk, and thus, the shape of the conformal diagram. In other words,
generically, the boundarymetric will keep changing as we increase the resolution. This
is worse than the behavior of most fractals we are familiar with, which are defined by
coloring points on a fixed background metric.

● A natural way of constructing a conformal diagram depicting the formation of a bubble
universe in de Sitter space leads to a future boundary with a “sharp edge” (see Fig. 2),
where the first derivative of the induced boundary metric is discontinuous. With more
and more bubbles forming at late times, such edges would appear on arbitrarily small
scales.

The shape of the boundary is defined only up to finite conformal transforma-
tions. Because the boundary metric is obtained from the bulk spacetime by a conformal
rescaling, it is only defined up to a finite conformal factor. The shape of many conformal
diagrams can be changed by a conformal transformation. The resulting diagram is just as
legitimate as the original one, but its boundaries may have a different geometry.

● In the multiverse, this ambiguity in the boundary metric leads to an ambiguity in the
bulk foliation. Unlike in AdS, which is asymptotically empty, this leads to a potential
ambiguity in the measure. For example, a different choice of conformal factor may
change the predicted probability distribution for the cosmological constant.

Outline We introduce the concept of light-cone time in Sec. 8.2.1, emphasizing that it
requires a definition of the volume of any future light-cone. In Sec. 8.2.2, we propose that the
volume should be defined as the volume enclosed by the light-cone on the future conformal
boundary of the multiverse. Moreover, we propose choosing the conformal factor so that
the boundary metric has constant scalar curvature,

R = constant , (8.2)

where R is the Ricci scalar of the boundary metric3 A recent result in mathematics—
the solution to the Yamabe problem—guarantees that a suitable conformal transformation
can always be found and is essentially unique on the boundary. This proposal defines
what we shall refer to as “new light-cone time”. In Sec. 9.3, we apply our proposal to a
simplified landscape model. We approximate bubble universes as homogeneous open FRW
cosmologies, we assume that they all have nonzero cosmological constant, and we neglect
bubble collisions. Despite these simplifications, all of the difficulties listed above arise in
this model, and we show that our proposal succeeds in addressing them. We construct
the conformal diagram iteratively, making sure that the boundary condition R = const.

3Garriga and Vilenkin [74] defined the metric on future infinity by foliating the spacetime by surfaces
whose induced metric has R = 0. In general spacetimes this is different from our proposal, and bulk R = 0
surfaces do not always exist. However, in the special case we focus on of homogeneous de Sitter bubbles,
their boundary metric is the same as ours.
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is satisfied each time a new bubble universe is included in the bulk. We find that this
procedure leads to a fixed, everywhere smooth boundary metric that can be taken to be a
unit three-sphere.

The boundary metric picked out by the condition R = const. defines new light-cone
time. In Sec. 8.3, we present some of the most important properties of this time foliation.
In Sec. 10.2, we derive rate equations that govern the distribution of vacua. We emphasize
the boundary viewpoint, in which bubble universes correspond to topological disks on the
boundary three-sphere. In Sec. 8.3.2, we find the solution of the rate equations. The late
time attractor behavior in the bulk corresponds to a universal ultraviolet scaling of the
distribution of disks on the boundary. In Sec. 8.3.3, we derive the crucial expression that
underlies the probability measure: the number of events of arbitrary type, as a function of
light-cone time.

In Sec. 8.4, we analyze the probability measure. In Sec. 8.4.2, we show that new
light-cone time yields the same measure as old light-cone time, i.e., both cut-offs predict the
same relative probabilities for any two types of events in our simplified landscape model.
In particular, this implies that our “new” light-cone time shares the phenomenological
successes of the old one, and of the causal patch measure dual to it.

In Sec. 8.5, we discuss how our approach may extend to the general case, where
inhomogeneities, collisions, and vacua with Λ = 0 are included. We also consider the (likely)
possibility that the landscape contains vacua of different dimensionality. In defining a unique
boundary metric, several difficulties arise in addition to the ones listed above, and a more
general method of implementing Eq. (8.2) is needed. We discuss what phenomenological
properties may be expected of the resulting measure. In particular, we expect that in the
context of inhomogeneous universes, a boundary definition of light-cone volume will address
a problem pointed out by Phillips and Albrecht [144].

8.2 New light-cone time

In this section, we define new light-cone time, and we construct the surfaces of
constant light-cone time in a simple multiverse.

8.2.1 Probabilities from light-cone time

Given a time foliation of the multiverse, the relative probability of events of type
A and B (e.g., two different outcomes of an experiment) can be defined by

pA

pB
= lim

t→∞

NA(t)
NB(t) , (8.3)

where NA(t) is be the number of times an event of type A has occurred prior to the time
t. This measure depends strongly on the choice of t. In this chapter, we focus exclusively
on the case where t is of the form

t ≡ −
1

3
log

V (E)
4π/3 . (8.4)
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Here, V (E) is the (suitably defined) volume of the causal future of E, I+(E). Any time
variable of this form will be referred to as light-cone time.

To complete the definition of light-cone time, and thus of the measure, one must
define V (E). One such definition, which results in what we shall refer to as old light-

cone time, was given in Ref. [26]: consider a family of geodesics orthogonal to a fiducial
hypersurface in the bulk, and let V (E) be the volume occupied on the fiducial hypersurface
by the geodesics that eventually enter I+(E). In this chapter we will explore a different
definition, new light-cone time.

Often, we will find it convenient to work instead with the variable

η = e−t = (V (E)
4π/3 )

1/3
, (8.5)

which is naturally interpreted as a boundary distance scale. Since hypersurfaces of constant
η are hypersurfaces of constant t, they define the same bulk foliation, and thus, the same
measure. In the bulk, η decreases towards the future and vanishes on the boundary; t
increases towards the future and diverges at the boundary.

8.2.2 A gauge choice for the conformal boundary

Physical distances diverge in the asymptotic future of an eternally inflating multi-
verse, except inside black holes and vacua with negative cosmological constant, where they
approach zero. Such behavior is found in many other spacetimes, such as (Anti-)de Sitter
space or the Schwarzschild solution. However, in many cases a boundary of finite volume
can be defined by a conformal transformation.

To a physical spacetimeM , with metric gµν , we associate an unphysical spacetime
M̃ with metric g̃µν which satisfies a number of conditions. There must exist a conformal
isometry ψ ∶M → ψ[M] ⊂ M̃ such that

g̃µν = Ω
2(x)ψ∗gµν = e2φ(x)ψ∗gµν (8.6)

in ψ[M]. Note that Ω should be nowhere-vanishing on ψ[M], and we demand that Ω
be sufficiently smooth (say, C3 [95]) in ψ[M] and extend to a continuous function on the
closure, ψ[M]. We will refer to both Ω and φ = logΩ as the conformal factor. Hereafter
we will identify M with its image ψ[M] (called “the bulk”), and refer to the physical (gµν)
and unphysical (g̃µν = Ω

2gµν) metrics defined on M , eliminating ψ from the notation.
As a set, the boundary of M is defined as those points in the closure of M ⊂ M̃

which are not contained in M itself: ∂M = M −M . By the “boundary metric”, Gab, we
mean the unphysical metric induced on ∂M viewed as a subset of M̃ . The key property we
will require of the unphysical spacetime is that for any E ⊂M , the volume of I+(E) ∩ ∂M
be finite in the boundary metric. (Below we will define V (E) to be this volume.) Note
that for those cases where the physical volumes and distances diverge as one approaches
the boundary, this implies that the conformal factor Ω approaches zero on ∂M , or that φ
diverges. We will return in Sec. 8.5 to the question of which bulk metrics can be conformally
rescaled so that the boundary metric is finite and nonsingular.
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There is an ambiguity in the boundary metric which is related to an ambiguity in
choosing the conformal factor that makes the rescaled bulk spacetime finite. Consider an
additional Weyl rescaling with a conformal factor that is bounded on the boundary:

G̃ab = e
2φ̃(x)Gab , (8.7)

with ∣φ(xµ)∣ < K for some real number K. This will produce a new unphysical spacetime
whose boundary still has finite volume, and which we could have obtained directly from the
original spacetime via the conformal factor φ + φ̃. So the requirement of finiteness is not
sufficient to fix the boundary metric completely.

We propose to fix the ambiguity by demanding that the conformal transformation
yield a boundary metric of constant scalar curvature:

R = constant . (8.8)

Here, R is the Ricci scalar computed in the boundary metric, not the bulk Ricci scalar
restricted to the boundary. The value of the constant is arbitrary. (It can be changed by
an overall rescaling of the unphysical spacetime; this shifts light-cone time by a constant
but leaves the foliation, and thus the probability measure, invariant.) At a naive level of
counting degrees of freedom, these conditions fix the metric.

At a more refined level, the question of whether an arbitrary metric on a smooth,
compact manifold can be brought to a metric with constant scalar curvature is a difficult
problem in mathematics known as the Yamabe problem. The Yamabe problem has been
solved in the affirmative [156], [117]. For a smooth compact Riemannian manifold (Mn,G

′)
of dimension n ≥ 3, there exists a metric G conformal to G′ such that the Ricci scalar of G is
constant. The problem of finding the appropriate conformal transformation G = φ4/(n−2)G′

amounts to solving the differential equation

4(n − 1)
n − 2

∇
2φ +R′φ = Rφ

n+2
n−2 , (8.9)

with R a constant. This is nontrivial since the solution φ must be smooth and strictly
positive, and must exist globally.

Yamabe [187] attempted to solve the problem by noting that (8.9) can be written
as the Euler-Lagrange equation for a certain functional of the metric. This functional is
closely related to the average scalar curvature of the metric over the manifold. Since the
minimum occurs for the metric with constant curvature, the solution focuses on showing
that the minimum of this functional is realized. Yamabe’s original proof was later shown
to be valid only in certain cases [176]. The proof was extended to other cases in [3] and
completed in 1984 by Richard Schoen [156]. A unified and self-contained proof of the
Yamabe problem is given in [117].

Having shown that a constant curvature metric exists, can we be sure that it is
unique? Generically it is [2]: there is an open and dense set U in the space of conformal
classes of metrics such that each element [G] ∈ U has a unique unit volume metric with
constant scalar curvature. In simple cases with symmetries, however, there may be a few-
parameter family of solutions to the Yamabe problem. For example, the round three-sphere
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has an ambiguity given by the global conformal group SO(4,1). However, this ambiguity
can only be used to fix the locations of a few points. We will ultimately be interested in
the behavior on the shortest scales where this ambiguity has no effect.

We can now define V (E) in Eq. (8.4) as follows. Let L(E) be the portion of the
boundary in the causal future of E, i.e., the intersection of I+(E) with the boundary. Let
V (E) be the volume of L(E), measured using the metric Gab obtained by the (essentially
unique) conformal transformation that achieves constant Ricci scalar on the boundary:

V (E) ≡ ∫
L(E)

d3y
√
G , (8.10)

where G is the determinant of Gab. With this choice of V , Eq. (8.4) defines the new

light-cone time, t, and Eq. (8.3) defines a probability measure for the multiverse, the new
light-cone time cut-off.

8.2.3 The multiverse in Ricci gauge

In this section, we carry out the construction of future infinity with R = const,
subject to the following approximations and assumptions:

● All metastable de Sitter vacua are long-lived: κα ≪ 1, where κα = ∑κiα is the total
dimensionless decay rate of vacuum α, and κiα = ΓiαH

−4
α , where Γiα is the decay

rate from the de Sitter vacuum α to the arbitrary vacuum i per unit four volume,
and Hα = (3/Λα)1/2 is the Hubble constant associated with the asymptotic de Sitter
regime of vacuum α.4

● Bubble collisions are neglected. This is equivalent to setting all decay rates to zero in
the causal past of a bubble.

● Each bubble is a homogeneous, isotropic, open universe; the only exception are bubbles
nucleating inside bubbles, which spontaneously break this symmetry. On a large scale,
this assumption essentially follows from the previous two approximations, since a large
suppression of the decay implies a large suppression of fluctuations that break the
SO(3,1) symmetry of the Coleman-de Luccia geometry. But on a small scale, this
assumption implies that we suppress any structure formation that results from small
initial perturbations; we treat the bubble universe as completely homogeneous and
isotropic.

● All bubbles have the same spacetime dimension, D = 3 + 1.

● No vacua with Λ = 0 are produced. This ensures that the boundary contains no null
portions or “hats”, where the boundary metric would be degenerate.

The above assumptions allow us to take an iterative approach to the construction of the
conformal diagram, while satisfying the gauge condition (8.2). We will now describe this
construction step by step.

4We denote vacua with Λ > 0 by indices α,β, . . . and vacua with Λ ≤ 0 by indices m,n, . . .. If no particular
sign of Λ is implied, vacua are denoted by i, j, . . ..



145

The universe begins in some metastable vacuum (it will not matter which one).
Our initial step is to construct a conformal diagram satisfying R = const. for this de Sitter
vacuum, as if it were completely stable. We will refer to this spacetime as the zero-bubble
multiverse. The metric is

ds20 =
−dη2 + dΩ2

3

H2
0 sin

2 η
, (8.11)

where dΩ2
3 = dξ

2
+ sin2 ξ(dθ2 + sin2 θdφ2) is the metric on the unit three-sphere. (Since an

infinitely old metastable de Sitter space has zero probability, let us restrict to η ≤ π/2,5 as if
the universe came into being at the time η = π/2.) Multiplying this metric by the conformal
factor e2φ =H2

0 sin
2 η, one obtains a conformally rescaled metric

ds̃20 = −dη
2
+ dΩ2

3 , (8.12)

which can be viewed as a portion of an Einstein static universe [95]. The future boundary
corresponds to the points with η = 0, which were not part of the physical spacetime. Its
induced metric is that of a round three-sphere with unit radius. Thus, it satisfies the gauge
condition we impose, that the three-dimensional Ricci scalar be constant.

The second step is to construct light-cone time in the 1-bubble multiverse. Con-
sider the causal future I+ of an arbitrary event E with coordinates (η, ξ, θ, φ) in the physical
spacetime. We note that conformal transformations map light-cones to light-cones, and that
the unphysical metric, Eq. (8.12), is spatially homogeneous. Therefore, the volume V oc-
cupied by I+(E) on the future boundary can only depend on the η coordinate of the event
E, and not on its spatial coordinates; it is given by

V = ∫
η

0
4π sin2 ηdη . (8.13)

The light-cone time is t ≡ −1
3
log V

4π/3 . At late times, V = 4π
3
η3, so t = − log η.

The next step is to consider the first bubble that nucleates inside this vacuum,
i.e., the nucleation event with the earliest light-cone time. (The time and place of this
nucleation is of course governed by quantum chance; as we add more and more bubbles,
we shall ensure that on average, their nucleation rate per unit four-volume conforms to
the rates Γαm dictated by the landscape potential.) We then replace the causal future of
the nucleation event with the new bubble, i.e., with an open FRW universe, which may
have positive or negative cosmological constant, and may contain matter and radiation.
Aside from this one nucleation event, we treat both the parent and the daughter vacuum as
completely stable, so we do not modify the spacetime in any other way. We thus obtain a
physical spacetime consisting of a parent de Sitter vacuum and one bubble universe with a
different vacuum, which we refer to as the one bubble multiverse. Now we construct a new
conformal diagram for this spacetime, as follows (see Fig. 8.2.3):

The conformal diagram is left unchanged outside the future light-cone of the nu-
cleation event, where the physical spacetime is also unchanged. That is, we shall use the
same conformal factor as before for this region.

5In naming the time coordinate in Eq. (8.11) η, we are anticipating the result below that η = constant
will define hypersurfaces of constant light-cone time in accordinance with the definition of η in Eq. (8.5).
Since this definition requires η to take positive values which decrease towards the future boundary, we shall
take η to have a positive range in Eq. (8.11). Thus, η ≥ π/2 corresponds to times after η = π/2.
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(a) (b) (c)

Figure 8.3: (a) The parent de Sitter space with the future of the nucleation event removed
and (b) the bubble universe are shown as separate conformal diagrams which are each
portions of the Einstein static universe. After an additional conformal transformation of
the bubble universe (shaded triangle), the diagrams can be smoothly matched along the
domain wall. The resulting diagram (c) has a round S3 as future infinity but is no longer
a portion of the Einstein static universe.

The future of the nucleation event is an open FRW universe, which either crunches
(if Λ < 0) or becomes asymptotically de Sitter in the future (if Λ > 0). We show in Ap-
pendix 8.6 that this spacetime can be conformally mapped to a finite unphysical spacetime
with the following properties:

● The conformal factor is smooth (Cn, with n arbitrarily large) in the physical spacetime
and continuous when extended to the future boundary.

● The induced metric along the future light-cone of the nucleation event agrees with
the induced metric on the same hypersurface in the outside portion of the diagram,
which was left unchanged.

● The future boundary is identical to the piece of the future boundary that was removed
from the old diagram.

(Note that this portion of the unphysical spacetime will not be a portion of the Einstein
static universe, nor is there any reason to demand that it should be.)

Because of the above properties, we are able to combine the remainder of the old
Penrose diagram with the new portion covering the interior of the bubble. This results in a
single Penrose diagram which is smooth everywhere6 in the physical spacetime, and whose
future boundary is a round three-sphere of unit radius. Thus, it satisfies the condition we
have imposed, that the Ricci scalar of the boundary metric be constant.

We can now simply iterate this procedure. Complete the following sequence of
operations, starting with i = 0 (or really with i = 1 since we have already gone through one
iteration, above):

6There is enough freedom in the choice of the conformal factor in the bulk to ensure that the conformal
factor is not only continuous but arbitrarily differentiable at the seam where the FRW bubble and the
old de Sitter parent are matched, while maintaining the round three-sphere metric of the future boundary.
Thick-wall bubbles and non-zero initial bubble radii can similarly be accommodated.
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1. Using the conformal diagram you have constructed, with a future boundary metric
satisfying R = const, construct light-cone time for the i-bubble multiverse.

2. Identify the earliest bubble (i.e., the nucleation event with the smallest light-cone
time) that has not already been included, and replace the future of the nucleation
event with an FRW universe, which will be treated as completely stable in this step.
The resulting spacetime is the i + 1-bubble multiverse.

3. Construct a new conformal diagram with constant Ricci scalar on the future boundary.
Since we have assumed that decay rates are small, decays will happen in asymptotically
de Sitter regions, where the construction given above for i = 0 can be applied.

4. Increase i by 1 and go back to step 1.

Note that our construction is cumulative: every time a new bubble is included, the
conformal factor is modified only inside this new bubble. Moreover, the geometry at future
infinity remains a unit round three-sphere throughout the process; the only effect of each
step is that some part of future infinity is now in a different vacuum. On the boundary,
this allows us to think of bubble nucleation as the insertion of a disk of a corresponding
size. We will exploit this fact in the next section, when we describe eternal inflation and its
attractor behavior from the boundary point of view.

8.3 Properties of new light-cone time

In this section, we will derive and solve the equation governing the distribution
of vacua as a function of light-cone time, and we will find an expression for the number of
events of type A as a function of light-cone time.

8.3.1 Rate equation

We will work in the approximation of small decay rates, so that we can neglect
bubble nucleations that happen during the early, non-vacuum-dominated phase of each
FRW universe. Moreover, we will neglect the small fraction of bubble nucleations that
would lead to collisions with existing bubbles. In the spirit of our new definition of light-
cone time, however, we will express the rate equations in terms of variables that can be
thought of as living on the future boundary: the volume Vα taken up by bubbles of type α
on the boundary, and the variable η = exp(−t), which has a bulk interpretation as a time
variable but also a boundary interpretation as a distance scale.

Consider a bubble of a de Sitter vacuum α that nucleated at some late time
ηnuc ≪ 1, so that its size on future infinity is V

(1)
α =

4π
3
η3nuc. Now consider some later time

η/ηnuc ≪ 1 inside the bubble. The metric is approximately

ds2 =
H−2α
η2
(−dη2 + dx⃗2) , (8.14)

where the comoving coordinate x ranges over a volume V
(1)
α . Here we have neglected the

fact that at any finite η, the bubble will not have expanded to its full asymptotic comoving
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volume, and that the bubble is not exactly de Sitter but may contain matter and radiation.
Both of these corrections decrease like powers of η/ηnuc; in particular, most of the physical
volume at small η/ηnuc will be empty de Sitter space.

The above metric is valid at zeroth order in the decay rate expansion: we have
neglected all decays that might have already taken place in the bubble by the time η. We
will now include decays at first order. The proper three-volume of the bubble at the time

η is H−3α V
(1)
α /η3. One Hubble volume occupies proper volume 4π

3
H−3α , so that the number

of Hubble volumes is

n(1)α =
V
(1)
α

4π
3
η3
=
η3nuc
η3

. (8.15)

We note the relation Hαdtprop = dt = −dη/η between the proper time, tprop, light-cone time,
t, and η. We also recall the definition that κiα is the rate at which i-bubbles are nucleated
inside the α-vacuum, per Hubble volume and Hubble time. In a single bubble of type α,
therefore, the total number of bubbles of type i that are produced during a time dη is

dN
(1)
iα = κiαn

(1)
α dt =

−dη
4π
3
η4
κiαV

(1)
α . (8.16)

The total number of bubbles of type i produced inside α-bubbles during the time dη is
obtained by summing over all α-bubbles:

dNiα =
−dη
4π
3
η4
κiαVα(η) , (8.17)

where Vα(η) is the total volume taken up at future infinity by α bubbles nucleated prior to
η.

Now consider the total volume dV +i taken up at future infinity by all the i-bubbles
produced (in any vacuum) during the time dη. Since we are neglecting bubble collisions,
this is equal to the number of bubbles produced, times the volume taken up by each bubble:

dV +i =
4π

3
η3∑

α

dNiα . (8.18)

Though some vacua with Λ ≤ 0 can decay, this effect is not important and will also be
neglected. Thus the sum runs only over de Sitter vacua, whereas i denotes a vacuum of any
type.

As a result of decays into other vacua, the total boundary volume taken up by the
de Sitter vacuum α decreases during the time dη, by a volume 4π

3
η3 per decay:

dV −α = −
4π

3
η3∑

i

dNiα . (8.19)

Focussing now on de Sitter vacua alone, we can find that the total rate of change of the
boundary volume occupied by α-bubbles, dVα = dV

+

α +dV
−

α , by combining the previous three
equations:

dVα =
−dη

η
∑
β

MαβVβ , (8.20)
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where
Mαβ ≡ καβ − καδαβ . (8.21)

This is the rate equation for the volume occupied by metastable de Sitter vacua
on the boundary . We derived this equation using bulk dynamics, which we understand at
the semi-classical level. But we have expressed it in terms of variables that are defined
on the boundary: Vα is a boundary volume and η is a boundary scale. In this form, the
rate equation can be naturally interpreted in terms of the boundary dynamics we seek. In
effect, we have derived a procedure for constructing the boundary fractal, working from
the largest bubbles to the smallest. Begin with the boundary sphere all in one “color”,
corresponding to the initial metastable de Sitter vacuum in the bulk. Now use the bubble
distribution (8.16) to include new bubbles, one by one, corresponding to disks of different
colors. The disks are smaller and smaller (of radius η) as we progress to smaller scales η.
Just as there will be a finite number of bubbles prior to the time t in the bulk, there will
be a finite number of disks on the boundary for any UV cut-off η. Their distribution will
obey Eq. (8.20).

Eq. (8.16) specifies how many i-disks of a given size should be inserted in an α-
disk, but we also should specify where they should be inserted. Since the nucleation rate is
homogeneous in the bulk metric, Eq. (8.14), new bubbles be inserted with equal probability
in any infinitesimal volume occupied by the α-disk. We have excluded bubble collisions;
this can be incorporated from the boundary point of view by forbidding the addition of any
new disk whose boundary would overlap with an existing disk. This amounts to excluding
a zone of width η neighboring all existing disk boundaries. As we discussed in the previous
section, the solution to the Yamabe problem on the sphere is not unique, and we still have
the freedom to act with the group of global conformal transformations SO(4,1). However,
this has no effect on Eq. (8.16), which is conformally invariant.

This completes our discussion of the boundary interpretation of the rate equation.
The boundary process we have described should emerge from a more general boundary
theory that remains to be discovered, and one would expect Eq. (8.20) to constrain the
construction of such a theory. Meanwhile, in order to compare our result to the rate
equation for “old” light-cone time, we would like to rewrite it using bulk variables. In terms
of light-cone time, Eq. (8.20) becomes

dVα

dt
=∑

β

MαβVβ . (8.22)

We can use Eq. (8.15) to eliminate Vα, the volume taken up by α-disks on the boundary
with UV-cutoff η = exp(−t), in favor of the number of horizon volumes of type α in the bulk
at the time t:

Vα(t) = nα(t) 4π
3

exp(−3t) . (8.23)

Thus, we obtain the bulk rate equation

dnα

dt
= (3 − κα)nα +∑

β

καβnβ . (8.24)
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This is identical to the rate equation for old light-cone time, Eq. (36) in Ref. [44]. Thus, at
this level of approximation, the two definitions of light-cone time yield precisely the same
rate equations.

8.3.2 Attractor solution

The solutions to the above rate equation exhibit attractor behavior at late times
(η → 0):7

Vα(η) = V̌αηq +O(ηq̄) ; (8.25)

or, in terms of bulk variables,

nα(t) = ňαe(3−q)t +O(e(3−q̄)t) . (8.26)

Here −q is the largest eigenvalue of the matrix Mαβ , V̌α is the corresponding eigenvector,
and ňα ≡ Vα/4π3 ; −q̄ is the second-largest eigenvalue, and 0 < q < q̄ [76, 44].

At short distances on the boundary (late times in the bulk), the distribution
of disks (Hubble volumes) is governed by the “dominant eigenvector”, V̌α, which can be
thought of as the linear combination of de Sitter vacua that decays most slowly. In a
realistic landscape, this eigenvector will have almost exclusive support in a single vacuum,
which we shall denote by a star:

V̌α ≈ vδα∗ . (8.27)

This dominant vacuum is the slowest-decaying de Sitter vacuum of the landscape [159]. The
normalization, v, of the eigenvector depends on the infrared boundary configuration (initial
conditions in the bulk).

8.3.3 Event counting

So far we have discussed only de Sitter vacua; and even in asymptotically de Sitter
bubbles, we have neglected any initial, transitory period during which the bubble universe
might have been dominated by, say, matter, radiation, or slow-roll inflation. This was suffi-
cient for deriving the rate equation and the asymptotic attractor distribution for de Sitter
vacua. As we now turn to the question of counting events in the multiverse, we must include
all bubbles and regimes within them.

Let A be some type of event (e.g., a supernova occurs, or the microwave background
temperature is found to be between 2.5K and 3K by some experiment). Let NA(η) be the
number of times an event of type A has occurred in the bulk prior to the cut-off η. (On the
boundary, we expect that this is the number of times it has been encoded in modes of size
greater than η. For now, we will use the bulk definition since we know how to compute it.)

To compute NA(η), we substitute the asymptotic distribution of de Sitter vacua,
Eq. (8.25), into our result for the number of bubbles of type i produced per unit time dη,

7See Eq. (37) of Ref. [76], who analyzed its solutions. Although our Eq. (8.22) takes the same mathe-
matical form, it should be noted that it is for a different physical variable: the boundary volume fraction
occupied by α-disks, which by Eq. (8.23) corresponds to a fraction of Hubble volumes in the bulk. (In
Ref. [76], the relevant variable was the fraction of proper bulk volume occupied by vacuum α.)
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Eq. (8.17):

dNi =
−dη

4π
3
η4−q

∑
α

κiαV̌α ; (8.28)

then we sum over all bubbles and nucleation times:

NA(η) =∑
i
∫
i η

η0
(dNA

dNi

)
η/ηn
(dNi

dη
)
ηn

dηn , (8.29)

where dNA/dNi is the expected number of events of type A that have occurred by the time
η in a single bubble of type i nucleated at the time ηn. The lower limit of integration, η0,
is an arbitrary early-time cut-off (an infrared cut-off on the boundary) that will drop out
of the limit in Eq. (8.3).

At late times, all bubbles of type i are statistically equivalent, because they are
produced locally in an empty de Sitter region. Therefore, dNA/dNi depends only on the
ratio

ζ ≡ η/ηn . (8.30)

To avoid overcounting, the integral should run only over a single bubble of vacuum i,
excluding regions of other vacua nucleated inside the i bubble; this restriction is denoted
by index i appearing on the upper left of the integration symbol.

Combining the above results, and changing the integration variable from ηn to ζ,

NA(η) = 1
4π
3
η3−q

∑
i

∑
α

NAiκiαV̌α . (8.31)

Here we have assumed for simplicity that A cannot occur in the dominant vacuum, ∗
(otherwise, see Ref. [44]); and we have defined

NAi ≡ ∫
i 1

0
(dNA

dNi

)
ζ

ζ2−qdζ . (8.32)

The lower limit of integration in Eq. (8.32) should strictly be ζ = η/η0, so this result is
valid only at late times (η → 0), but this is the only regime relevant for computing relative
probabilities.

The quantity (dNA

dNi
)
ζ
depends on the details of the bubble universe i and on how

the cut-off surface η intersects this bubble. It can be written as

(dNA

dNi

)
ζ

= ∫
i 1

ζ
dζ ′ d3x

√
g ρAi(ζ ′,x) . (8.33)

where ρAi be the density of events of type A per unit four-volume in a bubble i, and g is
the determinant of the metric. The integral is over the interior of a single bubble of type
i, from its nucleation up to a light-cone time a factor ζ after nucleation. Substituting into
Eq. (8.32) and exchanging the order of integration, we obtain an alternative expression for
NAi:

NAi = ∫
i 1

0
dζ ′∫ d3x

√
g ρAi(ζ ′,x)∫ ζ′

0
dζ ζ2−q (8.34)

=
1

3 − q
∫ d4x

√
g ρAi(x) ζ(x)3−q , (8.35)
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use boundary use geodesics

Global measures: New Light Cone Time ⇔ Old Light Cone Time
⇕ �

Local measures: New Causal Patch Old Causal Patch

Table 8.1: Equivalences between measures. The new light-cone time cut-off is equivalent to
probabilities computed from three other measure prescriptions (double arrows). This implies
that all four measures shown on this table are equivalent in the approximation described at
the beginning of Sec. 2.3. (See Ref. [44] for a more general proof of the equivalence between
the old light-cone time cut-off and the old causal patch measure.)

where the integral is over the entire four-volume of a single i-bubble, with the exclusion of
new bubbles nucleated inside it.

8.4 The probability measure

In Sec. 4.1 we derive the probability measure defined by the new light-cone time
cut-off. In the following subsections, we show that it is equivalent to probabilities computed
from three other measure prescriptions (see Table 8.4.1).

8.4.1 Probabilities from the new light-cone time cut-off

The relative probability of two events A and B is defined by

pA

pB
= lim

η→0

NA(η)
NB(η) . (8.36)

By substituting Eq. (8.31), we find that the probability of an event of type A is given by

pA ∝ ŇA ≡∑
i

∑
α

NAiκiαV̌α . (8.37)

[We recall here that V̌α is the eigenvector with largest eigenvalue of the matrix Mαβ given
in Eq. (8.21); κiα is the dimensionless nucleation rate of i-bubbles in the de Sitter vacuum
α, and NAi can be computed from Eqs. (8.32) or (8.35); below we shall discover a simpler
way of computing it, from Eqs. (8.39) and (8.44).] This expression is not normalized, but
ratios can be taken to obtain relative probabilities.

We should go on to compute some probability distributions of interest. We should
verify that catastrophic predictions such as Boltzmann brains, the youngness paradox
(“Boltzmann babies”), and the Q-catastrophe are absent. If so, we should then move on to
compute probability distributions over certain quantities of interest, such as the cosmolog-
ical constant, the primordial density contrast, the spatial curvature, and the dark matter
fraction, and we could verify that observed values are not unlikely under these distributions
(say, in the central 2σ). Instead, we will now demonstrate that the new light-cone time
cut-off is equivalent to other measures that have already been studied.
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8.4.2 Equivalence to the old light-cone time cut-off

Probabilities computed from the old light-cone time cut-off are also of the general
form (8.37) [44]. We will now show that they are in fact identical, under the assumptions
made in the previous sections.

We consider each factor appearing inside the sum in Eq. (8.37) in turn. The decay
rate κiα is a property of the landscape vacua unrelated to the definition of light-cone time.
Moreover, we have shown that new light-cone time gives rise to the same rate equation and
attractor solution as old light-cone time [26, 44], assuming that all metastable de Sitter
vacua are long-lived. This implies that the eigenvector V̌α is the same, whether old or new
light-cone time is used. Therefore any difference between the two measures would have to
come from the quantity NAi. However, if we approximate bubble interiors as homogeneous,
isotropic, open universes, with metric of the form

ds2 = −dτ2 + a(τ)2(dχ2
+ sinh2 χdΩ2

2) . (8.38)

then no such difference arises. At this level of approximation, old and new light-cone time
define the same probability measure.

To demonstrate this, let us rewrite NAi, starting from Eq. (8.35). Homogeneity
implies that ρAi depends only on the FRW time, τ . Therefore, we can write

NAi =
1

3 − q
∫
∞

0
dτ σAi(τ)Vc(τ) , (8.39)

where σAi(τ) ≡ ρAi(τ)a(τ)3 is the density of events of type A per FRW time and per unit
comoving volume, and

Vc(τ) ≡ ∫ dΩ̃3 ζ(τ, χ)3−q . (8.40)

Stricly, the integral should exclude comoving regions that have already decayed. But since
the decay probability is homogeneous, we may absorb these excisions into a decrease of
the comoving density σAi and let the integral run over the entire unit hyperboloid, dΩ̃3 =

4π sinh2 χdχ. The integral converges because the factor ζ3−q rapidly vanishes at large χ.
Thus, Vc(τ) can be thought of as an effective comoving volume whose events contribute to
NAi at the time τ .

Since q is the decay rate of the longest-lived vacuum, we can assume that it is
exponentially small in a realistic landscape, so it can be neglected in Eq. (8.40). Moreover,
from the definition of light-cone time in terms of volumes V on the future boundary, it
follows that

ζ3 = e−(t−tn) = V (t)/V (tn) . (8.41)

Note that these equalities can be taken to hold by definition, no matter how the volume

on the future boundary is defined. We will now abandon the particular definition made in
Sec. 8.2.2 and consider a general metric Gµν(y) on the future boundary of the multiverse.
We shall find that Vc, and thus NAi, is independent of this choice of metric if the bubble is
homogeneous.

Upon substitution of Eq. (8.41), the integrand in Eq. (8.40) is the boundary volume
of the future light-cone L(τ, χ) of each point, which we may in turn write as an integral
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over the region of the boundary enclosed by the light-cone:

Vc(τ) = V (tn)−1∫ dΩ̃3∫
L(τ,χ)

d3y
√
G (8.42)

= V (tn)−1∫
L(0,χ)

d3y
√
G∫

CP (y,τ)
dΩ̃3 . (8.43)

In the second line, we exchanged the order of integration. The ranges of integration are the
crucial point here. The union of the future light-cones from all points on the hyperboloid
covers precisely the entire disk corresponding to the bubble universe at future infinity.
Hence, the outer integral ranges over this disk, which we have written as the region enclosed
by the future light-cone of the bubble nucleation event, L(0, χ). But each boundary point
is covered by many future light-cones of bulk points. Correspondingly, the inner integral
ranges over all points on the FRW slice whose future light-cone includes the boundary point
y. But this is simply the set of points in the intersection of the τ = const. slice with the
causal past of y, i.e., the portion of the constant FRW time slice that lies in the causal
patch whose tip is at y. By homogeneity, its volume is independent of y and will be denoted
V CP
c (τ). Thus, the two integrals factorize. Since ∫L(0,χ) d3y

√
G = V (tn) by definition, we

obtain
Vc(τ) = V CP

c (τ) . (8.44)

With this result, Eq. (8.39) becomes manifestly independent of the definition of boundary
volume. Thus, the quantity NAi will be the same for any type of “light-cone time”, if the
bubbles of type i are homogeneous FRW universes.

This is a remarkably general result, so let us state it very clearly. From Eq. (8.32),
NAi would appear to depend on the definition of ζ, which in turn depends on the definition
of the scale η associated with a bulk point E as V (E) = 4π

3
η3, where V is the volume taken

up by the causal future of E on the future boundary. This volume, of course, can be defined
in different ways: for example, in Ref. [26] it was defined by projecting onto a fiducial bulk
hypersurface, whereas in the present chapter it was defined in terms of the induced metric
of the boundary in a conformal frame with R = const. These different definitions of V
generically do lead to different values of ζ, η, and light-cone time t at the event E. What
we have shown is that they cannot lead to any difference in NAi.

In the homogeneous FRW approximation, then, different definitions of light-cone
time can only lead to a different probability measure if they lead to different rate equations.
This can certainly happen in principle. However, we have shown earlier that the two
definitions given so far—“old” and “new” light-cone time—yield the same rate equations.
We conclude that they also lead to the same probability measure, if bubble universes are
approximated as homogeneous open FRW universes.

8.4.3 Equivalence to the new causal patch measure

Consider an ensemble of causal patches whose tips are distributed over the future
boundary of the multiverse, at constant density δ with respect to the boundary metric
defined in Sec. 8.2.2. The probability for an event of type A, according to the causal patch
measure, is proportional to the ensemble average of the number of times an event of type
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A occurs inside a causal patch, ⟨NA⟩CP. Let η0 be an early-time cut-off. Then

pCP
A ∝ ⟨NA⟩CP

∝ ∫
η0

0
dη

dNA

dη
η3 . (8.45)

The quantity dη dNA

dη
is the number of events that happen during the interval dη. Each

of these events in contained in 4π
3
η3δ causal diamonds, since 4π

3
η3 is the volume of the

causal future of an event at time η, and the causal diamonds that contain a given event are
precisely those which have tips in the events future [44].

Suppose that η0 is small enough to lie deep inside the asymptotic attractor regime,
where Eq. (8.31) holds. Then the above integral can be evaluated, and we find

pCP
A ∝ ŇA . (8.46)

Comparison with Eq. (8.37) reveals that the causal patch measure gives the same relative
probabilities as the new light-cone time cut-off, if initial conditions for the causal patch are
chosen in the attractor regime.

This result is similar to the global-local equivalence proven for the old light-cone
time cut-off [44]. The local dual in that case was also an ensemble of causal patches begin-
ning on a bulk hypersurface with vacuum distribution in the attractor regime, Eq. (8.26).
However, the ensemble itself was selected by erecting geodesics at fixed density per unit
Hubble volume on the initial hypersurface. By contrast, the causal patch ensemble we de-
rived above from the new light-cone time is defined in terms of a uniform distribution of tips
of causal patches per unit boundary volume, not of the starting points of their generating
geodesics on a bulk hypersurface.

In fact, the concept of a generating geodesic of a causal patch appears to be
unnecessary in the “new” causal patch measure. Instead, the patches are defined more
simply as the past of points on the future boundary, or TIPS. This simplification is the
local analogue of the elimination, in our definition of new light-cone time, of the family of
geodesics that was needed to define old light-cone time. We regard these simplifactions as
a significant formal advantage of the boundary viewpoint.

8.4.4 Equivalence to the old causal patch measure

We turn to the diagonal arrow in the duality square of Table 8.4.1, the equivalence
of the new light-cone time cut-off to the “old” causal patch measure, defined by erecting a
family of geodesics orthogonal to a late time attractor hypersurface and constructing the
causal patch of each geodesic, i.e., the past of its endpoint. This equivalence follows by
combining two other arrows: the equivalence of the old and new light-cone time cut-offs
(Sec. 8.4.2), and that of the the old light-cone time cut-off and the the (old) causal patch
measure [44]. (This latter proof, unlike any of the arguments in this section, requires no sim-
plifying assumptions such as homogeneity of the bubbles.) In the interest of a self-contained
presentation, we will now present a shortcut that directly establishes the equivalence.

A geodesic starting in a vacuum α with probability V̌α will enter vacuum i an
expected number ∑α κiαV̌α of times [43]. (Since vacua are unlikely to be entered twice
along the same geodesic, this expectation value can be thought of as an unnormalized
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probability of entering i.) By the assumed homogeneity, all causal patches with tips in the
same FRW bubble have statistically identical content, which, by Eq. (8.39), is given by(3 − q)NAi. Thus, the probability of an event of type A, according to the the “old” causal
patch measure, is

poldCP
A ∝∑

i

∑
α

NAiκiαV̌α , (8.47)

which agrees with the probability computed from the new light-cone time cut-off, Eq. (8.37).

8.5 The general case

At first sight, it seems that our prescription is well-defined for any bulk spacetime.
Simply find a conformal transformation which makes the bulk spacetime finite, and then
use the constant scalar curvature condition to fix the ambiguity in the boundary metric.
The Yamabe theorem would seem to guarantee that this can always be done. But this
process is not as simple as it sounds once we go beyond the approximation of homogeneous
FRW universes stated in Sec. 9.3.

In this section, we will discuss the additional challenges that arise in the general
case, how they might be addressed, and what they may imply for the phenomenology of new
light-cone time. We first discuss perturbative inhomogeneities which complicate the story
but do not obviously lead to a pathology. Then we discuss situations where the boundary
metric is singular. These situations require a generalization of our prescription which we
outline, but whose details we leave for the future. Finally, we argue that the probabilities
derived from new and old light-cone time will differ in the presence of inhomogeneities, with
new light-cone time being favored phenomenologically.

8.5.1 Perturbative inhomogeneities

No bubble universe will be exactly homogeneous and isotropic. Gravitational
waves will perturb the metric and break spherical symmetry. Modes will leave the horizon
during slow roll inflation and become frozen. We expect that such perturbations will affect
the future boundary. Indeed, any metric of the form

ds2 = −dt2 + e2Htaij(xk)dxidxj , (8.48)

is a solution to Einstein’s equation with positive cosmological constant in the limit t →∞,
where aij is an arbitrary 3-metric that depends only on the spatial coordinates xk.8 (This
result is attributed to Starobinski in Ref. [19].) In terms of conformal time, the metric is

ds2 =
1

η2
(−dη2 + aijdxidxj) , (8.49)

and the future boundary is the surface η = 0. Rescaling by the conformal factor Ω = η, we
obtain a (preliminary) boundary metric

ds2 = aijdx
idxj . (8.50)

8There are global constraints at finite time that may restrict the form of the boundary metric. Though
it seems to us implausible, we cannot rule out that such restrictions may prevent the appearance of smaller
and smaller geometric features on the boundary.
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Recall that aij is arbitrary, so any metric is possible on future infinity. If Eq. (8.48) describes
the late time limit of a de Sitter bubble universe, aij will need to be further conformally
rescaled to finite volume and matched to the outside portion of the boundary. The condition
R = const. can then be achieved by a third conformal transformation. But because not every
metric aij is conformal to a portion of the round S3, in general the future boundary will not
be a round S3, and its geometry will contain features on the scale of the future light-cone
of any perturbation.

Bubble nucleations occur at arbitrarily late times, corresponding to small sizes on
the boundary. As a result, the boundary metric is perturbed on arbitrarily small scales.
The boundary geometry is a fractal. It is important to understand the distinction we are
drawing here to the homogeneous case. In this case, too, a fractal develops on the future
boundary, but that fractal describes the disks corresponding to different vacua distributed
over a fixed background metric (a round S3). This is similar to the kind of fractal we are
familiar with. What we are finding in the general case is that in addition, the geometry
itself becomes a fractal. It exhibits self-similar features such as curvature on arbitrarily
small scales.

By itself, the fractal curvature presents no serious obstacle. It just forces us
to construct the background geometry of the boundary the same way we constructed its
“matter content” (say, the disks representing different vacua): by starting in the infrared
and refining it step by step as we move to short distances.

However, there are additional problems. Suppose we would like to include some
bulk perturbation, such as the formation of a new bubble universe, on the boundary. In
the simplified multiverse we studied in Sec. 9.3, the conformal transformation that achieved
constant Ricci scalar acted nontrivially only in the future of the nucleation event; it did
not change the conformal transformation outside the future light-cone. But the Yamabe
problem cannot generally be solved subject to such strong boundary conditions. Thus, we
expect that for general bulk perturbations, the boundary metric with R = constant will be
modified in regions that are outside the lightcone of the perturbation. So the nucleation of
an inhomogeneous bubble generically changes the lightcone time of every event, even events
out of causal contact with the nucleation.

In the homogeneous approximation, if we are given some finite region of the bulk
spacetime, we have enough information to compute the surfaces of constant light-cone time
in that region because adding bubbles outside the region, even in its future, will not change
the size of future lightcones. If we had a computer simulating the bulk evolution, we could
write a simple algorithm for generating the entire bulk spacetime underneath the cutoff
surface. But in the inhomogeneous case, we do not have a simple prescription for the size
of a bulk event on the boundary. Events in the future, or even in causally disconnected
regions, will change the boundary metric, and thus could change the size of “old” future
light-cones on the boundary. So given a computer which can simulate the bulk evolution,
we do not have an algorithm for computing the bulk spacetime up to the cutoff, because it
is unclear which events will turn out to occur at times after the cutoff.

This poses a challenge to the iterative construction of light-cone time, in Sec. 9.3.
This procedure relied on moving forward along an existing light-cone time foliation, the
i-bubble multiverse, and including the first new bubble nucleation reached in this manner
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Figure 8.4: Conformal diagram of de Sitter space containing a bubble universe with Λ = 0

to compute the i + 1-bubble multiverse. In this algorithm, the light-cone time was never
modified for events prior to the new bubble nucleation. Thus, we could be sure at each
stage that we have a final version of the foliation up to the i + 1-th bubble nucleation. As
a result, a UV cut-off on the boundary had a simple bulk translation: bubble nucleations
after a certain time should be ignored.

In fact, it is unclear whether a discrete iterative process remains a viable approxi-
mation scheme in the general case. We were able to focus on bubble nucleation events only,
since by our assumptions no other events had the potential to modify the future boundary.
In general, one expects that all spacetime events, or at least all events in regions that are
not empty de Sitter space, will affect the future boundary. This is a continuous set.

While it is possible that some or all of the above effects are quantitatively neg-
ligible, they raise interesting conceptual issues. If we had a boundary description of the
theory, presumably it would be well defined to go down to shorter and shorter scales. What
is missing at this point is a simple bulk prescription once we go beyond the approximation
of homogeneous FRW universes. The fact that the boundary geometry becomes fractal
once one includes all of the expected bulk dynamics means that defining volumes on the
boundary is trickier. What is needed is a way to construct the UV-cutoff version of the
boundary geometry, which is not a fractal. This can perhaps be done by beginning with the
homogeneous approximation and then perturbing around it, but we have not attempted to
do this.

8.5.2 Singularities in the boundary metric

There is a more severe pathology that can arise in constructing the boundary
metric. What if the bulk spacetime does not lead to a boundary metric which is nonsingular
and 3 + 1 dimensional everywhere? There are several ways this can happen. Perhaps the
simplest is the nucleation of a Λ = 0 bubble. Future infinity will now contain a “hat” as
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shown in Fig. 8.5.2. The induced metric will be degenerate because the “hat” is a null cone.
The null portion of the boundary metric is

ds2 = r2dΩ2
2 , (8.51)

which is not 3-dimensional. So a bulk spacetime that includes Λ = 0 asymptotic regions will
have a singular boundary metric. It is then unclear how to define volumes on the boundary.

Another example of a bulk spacetime that leads to a singular boundary metric is a
Schwarzschild black hole in de Sitter space. The metric for Schwarzschild-de Sitter in static
coordinates is

ds2 = −(1 − 2m

r
−
r2

l2
)dt2 + 1

1 − 2m
r
−

r2

l2

dr2 + r2dΩ2
2 . (8.52)

If we continue the metric behind the cosmological horizon and let r → ∞, the metric
approaches pure de Sitter space. For large r, the metric is

ds2 = −
l2

r2
dr2 + r2 ( 1

l2
dt2 + dΩ2

2) . (8.53)

The boundary is r →∞; conformally rescaling the factor of r2 gives the boundary metric

ds2 =
1

l2
dt2 + dΩ2

2 . (8.54)

The r =∞ part of the future boundary is a spatial cylinder. This is conformal to a sphere,
aside from two missing points at the poles.

What about the other part of future infinity, the black hole singularity? Here we
take the opposite limit r → 0 to obtain the metric

ds2 = −
r

2m
dr2 +

2m

r
(dt2 + r3

2m
dΩ2

2) . (8.55)

As r → 0, the t direction blows up while the S2 becomes small. Therefore, if we do the
conventional conformal rescaling to keep the t direcion finite, the S2 will have zero size on
the boundary, and the boundary metric will be one-dimensional,

ds2 = dt2 . (8.56)

So the boundary metric for a Schwarzschild-de Sitter black hole can be thought of as a
sphere with a string coming out from the north pole. This is not a 3-dimensional manifold
and it is not clear how to generalize our construction to this case.

Bubbles with negative cosmological constant end in a spacelike singularity. In the
homogeneous approximation these big crunches actually do not deform the boundary away
from the round S3. However, we know that the homogeneous approximation breaks down
at late times. Instead of a homogeneous collapse, any small region near the singularity
will be of the Kasner form, with two contracting and one expanding direction, much like
the singularity of the Schwarzschild black hole discussed above. The boundary metric will
be one-dimensional. The Kasner behavior is uncorrelated between different parts of the



160

singularity: which direction is expanding changes from place to place. Therefore we expect
that the boundary geometry for a big crunch is something like a fishnet.

One might expect that the light-cone time cut-off (and by extension, the causal
patch) is simply inapplicable to portions of the multiverse that are in the domain of de-
pendence of future singularities or hats [26], since the analogy with AdS/CFT breaks down
entirely in such regions. In this case, the measure may still give a good approximation to
the correct probabilities in regions such as ours, which are in the eternally inflating domain
(roughly, the de Sitter regions). Assuming that a smoothing procedure can be found along
the lines of the previous subsection, one can ignore singularities while they are smaller than
the UV cut-off and, if one accepts that the measure is meant to apply only to eternally
inflating regions, one can stay away from the singularities once they are larger than the UV
cut-off.

However, there is another way in which the boundary can have portions of different
dimensionality. In a realistic landscape, one expects that there will be de Sitter vacua with
dimension smaller or greater than 3 + 1. For example, in a landscape that includes both 4-
dimensional and 6-dimensional de Sitter vacua, some regions of the future boundary will be
3-dimensional while others will be 5-dimensional. We would need some way of generalizing
the construction to boundaries with a variety of dimensionalities.

8.5.3 Inhomogeneities

From the previous subsections we conclude that two things are needed to make our
prescription well-defined in a realistic multiverse. We must be able to allow the boundary
to change dimensionality from place to place, and we need a procedure for smoothing the
fractal nature of the boundary geometry. We will now assume that this can be achieved
and turn to the phenomenological implications of giving up the assumption of homogeneity.

In Sec. 8.4.2 we established the equivalence of old and new light-cone time in
the homogeneous approximation. It is precisely when homogeneity is broken that old and
new light-cone time differ. We will find it convenient to analyze this difference in the local
version of each measure, the old and new causal patch measures. A causal patch is always
the same type of region: the past of a point on the future boundary. But the old and new
causal patch measure consider different ensembles of causal patches, and probabilities are
computed as an ensemble average.

In the old causal patch measure, the ensemble is defined by erecting timelike
geodesics orthogonal to an initial hypersurface in the dominant vacuum, and following their
evolution until they reach a crunch. The resulting patches will contain different decoherent
histories. If a geodesic enters a bubble universe like ours, it quickly becomes comoving [33].
With probability presumably of order one, it will become bound to a galaxy or galaxy
cluster. After the cosmological constant begins to dominate, at the time τΛ, it may well
remain bound to this structure for a time much greater than τΛ, until it is either ejected
by some process or falls into a black hole, or the structure disintegrates. As a consequence,
it may be the case that typical causal patches in the old ensemble do not become empty
at late times but contain a single bound structure or black hole [144]. This could have
important consequences for some probability distributions.

For example, consider a class of observers that live at a FRW time τobs. (Nothing
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else is assumed, e.g., one need not assume that they live in a vacuum like ours or are in any
way similar to us [36].) What value of the cosmological constant are such observers likely to
find? The prior probability distribution in the landscape favors large Λ. But for sufficiently
large Λ, one has τΛ ≪ τobs. In the homogeneous approximation, the number of observers
inside the causal patch is then diluted by the de Sitter expansion as exp(−√3Λτobs), so that
the probability distribution peaks at Λ ∼ τ−2obs. Thus the causal patch predicts that observers
are likely to find themselves at the onset of vacuum domination [37]. This predictions is
both more general and more successful than the original prediction that Λ ∼ τ−2gal [181], where
τgal is the time of virialization; and it is more robust to the variation of other parameters
such as the primordial density contrast.

In an inhomogeneous universe, however, the exponential decay is cut off when all
but structures to which the generating geodesic was not bound have been expelled from
the horizon. After this time, the mass inside the causal patch does not decrease rapidly.
Of course, this still corresponds to a reduction in mass by a factor 10−11 in a universe like
ours. It will not spoil the prediction unless the number of observers per galaxy during the
era τ ≫ τΛ is larger than in the present era by the inverse factor, which may well fail to be
the case for observers like us in a universe like ours.

But let us view the landscape as a whole and treat observers more abstractly.
The effect of inhomogeneity on the old causal patch ensemble is to remove the pressure for
observations to take place not too longer after τΛ. This allows for a much more efficient use
of free energy, by conversion into quanta with wavelength as large as the de Sitter horizon.
If we model observers by entropy production as proposed in [24, 37], and if we assume that
processes that make such efficient use of free energy do not have small prior probability,
then we should be rather surprised that we are not among this class of observers [144].

The new causal patch measure appears to resolve this puzzle. Inhomogeneities such
as galaxies and the black holes they contain will decay on a timescale that is power-law and
thus negligible compared to typical vacuum decay timescales [56]. We expect, therefore,
that they will leave little imprint on the future boundary of the multiverse, in the sense
that the metric will not have strong features that favor causal patches containing structure
at late times. The fraction of causal patches containing any structure at times τ ≫ τΛ
will be exp(−√3Λτobs), so the above analysis, which was valid only in the homogeneous
approximation for the old causal patch measure, will always be valid in the new causal
patch measure after ensemble-averaging.

8.6 Conformal factor for a homogeneous bubble universe

In this appendix we show how to find a conformal transformation which maps a
universe with a bubble nucleation event into a finite unphysical spacetime with a round S3

as future infinity. Our procedure is to begin with the full Penrose diagram of the parent
de Sitter space, and then remove the portion which lies within the future light-cone of the
nucleation event. The removed piece will be replaced with a new unphysical spacetime which
is conformally equivalent to an open FRW universe with nonzero cosmological constant and
has the following properties, outlined in Sec. 9.3:

● The conformal factor is smooth (Cn with n arbitrarily large) in the physical spacetime
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and continuous when extended to the future boundary.

● The induced metric along the future light-cone of the nucleation event agrees with
the induced metric on the same hypersurface in the outside portion of the diagram,
which was left unchanged.

● The future boundary is identical to the piece of the future boundary that was removed
from the old diagram.

(Note that the new portion of the unphysical spacetime will not be a portion of the Einstein
static universe, nor is there any reason to demand that it should be.)

We will accomplish this mapping in three steps. First, we will show that any FRW
universe with non-zero vacuum energy is conformally equivalent to a portion of de Sitter
space. Second, we will show that this portion of de Sitter space can be conformally mapped
to a portion of the Einstein static universe whose future boundary is identical to the piece
of the future boundary removed from the parent de Sitter diagram. Third, we show that
this portion of the Einstein static universe is conformally equivalent to a new unphysical
spacetime which satisfies all of the above properties (and is not a portion of the Einstein
static universe).

An open FRW universe, such as the one following the nucleation event, has the
metric

ds2FRW = a
2(T )(−dT 2

+ dH2
3) , (8.57)

where T is the conformal time, a is the scale factor, and

dH2
3 = dχ

2
+ sinh2 χdΩ2

2 . (8.58)

All bubble nucleation events are followed by a period of curvature domination in the bubble
universe, and hence conformal time is unbounded toward the past. Furthermore, as long
as Λ ≠ 0, conformal time is finite toward the future. We are thus free to choose the range
of T to be −∞ < T ≤ 0 for every FRW universe under consideration. The open slicing of de
Sitter space (with unit de Sitter length) is one special case of this metric:

adS(T ) = −1

sinhT
. (8.59)

Any other FRW universe is conformally equivalent to the de Sitter open slicing, and the
conformal factor is given by

Ω1 = −
1

a(T ) sinhT . (8.60)

The second step is to map the open slicing of de Sitter space into a portion of the
Einstein static universe whose future boundary is identical to the piece removed from the
parent vacuum. Recall that the Einstein static universe has a metric given by Eq. 8.12,

ds̃20 = −dη
2
+ dΩ2

3 , (8.61)

and that the Penrose diagram of the parent de Sitter space consists of the region 0 > η > −π.
We write the S3 metric as

dΩ2
3 = dξ

2
+ sin2 ξdΩ2

2 . (8.62)
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In these coordinates the nucleation event can be taken to be at η = ηnuc and ξ = 0, so that
the portion of future infinity we need to reproduce in the bubble universe is the portion of
the round S3 with 0 < ξ < −ηnuc.

9

The open slicing coordinates (T,χ) are not convenient for this task, so first we will
change coordinates to (ηin, ξin), in terms of which the metric Eq. 8.57, with a = adS, looks
like

ds2 =
1

sin2 ηin
(−dη2in + dΩ2

3) , (8.63)

where we need to ensure that 0 < ξin < −ηnuc when ηin = 0. Then we can simply rescale by
sinηin to finish the job. Now we turn to the task of finding the transformation (T,χ) →(ηin, ξin) .

Let X0, X1, X2, X3, X4 of be the coordinates of 4+1-dimensional Minkowski
space, in which de Sitter space is the hyperboloid

−X2
0 +

3

∑
i=1

X2
i +X

2
4 = 1 . (8.64)

The relationship between the coordinates (ηin, ξin) and the Xµ is

X0 = cot ηin (8.65)

Xi = −
1

sinηin
sin ξin n̂i

X4 = −
1

sinηin
cos ξin,

where n̂i are unit vectors whose sum equals 1. We need to specify how the (χ,T ) coordinates
of Eq. 8.57 relate to the Xµ. The standard open slicing of de Sitter space is given by

X0 = −
1

sinhT
coshχ (8.66)

Xi = −
1

sinhT
sinhχ n̂i

X4 = − cothT ,

but this is not what we want to do. We have to remember that the nucleation event is
at χ = 0, T = −∞, which would be equivalent to ηin = −π/2 and ξin = 0 if we used this
prescription. To fix the problem, we use the 4+1-dimensional boost symmetry, which is an
isometry of the de Sitter space, to move the nucleation event to another position. Let X̃µ

be given by

X̃0 = coshβX0 + sinhβX4 (8.67)

X̃4 = sinhβX0 + coshβX4

X̃i = Xi, 1 ≤ i ≤ 3 , (8.68)

9In this appendix only, we will find it more convenient for η to take negative values and increase towards
the future boundary. The η defined in the main body of the chapter is ηmain = ∣ηappendix∣.
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and then define the open coordinates (T,χ) by
X̃0 = −

1

sinhT
coshχ (8.69)

X̃i = −
1

sinhT
sinhχ n̂i

X̃4 = − cothT .

Now the nucleation event is at ηin = ηnuc and ξin = 0, where cot ηnuc = − sinhβ . We can
write the relationship between (T,χ) and (ηin, ξin) directly in terms of ηnuc as

sinhχ

sinhT
=

sin ξin
sinηin

(8.70)

− cot ηin =
1

sinηnuc

coshχ

sinhT
+ cot ηnuc cothT .

Now the metric is in the form Eq. 8.63, and 0 < ξin < −ηnuc when ηin = 0. Hence we can
conformally rescale by

Ω2 = sinηin , (8.71)

to map the bubble universe into a portion of the Einstein static universe with future bound-
ary identical to the piece cut out of the old diagram.

The product Ω1Ω2 succeeds in mapping our original FRW universe to a portion
of the Einstein static universe with the correct future boundary. Now we will act with one
final conformal rescaling, Ω3, which must change the induced unphysical metric along the
future light-cone of the nucleation event to match the one in the old de Sitter diagram,
thus ensuring that the total conformal transformation is continuous. We must also demand
that Ω3 = 1 on the future boundary ηin = 0, since we have already fixed that part of the
unphysical spacetime.

The induced metric on the future light-cone of the nucleation event has a similar
form in both the unphysical bubble coordinates (ηin, ξin) and the unphysical parent coor-
dinates, which we will now denote as (ηout, ξout). In both cases it merely comes from the
Einstein static universe metric:

ds2light−cone = sin
2 ξin/out dΩ

2
2 , (8.72)

where ξin/out = ηin/out − ηnuc. Hence the conformal factor evaluated along the light-cone is

Ω3 =
sin ξout
sin ξin

. (8.73)

We just need to find out how ξout and ξin are related. We can do this by demanding that
the induced physical metrics also be identical on the light-cone.

The induced physical metric on the light-cone from the parent de Sitter space is
found by restricting Eq. 8.11 to the relevant surface:

ds20 →
sin2 ξout

H2
0 sin

2 ηout
dΩ2

2 , (8.74)
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where again ηout − ξout = ηnuc.
In terms of the χ and T coordinates inside the bubble, the relevant light-cone is

given by χ →∞, T → −∞, χ + T = const. In terms of ηin and ξin, the light-cone is given by
ηin − ξin = ηnuc. One can see that a fixed value of χ + T is equivalent to a fixed value of ξin.
Since a(T )→ Ce−T for some constant C as T → −∞, we have from Eq. 8.57 that

ds2FRW → Ce2(χ+T )dΩ2
2 = C

sin2 ξin

sin2 ηin
dΩ2

2 . (8.75)

We must determine the constant C, which is related to our convention that T = 0 on future
infinity. This constant is easily determined by considering the particular light-cone given by
χ+T = 0. This is the event horizon of the FRW universe, and its area is given by AEH, which
depends on the detailed form of a(T ). So C = AEH/4π. Finally we have our relationship
between the in-coordinates and out-coordinates on the bubble wall hypersurface:√

AEH

4π

sin (ηin − ηnuc)
sinηin

=
1

H0

sin (ηout − ηnuc)
sinηout

. (8.76)

Notice that ηin and ηout coincide at the nucleation event (both equal to ηnuc) and at future
infinity (both equal to zero).

We are free to extend Ω3 into the rest of the bubble universe in any continuous way
we please, so long as it restricts to 1 on future infinity and sin ξout/ sin ξin on the boundary
light-cone. One might worry about the fact that Ω3 is multivalued at the point where the
bubble wall meets future infinity. This is not a concern, though, because the only function
which need be well defined is the product

Ω = Ω1Ω2Ω3 = −
sinηin

a(T ) sinhT Ω3 . (8.77)

In this formula, ηin = ηin(χ,T ) as determined by Eqs 8.70 . From here it is easy to see that
as we approach the point χ = ∞ along any slice of fixed T , including both T = 0 (future
infinity) and T = −∞ (domain wall), we arrive at Ω = 0 so long as Ω3 remains finite.

Thus we have accomplished our initial task. The function Ω3 is very ambiguous,
as we have only fixed its behavior at the boundaries of the spacetime. We can use this
additional freedom to make Ω arbitrarily smooth at the interface between the parent and
the bubble universe. Additionally, one could impose that Ω3 be identically equal to 1 not
just on the future boundary, but in the entire region T > T0 for some particular T0. In
particular, we can choose T0 to be the time of vacuum domination in the bubble universe.
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Chapter 9

Testing measures

9.1 Introduction

String theory appears to contain an enormous landscape of metastable vacua [41,
109], with a corresponding diversity of low-energy physics. The cosmological dynamics of
this theory is eternal inflation. It generates a multiverse in which each vacuum is produced
infinitely many times.

In a theory that predicts a large universe, it is natural to assume that the relative
probability for two different outcomes of an experiment is the ratio of the expected number
of times each outcome occurs. But in eternal inflation, every possible outcome happens
infinitely many times. The relative abundance of two different observations is ambiguous
until one defines a measure: a prescription for regulating the infinities of eternal inflation.

Weinberg’s prediction [181] of the cosmological constant [151, 143] was a stunning
success for this type of reasoning. In hindsight, however, it was based on a measure that
was ill-suited for a landscape in which parameters other than Λ can vary. Moreover, the
measure had severe phenomenological problems [27]. This spurred the development of more
powerful measure proposals in recent years [125, 123, 71, 72, 70, 76, 179, 178, 24, 121, 122,
141, 73, 182, 183, 184, 126, 26, 28, 160]. Surprisingly, some of these measures do far more
than to resolve the above shortcomings. As we shall see in this chapter, they obviate the
need for Weinberg’s assumption that observers require galaxies; and they help overcome
the limitation of fixing all parameters but one to their observed values.

In this chapter we will analyze three different measure proposals. Each regulates
the infinite multiverse by restricting attention to a finite portion. The causal patch mea-
sure [24] keeps the causal past of the future endpoint of a geodesic; it is equivalent to a
global cutoff known as light-cone time [26, 44]. The fat geodesic measure [34] keeps a fixed
physical volume surrounding the geodesic; in simple situations, it is equivalent to the global
scale factor time cutoff [53]. We also introduce a new measure, which restricts to the interior
of the apparent horizon surrounding the geodesic.

From little more than the geometry of these cutoffs, we are able to make remark-
able progress in addressing cosmological coincidence and hierarchy problems. Using each
measure, we will predict three time scales: the time when observations are made, tobs, the
time of vacuum energy domination, tΛ ≡

√
3/∣Λ∣, and the time of curvature domination,
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tc.
1 We work in the approximation that observations occur in nearly homogeneous FRW

universes so that these time scales are well defined.
We will allow all vacuum parameters to vary simultaneously. Parameters for which

we do not compute probabilities are marginalized. We will not restrict attention to vacua
with specific features such as baryons or stars. We will make some weak, qualitative as-
sumptions about the prior distribution of parameters in the landscape. We will assume that
most observers are made of something that redshifts faster than curvature. (This includes
all forms of radiation and matter but excludes, e.g., networks of domain walls.) But we
will not impose any detailed anthropic requirements, such as the assumption that observers
require galaxies or complex molecules; we will not even assume that they are correlated with
entropy production [24, 37, 36]. Thus we obtain robust predictions that apply to essentially
arbitrary observers in arbitrary vacua.

The probability distribution over all three variables can be decomposed into three
factors, as we will explain further in Sec. 9.2:

d3p

d log tobs d log tΛ d log tc
=

d2p̃

d log tΛ d log tc
×M(log tobs, log tc, log tΛ) × α(log tobs, log tc, log tΛ) . (9.1)

Here p̃ is the probability density that a bubble with parameters (log tΛ, log tc) is produced
within the region defined by the cutoff. Its form can be estimated reliably enough for our
purposes from our existing knowledge about the landscape. The factorM(log tobs, log tΛ, log tc)
is the mass inside the cutoff region at the time tobs. This is completely determined by the
geometry of the cutoff and the geometry of an FRW bubble with parameters (log tΛ, log tc),
so it can be computed unambiguously. The last factor, α(log tobs, log tc, log tΛ), is the one
we know the least about. It is the number of observations per unit mass per logarithmic
time interval, averaged over all bubbles with the given values (log tΛ, log tc).

A central insight exploited in this chapter is the following. In bubbles with positive
cosmological constant, the calculable quantity M so strongly suppresses the probability in
other regimes that in many cases we only need to know the form of α in the regime where
observers live before vacuum energy or curvature become important, tobs ≲ tΛ, tc. Under
very weak assumptions, α must be independent of tΛ and tc in this regime. This is because
neither curvature nor vacuum energy play a dynamical role before observers form, so that
neither can affect the number of observers per unit mass. Thus, for positive cosmological
constant α is a function only of tobs in the only regime of interest. The success of the
measures in explaining the hierarchy and coincidence of the three timescales depends on
the form of this function. We will that the causal patch and apparent horizon cutoff succeed

1In regions where curvature will never dominate, such as our own vacuum, tc is defined as the time when
curvature would come to dominate if there were no vacuum energy. Since our observations are consistent with
a flat universe, we can only place a lower bound on the observed value of tc. We include tc in our analysis
because bubble universes in the multiverse are naturally very highly curved, so the absence of curvature
requires an explanation. Moreover, we shall see that some measures select for high curvature in vacua with
with negative cosmological constant. This effect is partly responsible for the problems encountered in this
portion of the landscape.
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well in predicting the three timescales already under very weak assumptions on α. The fat
geodesic cutoff requires somewhat stronger assumptions.

For negative cosmological constant, however, the geometric factor M favors the
regime where tobs is not the shortest time scale. Thus, predictions depend crucially on
understanding the form of α in this more complicated regime. For example, we need to know
on average to what extent early curvature domination disrupts the formation of observers.
What is clear from our analysis is that all three measures are in grave danger of predicting
that most observers see negative Λ, in conflict with observation, unless the anthropic factor
α takes on rather specific forms. Assuming that this is not the case, we must ask whether
the measures can be modified to agree with observation. Both the causal patch measure
and the fat geodesic measure are dual [34, 44] to global time cutoffs, the lightcone time and
the scale factor time cutoff, respectively. These global cutoffs, in turn, are motivated by an
analogy with the UV/IR relation in AdS/CFT [73]. But this analogy really only applies
to positive Λ, so it is natural to suspect that the measure obtained from it is inapplicable
to regions with Λ ≤ 0 [26]. (Indeed, the causal patch does not eliminate infinities in Λ = 0
bubbles [24]. We do not consider such regions in this chapter.)

Outline and summary of results In Sec. 9.2, we will describe in detail our method for
counting observations. We will derive an equation for the probability distribution over the
three variables (log tΛ, log tc, log tobs). We will explain how simple qualitative assumptions
about α(log tobs, log tc, log tΛ), the number of observations per unit mass per unit logarithmic
time interval, allow us to compute probabilities very generally for all measures.

We work in the approximation that observations in the multiverse take place in
negatively curved Friedmann-Robertson-Walker (FRW) universes. In Sec. 9.3, we will ob-
tain solutions for their scale factor, in the approximation where the matter-, vacuum-, and
possibly the curvature-dominated regime are widely separated in time.

In Secs. 9.4–9.6, we will compute the probability distribution over (log tΛ, log tc, log tobs),
using three different measures. For each measure we consider separately the cases of positive
and negative cosmological constant. As described above, the results for negative cosmolog-
ical constant are problematic for all three measures. We now summarize our results for the
case Λ > 0.

In Sec. 9.4, we show that the causal patch measure predicts the double coincidence
log tc ≈ log tΛ ≈ log tobs. We find that the scale of all three parameters is related to the
number of vacua in the landscape. This result is compatible with current estimates of the
number of metastable string vacua. Such estimates are not sufficiently reliable to put our
prediction to a conclusive test, but it is intriguing that the size of the landscape may be the
origin of the hierarchies we observe in Nature (see also [147, 24, 25, 35, 39, 36]. We have
previously reported the result for this subcase in more detail [30].

Unlike the causal patch, the new “apparent horizon measure” (Sec. 9.5) predicts
the double coincidence log tc ≈ log tΛ ≈ log tobs for any fixed value tobs. When all param-
eters are allowed to scan, its predictions agree with those of the causal patch, with mild
assumptions about the function α. The apparent horizon measure is significantly more
involved than the causal patch: it depends on a whole geodesic, not just on its endpoint,
and on metric information, rather than only causal structure. If our assumptions about α
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are correct, this measure offers no phenomenological advantage over its simpler cousin and
may not be worthy of further study.

The fat geodesic cutoff, like the apparent horizon cutoff, predicts the double co-
incidence log tc ≈ log tΛ ≈ log tobs for any fixed value of tobs. However, it favors small values
of all three timescales unless either (a) an anthropic cutoff is imposed, or (b) it is assumed
that far more observers form at later times, on average, than at early times, in vacua where
curvature and vacuum energy are negligible at the time tobs. (Qualitatively, the other two
measures also require such an assumption, but quantitatively, a much weaker prior favoring
late observers suffices.) In the latter case (b), the results of the previous two measures are
reproduced, with all timescales set by the size of the landscape. In the former case (a), the
fat geodesic would predict that observers should live at the earliest time compatible with
the formation of any type of observers (in any kind of vacuum). It is difficult to see why
this minimum value of tobs would be so large as to bring this prediction into agreement with
the observed value, tobs ∼ 10

61.

9.2 Counting Observations

In this section, we explain how we will compute the trivariate probability distri-
bution over (log tobs, log tc, log tΛ). We will clarify how we isolate geometric effects, which
can be well-computed for each cutoff, from anthropic factors; and we explain why very few
assumptions are needed about the anthropic factors once the geometric effects have been
taken into account.

Imagine labelling every observation within the cutoff region by (log tobs, log tc, log tΛ).
We are interested in counting the number of observations as a function of these parame-
ters. It is helpful to do this in two steps. First, we count bubbles, which are labelled by(log tc, log tΛ) to get the “prior” probability distribution

d2p̃

d log tΛ d log tc
. (9.2)

This p̃ is the probability density to nucleate a bubble with the given values of the parameters
inside the cutoff region.

The next step is to count observations within the bubbles. A given bubble of
vacuum i will have observations at a variety of FRW times. In the global description of
eternal inflation, each bubble is infinite and contains an infinite number of observations if
it contains any, but these local measures keep only a finite portion of the global spacetime
and hence a finite number of observations. We parameterize the probability density for
observations within a given bubble as

dNi

d log tobs
∼M(log tobs, log tc, log tΛ)αi(log tobs) , (9.3)

where M is the mass inside the cutoff region, and αi is the number of observations per
unit mass per logarithmic time interval inside a bubble of type i. In this decomposition, M
contains all of the information about the cutoff procedure. For a given cutoff, M depends
only on the three parameters of interest. Because we are considering geometric cutoffs,
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the amount of mass that is retained inside the cutoff region does not depend on any other
details of the vacuum i. On the other hand, αi depends on details of the vacuum, such as
whether observers form, and when they form; but it is independent of the cutoff procedure.

Since we are interested in analyzing the probability distribution over three vari-
ables, we now want to average αi over the bubbles with a given (log tΛ, log tc), to get the
average number of observations per unit mass per logarithmic time α. With this decompo-
sition, the full probability distribution over all three variables is

d3p

d log tobs d log tΛ d log tc
=

d2p̃

d log tΛ d log tc
M(log tobs, log tc, log tΛ)α(log tobs, log tc, log tΛ) .

(9.4)
To recap, p̃ is the probability for the formation of a bubble with parameters (log tΛ, log tc)
inside the cutoff region; M(log tobs, log tΛ, log tc) is the mass inside the cutoff region at the
FRW time tobs in a bubble with parameters (log tΛ, log tc); and α(log tobs, log tc, log tΛ) is
the number of observations per unit mass per logarithmic time interval, averaged over all
bubbles with parameters (log tΛ, log tc).

This is a useful decomposition because the mass M inside the cutoff region can be
computed exactly, since it just depends on geometrical information. We will assume that
d2p̃/d log tΛ d log tc can be factorized into contribution from tΛ and a contribution from tc.
Vacua with Λ ∼ 1 can be excluded since they contain only a few bits of information in any
causally connected region. In a large landscape, by Taylor expansion about Λ = 0, the prior
for the cosmological constant is flat in Λ for Λ ≪ 1, dp̃/dΛ = const. Transforming to the
variable log tΛ, we thus have

d2p̃

d log tΛd log tc
∼ t−2Λ g(log tc) . (9.5)

The factor g(log tc) encodes the prior probability distribution over the time of curvature
domination. We will assume that g decreases mildly, like an inverse power of log tc. (Assum-
ing that slow-roll inflation is the dominant mechanism responsible for the delay of curvature
domination, log tc corresponds to the number of e-foldings. If g decreased more strongly,
like an inverse power of tc, then inflationary models would be too rare in the landscape to
explain the observed flatness.) The detailed form of the prior distribution over log tc will
not be important for our results; any mild suppression of large log tc will lead to similar
results.

With these reasonable assumptions, the probability distribution becomes

d3p

d log tobs d log tΛ d log tc
= t−2Λ M(log tobs, log tc, log tΛ)g(log tc)α(log tobs, log tc, log tΛ) .

(9.6)
Because α depends on all three variables, it is very difficult to compute in general. However,
it will turn out that we can make a lot of progress with a few simple assumptions about α.
First, we assume that in the regime, tobs ≪ tΛ, α is independent of tΛ. Similarly, we assume
that in the regime, tobs ≪ tc, α is independent of tc. By these assumptions, in the regime
where the observer time is the shortest timescale, tobs ≲ tΛ, tc, the anthropic factor α will
only depend on log tobs:

α(log tobs, log tc, log tΛ) ≈ α(log tobs) for tobs ≲ tΛ, tc . (9.7)
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These assumptions are very weak. Because curvature and Λ are not dynamically important
before tc and tΛ, respectively, they cannot impact the formation of observers at such early
times. One could imagine a correlation between the number of e-foldings and the time
of observer formation even in the regime tobs ≪ tc, for example if each one is tied to
the supersymmetry breaking scale, but this seems highly contrived. In the absence of a
compelling argument to the contrary, we will make the simplest assumption.

Second, we assume that when either tobs ≫ tc or tobs ≫ tΛ, α is not enhanced
compared to its value when tobs is the shortest timescale. This is simply the statement
that early curvature and vacuum domination does not help the formation of observers.
This assumption, too, seems rather weak. With this in mind, let us for the time being
overestimate the number of observers by declaring α to be completely independent of log tΛ
and log tc:

α(log tobs, log tc, log tΛ) ≈ α(log tobs) . (9.8)

This is almost certainly an overestimate of the number of observations in the regime where
tobs is not the shortest time scale. However, we will show that the predictions for positive
cosmological constant are insensitive to this simplification because the geometrical factor
M , which we can compute reliably, suppresses the contribution from this regime. We will
return to a more realistic discussion of α when we are forced to, in analyzing negative
cosmological constant.

With these assumptions and approximations, the three-variable probability distri-
bution takes a more tractable form,

d3p

d log tobs d log tΛ d log tc
= t−2Λ g(log tc)M(log tobs, log tΛ, log tc)α(log tobs) . (9.9)

This is the formula that we will analyze in the rest of the chapter. The only quantity that
depends on all three variables is the mass, which we can compute reliably for each cutoff
using the geometry of open bubble universes, to which we turn next.

9.3 Open FRW universes with cosmological constant

In this section, we find approximate solutions to the scale factor, for flat or
negatively curved vacuum bubbles with positive or negative cosmological constant. The
landscape of string theory contains a large number of vacua that form a “discretuum”, a
dense spectrum of values of the cosmological constant [41]. These vacua are populated by
Coleman-DeLuccia bubble nucleation in an eternally inflating spacetime, which produces
open Friedmann-Robertson-Walker (FRW) universes [49]. Hence, we will be interested in
the metric of FRW universes with open spatial geometry and nonzero cosmological constant
Λ. The metric for an open FRW universe is

ds2 = −dt2 + a(t)2(dχ2
+ sinh2 χdΩ2

2) . (9.10)

The evolution of the scale factor is governed by the Friedmann equation:

( ȧ
a
)2 = tc

a3
+

1

a2
±

1

t2
Λ

. (9.11)
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Here tΛ =
√
3/∣Λ∣ is the timescale for vacuum domination, and tc is the timescale for cur-

vature domination. The term ρm ∼ tc/a3 corresponds to the energy density of pressureless
matter. (To consider radiation instead, we would include a term ρrad ∼ t

2
c/a4; this would

not affect any of our results qualitatively.) The final term is the vacuum energy density,
ρΛ; the“+” sign applies when Λ > 0, and the“−” sign when Λ < 0.

We will now display approximate solutions for the scale factor as a function of
FRW time t. There are four cases, which are differentiated by the sign of Λ and the relative
size of tc and tΛ. We will compute all geometric quantities in the limit where the three time
scales t, tc, and tΛ are well-separated, so that some terms on the right hand side of Eq. (9.11)
can be neglected. In this limit we obtain piecewise solution for the scale factor. We will
not ensure that these solutions are continuous and differentiable at the crossover times.
This would clutter our equations, and it would not affect the probability distributions we
compute later. Up to order-one factors, which we neglect, our formulas are applicable even
in crossover regimes.

If tc ≫ tΛ, curvature never comes to dominate. (One can still define tc geometri-
cally, or as the time when curvature would have dominated in a universe with Λ = 0.) In
this limit the metric can be well approximated as that of a perfectly flat FRW universe,
and so becomes independent of tc. We implement this case by dropping the term tc/a3 in
Eq. (9.11).

Positive cosmological constant We begin with the case Λ > 0 and tc ≪ tΛ. By solving
Eq. (9.11) piecewise, we find

a(t) ∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t
1/3
c t2/3 , t < tc
t , tc < t < tΛ
tΛe

t/tΛ−1 , tΛ < t .

(9.12)

If tc ≫ tΛ, there is no era of curvature domination, and the universe can be approximated
as flat throughout. The scale factor takes the form

a(t) ∼ ⎧⎪⎪⎨⎪⎪⎩
t
1/3
c t2/3 , t < tΛ

t
1/3
c t

2/3
Λ
et/tΛ−1 , tΛ < t .

(9.13)

Negative cosmological constant For Λ < 0, the scale factor reaches a maximum and
then begins to decrease. The universe ultimately collapses at a time tf , which is of order
tΛ:

tf ≈ πtΛ . (9.14)

The evolution is symmetric about the turnaround time, tf/2 ≈ πtΛ/2.
Again, we consider the cases tΛ ≫ tc and tΛ ≪ tc separately. For tc ≪ tΛ, the scale

factor is

a(t) ∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t
1/3
c t2/3 , t < tc
tΛ sin(t/tΛ) , tc < t < t

′

c

t
1/3
c (t′)2/3 , t′c < t .

(9.15)

We have defined t′ ≡ tf − t.
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There is no era of curvature domination if tc ≳ tf/2. For tc ≫ tf/2, we treat the
universe as flat throughout, which yields the scale factor

a(t) ∼ t2/3
Λ
t1/3c sin2/3(πt/tf) , (9.16)

where tf here takes on a slightly different value compared to the curved case:

tf = 2πtΛ/3 . (9.17)

At a similar level of approximation as we have made above, this solution can be approxi-
mated as

a(t) ∼ ⎧⎪⎪⎨⎪⎪⎩
t
1/3
c t2/3 , t < tf/2
t
1/3
c (t′)2/3 , tf/2 < t . (9.18)

where again t′ ≡ tf − t .

9.4 The causal patch cut-off

With all our tools lined up, we will now consider each measure in turn and derive
the probability distribution. We will treat positive and negative values of the cosmological
constant separately. After computing M , we will next calculate the bivariate probability
distribution over log tΛ and log tc, for fixed log tobs. In all cases this is a sharply peaked
function of the two variables log tΛ and log tc, so we make little error in neglecting the
probability away from the peak region. Then we will go on to find the full distribution
over all three parameters. In this section, we begin with the causal patch measure [24, 32],
which restricts to the causal past of a point on the future boundary of spacetime. The
causal patch measure is equivalent [44] to the light-cone time cutoff [26, 28], so we will not
discuss the latter measure separately.

We may use boost symmetries to place the origin of the FRW bubble of interest
at the center of the causal patch. The boundary of the causal patch is given by the past
light-cone from the future end point of the comoving geodesic at the origin, χ = 0:

χCP(t) = ∫ tf

t

dt′

a(t′) . (9.19)

If Λ < 0, tf is the time of the big crunch (see Sec. 9.3). For long-lived metastable de Sitter
vacua (Λ > 0), the causal patch coincides with the event horizon. It can be computed as
if the de Sitter vacuum were eternal (tf → ∞), as the correction from late-time decay is
negligible.

9.4.1 Positive cosmological constant

We begin with the case Λ > 0, tc < tΛ. Using Eq. (9.12) for a(t), we find

χCP(tobs) ∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + log(tΛ/tc) + 3 [1 − (tobs/tc)1/3] , tobs < tc
1 + log(tΛ/tobs) , tc < tobs < tΛ
e−tobs/tΛ , tΛ < tobs .

. (9.20)
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The comoving volume inside a sphere of radius χ is π(sinh2χCP − 2χCP). We
approximate this, dropping constant prefactors that will not be important, by χ3 for χ ≲ 1,
and by e2χ for χ ≳ 1:

VCP ∼ { exp(2χCP) , tobs < tΛ
χ3
CP , tΛ < tobs .

(9.21)

The mass inside the causal patch is MCP = ρa
3VCP = tcVCP.

MCP ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t2Λ/tc , tobs < tc < tΛ I

t2Λtc/t2obs , tc < tobs < tΛ II

tce
−3tobs/tΛ , tc < tΛ < tobs III

(9.22)

Next, we consider the case Λ > 0, tΛ < tc. The above caclulations can be repeated
for a flat universe, which is a good approximation for this case:

MCP ∼ { tΛ , tobs < tΛ V

tΛe
−3tobs/tΛ , tΛ < tobs IV

(9.23)

The same result could be obtained simply by setting tc = tΛ in (9.22).
The full probability distribution is given by multiplying the mass in the causal

patch by the prior distribution and the number of observations per unit mass per unit time
to give

d3pCP

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

tc
, tobs < tc < tΛ I

tc

t2
obs

, tc < tobs < tΛ II

tc

t2
Λ

exp(−3tobs
tΛ
) , tc < tΛ < tobs III

1

tΛ
exp(−3tobs

tΛ
) , tΛ < tobs, tc IV

1

tΛ
, tobs < tΛ < tc V

(9.24)

Recall that g(log tc) is the prior distribution on the time of curvature domination, and α is
the number of observations per unit mass per logarithmic time interval.

We will first analyze this probability distribution for fixed log tobs. As explained
in the introduction, we will for the time being overestimate the number of observers in
the regime where tobs is not the shortest timescale by assuming that α is a function of
log tobs only. We will find that the overestimated observers do not dominate the probability
distribution, so this is a good approximation. With these approximations, α is independent
of log tΛ and log tc and can be ignored for fixed log tobs.

The probability distribution we have found for log tc and log tΛ is a function of
powers of tc and tΛ, i.e., exponential in the logarithms. Therefore the distribution will be
dominated by its maximum. A useful way of determining the location of the maximum is
to follow the gradient flow generated by the probability distribution. In the language of
Ref. [88, 35], this is a multiverse force pushing log tΛ and log tc to preferred values. We
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I
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III

IV
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log tobs
log tc

log tobs

log tL

(a) Λ > 0

I

II

III
IV

V

log tobs
log tc

log tobs

log 2tobs

log t f

(b) Λ < 0

Figure 9.1: The probability distribution over the timescales of curvature and vacuum dom-
ination at fixed observer timescale log tobs, before the prior distribution over log tc and the
finiteness of the landscape are taken into account. The arrows indicate directions of increas-
ing probability. For Λ > 0 (a), the distribution is peaked along the degenerate half-lines
forming the boundary between regions I and II and the boundary between regions IV and
V. For Λ < 0 (b), the probability distribution exhibits a runaway toward the small tc, large
tΛ regime of region II. The shaded region is is excluded because tobs > tf = πtΛ is unphysical.

could use our formulas to determine the precise direction of the multiverse force, but this
would be difficult to represent graphically, and it is not necessary for the purpose of finding
the maximum. Instead, we shall indicate only whether each of the two variables prefers
to increase or decrease (or neither), by displaying horizontal, vertical, or diagonal arrows
in the (log tc, log tΛ) plane (Fig. 9.1). We ignore the prior g(log tc) for now since it is not
exponential.

We consider each region in (9.24) in turn. In region I, tobs < tc < tΛ, the probability
is proportional to t−1c . Hence, there is a pressure toward smaller tc and no pressure on tΛ.
This is shown by a left-pointing horizontal arrow in region I of the figure. In region II
(tc < tobs < tΛ), the probability is proportional to tct

−2
obs. This pushes toward larger log tc

and is neutral with respect to log tΛ. (Recall that we are holding log tobs fixed for now.)
In region III (tc < tΛ < tobs), the probability goes like tct

−2
Λ e
−3tobs/tΛ . Since the exponential

dominates, the force goes toward larger log tΛ; log tc is pushed up as well. In region IV
(tΛ < tobs, tΛ < tc) the exponential again dominates, giving a pressure toward large log tΛ.
In region V (tobs < tΛ < tc), the distribution is proportional to t−1Λ , giving a pressure toward
small log tΛ. The dependence of the probability on log tc lies entirely in the prior g(log tc)
in these last two regions because the universe is approximately flat and hence dynamically
independent of log tc.

Leaving aside the effect of g(log tc) for now, we recognize that the probability
density in Fig. 9.1 is maximal along two lines of stability, log tΛ = log tobs and log tc =
log tobs, along which the probability force is zero. These are the boundaries between regions
IV/V and I/II, respectively. They are shown by thick lines in Fig. 9.1. The fact that the
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distribution is flat along these lines indicates a mild runaway problem: at the crude level of
approximation we have used thus far, the probability distribution is not integrable. Let us
consider each line in turn to see if this problem persists in a more careful treatment.

Along the line log tΛ = log tobs, the prior distribution g(log tc) will suppress large
log tc and make the probability integrable, rendering a prediction for log tc possible. (With
a plausible prior, the probability of observing a departure from flatness in a realistic future
experiment is of order 10% [67, 54]; see also [39]. See [133, 45] for different priors.) We will
find the same line of stability for the other two measures in the following section, and it is
lifted by the same argument.

The line log tc = log tobs looks more serious. The prior on log tΛ follows from very
general considerations [181] and cannot be modified. In fact, the probability distribution
is rendered integrable if, as we will suppose, the landscape contains only a finite number
N of vacua. This implies that there is a “discretuum limit”, a finite average gap between
different possible values of Λ. This, in turn, implies that there is a smallest positive Λ in
the landscape, of order

Λmin ∼ 1/N . (9.25)

This argument, however, only renders the distribution integrable; it does not suffice to
bring it into agreement with observation. It tells us that logΛ is drawn entirely at random
from values between logΛmin and log t−2obs, so at this level of analysis we do not predict the
coincidence log tobs ≈ log tΛ.

Even though we do not predict a coincidence for observers living at a fixed arbitrary
log tobs, it could still be the case that after averaging over the times when observers could
live most observers see log tobs ∼ log tΛ. To address this question, we need to allow log tobs
to vary. For fixed log tobs, the maximum of the probability with respect to log tc and log tΛ
is obtained along the boundary between region I and region II, as discussed above. Along
this line, the probability is

dp

d log tobs
∼
g(log tobs)

tobs
α(log tobs) . (9.26)

Having maximized over log tΛ and log tc, we can now ask at what log tobs the probability
is maximized. Note that since the distribution is exponential, maximizing over log tΛ and
log tc is the same as integrating over them up to logarithmic corrections coming from the
function g.

The location of the maximum depends on the behavior of α(log tobs). Let us
assume that

α ∼ t
1+p
obs

, with p > 0 . (9.27)

(We will justify this assumption at the end of this section, where we will also describe what
happens if it is not satisfied.) Then the maximum is at the largest value of log tobs subject
to the constraint defining regions I and II, log tobs < log tΛ. It follows that the maximum of
the three-variable probability distribution is at

log tobs ≈ log tc ≈ log tΛ ≈ log t
max
Λ . (9.28)

Therefore, in a landscape with p > 0 and vacua with Λ > 0, the causal patch predicts that
all three scales are ultimately set by log tmax

Λ , and thus, by the (anthropic) vacuum with
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smallest cosmological constant. This, in turn, is set by the discretuum limit, i.e., by the
number of vacua in the landscape [24, 37, 35, 36], according to

tmax
Λ ∼ N̄

1/2 . (9.29)

This is a fascinating result [30]. It implies that the remarkable scales we observe in Nature,
such as the the vacuum energy and the current age of the universe, are not only mutually
correlated, but that their absolute scale can be explained in terms of the size of the land-
scape. If current estimates of the number of vacua [41, 55] hold up, i.e., if log10N is of
order hundreds,2 then Eq. (9.28) may well prove to be in agreement with the observed value
tΛ ∼ 10

61.
Let us go somewhat beyond our order-of-magnitude estimates and determine how

precisely log tobs and log tΛ can be expected to agree. To that end, we will now calculate
pCP(f−1tΛ < tobs < ftΛ) as a function of f , i.e., the probability that log tobs lies within
an interval log f of log tΛ. The probability distribution of Eq. 9.24 is dominated near the
boundary of regions IV and V, and the probability in region IV is exponentially suppressed.
So we will neglect all regions except region V. (Ignoring region IV means we are eliminating
the possibility that log tobs > log tΛ.)

The probability density in region V is

dp

d log tobs d log tc d log tΛ
∝
t
1+p
obs

tΛ
g(log tc) . (9.30)

We will further restrict to tc > t
max
Λ , which is reasonable if tobs is pushed to large values and

g(log tc) does not strongly prefer small values of log tc. Since we are computing a probability
marginalized over log tc, this restriction on the range of log tc means that the exact form of
g will not affect the answer. The quantity

∫
∞

log tmax
Λ

d log tc g(log tc) (9.31)

will factor out of our computations, and hence we will ignore it. Having eliminated the
log tc dependence, we continue by computing the normalization factor Z for log tΛ > log tobs:

Z = ∫
log tmax

Λ

0
d log tobs∫

log tmax
Λ

log tobs
d log tΛ

t
1+p
obs

tΛ
≈
(tmax

Λ )p
p(1 + p) . (9.32)

In the last line we have dropped terms negligible for tmax
Λ ≫ 1.

Now we will calculate the unnormalized probabilty for f−1tobs < tΛ < ftobs. We
will split the integration region into two subregions according to whether tobs < f

−1tmax
Λ or

f−1tmax
Λ < tobs < t

max
Λ . It turns out that each of these subregions is important. First we do

2The number of anthropic vacua, N̄ , may be smaller by dozens or even hundreds of orders of magnitude
than the total number of vacua, N , for low-energy reasons that are unrelated to the cosmological constant
or curvature and so are not included in out analysis. Hence, log10N ∼ O(1000) may be compatible with
Eq. (9.28).
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tobs < f
−1tmax

Λ :

∫
log(f−1tmax

Λ )

0
d log tobs∫

log(ftobs)

log tobs
d log tΛ

t
1+p
obs

tΛ
(9.33)

≈
(tmax

Λ )p
p
(f−p − f−1−p) (9.34)

= Z(1 + p)(f−p − f1−p) . (9.35)

Finally we calculate the case f−1tmax
Λ < tobs < t

max
Λ :

∫
log tmax

Λ

log(f−1tmax
Λ
)
d log tobs∫

log tmax
Λ

log tobs
d log tΛ

t
1+p
obs

tΛ
(9.36)

= (tmax
Λ )p [1 − f−p

p
−
1 − f−1−p

1 + p
] (9.37)

= Z [1 − (1 + p)f−p + pf−1−p)] . (9.38)

Adding together the unnormalized probabilities and dividing by the factor Z we
find the result

pCP(f−1tobs < tΛ < ftobs) ≈ 1 − f−1−p . (9.39)

In addition to being independent of g(log tc), this result is independent of tmax
Λ , but the

validity of our approximation depends on both. In particular, region V contributes more
to the probability for larger tmax

Λ , so the approximation gets better as tmax
Λ increases. How-

ever, even for tmax
Λ = 1060 the result is only off by a few percent compared to a numerical

integration.
Let us now return to discussing our assumption, Eq. (9.27). If p were not positive,

that is, if α increased at most linearly with tobs, then the maximum of the probability
distribution would be located at the smallest value of tobs compatible with observers. In
this case the causal patch would predict tΛ ≫ tobs. This would be in conflict with observation
except under the extremely contrived assumption that tmax

Λ ∼ tmin
obs .

However, the assumption that p > 0 is quite plausible [30]. Recall that we are only
discussing the form of α in the regime where tobs is the shortest time scale, tobs ≲ tc, tΛ, so
we do not have to worry that later observations may be disrupted by curvature or vacuum
energy. Recall, moreover, that α is defined by averaging over many vacua, so we must
consider only how this average depends on tobs. In particular, this means that we should
not imagine that in moving from one value of tobs to another, we need to hold fixed the
vacuum, or even restrict to only one or two parameters of particle physics and cosmology.
Typical vacua with most observers at one value of tobs are likely to differ in many details
from vacua in which most observers arise at a different time.

With this in mind, we note two general effects that suggest that α(log tobs) in-
creases monotonically. First, the spontaneous formation of highly complex structures such
as observers relies both on chance and, presumably, on a long chain of evolutionary processes
building up increasing complexity. The later the time, the more likely it is that such a chain
has been completed. Secondly, for larger tobs, the same amount of mass can be distributed
among more quanta, of less energy each. Therefore, less mass is necessary to construct a
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system containing a given number of quanta, such as a system of sufficient complexity to
function as an observer. These arguments make it very plausible that α grows. Moreover,
while they do not prove that it grows more strongly than linearly with tobs, they do make
this type of behavior rather plausible.

9.4.2 Negative cosmological constant

We turn to negative values of the cosmological constant, beginning with the case
Λ < 0, tc ≪ tΛ. From Eqs. (9.15) and (9.19), we find that the comoving radius of the causal
patch is given by

χCP(t) ∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3 − 2 log(tc/2tΛ) + 3 [1 − (t/tc)1/3] , t < tc
3 − log tan(t/2tΛ) + log tan(t′c/2tΛ) , tc < t < t

′

c

3( t′
tc
)1/3 , t′c < t .

(9.40)

Recall that a prime denotes time remaining before the crunch: t′ ≡ tf − t. To better show
the structure of the above expressions, we have kept some order-one factors and subleading
terms that will be dropped below. We will approximate log tan(t′c/2tΛ) = − log tan(tc/2tΛ) ≈
− log(tc/2tΛ).

The mass inside the causal patch at the time tobs is

MCP = ρa
3VCP[χCP(tobs)] ∼ tcVCP . (9.41)

We will again approximate the comoving volume inside a sphere of radius χ by χ3 for χ ≲ 1
and by e2χ for χ ≳ 1, giving

MCP ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t4Λ/t3c , tobs < tc I

t2Λt
−1
c tan−2(tobs/2tΛ) , tc < tobs < t

′

c II

t′obs, t′c < tobs III

(9.42)

Now let us consider the case tc ≳ tf/2. The comoving radius of the causal patch is
given by using Eqs. (9.18) and (9.19):

χCP(t) ∼ { (t′)1/3t−1/3c , tf/2 < t
2(tf/2tc)1/3 − (t/tc)1/3 , t < tf/2 . (9.43)

The mass in the causal patch is then given by, up to order one constant factors,

MCP ∼ { t′obs , tf/2 < tobs IV

tf , tobs < tf/2 V
(9.44)

Now we can combine all of the above information to obtain the full probability
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distribution,

d3pCP

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2Λ
t3c

, tobs < tc < tΛ I

1

tc tan2(tobs/2tΛ) , tc < tobs < t
′

c , tc < tΛ , II

t′obs
t2
Λ

, t′c < tobs , tc < tΛ III

t′obs
t2
Λ

, tf/2 < tobs < tc IV

1

tΛ
, tobs < tf/2 < tc V

(9.45)

The analysis of the probability “forces” proceeds as in the positive cosmological
constant case discussed in the previous subsection, by identifying and following the direc-
tions along which the probability grows in each distinct region of the (log tΛ, log tc) plane.
The result, however, is rather different (Fig. 9.1b). For fixed log tobs, the unnormalized
probability density diverges in the direction of small log tc and large log tΛ (region II) like
t2Λt
−1
c . The discrete spectrum of Λ bounds log tΛ from above, and the Planck scale is a lower

limit on log tc. Recall that so far, we have approximated the rate of observations per unit
mass α as independent of (log tc, log tΛ). However, if tc ≪ tobs (tΛ ≪ tobs), then curvature
(or vacuum energy) could dynamically affect the processes by which observers form. One
would expect that such effects are generally detrimental.

Here, for the first time, we find a distribution that peaks in a regime where tc ≪
tobs. This means that the detailed dependence of α on log tc is important for understanding
the prediction and must be included. We do not know this function except for special classes
of vacua.

Instead of letting log tc → 0 so that tc becomes Planckian, we will only allow tc to
fall as low as tmin

c . We do this because it does not make our analysis any more difficult, and
it may capture some aspects of anthropic selection effects if we choose to set log tmin

c to be
some positive quantity.

Thus, within our current approximations the causal patch predicts that most ob-
servers in vacua with negative cosmological constant measure

log tc → log tmin
c , log tΛ → log tmax

Λ , (9.46)

where tmax
Λ ≡ ∣Λ∣−1/2min ∼ N

1/2 is the largest achievable value of tΛ in the landscape. Our
result reveals a preference for separating the curvature, observer, and vacuum timescales:
a hierarchy, rather than a coincidence.

What happens if log tobs is also allowed to vary? After optimizing log tΛ and log tc,
the probability distribution over log tobs is

dp

d log tobs
∼ (tmax

Λ

tobs
)2 α(log tobs)g(log tmin

c )
tmin
c

. (9.47)

If α grows faster than quadratically in tobs, then large values of log tobs are predicted:
log tobs ∼ log tΛ ∼ log tmax

Λ , log tc ∼ log tmin
c , with the maximum probability density given
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by α(log tmax
Λ )g(log tmin

c )/tmin
c . Otherwise, a small value of log tobs is predicted: log tΛ ∼

log tmax
Λ , log tobs ∼ log t

min
obs , log tc ∼ log t

min
c , with maximum probability

(tmax
Λ /tmin

obs )2α(log tmin
obs )g(log tmin

c )/tmin
c .

(Here we have introduced log tmin
obs in an analogous way to log tmin

c . The point here is that
typical observers live at the earliest possible time.)

Do these predictions conflict with observation? Not so far: We are observers in a
vacuum with Λ > 0, so the relevant probability distribution over (log tΛ, log tc) is the one
computed in the previous subsection. This led to the predictions that log tΛ ∼ log tobs and
log tc ≳ log tobs, both of which agree well with observation; and that the scale of log tΛ is
controlled by the number of vacua in the landscape, which is not ruled out.

However, we do get a conflict with observation if we ask about the total probability
for each sign of the cosmological constant. The total probability for positive cosmological
constant is approximately given by the value of the distribution of the maximum. With
our assumption about α (Eq. 9.27), this is p+ ∼ g(log tmax

Λ )α(log tmax
Λ )/tmax

Λ . The total
probability for negative Λ is also controlled by the probability density at the maximum of
the distribution; as mentioned earlier, it is given by α(log tmax

Λ )g(log tmin
c )/tmin

c if p > 1, and
by (tmax

Λ /tmin
obs )2α(log tmin

obs )g(log tmin
c )/tmin

c for p < 1.
Dividing these, we find that a negative value of Λ is favored by a factor

p−

p+
=
tmax
Λ g(log tmin

c )
tmin
c g(log tmax

Λ
) for p > 1 . (9.48)

We know that tmax
Λ must be at least as large as the observed value of tΛ, which is of order

tobs: t
max
Λ > tobs ∼ 1061. Furthermore, we expect that g(log tmax

Λ ) < g(log tmin
c ). It follows

that p+ < t
min
c /tmax

Λ : the observed sign of the cosmological constant is extremely unlikely
according to the causal patch measure in our simple model unless tmin

c is rather close to
tobs. The situation is similarly bad if p < 1.

We regard this result as further evidence [155, 39] that the causal patch cannot
be applied in regions with nonpositive cosmological constant, or more generally, in the
domains of dependence of future spacelike singularities and hats. This is plausible in light
of its relation to the light-cone time cutoff [26, 28], which is well-motivated [73] by an
analogy to the UV/IR relation [165] of the AdS/CFT correspondence [127], but only in
eternally inflating regions.

9.5 The apparent horizon cutoff

This section is structured like the previous one, but we now consider the apparent
horizon cutoff, which is introduced here for the first time.

9.5.1 Definition

To define this cutoff, let us begin with a reformulation of the causal patch. We
defined the causal patch as the causal past of a point on the future boundary of spacetime.
But it can equivalently be characterized in terms of a worldline that ends on that point: the



182

Figure 9.2: The causal patch can be characterized as the union of all past light-cones
(all green lines, including dashed) of the events along a worldline (vertical line). The
apparent horizon cutoff makes a further restriction to the portion of each past light-cone
which is expanding toward the past (solid green lines). The dot on each light-cone marks
the apparent horizon: the cross-section of maximum area, where expansion turns over to
contraction.

causal patch is the union of the past lightcones of all events that constitute the worldline.
By the past light-cone we mean the null hypersurface that forms the boundary of the causal
past.

Each past light-cone can be uniquely divided into two portions. Beginning at
the tip, the cross-sectional area initially expands towards the past. But along each null
geodesic generator of the light-cone, the expansion eventually becomes negative, and the
cross-sectional area begins to decrease. This turnaround does not happen in all spacetimes,
but it does happen in any FRW universe that starts from a big bang (Fig. 9.2) or by bubble
nucleation in a vacuum of higher energy. The point along each null geodesic where the
expansion vanishes and the area is maximal is called the apparent horizon [23]. The causal
patch consists of both portions of the past light-cone. The apparent horizon cutoff entails
a further restriction: it consists only of the portion of each light-cone which is expanding
towards the past.

Our motivation for considering this cutoff comes from the preferred role played
by the apparent horizon in understanding the holographic properties of cosmological space-
times. In the terminology of Refs. [21, 22], the apparent horizon is a preferred holographic

screen: it possesses two light-sheets going in opposite spacetime directions, which together
form an entire light-cone. The covariant entropy bound states that any light-sheet off of a
surface of area A contains matter with entropy S ≤ A/4. Since the past light-cone consists
of two different light-sheets off of the same surface of area AAH, the entropy on it cannot ex-
ceed AAH/4+AAH/4 = AAH/2. Both the causal patch cutoff and the apparent horizon cutoff
can be thought of as a restriction to the information contained on the preferred holographic
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(a) Λ > 0 (b) Λ < 0

Figure 9.3: Conformal diagrams showing the apparent horizon cutoff region. The boundary
of the causal patch is shown as the past light-cone from a point on the conformal boundary.
The domain wall surrounding a bubble universe is shown as the future light-cone of the
bubble nucleation event. The region selected by the cutoff is shaded. For Λ > 0 (a), the
boundary of the causal patch is always exterior to the apparent horizon. For Λ < 0 (b),
the apparent horizon diverges at a finite time. Because the apparent horizon cutoff is
constructed from light-cones, however, it remains finite. The upper portion of its boundary
coincides with that of the causal patch.

screen. The causal patch keeps information about both sides of the screen; the apparent
horizon cutoff only about one side.

The above definition of the apparent horizon cutoff applies to arbitrary worldlines
in general spacetimes. To obtain a definite ensemble of cutoff regions that can be averaged,
let us specify that we follow geodesics orthogonal to an initial hypersurface specified accord-
ing to some rule, for example, a region occupied by the longest lived de Sitter vacuum in the
landscape [76, 43]. When a geodesic enters a new bubble, it quickly becomes comoving [34].

For a comoving geodesic in an FRW universe, it is convenient to restate the cutoff
by specifying what portion of each FRW time slice should be included. The apparent horizon
at equal FRW time is defined as the sphere centered on the geodesic whose orthogonal
future-directed ingoing light-rays have vanishing expansion. This sphere exists at the FRW
time t if and only if the total energy density is positive, ρ(t) > 0. Its surface area is given
by [21]

AAH(t) = 3

2ρ(t) , (9.49)

from which its comoving radius can easily be deduced. The apparent horizon cutoff consists
of the set of points that are both within this sphere (if it exists), and within the causal
patch. The former restriction is always stronger than the latter in universes with positive
cosmological constant, where the apparent horizon is necessarily contained within the causal
patch [22]. In universes with Λ < 0, there is an FRW time t∗ when the apparent horizon
coincides with the boundary of the causal patch. If tobs < t∗, we restrict our attention to
observers within the apparent horizon; otherwise we restrict to observers within the causal
patch (see Fig. 9.3).
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9.5.2 Positive cosmological constant

We begin with the case Λ > 0, tc ≪ tΛ. The scale factor a(t) is given by Eq. (9.12).
The energy density of the vacuum, ρΛ ∼ Λ ∼ t−2Λ , begins to dominate over the density of
matter, ρm ∼ tc/a3, at the intermediate time

ti ∼ t
1/3
c t

2/3
Λ

. (9.50)

Note that tc ≪ ti ≪ tΛ if tc and tΛ are well-separated. Thus we can approximate Eq. (9.49)
by

AAH(t) = 3

2(ρm(t) + ρΛ) ∼ { ρ
−1
m (t) , t < ti
ρ−1Λ , t > ti

. (9.51)

The comoving area of the apparent horizon, AAH/a2, is initially small and grows to about
one at the time tc. It remains larger than unity until the time tΛ and then becomes small
again. The proper volume within the apparent horizon is VAH ∼ aAAH when the comoving

area is large and VAH ∼ A
3/2
AH

when it is small. The mass within the apparent horizon is
MAH = ρmVAH ∼ tcVAH/a3. Combining the above results, we find

MAH ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tobs , tobs < ti < tΛ I

tct
2
Λ/t2obs , ti < tobs < tΛ II

tce
−3(tobs/tΛ−1) , ti < tΛ < tobs III

(9.52)

For the case Λ > 0, tΛ ≲ tc, the mass can be obtained by setting tc ∼ ti ∼ tΛ in the
above result:

MAH ∼ { tobs , tobs < tΛ < tc V

tΛe
−3(tobs/tΛ−1) , tΛ < tobs, tc IV

(9.53)

The full probability distribution is obtained as before by multiplying by tobsα(log tobs)
and dividing by t2Λ to get

d3pAH

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tobs

t2
Λ

, tobs < ti < tΛ I

tc

t2
obs

, ti < tobs < tΛ II

tc

t2
Λ

exp [−3(tobs
tΛ
− 1)] , ti < tΛ < tobs III

1

tΛ
exp [−3(tobs

tΛ
− 1)] , tΛ < tobs, tc IV

tobs

t2
Λ

, tobs < tΛ < tc V

(9.54)

The probability forces are shown in Fig. 9.4. The boundary between regions I and
II is given by log ti = log tobs, which corresponds to log tΛ =

3
2
log tobs−

1
2
log tc. In region I, the

probability is proportional to t−2Λ , corresponding to a force toward smaller log tΛ. In region
II there is a force toward large log tc. In region III, the exponential dominates the log tΛ



185

I

II

III

IV

V

log tobs
log tc

log tobs

log tL

(a) Λ > 0

I

II

III

IV V

VI

VII

log tobs
log tc

log tobs

log 2tobs

log 2tobs�Β

log t f

(b) Λ < 0

Figure 9.4: The probability distribution from the apparent horizon cutoff. The arrows
indicate directions of increasing probability. For Λ > 0 (a), the probability is maximal
along the boundary between regions IV and V before a prior distribution over log tc is
included. Assuming that large values of tc are disfavored, this leads to the prediction
log tΛ ∼ log tc ∼ log tobs. For Λ < 0 (b), the distribution is dominated by a runaway toward
small tc and large tΛ along the boundary between regions II and III.

dependence, giving a preference for large log tΛ; the tc prefactor provides a force towards
large log tc. In regions IV and V the probabilities are independent of log tc except for the
prior g(log tc). The force is towards large log tΛ in region IV, while in region V small log tΛ
is preferred.

Following the gradients in each region, we find that the distribution peaks on the
boundary between regions IV and V. Along this line, the probability density is constant
except for g(log tc). As discussed in Sec. 9.4.1, this degeneracy is lifted by a realistic prior
that mildly disfavors large values of log tc. Thus, the apparent horizon cutoff predicts the
double coincidence

log tobs ∼ log tΛ ∼ log tc . (9.55)

This is in good agreement with observation.
What if the observer time scale is allowed to vary? After optimizing log tΛ and

log tc, the probability distribution over log tobs is

dp

d log tobs
∼ g(log tobs)α(log tobs)

tobs
. (9.56)

We have argued in Sec. 9.4.1 that α grows faster than tobs; under this assumption, all three
timescales are driven to the discretuum limit:

log tobs ≈ log tc ≈ log tΛ ≈
1

2
log N̄ . (9.57)
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9.5.3 Negative cosmological constant

We turn to the case Λ < 0, tc ≪ tΛ. The scale factor is given by (9.15). The total
energy density becomes negative at the intermediate time

ti ∼ t
1/3
c t

2/3
Λ

, (9.58)

when the positive matter density is sufficiently dilute to be overwhelmed by the negative
vacuum energy, ρΛ ∼ −t

−2
Λ . As discussed in Sec. 9.5.1, the apparent horizon exists on the

FRW timeslice t only if the total density at that time is positive. By Eq. (9.49), the apparent
horizon diverges when the density vanishes. Slightly earlier, at the time t∗ = (1 − ǫ)ti, the
apparent horizon intersects the boundary of the causal patch. For t < t∗, the apparent
horizon and defines the cutoff; for t > t∗, the causal patch does (see Fig. 9.3).

To compute t∗, notice that tc ≪ tΛ and Eq. (9.58) imply tc ≪ ti ≪ tΛ. This implies
that the scale factor can be well approximated by a(t) ≈ tΛ sin(t/tΛ) ≈ t in a neighborhood
of ti. This range includes the time t∗ if ǫ is small. We will assume this approximation for
now, and we will find that ǫ≪ 1 follows self-consistently. By Eq. (9.49), the proper area of
the apparent horizon at the time ti(1 − ǫ) is AAH(t) = t2Λ/2ǫ. From Eq. 9.40, we find that
the causal patch has proper area 16πe3t4Λ/t2c +O(ǫ2). Equating these expressions, we find

ǫ =
1

32πe3
t2c
t2
Λ

, (9.59)

which is much less than unity.
For times t < t∗, we compute the mass within the apparent horizon. When t ≲ tc

we use that VAH ∼ A
3/2
AH

, while for tc ≲ t < t∗, we have VAH ∼ aAAH. For times t > t∗ we use
the results for the causal patch from Sec. 9.4.2.

MAH ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tobs, tobs < tc I

tobs (1 − ( tobsti
)3)−1 , tc < tobs < t∗ II

t2Λt
−1
c tan−2(tobs/2tΛ), t∗ < tobs < t

′

c III

t′obs , t′c < tobs IV

, (9.60)

Finally, we consider the case Λ < 0, tf/2 < tc, for which the universe can be
approximated as spatially flat at all times. The scale factor is given by Eq. (9.16). The
area of the apparent horizon, AAH ∼ t

2
Λ tan2(πt/tf), diverges at the turnaround time. So

at a time t∗ < tf/2, the apparent horizon and causal patch are equal in size, and after that
time we must use the causal patch as our cutoff. The area of the causal patch is ACP ∼ t

2
Λ

around this time, so the apparent horizon interesects the causal patch at

tflat
∗
≈ β

tf

2
(9.61)

for β some order one number less than one.
The comoving size of the apparent horizon is given by χ ∼ (t/tc)1/3 for t < tflat

∗
; for

t > tflat
∗

we use our formulas from the causal patch in the previous section to obtain

MAH ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t′obs, tf/2 < tobs < tc V

tf , tflat
∗
< tobs < tf/2 < tc V I

tobs , tobs < t
flat
∗
< tc V II

, (9.62)
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We can now write the full probability distribution for the apparent horizon cutoff with
negative cosmological constant,

d3pAH

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tobs

t2
Λ

, tobs < tc < tΛ I

tobs

t2
Λ
[1 − ( tobs

ti
)3] , tc < tobs < t∗ < tΛ II

1

tc tan2( tobs2tΛ
) , t∗ < tobs < t

′

c III

t′obs
t2
Λ

, t′c < tobs < tf IV

t′obs
t2
Λ

tf/2 < tobs < tc V

1

tΛ
, tflat

∗
< tobs < tf/2 < tc V I

tobs

t2
Λ

, tobs < t
flat
∗
< tc V II

(9.63)

The probability force diagram is shown in Fig. 9.4. Just looking at the arrows, it is
clear that the maximum of the probability distribution lies somewhere in region III, perhaps
at the boundary with region II. Although the formula in region III is already reasonably
simple, there is a simpler form that is correct at the same level of approximation as the rest
of our analysis,

t2Λ
tct

2
obs

α(log tobs)g(log tobs) . (9.64)

This is a good approximation for tobs ≪ tΛ, but it is only wrong by an order one factor
througout region III, so we will go ahead and use this.

For fixed log tobs, it is clear that log tΛ wants to be as large as possible, and log tc
as small as possible, but we must remain in region III. The condition t∗ < tobs bounding
region III is equivalent to

log tc + 2 log tΛ < 3 log tobs . (9.65)

If log tobs is big enough so that tmin
c (tmax

Λ )2 < t3obs, then the maximum of the distribution is
at log tΛ = log t

max
Λ and log tc = log t

min
c , with probability given by

(tmax
Λ )2

tmin
c t2

obs

α(log tobs)g(log tobs) . (9.66)

If log tobs is smaller, then the maximum is given by log tc = log t
min
c and 2 log tΛ = 3 log tobs −

log tmin
c , with probability

tobs(tmin
c )2α(log tobs)g(log tobs) . (9.67)

In either case, we are driven to tc ≪ tobs.
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Note that, as in the case of the causal patch cutoff with Λ < 0, the distribution
is peaked in a regime where tc ≪ tobs. So there is some uncertainty in our result coming
from the dependence of α on log tc when log tc < log tobs. We do not know the form of this
function, which depends on details of the nature of observers, and as before we will just
continue to assume that α is independent of log tc.

Now we allow log tobs to vary. For small log tobs such that (9.67) is valid, log tobs
wants to grow given very mild assumptions about α. Eventually log tobs becomes large
enough that we leave the small log tobs regime. For larger log tobs such that (9.66) is valid,
log tobs is driven up to log tmax

Λ if α increases faster than quadratically with tobs. In this
case we predict log tΛ ∼ log tobs. If α grows more slowly with log tobs, then we predict
log tobs ≪ log tΛ.

Let us compare the total probability for negative Λ to the total probability for
positive Λ, assuming the form (9.27) for α. For negative Λ, we will assume that the large
log tobs regime is the relevant one, so that the correct probability distribution over tobs is
(9.66). Note that this is the the same as (9.47), the result for negative Λ in the causal patch.
Additionally, (9.56) is identical to (9.26), the result for positive Λ in the causal patch. So
the total probabilities are identical to those we found previously for the causal patch. Then
a negative value of Λ is favored by a factor

p−

p+
=
tmax
Λ g(log tmin

c )
tmin
c g(log tmax

Λ
) for p > 1 , (9.68)

and a similar result for p < 1.

9.6 The fat geodesic cutoff

In this section, we compute probabilities using the fat geodesic cutoff, which con-
siders a fixed proper volume ∆V near a timelike geodesic [34]. To compute probabilities, one
averages over an ensemble of geodesics orthogonal to an initial hypersurface whose details
will not matter. As discussed in the previous section, geodesics quickly become comoving
upon entering a bubble of new vacuum. By the symmetries of open FRW universes, we may
pick a fat geodesic at χ = 0, without loss of generality.

In the causal patch and apparent horizon measure, the cutoff region is large com-
pared to the scale of inhomogeneities, which average out. The definition of the fat geodesic,
however, is rigorous only if ∆V is taken to be infinitesimal. Thus, in this section, we shall
neglect the effects of local gravitational collapse. We shall approximate the universe as
expanding (and, for Λ < 0 after the turnaround, contracting) homogeneously. Since the
physical 3-volume, ∆V , of a fat geodesic is constant, the mass within the cutoff region is
proportional to the matter density:

MFG ∝ ρm ∼
tc

a3
. (9.69)

The fat geodesic cutoff is closely related to the scale factor time cutoff, but it is
more simply defined and easier to work with. Scale factor time is defined using a congruence
of timelike geodesics orthogonal to some initial hypersurface in the multiverse: dt ≡ Hdτ ,
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where τ is the proper time along each geodesic and 3H is the local expansion of the con-
gruence. This definition breaks down in nonexpanding regions such as dark matter halos;
attempts to overcome this limitation (e.g., Ref. [53]) remain somewhat ad-hoc. In regions
where the congruence is everywhere expanding, scale factor time is exactly equivalent to
the fat geodesic cutoff with initial conditions in the longest lived de Sitter vacuum [34].

9.6.1 Positive cosmological constant

We begin with the case Λ > 0, tc ≪ tΛ. Combining Eqs. (9.69) and (9.12), we
obtain

MFG ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/t2obs, tobs < tc < tΛ I

tc/t3obs, tc < tobs < tΛ II(tc/t3Λ)e−3tobs/tΛ , tc < tΛ < tobs III

. (9.70)

For the flat universe (Λ > 0, tc > tΛ), we obtain

MFG ∼ { 1/t2obs, tobs < tΛ V(1/t2Λ)e−3tobs/tΛ , tΛ < tobs IV
. (9.71)

This leads to the probability distribution

d3pFG

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

t2
Λ
t2
obs

, tobs < tc < tΛ I

tc

t3
obs
t2
Λ

, tc < tobs < tΛ II

tc

t5
Λ

exp [−3 tobs
tΛ
] , tc < tΛ < tobs III

1

t4
Λ

exp [−3 tobs
tΛ
] , tΛ < tobs, tc IV

1

t2
obs
t2
Λ

, tobs < tΛ < tc V

(9.72)

The probability force diagram is shown in Fig. 9.5. The result is the same as for
the apparent horizon cutoff: the distribution peaks on the entire line separating regions IV
and V, up to the effects of g(log tc). A realistic prior that mildly disfavors large values of
log tc will tend to make log tc smaller. Thus, the fat geodesic cutoff predicts the double
coincidence

log tobs ∼ log tΛ ∼ log tc , (9.73)

in good agreement with observation.
What if we allow log tobs to scan? Optimizing (log tΛ, log tc), we find the probability

distribution over log tobs:

dp

d log tobs
∼
α(log tobs)g(log tobs)

t4
obs

. (9.74)

The denominator provides a strong preference for log tobs to be small. To agree with obser-
vation, α must grow at least like the fourth power of tobs for values of tobs smaller than the
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Figure 9.5: The probability distribution computed from the scale factor (fat geodesic) cutoff.
The arrows indicate directions of increasing probability. For Λ > 0 (a), the probability
distribution is maximal along the boundary between regions IV and V; with a mild prior
favoring smaller log tc, this leads to the prediction of a nearly flat universe with log tc ∼
log tΛ ∼ log tobs. For Λ < 0 (b), the probability distribution diverges as the cosmological
constant increases to a value that allows the observer timescale to coincide with the big
crunch.

observed value tobs ∼ 10
61. We cannot rule this out, but it is a much stronger assumption

than the ones needed for the causal patch and apparent horizon cutoffs.
The preference for early log tobs in the fat geodesic cutoff can be traced directly

to the fact that the probability is proportional to the matter density. This result has an
interesting manifestation [34] in the more restricted setting of universes similar to our own:
it is the origin of the strong preference for large initial density contrast, δρ/ρ, which allows
structure to form earlier and thus at higher average density.

9.6.2 Negative cosmological constant

For Λ < 0, tc ≪ tΛ, we use Eq. (9.15) for the scale factor. The mass in the cutoff
region is

MFG ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/t2obs, tobs < tc I(tc/t3Λ) sin−3(tobs/tΛ), tc < tobs < t

′

c II

1/t′2obs, t′c < tobs III

. (9.75)

(Recall that a prime denotes the time remaining before the crunch, t′ ≡ tf − t.) For the flat
universe case, Λ < 0 and tc > tf/2, we use Eq. (9.16) for the scale factor and find

MFG ∼ t
−2
Λ sin−2(πtobs/tf), tf/2 < tc IV. (9.76)
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The probability distribution is then

d3pFG

d log tc d log tΛd log tobs
∼ gα ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

t2
Λ
t2
obs

, tobs < tc < tΛ I

tc

t5
Λ
sin3(tobs/tΛ) , tc < tobs < t

′

c II

1

t2
Λ
(t′

obs
)2 , t′c < tobs III

1

t4
Λ
sin2(πtobs/tf) , tf/2 < tc IV

(9.77)

The probability force diagram is shown in Fig. 9.5. At fixed log tobs, the scale
factor measure predicts that observers exist just before the crunch (log t′obs → log tmin

obs

′

).
Recall that tmin

obs was introduced as a proxy for more detailed anthropic selection effects.
The point is that the measure provides a pressure which favors observers living as close as
possible to the crunch.

We can now find the probability distribution over tobs. In the previous sections,
up to logarithmic corrections it did not matter whether we optimized or marginalized over(tΛ, tc) because the distribution near the maximum was exponential. Here, we will get
different answers for the two procedures, so we choose to marginalize over (log tΛ, log tc),
leaving log tobs to scan. The resulting distribution is

dp

d log tobs
∼ t−3obs α(log tobs) . (9.78)

There is no geometric pressure on log tc in region III, where Eq. (9.75) peaks, so the value
of log tc will be determined by the prior distribution and anthropic selection. Assuming
that the prior favors small values of log tc, it seems likely that expected value of log tc is
much less than log tobs. As in the apparent horizon and causal patch measures for Λ < 0,
this complicates the computation of α. However, the situation here is not the same. The
difference is that here we have observers forming late in the recollapse phase of a crunching
universe, where the dominant contribution to the energy density actually comes from matter.
The fact that the universe is in a recollapse phase makes it very hard to say what the form
of α will be, whether or not there is an era of curvature domination.

Regardless of the form of α, the first factor in Eq. (9.78) has a preference for
log tobs to be small. If α it grows faster than t3obs, then it is favorable for log tobs to be large
and log tobs → log tmax

Λ . Otherwise, log tobs → log tmin
obs , which means that some anthropic

boundary determines the expected value.
Now we will estimate the preference for negative values of Λ over positive by inte-

grating the distributions in Eqs. (9.78) and (9.74). As mentioned above, to get agreement
with the observed value of Λ we need to assume α grows like a fourth power of tobs. Then
for both positive and negative Λ, the distribution is sharply peaked at tobs ∼ t

max
Λ . Then we

find
p−/p+ ∼ tmax

Λ . (9.79)

So negative values of the cosmological constant are favored.
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Finally, for Λ < 0 it is worth noting the behavior of the probability distribution
over log tobs for fixed log tΛ, using for instance Eq. (9.76) and neglecting for simplicity the
factor α. Depending on whether tobs is larger or smaller than tf/2, log tobs will be driven
either to log tmin

obs

′

or to log tmin
obs . The former case is reproduced by our above procedure of

fixing log tobs and letting log tΛ vary. The latter case is the time-reversed case (and we know
that the fat geodesic measure respects the time-reversal symmetry of a crunching universe).
When both log tΛ and log tobs are allowed to vary, we are driven to log tΛ ∼ log tobs ∼ log t

min
obs

regardless of the order of scanning.
Recall that the fat geodesic cutoff is equivalent to the scale factor measure in

simple situations. However, our negative conclusions about negative Λ differ from the
analyis of the scale factor measure in [53] which found no conflict with observation. There
are two reasons for this discrepancy. First, the fat geodesic measure differs from the detailed
prescription given in [53] in the recollapsing region. Second, the analysis of [53] made an
unjustified approximation [34], computing the scale factor time in the approximation of a
homogeneous FRW universe. It remains to be seen if there is a precise definition of the
scale factor cutoff that will give the result computed in [53]. The fat geodesic is our best
attempt to define a simple measure in the spirit of [53].
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Chapter 10

Future inextendability and
non-decoupling of the regulator

10.1 Non-decoupling of the regulator

A sufficiently large region of space with positive vacuum energy will expand at an
exponential rate. If the vacuum is stable, this expansion will be eternal. If it is metastable,
then the vacuum can decay by the nonperturbative formation of bubbles of lower vacuum
energy. Vacuum decay is exponentially suppressed, so for a large range of parameters the
metastable vacuum gains volume due to expansion faster than it loses volume to decays [86].
This is the simplest nontrivial example of eternal inflation.

If it does occur in Nature, eternal inflation has profound implications. Any type
of event that has nonzero probability will happen infinitely many times, usually in widely
separated regions that remain forever outside of causal contact. This undermines the basis
for probabilistic predictions of local experiments. If infinitely many observers throughout
the universe win the lottery, on what grounds can one still claim that winning the lottery
is unlikely? To be sure, there are also infinitely many observers who do not win, but in
what sense are there more of them? In local experiments such as playing the lottery, we
have clear rules for making predictions and testing theories. But if the universe is eternally
inflating, we no longer know why these rules work.

To see that this is not merely a philosophical point, it helps to consider cosmological
experiments, where the rules are less clear. For example, one would like to predict or explain
features of the CMB; or, in a theory with more than one vacuum, one might wish to predict
the expected properties of the vacuum we find ourselves in, such as the Higgs mass. This
requires computing the relative number of observations of different values for the Higgs mass,
or of the CMB sky. There will be infinitely many instances of every possible observation,
so what are the probabilities? This is known as the “measure problem” of eternal inflation.

In order to yield well-defined probabilities, eternal inflation requires some kind of
regulator. Here we shall focus on geometric cutoffs, which discard all but a finite portion
of the eternally inflating spacetime. The relative probability of two types of events, 1 and
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(b) Causal Patch Cutoff

Figure 10.1: A multiverse populated by infinitely many observers (vertical line segments)
who first see 1 o’clock (at events labeled “1”) and then 2 o’clock (“2”). A geometric cutoff
selects a finite set of events, whose relative frequency defines probabilities. Events that are
not counted are indicated by dashed lines. The left figure shows a global cutoff: all events
prior to the time t0 (curved line) are counted and all later events ignored. (The global time
has nothing to do with the observers’ clocks, which come into being at a rate dictated by
the dynamics of eternal inflation.) The right figure shows the causal patch cutoff, which
restricts to the causal past of a point on the future boundary. In both figures, the cutoff
region contains observers who see 1 o’clock but not 2 o’clock. Their number, as a fraction
of all observers who see 1 o’clock before the cutoff, defines the probability of reaching the
end of time between 1 and 2 o’clock.

2, is then defined by
p1

p2
=
⟨N1⟩⟨N2⟩ (10.1)

where ⟨N1⟩ is the expected number of occurences of the first type of event within the sur-
viving spacetime region. (We will drop the expectation value brackets below for simplicity
of notation.) Here, 1 and 2 might stand for winning or not winning the lottery; or they
might stand for a red or blue power spectrum in the CMB. The generalization to larger or
continuous sets of mutually exclusive outcomes is trivial.

There are different proposals for what spacetime region should be retained. Our
basic observation in this chapter applies to all geometric cutoffs we are aware of, and indeed
seems to be an inevitable consequence of any simple geometric cutoff: Some observers will
have their lives interrupted by the cutoff (Fig. 10.1).

Let events 1 and 2 be the observation of 1 o’clock and 2 o’clock on an observer’s
watch. For simplicity, we will suppose that local physics can be approximated as determin-
istic, and we neglect the probability that the observer may die between 1 and 2 o’clock, or
that the clock will break, etc. Each observer is born just before his watch shows 1 and dies
just after it shows 2, so that no observer can see more than one event of each type.

Conventionally, we would say that every observer sees both 1 o’clock and then 2
o’clock. But the figure shows that for some observers, 2 o’clock will not be under the cutoff
even if 1 o’clock is. A fraction 1 −N2/N1 of observers are prevented from surviving to 2
o’clock. The catastrophic event in question is evidently the cutoff itself: the observer might
run into the end of time.

One can imagine a situation where the relative number of observations of 1 o’clock
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and 2 o’clock is relevant to predicting the results of an experiment. Suppose that the
observers fall asleep right after seeing 1 o’clock. They wake up just before 2 o’clock with
complete memory loss: they have no idea whether they have previously looked at their
watches before. In this case, they may wish to make a prediction for what time they will
see. Since N2 < N1, by Eq. (10.1), p2 < p1: the observation of 2 o’clock is less probable than
that of 1 o’clock. This is possible only if some observers do not survive to 2 o’clock.

The conclusion that time can end obtains whether or not the observers have mem-
ory loss. Consider an observer who retains her memory. She is aware that she is about to
look at her watch for the first time or for the second time, so the outcome won’t be a surprise
on either occasion. But this does not contradict the possibility that some catastrophic event
may happen between 1 and 2 o’clock. The figure shows plainly that this event does happen
to a nonzero fraction of observers. The only thing that changes when considering observers
who remember is the type of question we are likely to ask. Instead of asking about two
alternative events (1 or 2), we may find it more natural to ask about the relative probability
of the two different possible histories that observers can have. One history,“1−” , consists
of seeing 1 o’clock and running into the cutoff. The alternative, “12”, consists of seeing 1
o’clock and then seeing 2 o’clock. From Fig. 10.1 we see that N12 = N2 and N1− = N1 −N2.
Since N1 > N2, we have p1− > 0: there is a nonzero probability for the history in which the
observer is disrupted by the end of time.

Outline and Frequently Asked Questions The probability for the end of time is
nonzero for all geometric cutoffs. Its value, however, depends on the cutoff. In Sec. 10.2 we
compute the probability, per unit proper time, that we will encounter the end of time.

A number of objections may be raised against our conclusion that time can end.

● Q: Can’t I condition on the end of time not happening?1

A: Certainly. This is like asking what the weather will be tomorrow, supposing that
it will not rain. It is a reasonable question with a well-defined answer: The sun will
shine with probability x, and it will snow with probability 1 − x. But this does not
mean that it cannot rain. If the end of time is a real possibility, then it cannot be
prevented just by refusing to ask about it.

● Q: In some measures, the cutoff is taken to later and later times. In this limit, the
probability to encounter the end of time surely approaches 0?

A: No. In all known measures of this type, an attractor regime is reached where the
number of all types of events grows at the same exponential rate, including observers

1In the above example, this would force us to ask a trivial question (“What is the relative probability
of seeing 1 or 2, for an observer whose history includes both 1 and 2?”), which yields the desired answer
(p2/p1 = 1). For a more interesting example, consider an experiment that terminates at different times
depending on the outcome, such as the Guth-Vanchurin paradox described in Sec. 10.4, or the decay of a
radioactive atom. In such experiments it is tempting to propose that the experiment should be regarded
to last for an amount of time corresponding to the latest possible (conventional) outcome, regardless of
the actual outcome; and that any outcome (other than the end of time) should be counted only if the
experiment has been entirely completed before the cutoff, in the above sense. This proposal is not only futile
(as described in the answer), but also ill-defined, since any event in the past light-cone of the event P can
be regarded as the beginning of an experiment that includes P .
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who see 1 o’clock. The fraction of these observers who also see 2 o’clock before the
cutoff approaches a constant less than unity, as will be shown in Sec. 10.3.1.

● Q: But as the cutoff is taken to later times, any given observer’s entire history is
eventually included. Isn’t this a contradiction?

A: No. We do not know which observer we are, so we cannot identify with any
particular observer. (If we could, there would be no need for a measure.) Rather, we
consider all observers in a specified class, and we define probabilities in terms of the
relative frequency of different observations made by these observers.

● Q: If I looked at what happened on Earth up to the present time (my “cutoff”), I
would find not only records of past clocks that struck both 1 and 2, but also some
recently manufactured clocks that have struck 1 but not yet 2. I could declare that
the latter represent a new class of clocks, namely clocks whose existence is terminated
by my “cutoff”. But I know that this class is fake: it wasn’t there before I imposed
the “cutoff”. Surely, the end of time in eternal inflation is also an artifact that ought
to be ignored?

A: Only a finite number of clocks will ever be manufactured on Earth. Probabilities
are given not in terms of the sample picked out by your “cutoff”, but by relative
frequencies in the entire ensemble. If every clock ever built (in the past or future)
strikes both 1 and 2, then the probability for a randomly chosen clock to undergo a
different history vanishes, so we may say confidently that the “cutoff” has introduced
an artifact. In eternal inflation, however, the cutoff cannot be removed. Otherwise,
we would revert to a divergent multiverse in which relative frequencies are not well-
defined. The cutoff defines not a sample of a pre-existing ensemble; it defines the
ensemble. This is further discussed in Sec. 10.3.2.

● Q: Why not modify the cutoff to include 2 o’clock?

A: This is a possibility. If we deform the cutoff hypersurface so that it passes through
no matter system, then nothing will run into the end of time. It is not clear whether
this type of cutoff can be obtained from any well-defined prescription. At a minimum,
such a prescription would have to reference the matter content of the universe explic-
itly in order to avoid cutting through the world volumes of matter systems. In this
chapter, we consider only cutoffs defined by a purely geometric rule, which take no
direct account of matter.

In Sec. 10.4, we discuss an apparent paradox that is resolved by the nonzero
probability for time to end.

Any conclusion is only as strong as the assumptions it rests on. The reader who
feels certain that time cannot end may infer that at least one of the following assumptions
are wrong: (1) the universe is eternally inflating; (2) we may restrict attention to a finite
subset of the eternally inflating spacetime, defined by a purely geometric prescription; and
(3) probabilities are computed as relative frequencies of outcomes in this subset, Eq. (10.1).
We discuss these assumptions in Sec. 10.5.1.
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In Sec. 10.5.2, we discuss whether, and how, the nonzero probability for the end of
time may be observed. We point out that known predictions of various measures actually
arise from the possibility that time can end. On the problematic side, this includes the
famous youngness paradox of the proper time cutoff; on the successful side, the prediction
of the cosmological constant from the causal patch cutoff.

In Sec. 10.5.3, we discuss how the end of time fits in with the rest of physics. This
depends on the choice of cutoff. With the causal patch cutoff, there may be a relatively
palatable interpretation of the end of time which connects with the ideas of black hole
complementarity. The boundary of the causal patch is a kind of horizon, which can be
treated as an object with physical attributes, including temperature. Matter systems that
encounter the end of time are thermalized at this horizon. This is similar to an outside
observer’s description of a matter system falling into a black hole. What is radically new,
however, is the statement that we might experience thermalization upon crossing the black
hole horizon.

This work was inspired by discussions with Alan Guth, who first described to us
the paradox mentioned in section 10.4. We understand that Guth and Vanchurin will be
publishing their own conclusions [85]. In taking seriously the incompleteness of spacetime
implied by geometric cutoffs, our conclusion resembles a viewpoint suggested earlier by Ken
Olum [138].

10.2 The probability to encounter the cutoff

The phenomenon that time can end is universal to all geometric cutoffs. But the
rate at which this is likely to happen, per unit proper time τ along the observer’s worldline,
is cutoff-specific. We will give results for five measures.

Causal patch The causal patch cutoff [24] restricts attention to the causal past of the
endpoint of a single worldline (see Fig. 10.1). Expectation values are computed by averaging
over initial conditions and decoherent histories in the causal patch. The end of time, in this
case, is encountered by systems that originate inside the causal patch but eventually exit
from it.

Our universe can be approximated as a flat FRW universe with metric

ds2 = −dτ2 + a(τ)2(dχ2
+ χ2dΩ2) . (10.2)

Observers are approximately comoving (dχ/dτ = 0). We assume that the decay rate of our
vacuum, per unit four-volume, is much less than t−4Λ . Then the decay can be neglected
entirely in computing where the boundary of the causal patch intersects the equal time
surfaces containing observers. The boundary is given by the de Sitter event horizon:

χE(τ) = ∫ ∞

τ

dτ ′

a(τ ′) . (10.3)

We consider all observers currently within the horizon: χ < χE(τ0), with τ0 = 13.7
Gyr. This corresponds to a comoving volume Vcom = (4π/3)χE(τ0)3. Observers located at
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χ leave the patch at a time τ ′ determined by inverting Eq. (10.3); in other words, they
reach the end of time at ∆τ ≡ τ ′ − τ0 from now. An (unnormalized) probability distribution
over ∆τ is obtained by computing the number of observers that leave the causal patch at
the time τ0 +∆τ :

dp

d∆τ
∝

4πχE(τ0 +∆τ)2
a(τ0 +∆τ) . (10.4)

We compute a(τ) numerically using the best-fit cosmological parameters from the WMAP5
data combined with SN and BAO [115]. From the distribution (10.4), we may obtain both
the median and the expectation value for ∆τ . We find that the expected amount of proper
time left before time ends is ⟨∆τ⟩ = 5.3Gyr . (10.5)

Time is unlikely to end in our lifetime, but there is a 50% chance that time will end within
the next 3.7 billion years.

Light-cone time The light-cone time of an event is defined in terms of the volume of
its future light-cone on the future boundary of spacetime [26, 44, 28]. The light-cone time
cutoff requires that we only consider events prior to some light-cone time t0; then the limit
t0 →∞ is taken. It can be shown that the light-cone time cutoff is equivalent to the causal
patch cutoff with particular initial conditions [44]. Thus, the probability for an observer to
encounter the end of time is the same as for the causal patch cutoff.

Fat geodesic The fat geodesic cutoff considers a fixed proper volume 4πd3/3 near a
timelike geodesic [34]. To compute probabilities, one averages over an ensemble of geodesics
orthogonal to an initial hypersurface whose details will not matter. One can show that the
geodesics quickly become comoving after entering a bubble of new vacuum. Since our
vacuum is homogeneous, we may pick without loss of generality a fat geodesic at χ = 0.
We shall neglect the effects of local gravitational collapse and approximate the universe as
expanding homogeneously. Equivalently, we take the proper distance d to be small compared
to the present curvature scale of the universe but large compared to the scale of clusters.
These approximations are not essential, but they will simplify our calculation and save us
work when we later consider the scale factor cutoff.

We should only consider observers who are currently (τ0 = 13.7 Gyr) within the
fat geodesic, with χ < d/a(τ0). An observer leaves the geodesic a time ∆τ later, with
χ = d/a(τ0 +∆τ). The unnormalized probability distribution over ∆τ is

dp

d∆τ
∝ 4π

d3(da/dτ)τ0+∆τ

a(τ0 +∆τ)4 . (10.6)

From this distribution, we find numerically that the expected amount of proper time left
before the end of time is 5 Gyr. There is a 50% chance that time will end within the next
3.3 billion years.

While the result is similar, there is an important formal difference between the
fat geodesic and causal patch cutoffs. The boundary of the fat geodesic is a timelike hy-
persurface, from which signals can propagate into the cutoff region. Boundary conditions
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must therefore be imposed. When a system leaves the fat geodesic, time ends from its
own point of view. But an observer who remains within the cutoff region continues to see
the system and to communicate with it. The image of the system and its response to any
communications are encoded in data specified on the timelike boundary. In practice, the
simplest way to determine these boundary conditions is to consider the global spacetime
and select a fat geodesic from it. This means that the fat geodesic is not a self-contained
description. The content of the causal patch, by contrast, can be computed from its own
initial conditions without reference to a larger spacetime region.

Scale factor time Scale factor time is defined using a congruence of timelike geodesics
orthogonal to some initial hypersurface in the multiverse: dt ≡ Hdτ , where τ is the proper
time along each geodesic and 3H is the local expansion of the congruence. This definition
breaks down in nonexpanding regions such as dark matter halos; attempts to overcome
this limitation (e.g., Ref. [53]) remain somewhat ad-hoc. Here we use for H the Hubble
rate of a completely homogeneous universe whose density agrees with the average density
of our universe. This does not yield a precise and general cutoff prescription, but it allows
us to compute an approximate rate at which we are likely to encounter the cutoff: in an
everywhere-expanding timelike geodesic congruence, the scale factor time cutoff is equivalent
to the fat geodesic cutoff [34]. Hence it gives the same rate for time to end as the fat geodesic
cutoff.

Proper time In the proper time cutoff, the characteristic timescale is the shortest Hubble
time of all eternally inflating vacua. In a realistic landscape, this is microscopically short,
perhaps of order the Planck time [33]. Thus, time would be overwhelmingly likely to end
in the next second:

dp

d∆τ
≈ t−1Pl . (10.7)

This is the famous “youngness paradox” in a new guise. The cutoff predicts that our obser-
vations have superexponentially small probability, and that most observers are “Boltzmann
babies” who arise from quantum fluctuations in the early universe. Thus, this measure is
already ruled out phenomenologically at a high level of confidence [124, 81, 82, 83, 175, 122,
84, 33].

10.3 Objections

Our intuition rebels against the conclusion that spacetime could simply cease to
exist. In the introduction, we answered several objections that could be raised against the
end of time. In this section, we will discuss two of these arguments in more detail.

10.3.1 The cutoff can not be encountered in a late-time limit

In some measure proposals, such as the proper time cutoff [120, 121], the scale
factor time cutoff [53], and the light-cone time cutoff [26], a limit is taken in which the



200

cutoff region is made larger and larger as a function of a time parameter t0:

p1/p2 = lim
t0→∞

N1(t0)/N2(t0) . (10.8)

Naively one might expect the cutoff observers to be an arbitrarily small fraction of all
observers in the limit t0 →∞. This turns out not to be the case.

One finds that the number of events of type I that have occurred prior to the time
t is of the form

NI(t) = ŇI exp(γt) +O(σt) , (10.9)

with σ < γ ≈ 3. Thus, the growth approaches a universal exponential behavior at late
times [76, 33, 44], independently of initial conditions. The ratio N1/N2 appearing in
Eq. (10.1) remains well-defined in the limit t0 →∞, and one obtains

p1

p2
=
Ň1

Ň2

. (10.10)

The constants ŇI , and thus the relative probabilities, depend on how the time variable is
defined; we will discuss some specific choices below.

Suppose that observers live for a fixed global time interval ∆t. Then a person dies
before time t if and only if he was born before t−∆t. Therefore the number of births Nb is
related to the number of deaths Nd by

Nd(t) = Nb(t −∆t) (10.11)

Using the time dependence of Nb given in (10.9), this can be rewritten

Nd(t)
Nb(t) ≈ exp(−γ∆t) , (10.12)

up to a correction of order e(σ−γ)t which becomes negligible in the late time limit. Thus,
the fraction of deaths to births does not approach unity as the cutoff is taken to infinity.
The fraction of observers whose lives are interrupted by the cutoff is

Nc

Nb

= 1 − exp(−γ∆t) (10.13)

where Nc = Nb −Nd is the number of cutoff observers.
Since (10.13) is true for any time interval ∆t, it is equivalent to the following

simple statement: any system has a constant probability to encounter the end of time given
by

dp

dt
= γ ≈ 3 (10.14)

This result can be interpreted as follows. Due to the steady state behavior of eternal
inflation at late times, there is no way to tell what time it is. The exponential growth (10.9)
determines a t0-independent probability distribution for how far we are from the cutoff,
given by (10.14).
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10.3.2 Hitting the cutoff is an artifact

Could it be that observers who run into the cutoff are an artifact, not to be taken
seriously as a real possibility? Certainly they would not exist but for the cutoff. Yet, we
argue that cutoff observers are a real possibility, because there is no well-defined probability

distribution without the cutoff; in particular, only the cutoff defines the set of allowed events.
In order to convince ourselves of this, it is instructive to contrast this situation with one
where a cutoff may introduce artifacts. We will consider two finite ensembles of observers,
without reference to eternal inflation. We then restrict attention to a portion of each
ensemble, defined by a cutoff. We find that this sample looks the same in both ensembles,
and that it contains observers that run into the cutoff. In the first ensemble, these observers
are an artifact of sampling; in the second, they are real. We will then explain why eternal
inflation with a cutoff is different from both examples.

A cutoff on a finite ensemble defines a sample Consider a civilization which begins
at the time t = 0 and grows exponentially for a finite amount of time. (We will make no
reference to a multiverse in this example.) Every person is born with a watch showing 1
o’clock at the time of their birth, when they first look at it. One hour later, when they
look again, the watch shows 2 o’clock; immediately thereafter the person dies. After the
time t∗ ≫ 1 hour, no more people are born, but whoever was born before t∗ gets to live
out their life and observe 2 o’clock on their watch before they die. In this example, there
is a well-defined, finite ensemble, consisting of all observers throughout history and their
observations of 1 and 2. The ensemble contains an equal number of 1’s and 2’s. Every
observer in the ensemble sees both a 1 and a 2, each with 100% probability. No observer
meets a premature demise before seeing 2.

Now suppose that we do not know the full ensemble described above. Instead, we
are allowed access only to a finite sample drawn from it, namely everything that happened
by the time t, with 1 hour ≪ t < t∗. This sample contains many observers who died before
t; each of them will have seen both 1 and 2. We refer to these as “histories” of type 12.
It also contains observers (those who were born after t − 1 hour) who are still alive. Each
of them has seen 1 but not yet 2, by the time t, which we refer to as a history of type
1−. What do we say about these observers? Should we declare that there is a nonzero
probability that an observer who sees 1 does not live to see 2? In fact, a finite sample
of a larger, unknown ensemble allows us to draw no conclusion of this kind, because we
have no guarantee that our sampling of the ensemble is fair. The true set of outcomes,
and their relative frequency, is determined only by the full ensemble, not by our (possibly
unfaithful) sample of it. Similarly, if we had a considered a more complicated system, such
as observers with watches of different colors, etc., the relative frequency of outcomes in any
subset need not be the same as the relative frequency in the full ensemble, unless we make
further assumptions.

If we examined the full ensemble, we could easily verify that every observer who
sees 1 also lives to see 2. Thus we would learn that 1− was an artifact of our sampling:
imposing a cutoff at fixed time produced a new class of events that does not exist (or more
precisely, whose relative frequency drops to zero) once we take the cutoff away. Armed with
this knowledge, we could then invent an improved sampling method, in which the 1− cases
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are either excluded, or treated as 12 events.
As our second example, let us consider a civilization much like the previous one,

except that it perishes not by a sudden lack of births, but by a comet that kills everyone
at the time t∗. This, too, gives rise to a finite, well-defined ensemble of observations. But
unlike in the previous example, there is a larger number of 1’s than 2’s: not every observer
who sees a 1 lives to see a 2. Thus, the probabilities for the histories 12 and 1− satisfy
p1− > 0, p12 < 1. Indeed, if we choose parameters so the population grows exponentially on
a timescale much faster than 1 hour, most people in history who see 1 end up being killed
by the comet rather than expiring naturally right after seeing 2; that is, p12 = 1 − p1− ≪ 1
in this limit.

Again, we can contemplate sampling this ensemble, i.e., selecting a subset, by
considering everything that happened prior to the time t < t∗. Note that this sample will
look identical to the finite-time sample we were given in the previous example. Again, we
find that there are apparently events of type 1−, corresponding to observers who have seen
1 but not 2 by the time t. But in this example, it so happens that (i) events of type 1−
actually do exist in the full ensemble, i.e., have nonzero true relative frequency; and (ii)
assuming exact exponential growth, our sample is faithful: the relative frequency of 1− vs.
12 in the sample (observers prior to t) is the same as in the full ensemble (observers in all
history, up to t∗).

2

We learn from the above two examples that a subset of an ensemble need not yield
reliable quantitative information about the relative frequencies of different outcomes, or
even qualitative information about what the allowed outcomes are. All of this information
is controlled only by the full ensemble. In both examples, the set of events that occured
before the time t < t∗ contain events of type 1−. But in the first example, these events
are a sampling artifact and their true probability is actually 0. In the second example, 1−
corresponds to a real possibility with non-zero probability.

The cutoff in eternal inflation defines the ensemble Now let us return to eternal
inflation. In order to regulate its divergences, we define a cutoff that picks out a finite
spacetime region, for example the region prior to some constant light-cone time t. Naively,
this seems rather similar to the examples above, where we sampled a large ensemble by
considering only the events that happened prior to a time t < t∗. But we learned that such
samples cannot answer the question of whether the histories of type 1− are real or artifacts.
To answer this question, we had to look at the full ensemble. We found in the first example
that 1− was real, and in the second that 1− was an artifact, even though the sample looked
exactly the same in both cases. In eternal inflation, therefore, we would apparently need to
“go beyond the cutoff” and consider the “entire ensemble” of outcomes, in order to decide
whether 1− is something that can really happen.

But this is impossible: the whole point of the cutoff was to define an ensemble.
An infinite set is not a well-defined ensemble, so the set we obtained by imposing a cutoff is

the most fundamental definition of an ensemble available to us. We can argue about which
cutoff is correct: light-cone time, scale factor time, the causal patch, etc. But whatever

2Actually it is faithful only in the limit as t is much greater than the characteristic growth timescale of
the civilization, because of the absence of any observers prior to t = 0.
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the correct cutoff is, its role is to define the ensemble. It cannot be said to select a sample
from a larger ensemble, namely from the whole multiverse, because this larger ensemble is
infinite, so relative abundances of events are not well-defined. If they were, we would have
had no need for a cutoff in the first place.

10.4 The Guth-Vanchurin paradox

Another way to see that the end of time is a real possibility is by verifying that it
resolves a paradox exhibited by Guth and Vanchurin [80]. Suppose that before you go to
sleep someone flips a fair coin and, depending on the result, sets an alarm clock to awaken
you after either a short time, ∆t ≪ 1, or a long time ∆t ≫ 1. Local physics dictates that
there is a 50% probability to sleep for a short time since the coin is fair. Now suppose
you have just woken up and have no information about how long you slept. It is natural
to consider yourself a typical person waking up. But if we look at everyone who wakes up
before the cutoff, we find that there are far more people who wake up after a short nap than
a long one. Therefore, upon waking, it seems that there is no longer a 50% probability to
have slept for a short time.

How can the probabilities have changed? If you accept that the end of time is a
real event that could happen to you, the change in odds is not surprising: although the
coin is fair, some people who are put to sleep for a long time never wake up because they
run into the end of time first. So upon waking up and discovering that the world has not
ended, it is more likely that you have slept for a short time. You have obtained additional
information upon waking—the information that time has not stopped—and that changes
the probabilities.

However, if you refuse to believe that time can end, there is a contradiction. The
odds cannot change unless you obtain additional information. But if all sleepers wake, then
the fact that you woke up does not supply you with new information.

Another way to say it is that there are two reference classes one could consider.
When going to sleep we could consider all people falling asleep; 50% of these people have
alarm clocks set to wake them up after a short time. Upon waking we could consider the
class of all people waking up; most of these people slept for a short time. These reference
classes can only be inequivalent if some members of one class are not part of the other.
This is the case if one admits that some people who fall asleep never wake up, but not if
one insists that time cannot end.

10.5 Discussion

Mathematically, the end of time is the statement that our spacetime manifold is
extendible, i.e., that it is isometric to a proper subset of another spacetime. Usually, it is
assumed that spacetime is inextendable [180]. But the cutoffs we considered regulate eternal
inflation by restricting to a subset of the full spacetime. Probabilities are fundamentally
defined in terms of the relative abundance of events and histories in the subset. Then the
fact that spacetime is extendible is itself a physical feature that can become part of an
observer’s history. Time can end.
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10.5.1 Assumptions

We do not know whether our conclusion is empirically correct. What we have
shown is that it follows logically from a certain set of assumptions. If we reject the conclu-
sion, then we must reject at least one of the following propositions:

Probabilities in a finite universe are given by relative frequencies of events or
histories This proposition is sometimes called the assumption of typicality. It forces us
to assign a nonzero probability to encountering the end of time if a nonzero fraction of
observers encounter it.

Even in a finite universe one needs a rule for assigning relative probabilities to
observations. This need is obvious if we wish to make predictions for cosmological obser-
vations. But a laboratory experiment is a kind of observation, too, albeit one in which the
observer controls the boundary conditions. A comprehensive rule for assigning probabilities
cannot help but make predictions for laboratory experiments in particular. However, we
already have a rule for assigning probabilities in this case, namely quantum mechanics and
the Born rule, applied to the local initial conditions prepared in the laboratory. This must
be reproduced as a special case by any rule that assigns probabilities to all observations [33].
A simple way to achieve this is by defining probabilities as ratios of the expected number
of instances of each outcome in the universe, as we have done in Eq. (10.1).

Probabilities in an infinite universe are defined by a geometric cutoff This
proposition states that the infinite spacetime of eternal inflation must be rendered finite
so that the above frequency prescription can be used to define probabilities. Moreover, it
states that a finite spacetime should be obtained by restricting attention to a finite subset
of the infinite multiverse.3 It is possible that the correct measure cannot be expressed in
a geometric form. Imagine, for instance, a measure that makes “exceptions” for matter
systems that come into existence before the cutoff, allowing all events in their world volume
to be counted. A purely geometric prescription would have chopped part of the history
off, but in this measure, the cutoff surface would be deformed to contain the entire history
of the system. Such a cutoff would depend not only on the geometry, but also on the
matter content of spacetime.4 A more radical possibility is that the measure may not
involve any kind of restriction to a finite portion of spacetime. For example, Noorbala
and Vanchurin [135], who exhibit a paradox similar to that described in Sec. 10.4, but do
not allow for the possibility that time can end, advocate a nongeometric type of measure.
If such a prescription could be made well-defined and consistent with observation (which

3We have considered measures in which the cutoff is completely sharp, i.e., described by a hypersurface
that divides the spacetime into a region we keep and a region we discard. In fact this is not essential. One
could smear out the cutoff by assigning to each spacetime event a weight that varies smoothly from 1 to 0
over some region near the cutoff surface. There would still be a finite probability for time to end.

4We have not attempted to prove this statement, so it should be considered an additional assumption.
Because the metric has information about the matter content, we cannot rule out that a geometric measure
could be formulated whose cutoff surfaces never intersect with matter. It seems unlikely to us that such a
cutoff could select a finite subset of the multiverse. A related possibility would be to define a global time
cutoff such that typical observers live farther and farther from the cutoff in the limit as t→∞. This would
invalidate our analysis in Sec. 10.3.1, which assumed exponential growth in t.
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seems unlikely to us), then one might escape the conclusion that time can end. Similarly,
Winitzki [182, 183, 184] defined a measure where only finite spacetimes are considered, and
in this measure there is no novel catastrophe like the end of time.

The universe is eternally inflating To prove this proposition wrong would be a dra-
matic result, since it would seem to require a kind of fundamental principle dictating that
Nature abhors eternal inflation. After all, eternal inflation is a straightforward consequence
of general relativity, assuming there exists at least one sufficiently long-lived field theory
vacuum with positive vacuum energy (a de Sitter vacuum). This assumption, in turn, seems
innocuous and is well-motivated by observation: (1) The recent discovery of accelerated ex-
pansion [151, 143], combined with the conspicuous lack of evidence that dark energy is
not a cosmological constant [115], suggests that our own vacuum is de Sitter. If this is
the case, the universe must be eternally inflating. (2) Slow-roll inflation solves the horizon
and flatness problems. Its generic predictions agree well with the observed CMB power
spectrum. But slow-roll inflation requires a sufficiently flat scalar field potential. Eternal
inflation requires only a local minimum and so is less fine-tuned. How could we consider
slow-roll inflation, but exclude eternal inflation? — There are also theoretical motivations
for considering the existence of de Sitter vacua: (3) In effective field theory, there is nothing
special about potentials with a positive local minimum, so it would be surprising if they
could not occur in Nature. (4) String theory predicts a very large number of long-lived
de Sitter vacua[41, 109, 55], allowing for a solution of the cosmological constant problem
and other fine-tuning problems.

10.5.2 Observation

If we accept that time can end, what observable implications does this have?
Should we expect to see clocks or other objects suddenly disappear? In measures such as
scale factor time or light-cone time, the expected lifetime of stable systems is of order 5
billion years right now, so it would be very unlikely for the end of time to occur in, say, the
next thousand years. And even if it did occur, it would not be observable. Any observer
who would see another system running into the end of time is by definition located to the
causal future of that system. If the cutoff surface is everywhere spacelike or null, as is
the case for the light-cone time cutoff and the causal patch cutoff, then the observer will
necessarily run into the cutoff before observing the demise of any other system.

Though the end of time would not be observable, the fact that time has not ended
certainly is observable. If a theory assigns extremely small probability to some event, then
the observation of this event rules out the theory at a corresponding level of confidence.
This applies, in particular, to the case where the event in question is time-not-having-ended.
For example, Eq. (10.7) shows that the proper time measure is thus falsified.

An observation which indirectly probes the end of time is the value of the cos-
mological constant. For definiteness consider the causal patch measure, which predicts a
coincidence between the time when the observers live and the time when the cosmological
constant beings to dominate the expansion of the universe, tΛ ∼ tobs. This represents the
most important phenomenological success of the measure, and we will now argue that it is
tied intimately to the end of time.
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The most likely value of the cosmological constant is the one which leads to the
most observers inside the causal patch. We will assume that there are a constant number of
observers per unit mass, and will imagine scanning the possible values of tΛ ∼ 1/√Λ with tobs
held fixed. It’s most useful to think of the distribution of values of log tΛ, where the preferred
value is largely determined by two competing pressures. First, since the prior probability is
flat in Λ, there is an exponential pressure in log tΛ toward lesser values. Second, if tΛ < tobs
there is an exponential pressure in tΛ (superexponential in log tΛ) toward greater values.
This is a simple consequence of the fact that all matter is expelled from the causal patch at
an exponential rate after vacuum domination begins. These two pressures lead to tobs ∼ tΛ.

The end of time is implicitly present in this argument. Suppose there are two
generations of observers, one living at tΛ and another at 10tΛ. Even if local physics says
that there are the same number of observers per unit mass in each generation, the sec-
ond generation must be atypical, and hence have fewer members, if the prediction for the
cosmological constant is to remain valid. Where are the missing members of the second
generation? The answer is that time has ended for them. They are not counted for the
purposes of any calculation, and so they do not exist. Clearly, the setup is identical to the
observers who see 1 o’clock and 2 o’clock discussed above.

In this chapter, we have considered sharp geometric cutoffs. However, intuition
from AdS/CFT [73, 26, 28] suggests that the cutoff should not be a completely sharp surface,
but should be smeared out over a time of order tΛ. If the cutoff is smeared, there could be
observable consequences of approaching the end of time; the details would depend on the
precise prescription for smearing the cutoff.

10.5.3 Interpretation

The notion that time can come to an end is not completely new. Space and time
break down at at singularities, which are guaranteed to arise in gravitational collapse [95].
But our conclusion is more radical: the world can come to an end in any spacetime region,
including regions with low density and curvature, because spacetime is incomplete.

One might speculate that semiclassical gravity breaks down on very large time
scales, say t3Λ, the evaporation time for a large black hole in de Sitter space, or exp(πt2Λ),
the recurrence time in de Sitter space. But in the most popular measures, we are likely
to encounter the end of time on the much shorter timescale tΛ. Perhaps one could invent
a new cutoff that would push the end of time further into the future. But there is no
well-motivated candidate we are aware of, and, as we have discussed, one would be likely to
lose some of the phenomenological success of the measures in solving, e.g., the cosmological
constant problem.

How can we make sense of our conclusion? Is there a way of thinking about it that
would make us feel more comfortable about the end of time? Does it fit in with something
we already know, or is this a completely new phenomenon? The answer to this question
turns out to depend somewhat on which cutoff is used.

All measures One way to interpret the end of time is to imagine a computer just powerful
enough to simulate the cutoff portion of the eternally inflating spacetime. The simulation
simply stops at the cutoff. If the measure involves taking a late time limit, then one can
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imagine building larger and larger computers that can simulate the spacetime until a later
cutoff. These computers can be thought of as the definition of the cutoff theory, much in
the same way that lattice gauge theory is used. There is no physical significance to any
time after the cutoff.5 This is an interesting rephrasing of the statement of the end of time,
but it does not seem to mitigate its radicality.

Causal patch only Our result appears to admit an intriguing interpretation if the causal
patch measure is used. The original motivation for the causal patch came from black
hole complementarity [170]. Consider the formation and evaporation of a black hole in
asymptotically flat space. If this process is unitary, then the quantum state describing the
collapsing star inside the black hole is identical to the state of the Hawking radiation cloud.
Since these two states are spacelike separated, two copies of the quantum state exist at
the same time. But before the star collapsed, there was only one copy. This amounts to
“quantum xeroxing”, which is easily seen to conflict with quantum mechanics.

A way around this paradox is to note there is no spacetime point whose past light-
cone contains both copies. This means that no experiment consistent with causality can
actually verify that xeroxing has taken place. Thus, the paradox can be regarded as an
artifact of a global viewpoint that has no operational basis. A theory should be capable
of describing all observations, but it need not describe more than that. Geometrically, this
means that it need not describe any system that cannot fit within a causal patch. What the
xeroxing paradox teaches us is that we must not describe anything larger than the causal
patch if we wish to avoid inconsistencies in spacetimes with black holes.

But once we reject the global description of spacetime, we must reject it whether
or not black holes are present. In many cosmological solutions, including eternal inflation,
the global spacetime is not accessible to any single experiment. This motivated the use of
the causal patch as a cutoff to regulate the infinities of eternal inflation [32, 24].

Let us return to the black hole spacetime and consider the causal patch of an
outside observer. This patch includes all of the spacetime except for the interior of the
black hole. As Susskind has emphasized, to an outside observer, the causal patch is a
consistent representation of the entire world. The patch has a boundary, the stretched
horizon of the black hole. This boundary behaves like a physical membrane, endowed with
properties such as temperature, tension, and conductivity. When another observer falls into
the black hole, the outside observer would say that he has been thermalized at the horizon
and absorbed into the membrane degrees of freedom. Later the membrane evaporates and
shrinks away, leaving behind a cloud of radiation.

It is very important to understand that this really is the unique and complete
description of the process from the outside point of view; the black hole interior does not
come into it. The process is no different, in principle, from throwing the second observer
into a fire and watching the smoke come out. Any object is destroyed upon reaching the
horizon. Yet, assuming that the black hole is large, the infalling observer would not notice
anything special when crossing the horizon. There is no contradiction between these two

5Ken Olum has pointed out for some time that one way to interpret a geometric cutoff is that “we are
being simulated by an advanced civilization with a large but finite amount of resources, and at some point
the simulation will stop.” The above interpretation adopts this viewpoint (minus the advanced civilization).
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descriptions, since they agree as long as the two observers remain in causal contact. Once
they differ, it is too late for either observer to send a signal to the other and tell a conflicting
story.

The end of time in the causal patch is an effect that fits well with the outside
observer’s description. When the infalling observer enters the black hole, he is leaving the
causal patch of the outside observer. In the language of the present chapter, the outside
observer defines a particular causal patch, and the inside observer encounters the end of time
when he hits the boundary of this patch. We now see that there is a different, more satisfying
interpretation: the inside observer is thermalized at the horizon. This interpretation invokes
a relatively conventional physical process to explain why the inside observer ceases to exist.
Time does not stop, but rather, the observer is thermalized. His degrees of freedom are
merged with those already existing at the boundary of the causal patch, the horizon.

If this interpretation is correct, it can be applied to black holes that form in the
eternally inflating universe, where it modifies the theory of the infalling observer. It is no
longer certain that an infalling observer will actually make it to the horizon, and into the
black hole, to perish only once he hits the future singularity. Instead, time might end before
he enters the black hole. How is this possible?

In the traditional discussion of black hole complementarity, one picks an observer
and constructs the associated causal patch. It is impossible, by construction, for an observer
to leave his own patch. In other words, time cannot end if we live in a causal patch centered
on our own worldline. In eternal inflation, however, one first picks a causal patch; then
one looks for observers in it. Some of these observers will be closer to the boundary and
leave the patch sooner than others, who happen to stay in the patch longer. Equivalently,
suppose we do want to begin by considering observers of a given type, such as an observer
falling towards a black hole. To compute probabilities, we must average over all causal
patches that contain such an observer. In some patches the observer will be initially far
from the boundary, in others he will hit the boundary very soon. This yields a probability
distribution for the rate at which time ends.

Suppose, for example, that we attempted to jump into a black hole of mass m in
our own galaxy (and neglect effects of gravitational tidal forces, matter near the black hole,
etc.). Using the ensemble of causal patches defined in Ref. [44], one finds that time would
probably end before we reach the horizon, with probability 1 −O(m/tΛ). This probability
is overwhelming if the black hole is much smaller than the cosmological horizon.
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Chapter 11

Conclusion

We live in a universe with a positive cosmological constant. In terms of the full
effective potential, we are sitting at a local minimum. There is little reason to believe that
the effective potential contains only one local minimum. Indeed, string theory tells us that
the effective potential contains an enormous number of minima. Therefore, there is strong
reason to believe that our vacuum is metastable: we are in a local minimum, but not a global
one. From the perspective of some geodesic, our vacuum will eventually decay, nucleating
new bubble universes. The nucleated universes will themselves decay, and the process will
continue repeating until a universe with negative cosmological constant is created. This
particular geodesic will terminate at the big crunch singularity. However there will be other
geodesics that followed a different route and that are still in regions that are expanding. In
this way, inflation is eternal and gives rise to an infinite multivere. In this thesis we have
attempted to take some steps towards finding a theory describing the multiverse.

As we have discussed, there is strong reason to believe that the complete theory
is not a local one. Rather, the theory lives on a codimension 1 surface. In the context of
the multiverse, the natural place for the theory to live is on a spacelike equal time slice on
future infinity. In the absence of knowledge of what this theory is, we have tried to make
progress by trying to ascertain properties of this theory from contexts in which there exists
a complete understanding of quantum gravity.

The case in which an in-principle full understanding of string theory is known is
for a stable spacetime with a negative cosmological constant (AdS space). For AdS space,
the boundary lives on a timelike hypersurface. The complete nonperturbative description
of the bulk is given by a conformal field theory living on the boundary. This AdS/CFT cor-
respondence realizes the holographic principle: the idea that spacetime is not fundamental,
but rather emergent. In the context of AdS space, we know what the fundamental degrees
of freedom are: they are the degrees of freedom of the CFT. In the context of the multiverse
we lack this knowledge.

The first task needed for doing computations in the multiverse is to introduce
a late time cutoff (a measure). This cutoff is analogous to the large radius IR cutoff in
AdS space. In AdS/CFT, the UV/IR relation is generally regarded as providing a relation
between the bulk IR cutoff and the CFT cutoff. In chapter 8 we implemented a similar
kind of cutoff in the context of the multiverse so as to define a measure which we called new
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light-cone time. In chapter 9 we computed some of the predictions this measure gives. The
set of quantities that we can at this time compute is limited, as there are few quantities for
which we know the prior probability distribution. Nevertheless, the cosmological constant
is a notable exception since regardless of the precise form of the effective potential, near
any point Taylor expansion should be valid and doing this around values close to 0 gives
a flat prior for the cosmological constant. Our results are encouraging, with the measure
itself providing an explanation of the coincidence problem (the coincidence between the era
when we are living and the onset of vacuum energy domination). It is notable that in the
framework of chapter 9, the value of the cosmological constant is not set by the requirement
that it be sufficiently small so as to not disrupt galaxy formation [181]. Rather, the effect
is due entirely to the measure. At the same time, in chapter 10 we found that all current
measures, including ours, face a serious difficulty: the late time cutoff does not decouple.
Thus, our successful explanation of the cosmological constant comes at the expense of some
other less palatable and more cataclysmic predictions about our future fate.

These difficulties were in part the motivation to reexamine the UV/IR relation.
In chapter 2 we found that in fact a UV cutoff CFT would not appear to be sufficient
to describe the portion of the bulk AdS out to some radius cutoff. Indeed, any attempt
of this kind to decompose the CFT into different tensor factors does not lend itself to a
geometric decomposition of the bulk. Perhaps then, this goes some way towards explaining
why the analog of UV/IR that we implemented in the multiverse encountered difficulties
in chapter 10. For future work, it would therefore seem appropriate to first gain a better
handle on constructing a regulated version of AdS/CFT before trying to apply it to the
multiverse. One possibility, that we explored to some extent in chapter 2, is to replace
UV regularization of the CFT with something else so as to achieve full description of the
desired bulk region. Another possibility is to try to understand what it is in the bulk that
a UV regulated CFT can describe. In the context of the multiverse, this would translate
into using a nongeometric measure.

In the other chapters in Part 1 we tried to make progress in addressing how the
bulk is encoded in the CFT. To this effect, in chapters 3 and 4 we studied if it is possible
that there is a duality between a subregion of the boundary and a subregion of the bulk.
In chapters 5 and 6, we went on to consider how to reconstruct the bulk from boundary
data in the form of local operators. It would be interesting to apply these ideas to the
multiverse and ask the analogous question of how would one use the data on future infinity
to reconstruct the spacetime.
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