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Abstract

We calculate the Weyl anomaly for conformal field theories that can be described

via the adS/CFT correspondence. This entails regularizing the gravitational part of the

corresponding supergravity action in a manner consistent with general covariance. Up

to a constant, the anomaly only depends on the dimension d of the manifold on which

the conformal field theory is defined. We present concrete expressions for the anomaly

in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge

c = 3l/2GN , in agreement with considerations based on the asymptotic symmetry algebra

of adS3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4

superconformal SU(N) gauge theory. The result in d = 6 provides new information for

the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly

in this case grows as N3, where N is the number of coincident M5 branes, and it vanishes

for a Ricci-flat background.
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1 Introduction

At low energies, the worldvolume theory on N coincident p-branes in M-theory or string

theory decouples from the bulk theory and can be studied on its own. In some cases, the

worldvolume theory constitutes a conformal field theory (CFT). This is true, for example,

forD3-branes in type IIB string theory and for five-branes in M-theory, which give rise to

the d = 4 N = 4 superconformal SU(N) gauge theory and a d = 6 (0, 2) superconformal

field theory, respectively. It has recently been conjectured by Maldacena [1], following

earlier work on black holes [2]–[6], that these conformal field theories are dual to M-

theory or string theory in the background describing the near-horizon brane configuration.

This equivalence may also be inferred by observing that the brane configuration can be

mapped to its near-horizon limit [7] by means of certain duality transformations [8].

However, this argument is as yet incomplete, since these duality transformations are

not fully understood, as they involve the time coordinate. The correspondence between

string theory in a specific background and conformal field theories is a realization of the

holographic principle advocated by ’t Hooft [9] and Susskind [10] in that it describes

a (d + 1)-dimensional theory containing gravity in terms of degrees of freedom on a

d-dimensional hypersurface.

The conjectured correspondence was clarified by Gubser, Klebanov and Polyakov [11]

and by Witten [12] as follows: the supergravity background is a product of a compact

manifold and a (d + 1)-dimensional manifold Xd+1 with a boundary (“horizon”) Md.

The conformal field theory is defined on Md. There is a one-to-one relationship between

operators O of the conformal field theory and the fields φ of the supergravity theory.

In particular, gauge fields in the bulk couple to global currents in the boundary. The

presence of a boundary means that the supergravity action functional S[φ] must be

supplemented by a boundary condition for φ parametrized by a field φ(0) on Md. The

partition function is then a functional of the boundary conditions

Zstring[φ
(0)] =

∫
φ(0)
Dφ exp (−S[φ]) , (1)

where the subscript φ(0) on the integral sign indicates that the functional integral is over

field configurations φ that satisfy the boundary condition given by φ(0). The conjecture

states that the string (or M-theory) partition function, as a functional of φ(0), equals the

generating functional of correlation functions in the conformal field theory:

ZCFT [φ(0)] =
〈

exp
∫
Md

ddxOφ(0)
〉
. (2)

The fields φ(0) act as sources for the operators of the conformal field theory. Notice that

the bulk theory only sees, through the boundary values of its fields, the abstract conformal

field theory and not the elementary fields that may realize it. The partition function
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(2) may also be viewed as describing the coupling of conformal matter to conformal

supergravity [13]. The sources φ(0) constitute conformal supermultiplets.

The relationship just described is conjectured to hold for any number N of coincident

branes. However, in most cases one can reliably compute the string partition function

only for large N . The reason is that the backgrounds involve RR forms whose coupling

to perturbative strings is through D-branes. Therefore a complete string calculation is

rather difficult to perform. However, if the number of branes is large, the characteristic

length scale of the supergravity background is large compared to the string scale (or the

Planck scale in the case of M-theory), and one can trust the supergravity approximation.

In addition the string coupling may be chosen small. Under these circumstances, the

string partition function reduces to the exponential of the supergravity action functional

evaluated for a field configuration φcl(φ(0)) that solves the classical equations of motion

and satisfies the boundary conditions given by φ(0)

Ztree
string[φ

(0)] = exp
(
−S[φcl(φ(0))]

)
. (3)

An operator of particular importance in any conformal field theory is the energy-

momentum tensor Tij, i, j = 1, . . . , d. The corresponding bulk gauge field is the metric

Ĝµν , µ, ν = 0, . . . , d on Xd+1. In the supergravity backgrounds under consideration,

the metric Ĝµν does not induce a unique metric g(0) on the boundary Md, because it

has a second-order pole there. However it does determine a conformal equivalence class

or conformal structure [g(0)] of metrics on Md. To get a representative g(0), we pick

a function ρ on Xd+1 with a simple zero on Md and restrict ρ2Ĝµν to Md. Different

choices of the function ρ yield different metrics on Md in the same conformal equivalence

class. The field that specifies the boundary condition of the metric is thus a conformal

structure [g(0)]. This means that, at least naively, the trace of the energy-momentum

tensor decouples.

In this paper we wish to determine the dependence of the boundary theory partition

function (or zero-point function) on a given representative g(0) of the conformal structure.

In other words, we shall study whether the trace of the energy-momentum decouples.

Since we examine correlation functions that only involve the energy-momentum tensor,

the only relevant part of the bulk action is the gravitational one. Therefore we set all other

fields to zero. At tree level, we then need to solve the classical supergravity equations of

motion on Xd+1 subject to the conditions that the metric Ĝµν on Xd+1 induces a given

conformal structure [g(0)] on Md and all other fields vanish there. In the theories under

consideration, this means that Ĝµν fulfils Einstein’s equations

R̂µν −
1

2
ĜµνR̂ = ΛĜµν , (4)

with some cosmological constant Λ and that all other fields vanish identically on Xd+1.

According to a theorem due to Graham and Lee [14], up to diffeomorphism, there is
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a unique such metric Ĝµν . (Actually the theorem has been proved for the case when

Xd+1 is topologically a ball Bd+1 so that Md is a sphere Sd and the conformal structure

[g(0)] on Md is sufficiently close to the standard (conformally flat) one.) The conformal

field theory effective action (strictly speaking, the generating functional of the connected

graphs) WCFT [g(0)] = − logZCFT [g(0)] is then given by evaluating the action functional

S[Ĝµν ] = Sbulk + Sboundary

=
1

16πG
(d+1)
N

[∫
Xd+1

dd+1x

√
det Ĝ

(
R̂+ 2Λ

)
+
∫
Md

ddx
√

det g̃ (2Dµn
µ + α)

]
(5)

for this metric. Here g̃ is the metric induced on Md from Ĝ, and nµ is a unit normal vector

to Md. The bulk term is of course the usual Einstein-Hilbert action with a cosmological

constant. The inclusion of the first boundary term is necessary on a manifold with

boundary in order to get an action that depends only on first derivatives of the metric

[15]. The possibility of including the second boundary term with some coefficient α was

first discussed in [13].

The above description might seem to indicate that the conformal field theory effective

action WCFT [g(0)] only depends on the conformal equivalence class of the metric on Md.

This is of course as it should be in a truly conformally invariant theory. However, the

action functional (5) does not make sense for the metric Ĝµν determined by (4) and the

boundary conditions. Indeed, the bulk term of the action diverges because of the infinite

volume of Xd+1. The boundary terms are also ill-defined, since the induced metric g̃ij on

Md diverges because of the double pole of Ĝµν . The action should therefore be regularized

in a way that preserves general covariance, so that the divergences can be cancelled by

the addition of local counterterms. As we will see shortly, this regularization entails

picking a particular, but arbitrary, representative g(0) of the conformal structure [g(0)] on

Md. In this way, one obtains a finite effective action, which, however, will depend on the

choice of this representative metric. Conformal invariance is thus explicitly broken by a

so-called conformal or Weyl anomaly. The anomaly, which is usually perceived as a UV

effect, thus arises from an IR-divergence in the bulk theory. This is an example of a more

general IR-UV connection that applies to holographic theories [16].

In this paper, we will calculate the Weyl anomaly for conformal field theories that can

be derived from a supergravity theory, as described above. In the next section, we will

describe the regularization procedure and the computation of the anomaly in general. In

the last section, we evaluate the anomaly in the physically relevant cases d = 2, 4, 6. For

d = 2 and d = 4 we compare with the known anomaly for the adS3 boundary conformal

field theory and the d = 4 N = 4 superconformal SU(N) gauge theory respectively,

and find perfect agreement. For d = 6 there is no corresponding calculation of the Weyl

anomaly, so our result provides new information about the (0, 2) superconformal field

theory.
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2 The regularization procedure

A regularization scheme that preserves general covariance was described in [12]. As

discussed above, up to diffeomorphisms, there is a unique Einstein metric Ĝ on Xd+1

that induces a given a conformal structure [g(0)] on the boundary Md. We now pick a

metric g(0) on Md in the given conformal equivalence class. According to a theorem due

to Fefferman and Graham [17], there is a distinguished coordinate system (ρ, xi) on Xd+1

in which Ĝ takes the form

Ĝµνdx
µdxν =

l2

4
ρ−2dρdρ+ ρ−1gijdx

idxj, (6)

where the tensor g has the limit g(0) as one approaches the boundary represented by

ρ = 0. The length scale l is related to the cosmological constant Λ as Λ = −d(d−1)
2l2

.

Einstein’s equations for Ĝ amount to

ρ
(
2g′′ − 2g′g−1g′ + Tr(g−1g′)g′

)
+ l2Ric(g)− (d− 2)g′ − Tr(g−1g′)g = 0

(g−1)jk
(
∇ig

′
jk −∇kg

′
ij

)
= 0

Tr(g−1g′′)−
1

2
Tr(g−1g′g−1g′) = 0, (7)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant

derivative constructed from the metric g and Ric(g) is the Ricci tensor1 of g.

In the case when d is odd, these equations can be solved order by order in ρ so that

g = g(0) + ρg(2) + ρ2g(4) + . . . , (8)

where the tensor g(k) is given by some covariant expression in the boundary metric g(0),

its Riemann tensor and the corresponding covariant derivative. Throughout this paper,

a subscript in parentheses on a quantity indicates the number of derivatives with respect

to xi. In the case when d is even, this procedure breaks down at order d/2 in ρ, where a

logarithmic term appears:

g = g(0) + ρg(2) + . . .+ ρd/2g(d) + ρd/2 log ρ h(d) +O(ρd/2+1). (9)

The tensors g(k) for k = 0, 2, . . . , d−2 are again covariant. The same is true for Tr(g−1
(0)g(d))

but not for the complete tensor g(d). Finally, Tr(g−1
(0)h(d)) vanishes identically.

The regularization procedure now amounts to restricting the bulk integral to the

domain ρ > ε for some cutoff ε > 0 and evaluating the boundary integrals at ρ = ε. The

regulated action evaluated for the metric Ĝ is thus (16πG
(d+1)
N )−1

∫
ddxL, where

L =
d

l

∫
ε
dρρ−d/2−1

√
det g

1Our conventions are as follows Rijk
l = ∂iΓjk

l + Γip
lΓjk

p − i↔ j and Rij = Rikj
k.
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+ ρ−d/2
(
−

2d

l

√
det g +

4

l
ρ∂ρ

√
det g + α

√
det g

)∣∣∣∣∣
ρ=ε

. (10)

In the first term, which arises from the bulk part of the action, we have used the fact

that Ĝ is an Einstein metric so that R̂+ 2Λ = − 4
d−1

Λ = 2d
l2

.

For d odd, it follows from (8) that
√

det g is a power series in ρ with covariant

coefficients. For d even, this is true up to and including the ρd/2 terms. (The higher-

order non-covariant corrections will play no role in the sequel). The Lagrangian (10) can

therefore be written as

L =
√

det g(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + . . .+ ε−1/2a(d−1)

)
+ Lfin (11)

for d odd, and as

L =
√

det g(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + . . .+ ε−1a(d−2) − log ε a(d)

)
+ Lfin, (12)

for d even, where Lfin is finite in the ε→ 0 limit. All the a(k) coefficients are covariant, so

the divergent terms can be cancelled by subtracting covariant counterterms, as promised.

The logarithmic divergence that appears for d even comes only from the bulk integral.

After subtraction of the divergent counterterms, we are left with a renormalized ef-

fective action (16πG
(d+1)
N )−1

∫
ddxLfin with a finite limit as ε goes to zero. Its variation

under a conformal transformation δg(0) = 2δσg(0) for an infinitesimal parameter function

δσ is of the form

δLfin = −
∫
Md

ddx
√

det g(0)δσA, (13)

and we would like to calculate the anomaly A. For d odd, A in fact vanishes, whereas

for d even

A =
1

16πG
(d+1)
N

(−2a(d)). (14)

To see this, we note that for a constant parameter δσ, the regulated Lagrangian (11) or

(12) is invariant under the combined transformation δg(0) = 2δσg(0) and δε = 2δσε. The

terms proportional to negative powers of ε are separately invariant, so the variation of

the finite part plus the variation of the logarithmically divergent term (for d even) must

vanish. Since log ε transforms with a shift and
√

det g(0)a(d) itself is invariant, we get

(14).

On general grounds [18, 19], the coefficient a(d) that appears in the anomaly (14) must

be of the form

a(d) = dld−1
(
E(d) + I(d) +DiJ

i
(d−1)

)
, (15)

where E(d) is proportional to the d-dimensional Euler density and I(d) is a conformal

invariant. These terms are referred to as the type A and the type B anomaly, respectively,

in [19]. The dimension of the space of conformal invariants grows with d. The DiJ
i
(d−1)
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term, where Di is the covariant derivative constructed from the boundary metric g(0),

is trivial in the sense that it can be cancelled by the variation of a finite covariant

counterterm added to the action. To see this, notice that a covariant counterterm will

be, in particular, scale invariant. Making the parameter of the scale transformation

local amounts to computing the Noether current for scale transformations. Thus, the

result of the variation is δσDiJ
i. However, local scale transformations are just Weyl

transformations. Thus terms of the form DiJ
i can be obtained by variation of covariant

counterterms.

The coefficients of the various independent contributions (properly normalized) in

(15) are closely related to renormalization group equations, and they reflect the matter

content of the superconformal theory. Using Ward identities one can relate them to

Schwinger terms in the OPEs of the energy-momentum tensor [20]–[23]. For a recent

application, see [5]. Our results for d = 6 can be similarly used to determine Schwinger

terms in the OPEs of the (0, 2) theory.

3 Evaluation of the anomaly

In this section, we will perform the above procedure in the physically relevant cases

d = 2, 4, 6 and give concrete formulas for the quantities E, I and J i appearing in (15).

As we have mentioned in the previous paragraph, the logarithmic divergence comes only

from the bulk integral. It is completely straightforward to obtain a(d). One only needs to

expand
√

det g up to appropriate order in ρ. In the formulae below, we further simplify the

result by eliminating Tr(g−1
(0)g(n)), for n > 2, by using the third equation in (7). We raise

and lower indices with the boundary metric g(0) and its inverse g−1
(0). The Riemann tensor

and the covariant derivative constructed from g(0) are denoted Ri
jkl and Di, respectively.

3.1 d = 2 and the asymptotic symmetry algebra of adS3

Calculating

a(2) = lTr(g−1
(0)g(2)) (16)

and decomposing it according to (15), we get

E(2) =
1

4
R

I(2) = 0

J i(1) = 0. (17)

(There is in fact no non-trivial conformal invariant I in this dimension.) Writing the

anomaly in the form

A = −
c

24π
R (18)
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(in our conventions a free boson contributes to the anomaly −1/24πR) we thus get

c =
3l

2G
(3)
N

. (19)

This agrees with the value of the conformal anomaly c as computed in [24] by considering

the asymptotic symmetry algebra of adS3.

3.2 d = 4 and N = 4 super Yang-Mills theory

In this case one finds

a(4) = l3
1

2

(
[Tr(g−1

(0)g(2))]
2 − Tr[(g−1

(0)g(2))
2]
)

= l3
(
−

1

8
RijRij +

1

24
R2
)
. (20)

Notice that this expression vanishes for a Ricci-flat background. A check on our calcu-

lation is whether (20) can be rewritten in the form (15). Indeed, this is possible, and we

obtain

E(4) =
1

64

(
RijklRijkl − 4RijRij + R2

)
I(4) = −

1

64

(
RijklRijkl − 2RijRij +

1

3
R2
)

J i(3) = 0. (21)

(Up to a constant, I(4) is in fact the unique conformal invariant with four derivatives

in this dimension, namely the Weyl tensor contracted with itself.) We now use the fact

that g
(5)
N = g

(10)
N /V ol(S5), where V ol(S5) = l5π3 is the volume of the compactification

five-sphere of radius l, and G
(10)
N = 8π6g2

str is the ten-dimensional Newton’s constant (the

α′’s cancel out in the Maldacena limit). Furthermore, l is related to the number N of

D3-branes as l = (4πgstrN)1/4 [1]. Putting everything together, we get

A = −
N2

π2

(
E(4) + I(4)

)
. (22)

This should be compared with the conformal anomaly of the d = 4N = 4 superconformal

SU(N) gauge theory. The conformal anomaly of a theory with ns scalar fields, nf Dirac

fermions and nv vector fields is [25]

−
1

90π2
(ns + 11nf + 62nv)E(4) −

1

30π2
(ns + 6nf + 12nv)I(4). (23)

The anomaly of the N = 4 SU(N) super Yang-Mills multiplet is equal to N2 − 1 (as all

fields are in the adjoint) times (23) for ns = 6, nf = 2 and nv = 1. Thus, in the large N

limit we obtain exact agreement with (22). This is perhaps surprising since the result (23)

is derived using free fields whereas our result is about the full interacting N = 4 SU(N)
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superconformal field theory. This indicates that there must be a non-renormalization

theorem that protects these coefficients.

Various orbifolding procedures [26, 27] change the volume of the compactification

space and also give rise to other gauge groups. It is easy to check that the anomalies still

work out correctly.

3.3 d = 6 and tensionless strings

Following [18], we introduce

(K1, . . . , K11) =
(
R3, RRijR

ij, RRijklR
ijkl, Ri

jRj
kRk

i, RijRklRiklj ,

RijR
iklmRj

klm, RijklR
ijmnRkl

mn, RijklR
imnlRj

mn
k,

R R,Rij Rij , Rijkl Rijkl
)
. (24)

The six-dimensional Euler density is then proportional to

E0 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8 (25)

and

I1 =
19

800
K1 −

57

160
K2 +

3

40
K3 +

7

16
K4 −

9

8
K5 −

3

4
K6 +K8

I2 =
9

200
K1 −

27

40
K2 +

3

10
K3 +

5

4
K4 −

3

2
K5 − 3K6 +K7

I3 = K1 − 8K2 − 2K3 + 10K4 − 10K5 −
1

2
K9 + 5K10 − 5K11 (26)

form a basis for conformal invariants with six derivatives.

We have

a(6) = l5
(

1

8
[Trg−1

(0)g(2)]
3 −

3

8
Tr[g−1

(0)g(2)]Tr[(g−1
(0)g(2))

2]

+
1

2
Tr[(g−1

(0)g(2))
3]− Tr[g−1

(0)g(2)g
−1
(0)g(4)]

)
. (27)

Evaluating this expression we obtain

a(6) =
l5

64

(
−

1

2
RRijRij +

3

50
R3 +RijRklRikjl

+
1

5
RijDiDjR−

1

2
Rij Rij +

1

20
R R

)
. (28)

Observe that the above expression vanishes in a Ricci-flat background. The next task

is to put this expression in the form (15). This is a nice check on our calculation. The

result is

E(6) =
1

6912
E0
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I(6) =
1

1152

(
−

10

3
I1 −

1

6
I2 +

1

10
I3

)
J i(5) = −

1

1152
[−RijklDmRmjkl + 2(RjkD

iRjk −RjkD
jRki)]

+
1

720
RijDjR+

17

11520
RDiR (29)

We now use the fact that G
(7)
N = G

(11)
N /V ol(S4), where V ol(S4) = R4

sph(8π
2/3) and

Rsph = lP lanck(πN)1/3 is the radius of the compactification sphere. In addition, the eleven-

dimensional Newton’s constant is equal to G
(11)
N = 16π7l9P lanck, and the characteristic

length l is l = 2lP lanck(πN)1/3. Putting every together we get for the anomaly

A = −
4N3

π3

(
E(6) + I(6) +DiJ

i
(5)

)
. (30)

The anomaly for a (0, 2) tensor multiplet has not yet been calculated. However, we see

that the anomaly grows as N3, in agreement with considerations based on the entropy

of the brane system [28, 5]. This growth is presumably related to the appearance of

tensionless strings when multiple fivebranes coincide.
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