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1. INTRODUCTION

Let C be an abelian or exact category with enough projectives and let P be
the full subcategory of projective objects of C. We consider the stable category
C/P modulo projectives, as a left triangulated category [14], {36]. Then there is a
triangulated category S(C/P) associated to C/P, which is universal in the following
sense. There exists an exact functor S : C/P — S(C/P) such that any exact functor
out of C/P to a triangulated category has a unique exact factorization through
S. The triangulated category S(C/P) is called the stabilization of C/P and the
functor S is called the stabilization functor. There is also the dual construction
of the costabilization R(C/P) of C/P, which is a triangulated category equipped
with an exact functor R : R(C/P) — C/P, the costabilization functor, such
that any exact functor from a triangulated category to C/P has a unique exact
factorization through R. If C has enough injectives we can stabilize and costabilize
in the above sense the stable category modulo injectives. These constructions have
topological origin and make sense for any stable category C/X, where now C is an
additive category and X is a contravariantly or covariantly finite subcategory of C
in the sense of Auslander-Smalg (8], assuming that C satisfies some mild condition.
The stabilization construction in our setting is due to Heller [33], see also [24], [44],
and later was used by Keller-Vossieck in [36]. For the costabilization construction
we refer to the work of Grandis [27)].
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Our purpose in this paper is to investigate when the stabilization S(C/P) or the
costabilization R(C/P) can be represented as a full (triangulated) subcategory 7 of
C/P. In the first case we call the abelian or exact category C, P—Gorenstein, and
in the second case we call the abelian or exact category C, P—Co-Gorenstein.
In both cases T is realized by the stable category A/P of a specific resolving
subcategory A of C. In general if A is any resolving subcategory of C, then our
results are dealing with the relations between the coordinates of the triple (C, A, P)
in the following three levels. First in the ezact level, i.e. inside the exact category
C, second in the stable level, i.e. inside the stable categories C/P, A/P, C/A and
finally in the derived level, i.e. inside the derived categories D*(C), D*(A), D*(P)
and their Verdier-quotients D?(C)/Db(P), Db(A)/D*(P), D*(C)/D(A).

We study P—(Co-)Gorenstein categories with respect to the above three levels,
with a close view to applications in the module theory of an associative ring or an
Artin algebra. The organization of the article is as follows.

In section 2, we study the relative homological algebra induced by a pair (C, X)
consisting of an additive category C and a contravariantly finite subcategory X of
C, assuming that any X —epic has kernel in C. Then the stable category C/X is
left triangulated and we give necessary and sufficient conditions for C/X to con-
tain a full triangulated subcategory. This suggests to introduce the concept of an
X —Gorenstein object of C, which is a natural generalization of a module of zero
Gorenstein dimension in the sense of Auslander-Bridger [3]. The full subcategory
Gx(C) of X—Gorenstein objects of C is of central importance in this paper.

In section 3 we recall the construction of the stabilization and costabilization of
a left triangulated category from [33], [36], and we compute them in the case of
the left triangulated category /X induced by the pair (C, X') mentioned above, in
terms of complexes of objects of X'. The representation of the stabilization of C/X
by means of complexes generalizes (and is inspired by) a result of Keller-Vossieck
[36]. In this section we introduce the important concept of a (Co-)Gorenstein
left triangulated category, which will be used in the next sections.

In section 4 we introduce the concept of an X —Gorenstein category C, where
C is an exact category and X is a contravariantly finite subcategory of C such
that any X—epic in C is admissible in the sense of Quillen {40]. We prove that
if C is X~Gorenstein, then the stabilization of the left triangulated category C/X
is realized always by the stable category Gx(C)/X of the X—Gorenstein objects
of C. The category Gx(C) can be thought of as a category of (relative) max-
imal Cohen-Macaulay objects, and using this category we define the notion of
the X—Gorenstein dimension of an object of C. Then we prove that C is
X —Gorenstein iff any object of C has finite X —Gorenstein dimension. In this case
the category Gx(C) is contravariantly finite in C and we give sufficient conditions
for the existence of minimal Gx(C)—approximations. The results of this section are
related to the fundamental work of Auslander-Buchweitz {4] on maximal Cohen-
Macaulay approximations in an abelian category. If C is X—Gorenstein, then all
the results of Auslander-Buchweitz in [4] are valid in C and conversely if, roughly
speaking, the Auslander-Buchweitz theory is true in C, then C is X —Gorenstein.
The crucial points of the Auslander-Buchweitz theory have been recently formu-
lated by M. Hashimoto in the concept of an Auslander-Buchweitz context or
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AB-context for short, which is a triple of full subcategories (A4, B, X') of C satisfying
certain properties [30]. We define AB-contexts relative to X’ and we prove that the
exact category C is X —Gorenstein iff X is the base of a relative AB-context. We
characterize also when the exact category C is X —Co-Gorenstein and we prove that
in many cases any X ~Gorenstein category is X' ~Co-Gorenstein.

Inspired by the definition of the stable homotopy groups in Algebraic Topology
[24], we introduce in section 5 the concepts of complete X' —extension func-
tors and complete X —resolutions of objects of C, for the pair (C, X') mentioned
above. The complete X —extension functors can be regarded as generalized Tate-
Vogel cohomology functors and the complete X —resolutions as generalized Tate-
Vogel resolutions. The main result of section 5 shows that C is X'—Gorenstein iff
any object has a complete A’ —resolution, and in this case we can compute the com-
plete X' —extension functors via complete X —resolutions. These results generalize
the results of Gendrich-Gruenberg [25], Cornick-Kropholler [18], Mislin [39] and
Avramov-Buchweitz-Martsinkovsky-Reiten [17] concerning complete projective or
injective resolutions and complete extension functors.

The theory developed in sections 4, 5, indicate that the concept of a Gorenstein
category which is defined using universal properties of stable categories, unifies the
concepts: AB-context, global existence of complete resolutions, global existence of
complete extension functors, finiteness of Gorenstein-dimension, and appears to be
the natural setting for the study of stable phenomena in module theory.

In section 6 we apply our results to module categories. If A is an associative
ring, then we denote by Mod(A), resp. mod(A), the category of all, resp. finitely
presented, right A—modules and by Py, resp, I, the full subcategory of projective,
resp. injective, modules. Choosing C = Mod(A) and X = Py, or X = I, we show
that Mod(A) is P4 —Gorenstein iff Mod(A) is In—Gorenstein iff any projective
right module has finite injective dimension and any injective right module has finite
projective dimension. We call these rings right Gorenstein rings. It is easy to
see that QF-rings or rings with finite right global dimension are right Gorenstein.
It turns out that a Noetherian right Gorenstein ring is left Gorenstein and this
class of rings coincides with the class introduced by Iwanaga [35] and studied by
Enochs-Jenda et al., in a long series of papers (see for instance [22], [20]). The
classical example of a Gorenstein ring is a local Noetherian ring of finite selfinjective
dimension [3]. In case of Artin algebras this class of rings coincides with the class
of Gorenstein algebras introduced by Auslander-Reiten [5] using tilting theory and
studied also by Happel [32] using derived categories. Our theory has as corollaries
the corresponding results of these papers, is valid for all modules not only finitely
generated, and can be applied also to (Gorenstein) Orders. D. Happel considered
in [32] a certain Verdier quotient Dp of the bounded derived category D®(A) of an
Artin algebra A, and he computed this quotient in case A is Gorenstein. He says that
the computation of Dp is hard in general. It turns out that Dp is the stabilization
of the stable category mod(A) modulo projectives and an easy computation of Dp is
available only in case A is Gorenstein or equivalently if Mod(A) is a Py —Gorenstein
category. We close the paper applying our previous results to the study of some of
the homological conjectures for Artin algebras, and we prove some reductions.

Some of the results of this paper were obtained indepedently by L.L Avramov,
R.O. Buchweitz, A. Martsinkovsky and I. Reiten [17]. A general convention used in
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the paper is that we compose morphisms in a category in the diagrammatic order:
the composition of f: A — B and g : B — C is denoted by fog.

2. RELATIVE HOMOLOGY AND STABLE CATEGORIES

Troughout this section we fix a pair (C,X), where C is an additive category and
X C C is a full additive subcategory of C which is closed under direct summands
and isomorphisms. First we recall some notions of relative homological algebra
extracted from [8], [15], [23]

A morphism f: A — B in C is called X ~epic if the induced morphism C(X, f) :
C(X,A) — C(X, B) in Abis epic, and f is called X —monic if the induced morphism
C(f,X):C(B,X) = C(A,X) in Ab is epic. A morphism x4 : X4 — A is a right
X —approzimation of A [8), if x4 is an X—epic and X4 € X. Dually a morphism
x? A = X4 is a left X—approzimation of A if x? is an X —monic and X4 € X.
The subcategory X is contravariantly finite (covariantly finite) [8], if any object
of C has a right (left) X —approximation. Finally X is functorially finite if X is
covariantly and contravariantly finite in C.

Consider a complex A* : -+ = A4y = A; = A;—; — -+ in C. The com-
plex A° is called covariantly X' —ezact, if the induced complex C(X, A*) : -.- —
C(X, Aipr) = C(X,4;) = C(X,A;_1) — --- is exact in Ab. Dually the com-
plex A* is contravariantly X —ezact, if the induced complex C(A4*,X) : --- —
C(Ai—1,X) = C(A;, X) » C(Aip1, X) — -+ is exact in Ab. The complex A°® is
functorially X —ezact, if A® is contravariantly X' —exact and covariantly X —exact.
Using these notions we can define X'—resolutions and X —coresolutions of objects
of C. If A € C, then an X —resolution of A is a covariantly X —exact complex
Xy = Xy = Xo -+ A — 0, where X,, € X,¥n > 0. Then A has fi-
nite contravariant X' —dimension if there exists an X' —resolution of 4 of the form
0 =+ X, > = Xo = A — 0. In this case we write ¥—~dimA < n. The
least such integer n is the contravarient X'—dimension of A and is denoted by
X—dimA. The global contravariant X —dimension of C is defined by X —gl.dimC :=
sup{¥—dimA;A € C}. Dually if A € C, then an X-coresolution of A is a
contravariantly X —exact complex X2 : 0 - 4 - X - X! -+, where
X™ € X,Vn > 0. The object A has finite covariant X —dimension if there exists
an X —coresolution of 4 of the form 0 -+ A - X 5 X! 5 ... 5 X" 0. In
this case we write X'—co.dimA < n. The covariant X —dimension, X’ ~co.dimA, of
A is the least such integer n. The global covariant X —dimension of C is defined by
X —gl.co.dimC := sup{X —co.dim4; A € C}.

The following is a direct consequence of the definitions.

Proposition 2.1. (1) X is coreflective in C iff X —gl.dimC = 0.
(2) X is reflective in C iff X ~gl.co.dimC = 0.

We denote by C/A the stable category of C with respect to the subcategory X
We recall that the objects of C/X are the objects of C. If A, B are objects of C, then
C/X (A, B) is the factor group C(A4, B)/Cx(A, B), where Cx(A, B) is the subgroup
of morphisms factorizing through an object of X. If A € C, then we denote by 4
the same object considered as an object of C/X, and if f : A — B is a morphism
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in C, then we denote by f the residue class of f in C/X'(4, B). Setting w(A4) = A
and w(f) = f, we obtain the additive projection functor w:C — C/X.

2.1. Contravariant Finiteness. Suppose that A is contravariant finite and any
X —epic has a kernel in C. Then any object in C has an X-resolution. Indeed
let x4 : Xa — A be a right X—approximation of 4, let k} : K} — X4 be the
kernel of x4, and let x}, : X} — K, be a right X —approximation of K. Setting
fi=x%0kY : X} — X% and continuing in this way we obtain a complex
i+1 1
X4 ---—éijlL‘—)X};—)--~—>X}4—fi>X2ﬂ->A—>0

which is an X' —resolution of A. A deleted X —resolution of A is an X’ —resolution as
above with A deleted. The objects K% are called the nt* — X —sysygy objects of A
with respect to the X' —resolution X%.

Now let F:C — A and G : C°? — A be additive functors with values in an
abelian category A. Then as in [15], we can define the left X —derived functor L¥ F
of F and the right X —derived functor R3G of G:

LYF:C— A and RRG:CP > A Yn>0
as follows. If X% is a deleted X' —resolution of A, then £ F(4) := H,(F(X%)) and
RLG(A) := H*(G(X%)). Then VB € C, the contravariant X —eatension functors
Exty(—,B) : C? — Ab, ¥n >0

are defined as the right X' —derived functor of C(—, B). Similarly for any object
C € C, we have the left X' —derived functors

LY(C,=):C— Ab, VR >0

defined as the left X'—derived functors of C(C,—). In particular there are natu-
ral morphisms ¢¢ - : LF(C,~) —= C{C,~) and ¥_ 5 : C(—,B) — £zt (-, B),
VB,C € C. Moreover if 0 — A; = Ay — A3 — 0 is a contravariantly X —exact
complex, then VB, C in C, we have long exact sequences:

0 — Ext% (A3, B) — Ext% (A2, B) = Ext% (A1, B) = Exty (A3, B) = -+ (1)
oo LF(C, As) = LE(C, A) = LE(C, A2) = LE(C, As) =0 (2)
Remark 2.2. If X is contravariantly finite and any X' —epic has a kernel in C, then
the stable category C/X has a natural left triangulated structure (C/X,Qx,Ay),
where Qy : (/X — C/X is the loop functor and Ay is the triangulation. By

construction Qx(A4) = K, where K is the kernel of a right X —approximation
of A and the triangulation Ay consists of all diagrams Qx(C) - A - B = C

which are induced by X —exact sequences A % B EN Cin C, where g = ker(f). See
[14] for details. We consider always the stable category C/X as a left triangulated
category with the described left triangulation.

Lemma 2.3. For any object C € C, there are isomorphisms:
LY (C,=) S C/X(C, 5 (-), Yn>1

and an ezact sequence, with Im(¢c,—) = Cx(C,—):
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0 = C/X(C,Qx(-)) = LE(C,—) 2255 ¢(C,-) = C/X(C,-) = 0.

Proof. Consider the X —resolution X% of A as above. Then by definition we have
LE(C,A) = KerC(C, f4)/ImC(C, f4). Let a : C — X} be a morphism with
aof} =0. Then aoxhok}q =0=aox4,=0=>3:C > Kf& such that bokZ = a.
Define a morphism p : LF(C, A) — C/X(C, 0% (A4)) by p(a) = b. It is easy to see
that p is a well-defined isomorphism. The general case follows by dimension shifting.
1

Now from the exact sequence C(C, X}) LG, C(C,X%) 5 LF(C,A) — 0, there
exists a unique morphism ¢¢ 4 : L& (C, A) — C(C, A) such that coge, 4 = C(C, x4).
The existence of the desired exact sequence follows by a simple diagram-chasing
argument in the following diagram

1
ce,xy L& e x9) — £F(©,4) — 0

3| ] bo |

0 —— KerC(C,xa) —— C(C, XY 2€X4 ¢, 4)

O
2.2. Covariant Finiteness. Suppose that X' is covariant finite and any X —monic
has a cokernel in C. Then any object in C has an X' —coresolution (see [15]). Let

F:C— Aand G : C°? — A be additive functors with values in an abelian category
A. Then as in subsection 2.1, we can define the X' —derived functors of F, G:

F:C—A and LXG:CP A Yn>0

as follows. If X2 is a deleted X' —coresolution of A, then RLF(4) := HMF(XZ))
and LYG(A) := H,(G(XZ)). Hence VB € C, the covariant X —eztension functors

Exty(A, =) :C — Ab, ¥n >0
are defined as the right X —derived functor of C(A4,—). Similarly for any object
C € C, we have the left X ~derived functors of C(—, C) denoted by

L¥(-,0):C% — Ab, ¥n > 0.

In particular there are natural morphisms ¢_ ¢ : L (—,C) — C(=,C) and ¢4, _ :
C(A,—) — Exty(A, =), YA,C € C. Moreover if 0 — B! — B2 —+ B® -+ 0 is a
covariantly X' —exact complex, then VA, C € C, there are long exact sequences:

0 — Cztx(A, BY) — Ezty(A, B?) — Catw(A, BY) — Ezty(4,BY) = - (3)
<o LE(BYL,C) = LT (B%,C) = LE(B%,C) = L3 (B, C) =0 (4)

By [14], under the above assumptions the stable category C/X has a natural right
triangulated structure (C/A, Ly, V), where Ty : C/X — C/X is the loop functor
and Vy is the triangulation, see [14] for details. The dual of Lemma 2.3 also holds:

Lemma 2.4. For any object C € C, there are isomorphisms:
£3(=0) S C/X(EF(-),Q), Vn21
and an ezact sequence, with Im(¢_ c) = Cx(—,C):
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0 C/X(Ex(=),€) = LF(~,C) 25 ¢(~,C) = ¢/x(~,C) 0.

2.3. Functorial Finiteness. Suppose now that X is a functorially finite subcate-
gory of C, any X —epic has a kernel and any ¥ ~monic has a cokernel in C. Then by
the above observations, the stable category C /X admits a left traingulated structure
(C/X,0%,Ax) and a right triangulated structure (C/X,Zx,Vx). Moreover any
object of C admits an X —resolution and an X —coresolution, and for any objects
A,C € C the derived functors £¥ (-, C), LX(C, =), €xty (-, A),Exty (A, ~) are de-
fined, Vn > 0. We note that in general the left and right triangulated structures in
the stable category C/X are not the same and C/X is not necessarily triangulated.
Indeed if A is an Artin algebra, then the full subcategory P, of finitely generated
projective right A—modules, satisfies all the above assumptions. Hence the stable
category mod(A) modulo projectives is left and right triangulated. But mod(A) is
triangulated iff A is selfinjective. However we have the following.

Proposition 2.5. The pair (Zx,(x) is an adjoint pair in the stable category C/X.
Hence there exist a natural isomorphism:

C/X[Sx (D), =] = C/X[?,Qx(-)].
Proof. Let A be an arbitrary object of C, and consider the X —exact sequence
1
0 — K} K4, X4 X% A, where x4 is a right X—approximation of A and k. —
ker(xa). Let x¥4 : K} — XXX be a left X—approximation of A with cokernel
1 1
14 XX LS. Then in C/X we have Qy(4) = K and SxQx(4) = L4,
Since x4 is a left ¥—approximation, there exists a morphism m : XKix - X9

1 . .
such that x4 om = kY and a commutative diagram:
KL Ky
A i i
Ky 25 XKi 2

TR

1
0 s K k";X,?1 X, A
In this way we obtain a morphism £a=¢€: XxQx(A) = A in C/X. Dually we
construct a morphism 4 : A — QxEx(4) in C/X. We leave to the reader to check
that ¢ is the counit and 4 is the unit of an adjoint pair (Xx,Qx)inC/X. O

Let %(C), £%(C) be the full additive subcategories of C generated by X' and the
n”'—syzygies, n“‘-—cosyzygies, with respect to X —resolutions, ¥ —coresolutions of
objects of C. The next two results are direct consequences of Proposition 2.5.
Corollary 2.6. (1) Q3(C/X) is a reflective subcategory of C/X and BL(C/X) is
a coreflective subcategory of C/X, Vn > 0.

(2) Q%(C) is a covariantly finite subcategory of C and E%(C/X) is a contravari-
antly finite subcategory of C/X, ¥n > 0.

Corollary 2.7. YA, B € C there are isomorphisms:
L3 (= B)(4) 5 LY (4,-)(B), Vn > 1.

The next result gives some sufficient conditions, for the coincidence of the con-
travariant and covariant X' —extension functors. The proof is the same as in the
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classical case, using a simple spectral sequence argument.

Proposition 2.8. If £zty(X,B) = £xth(A,X) = 0,¥n > 1 mit(f)ze canonical
morphisms Yax : C(4,X) — ExtS(A,X),vxp : C(X,B) = Exty(X,B) are
invertible, then: Exty(A,—-)(B) = £xthy (-, B)(A), ¥n >0.

2.4. Stable Triangulated Categories. We close this section studying when a
stable category is triangulated. For the theory of (left or right) triangulated cate-
gories and exact functors we refer to [14], [31], [36], [45].

Definition 2.9. The category X is called an X —cogenerator of C if for any A € C,
there exists an X —epic f : X — B with X € X such that A= Ker(f) in C/X.

Dually X is called an X' —generator of C if for any B € C, there exists an X —monic
f:A— X with X € X such that B = Coker(f) in C/X.

If X is contravariantly finite in C and any X' —epic has a kernel, the functors
Exty(—, A) are defined, and if X is covariantly finite in C and any X —monic has
a cokernel, the functors %}(A, —) are defined, for any object A of C. In these
cases we define the left X —orthogonal subcategory + X and the right X —orthogonal
subcategory X+ of X as follows:

Lx={AeC: Exth(A,X) =0, Vn>1 and Yax:C(4,X) > £zt (4, X))},

Xt={BeC: Taty(X,B)=0, ¥n>1 and yx 5 :C(X, B) > Fztr(¥, B)).

Definition 2.10. Let 4, B, X be full subcategories of C.
(@) If any X —epic has a kernel in C, then A is called X ~resolving, if ¥ C A and

A is closed under kernels of X —epics. Moreover if A % B Loisa diagram in C,
where f is X' —epic, g = ker(f) and A,C € A, then B € A.
(8) If any X—monic has a cokernel in C, then B is called X —coresolving, if

X C B and B is closed under cokernels of X —monics. Moreover if A ENY-TEN Cis
a diagram in C, where f is X —monic, g = coker(f) and A,C € B, then B € B.

If X is contravariantly finite in C and any X'—epic in C has a kernel, then for
any X —resolving subcategory A, the stable category A/ X is a full left triangulated
subcategory of C/X. Dually if X' is covariantly finite in ¢ and any X~—monic in
C has a cokernel, then for any X' —coresolving subcategory B, the stable category
B/X is a full right triangulated subcategory of C/X" [14]. For the notions of an
exact category, admissible epic, monic, short exact sequence, we refer to [40].

Theorem 2.11. Let A be a full subcategory of an ezact category C.

(1) Suppose that X is contravariantly finite in C and any X —epic is an admissible
epic. If A is an X —resolving subcategory of C, the following are equivalent:
(o) A/X is o triangulated subcategory of (C/X,Qx,Ax).
(B) AC LTX and X is an X —cogenerator of A.

(2) Suppose that X is covariantly finite in C and any X —monic is an admissible
monic. If B is an X —coresolving subcategory of C, the following are equivalent:
(a) B/X is a triangulated subcategory of (C/X,Zx,Vu).
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(B) BC XL and X is an X ~generator of B.
(3) If the assumptions in (1),(2) are true for A = B, then the triangulated struc-
tures (A/X,Qx,Ax) and (A/X,Zx,Vx) on A/X coincide: Qx = 2;1 and
! x
Q) Ba5Bhcenar o A5BLCEY 5,4 e va.
Proof. (1) By the above remarks C/X carries a left triangulated structure and A/ X
is a full left triangulated subcategory of C/X. An easy modification of Theorem
3.3 of (1] in our setting, shows that the loop functor Qx is fully faithful in A/X iff
A C +X. Trivially Qy is surjective on objects iff X is an X —cogenerator of 4. (2)
Follows by duality, and (3) follows from (1), (2) and Proposition 2.5. O

Suppose again that X is a full subcategory of C. We define some classes of objects
in C, which will play an important role in the next sections. First let P$(C) be the
full subcategory of C of all objects of finite contravariant X —dimension.

Definition 2.12. (1) C € C is called X—stable if C has a functorially X —exact
resolution.

(2) C € C is called X — n—torsion free object, n > 0, if there exists a functo-
rially X —exact sequence 0 = C — X° = .-+ — X" with X' € X, 0<i < n.

(3) C € C is called X—torsion free, if C' is X — n—torsion free, Vn > 0, i.e. if
C has a functorially X' —exact coresolution.

(4) C € C is called an X¥—Gorenstein object if C' is X' —stable and A'—torsion
free. Equivalently C has a functorially X —exact resolution and coresolution.

We denote by Gx(C) the full subcategory of C consisting of all X—Gorenstein
objects. By definition X is a functorially finite subcategory of Gx(C). Observe
that if X is contravariantly finite in C and any X —epic has a kernel, then C is
X —stable iff £xt%(C,X) = 0,Vi > 1. Hence if any X —epic is epic, then C is
X —stable iff C € L X. The category of arbitrary X —syzygy objects is defined by
Q% (C) = Np>1 N%(C). Dually if A is covariantly finite in C and any A’'—monic

has a cokernel, then C is X—torsion free iff EE}(X ,C) = 0,Yi > 1. Hence if
any X —monic is monic, then C is X' —torsion free iff C € X*. The category of
arbitrary X' —cosyzygy objects EF(C) is defined similarly. The final result of this
section shows that in many cases, the category Gy (C) of X—Gorenstein objects is
the largest X' —resolving subcategory of C, such that the stable category G+ (C)/ X is
a full triangulated subcategory of C/X. First we recall [33] that an exact category
£ is called Frobenius, if £ has enough projectives and injectives and the projectives
coincide with the injectives.

Proposition 2.13. Let C be an eract category and X a full subcategory of C.

(1) If X is contravariantly finite, any X —epic is an admissible epic and any left
X —approzimation of an X-Gorenstein object is an admissible monic, then Gy (C) is
an X —resolving Frobenius ezact subcategory of C and the stable category Gx(C)/X
is a full triangulated subcategory of (C/X, Ny, Ax).

Moreover if A is a subcategory of C, such that A/X is a triangulated subcategory
of C/X, then A is X —resolving and A C Gx(C).

(2) If X is covariantly finite, any X —monic is an admissible monic and any right
X —approzimation of an X'-Gorenstein object is an admissible epic, then Gx(C) is
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an X — coresolving Frobenius ezact subcategory of C and the stable category Gx(C)/X
is o full triangulated subcategory of (C/X,Zx,Vx).

Moreover if B is a subcategory of C, such that B/X is a triangulated subcategory
of C/X, then B is X —coresolving and B C Gx(C).

Proof. (1) Since any X —epic is admissible epic, it has a kernel in € so C/X is left
triangulated. Since any X'—epic is epic, we have C(—,B) = Ext%(-,B). If Ais
X —Gorenstein, then consider a covariantly X' ~exact X —coresolution 0 — A 2o,
X° 24 X1 5 ... of A. Since this coresolution is contravariantly X —exact, ag is a
left X —approximation, so by hypothesis there exists an admisssible exact sequence
00— 425 X% 5 Al 0, and a factorization @y = ko A, where A : A! — X1
Similarly A is a left X ~approximation of A, so it is admissible monic. Inductively
we see easily that the objects A™ are X —~Gorenstein and the above X —coresolution
of A is a Yoneda composition of admissible and functorially X —exact sequences

0 = A® — X™ — A" 50, A% = A. Suppose now that () : 4 5 B & ¢
is a sequence in C with A,C € Gx(C), f is an X—epic and g = ker(f), so (})
is admissible and covariantly A’ —exact. Then we have the long exact sequence:
0—C(C,X) = C(B,X) = C(A, X) = Ext(C, X) — - - which implies that B €
L1 X and (1) is contravariantly X' —exact, since A,C are X~Gorenstein. Moreover
using that A,C € Gy(C), we can construct by standard arguments a covariantly
X —exact X —coresolution of B, from the covariantly X —exact X —coresolutions of

A, C. This shows that B € Gx(C). Let (1): A5 B LCbea sequence in C with
B,C € Gx(C), f is an X —epic and g = ker(f), so (f) is admissible and covariantly
X—exact. As above we see that A € X and (}) is contravariantly ¥ —exact.

Consider the functorially X —exact admissible sequence 0 — B = X° Ny ;TN
0 which starts a covariantly X —~exact X —coresolution of B. Then we have the
following exact commutative diagram:

0 — A2 B L0309

T
0 vy A2 x0 Y4, D 30

and an admissible covariantly X' —exact sequence 0 — C % D 5% B! 5 0. Since
C,B! € Gx(C), we have that D € Gx(C). Since, as easily seen, the sequence

045X %D 50i functorially X'—exact and D is an X—Gorenstein
object, we infer that A is an X —Gorenstein object. Hence Gx(C) is an X' —resolving
subcategory of C. We leave to the reader to show that Gy (C) is actually a Frobenius
subcategory of C. By Theorem 2.11, Gx(C)/X is a full triangulated subcategory of
C/X, since by definition X is an X —cogenerator of §x(C) and Gx(C) C +X.

If A CC is such that A/X is a triangulated subcategory of C/X, then it is not
difficult to see that 4 is X'—resolving using that the inclusion 4/X < C/X is exact.
Then by Theorem 2.11, A C + X, so any object of A has a contravariantly X —exact
resolution. Since X' is a cogenerator of A, any object of A has a covariantly X —exact
coresolution. We conclude that .4 C Gx(C). The proof of part (2) is dual. O
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3. STABLE CATEGORIES AND (CO)STABILIZATION

In this section we associate to a fixed left triangulated category € two triangu-
lated categories: S(C), the stabilization of C and R{C), the costabilization of C.
The category S(C) is the universal triangulated category for exact functors starting
at C and R(C) is the universal triangulated category for exact functors ending at C.
The existence of S(C) is a result of Heller [33], see also [24], [36], and the existence
of R(C) is due to Grandis [27]. Both existence results were inspired by well-known
constructions in Algebraic Topology [38], and they are very useful tools for the
study of stable categories. We define a looped category to be a pair (A4, 1) where
A is an additive category and §2 : 4 — A is an additive functor. If (4,Q),(B,Z)
are looped categories, then a stable functor (4,Q) — (B, X) is a pair (F, ¢) where

F: A — Bis an additive functor and ¢ : TF 2 FQ is a natural isomorphism.
3.1. Stabilization. Let C = (C,, A) be a left triangulated category.

Definition 3.1. The stabilization of C is a pair (S,S(C)), where S(C) is a trian-
gulated category and S : ¢ — S(C) is an exact functor, the stabilization functor,
such that for any exact functor F : C — D to a triangulated category D, there
exists a unique exact functor F* : §(C) — D such that: F*S = F.

We recall the construction of S(C) from [33), which consists of formally inverting
the endofunctor Q. An object of S(C) is a pair (4,n) where A € C and n € Z. If
n,m € Z, then we consider the directed set I, ,n = {k € Z: k > n,k > m}. The
space of morphisms between (A, n), (B,m) € §(C) is defined by

S@)(An), (B,m)] =lim - C(QF"(4), 9" (B)).

Then S(C) is an additive category and there exists an equivalence Q : S(C) = S(C)
defined as follows: (4,n) = (4,n — 1) and if f : (4,n) = (B,m) then choose
a representative f; : Q¥""(4) — Q"™ (B) where k € I, and define (f) to
be the class of fi_; in S(C){(4,n — 1),(B,m — 1)]. The inverse of {1 is defined
by =1(A4,n) = (A,n + 1). There exists a natural additive functor S : C — S(C)
defined as follows: S(A) = (4,0), and if f : A — B is a morphism in C then S(f) is
defined by the zero-representative of f. The functor S is-a stable functor, i.e. there
exists a natural isomorphism w : QS(?) = (?,~1) = (Q(?7),0) = SN(?), and the
pair (S,S(C)) has the following universal property. If (D, X) is a looped category
with T a self equivalence of D, and F : C — D is a stable functor, then there exists
a unique stable functor F* : S(C) — D such that F*S = F. Indeed this follows
directly by defining F*(A4,n) = Z~"F(A).

Using the functor 8 : ¢ — S(C) and the triangulation A of C, we define a
triangulation A of the pair (S(C),{?) as follows. A diagram §(C,l) — (A,n) —
(B,m) — (C,1) belongs to A if there exists k € 2Z and a triangle of represen-
tatives Q(*1(C)) — Q*F"(4) = QF™(B) = Q*(C) in C. Then the triple
(8(C),$, A) is a triangulated category and has the required universal property of
definition 3.1. In fact the functor S is exact and if F : C — D is an exact functor to
a triangulated category D, then the functor F* defined above, is the unique exact
functor which extends F through the stabilization functor S.
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Remark 3.2. In case C has a right triangulated structure (C,Z, V), then the above
construction works, producing the stabilization S(C) of C which also is triangulated
and satisfies the same universal property. The stabilization has the same objects
as before but the space of morphisms is defined by the formula

A,n),(B,m)] = li c(zk+n(4),=H™(B

S(CO)[(A,n), (B,m)) L (Z*7(A) (B))

where Juom = {k € Z: k+n,k+m > 0}. In this case we invert the suspension
functor & to obtain the equivalence X, where~ (A, n) = (A,n +1). As above the
triangulation V of C induces a triangulation V in the stabilization.

The following is a direct consequence of the construction.

Corollary 3.3. (1) C is triangulated iff S : C £ 8(C) is a triangle equivalence.

(2) S(C) =0 iff YA € C, there ezists ng > 0, such that: Q"4 (A) =0.

(3) Consider a morphism f:(4,n) = (B,m) in S(C). Then f = 0 iff there
exists a representative fi, : Q¥ (A) — QF™(B) of f and 1 > k, such that:
Q-k(fr) = 0. Also f is an isomorphism iff there exists a representative fi :
Qk-n(4) - QF=™(B) of f and | > k, such that: Q' ~*(fi) is an isomorphism.

(4) IfC,D are triangle equivalent, then S(C),S(D) are triangle equivalent.

The next result is useful studying when an exact functor C — D to a triangulated
category D extends to a triangle equivalence F'* : S(C) — D. For a proof see [44].

Proposition 3.4. Let F : C — D be an ezact functor to a triangulated category
D with translation functor £, and let F* : S(C) — D be the unique exact functor
extending F' through the stabilization functor. Then:

(1) F* is faithful iff for any morphism f : A — B in C such that F(f) =0, there
exists k > 0 such that: QF(f) = 0.

(2) F* is full iff for any morphism g : F(A4) — F(B) in D, there exists k > 0
and a morphism f : QF(A) — QF(B), such that: £¥(g) = F(f).

(3) F* is surjective on objects iff for any object D € D, there ezists k > 0 and
an object A € C, such that: *(D) = F(A).
Corollary 3.5. The functor S : C — S(C) is faithful (full, resp. dense) iff Q is
faithful (full, resp. dense). In case Q0 is fully faithful then S(C) is the smallest
triangulated category containing C as a full left triangulated subcategory.
Example 3.6. Let U be an additive category and let K(U{) be the (triangulated)
homotopy category of complexes over U. Let Ko ), KB(@4) be the full subcat-
egories of negative, negative and bounded below complexes respectively. These
categories are right triangulated subcategories of K(U). A simple application of
Proposition 3.4 shows that S(K%(U)) = K~ () and S(K>°(U)) = Kb (U). Similar
remarks are applied to the derived category, in case I{ is abelian or exact.

The next result shows that the Grothendieck group [15] is invariant under sta-
bilization.

Proposition 3.7. The stabilization functor S : C = S(C) induces an isomorphism
Ko(S) : Ko(C) = Ko(S(C))-
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Proof. Since S is exact, we have the induced morphism Ko(S) which is defined
by Ko(8)[A] = {(4,0)]. Consider ghe function ¢ : Ob(S(C)) — Ky(C) defined
by ¥(A,n) = (-1)"{A]. If (4,n) = (B,m) then there exists k € I,,, and
an isomorphism Q*~"(4) = Q*~m(B). Then in Ko(C) we have (—1)*"[4] =
[+ (A)] = [2*-™(B)] = (~1)¥~™(B}, hence $(A,n) = $(B,m). If A(C,1) —
(A,n) = (B,m) — (C,l) is a triangle in S(C), then by definition there ex-
ists a triangle QQ*(C)) — Q*"(4) = QF™(B) — Q*(C) in C. Then
in Ko(C) we have (~1)¥"™[B] = (~1)¥-"[4] + (-1)*~![C]. This implies that
¥(B,m) = ¥(A,n) + ¢(C,!). Hence there exists a unique group homomorphism
¢ : Ko(S(C)) = Ko(C), such that ¢([4,n]) = ¥([(4,n)]) = (-1)*[4]. If A is
an object of C, then ¢Ko(S)([A]) = ¢([(4,0)]) = [A] and if (4,n) is an ob-
ject of S(C), then Ko(S)¢([(4,n)]) = Ko(S)((-=1)"[4]) = (-1)"[(4,0)]. But
(1)M(4,0)] = (-1)7"[(4,0)] = [Q7"(4,0)] = [(4,n)]. So Ko(S)s([(A,n)])
= [(A,n)). This shows that Ky(S) is an isomorphism with inverse ¢. O

Consider now an additive category C and a full additive contravariantly fi-
nite subcategory X C C, closed under direct summands and suppose through-
out that any X—epic has a kernel in C. Our purpose is to compute the sta-
bilization S(C/X) of the left triangulated category /X = (C/X,Qx,Ax). Let
KX(X) be the unbounded homotopy category of complexes over X' and let K~ (&)
be the full subcategory consisting of bounded above complexes, where a complex

X*: oo xnt 70 xn &% xndl L is bounded above if X* = 0 for all
sufficiently large £ > 0. We call a complex X*® n—acyclic, if the morphism d"~!
admits a factorization X*~1 £ s Ker(d") Jertd?), X™ where e"~! is X —epic.
The complex X* is called acyclic, if it is n—acyclic, for any n € Z. Let K~*(X) be
the full subcategory of X~ (X) consisting of all complexes which are acyclic almost
everywhere, i.e. except of a finite number of degrees. Then we have exact inclusions
of triangulated categories K8(X) — K*(X) & K~ (&) = K(X), where K(X) is
the bounded homotopy category of complexes over X. Obviously K*(X) is closed
under direct summands in KX~#(X), hence the Verdier quotient K~-?(X)/Kb(X) is
defined and it is a triangulated category.

The following result generalizes (and is inspired by) a result of Keller-Vossieck
(see [36], where the next result is proved for an exact category with enough injectives
objects).

Theorem 3.8. There exists a triangle equivalence
S(C/X) = Kb (x) /Kb (X).

Moreover KerS = PP(C)/X and S(C/X) = 0 iff VC € C: X—dimC < oo, i.e.
C =PF(C). Finally KerS =0 iff ¥ = PL(C) iff sup{X—dimC : C € PF(C)} = 0.

Proof. Define a functor F : ¢ — K™%(X)/Kb(X) as follows. If A is an object

of C, let X% be a deleted X' —resolution of A as in section 2. Hence X% : --- —
X i+1 ) 1 ;
X L7 X4 = o X1 EZN X9 — 0, where X* is in degree —i. We

set F(A) = Q(X%), where @ : K™b(X) = K—4(X)/Kb(X) is the quotient functor.
Since any two X' —resolutions are homotopy equivalent, the functor F is well-defined.
Obviously F(X) = 0. Moreover if C 5 B 4 disa contravariantly A —exact
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sequence in C, then there exists a sequence 0 — X& — Xj — X% — 0 of
complexes which is split short exact in each degree. Hence we obtain a triangle

4[~1] = Xg = X — X5 in K~%(X). Applying the exact quotient functor
Q, we see that the contravariantly X' —exact sequence C — B — A in C induces a
triangle F(A)[-1] = F(C) = F(B) = F(A) in K~%X)/K"(X). By Theorem 2.2
of [12], there exists a unique exact functor G : C/X — K=*(X)/K¥(X), such that
Gw = F, where @ : C — C/X is the projection functor. By the universal property
of the stabilization §{C/X), there exists a unique exact functor G* : S(C/X) —
K=8(X)/K~(X), such that G*S = G. We claim that G* is an equivalence. This is
easy to see applying Proposition 3.4 and using the definition of the functor G, and
the construction of the quotient X~2(X)/K?(X’) in [45]. The last part is trivial. [

Corollary 3.9. Let C be an abelian {or ezact) category with enough projectives,
and let P be the full subcategory of projective objects of C.
(1) There ezists a triangle equivalence

S(C/P) ~ D(C)/KP(P).
S(C/P) =0 iff D(C) = K¥(P) iff any object of C has finite projective dimension.
(2} There ezists an isomorphism: Ko(C/P) = Ko(D*(C)/KP(P)) such that the

canonical morphisms Ko(P, ®) = Ko(K8(P)) and Ko(C) — Ko(D?(C)) are embed-
ded in the exact commutative diagram, where cc,ct are the Cartan morphisms:

Ker(ce) —— Ko(P,®) —=—  Ko(€) —— Ko(C/P) — 0

Ker(cd) ——— Ko(K*(P)) —CE——> Ko(Db(C)) ——— Ko(DY(C)/KY(P)) —— 0

(3) C is Frobenius iff there exists a triangle equivalence:
C/P = DYC)/KE(P).

Proof. (1) Follows from Thorem 3.8, since if X = P, then X—*(X) = D(C).

(2) By a well known result of Grothendieck, the central square of the above
diagram commutes and the middle vertical arrows are invertible. Since the cokernel
of c¢ is the stable Grothendieck of C modulo projectives [15], the result follows from
Proposition 3.7, [16] and part (1).

(3) It is well-known that if C is Frobenius, then C/P is triangulated (see [31] or
Theorem 2.11). Hence in this case C/P is triangle equivalent to its stabilization,
and the result follows from (1). If C/P is triangle equivalent to D*(C)/K*(P),
then C/P is triangulated. Then by section 2, we know that ¢ = P and P is a
P —cogenerator of C. The fact that C = 1P implies that any projective is injective.
Since P is a P—cogenerator of C, for any object of C, there exists a short exact
sequence 0 — C — P — D — 0 with P € P. In particular C has enough injectives
and trivially any injective is projective. Hence C is Frobenius. I}

3.2. Costabilization. Let C = (C,}, A) be a left triangulated category.

Definition 3.10. The costabilization of C is a pair (R, R(C)), where R(C) is a
triangulated category and R : R(C) — C is an exact functor, the costabilization



HOMOLOGICAL THEORY 4561

functor, such that for any exact functor ¥ : D — C from a triangulated category
D, there exists a unique exact functor F* : D — R(C) such that: RF* = F.

We recall the construction of the pair (R, R(C)) from [27], which consists of
constructing formal {2—spectra. An object of R(C) is a family (A,,a,) where
n €2 and a, : A, 3 Q(An41) i an isomorphism Vn € Z. A morphism f, :
(Anyon) = (Bn, Br) is a family f, = (fn), where fn : A, = B, is a morphism in
C such that the following diagram commutes, Vn € Z:

An Jl_’ B,

aﬂl Bnl
QAns1) 24 (B,

Then R(C) is an additive category and defining (A, an) = (By, Bn) where B, =
Ap-1 and B, = an-1 and for a morphism f, : (An,ap) = (B, Ba) in R(C),
Qf.) = g, where gp = fn—1, We obtain an equivalence {2 : R(C) — R(C). Hence
the pair (R(C), ) is a looped category. Now define an additive functor R : R{C) —
C by R(An, @n) = Ag and R(f,) = fo. The functor R is stable since RQ(Ap, an) =
Ay = HAp) = QR(A,, @), by the isomorphism a_;. The pair (R,R(C)) has
the following universal property. If (D, X) is a looped category where ¥ is a self-
equivalence of D, and F : D — ( is a stable functor, then there exists a unique stable
functor F* : D — R(C) with RF* = F. Indeed define F*(D) = (D,,d,) where
D, = F£~*(D) and d,, is the isomorphism D, = FE~"(D) = FLu~""{(D) =
QFL" YD) = Q(Dy41). Then RF*(D) = Dy = F(D), and F* is obviously the
unique stable functor lifting F' through the costabilization functor R.

Using the functor R : R(C) — C and the triangulation A of C, we define a trian-

gulation A in the looped category (R(C), 1) as follows. A diagram QChr7n) RLCIN

(An,an) RELIN (Bn, Bn) RELIN (Cyys) belongs to A if for any n € Z there are tri-

1

angles Q2(C,,) —’Y"—_ﬁ"—) An 25 B, L% C, in A. Then the triple (R(C), 9, A) is a
triangulated category, the functor R : R(C) — C is exact and if D is a triangulated
category with translation functor X, and ¥ : D — C is an exact functor, then the
functor F* defined above is the unique exact functor lifting F' through R. In case
C has a right triangulation, then the above construction with the necessary mod-
ifications also works, producing the costabilization of C which also is triangulated
and satisfies the same universal property. We leave to the reader to state and prove
the analogous results of Corollaries 3.3, 3.5 and Proposition 3.4.

Consider now the pair (C, &) where C is an additive category and X C Cis a
full additive contravariantly finite subcategory of C, closed under direct summands
and suppose that any X'—epic has a kernel in C. Our purpose is to compute the
costabilization R(C/X) of the left triangulated category C/X = (C/X,Qx,Ax).
Let X(X) be the unbounded homotopy category over X' and let X 4.(X) be the full
subcategory of acyclic complexes, as defined in Subsection 3.1. Clearly K.(X) is
a full triangulated subcategory of K(X).

Theorem 3.11. There ezxists a triangle equivalence:
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Kac(X) = R(C/X).
Moreover Im(R) = QF(C)/X. Hence: Im(R) = 0 iff R(C/X) =0 iff ¥ = QF(C).
Proof. Define a functor F : Kac(X) = R(C/X) as follows. Let X* be an acyclic

complex of X —objects. Then by definition, Vn € Z, there are sequences A,y Loy
X" Z2y A, where g, is X—epic and pn_1 = ker(en), such that the differential
d™ = epopn : X™ = X" Weset F(X®) = (4,,a,), wherea, : A, = Qx(4,,,)
is the natural identification. Let f, : X* — Y* be a morphism, and let B, BN

yr Ly B,, be sequences as above, where (,, is X ~epic and v,—1 = ker((,), such
that the differential d® = (, o v, : Y™ — Y"1, Since the morphisms p;—1, -1
are monics, we have that py_; : A;_; — X' is the kernel of d¥. : Xt — X*+!
and similarly v_; : Bi—; — Y1 is the kernel of d},, : Y* — Y'*!. Hence there
exists a unique morphism py_; : A;—; — Bi—; with pr_y ov;y = p—y o f;. The
family of morphisms p; : A: — B, has obviously the property psovy = pyo fryq and
fto (s = 4 0py, Vt € Z. This means that g, OQ;"(EHI) =p, O_E_t, Vt € Z. Hence the
family po : (44, 2y) = (B,,8,) is a morphism in R(C/X). We set F(f.) = po. It
is easy to see that in this way we obtain an exact functor F : K4.(X) — R(C/X).
We leave to the reader the easy proof that F is an equivalence. The proof of the
last assertion is trivial. [}

Corollary 3.12. Let C be an exact category with enough projectives, and let P be
the full subcategory of projective objects. Then there is a triangle equivalence

R(C/P) = K4.(P)

and R(C/P) =0 iff P = Q°(C), i.e. the only arbitrary syzygy objects of C are the
projectives. In particular C is Frobenius iff there exists a triangle equivalence

C/P = Kac(P).

We leave to the reader to state and prove the dual results concerning (co-)stabili-
zations of right triangulated stable categories C/X, induced by covariantly finite
subcategories X' in C, such that any X' —monic has a cokernel in C. For example
stable categories modulo injectives of exact categories with enough injectives.

3.3. (Co-)Gorenstein Left Triangulated Categories. Throughout this sub-
section C will denote a left triangulated category (C, 2, A). Our purpose here is to
examine when the (co-)stabilization of C can be realized as a full subcategory of
C. We shall obtain more complete results in the next section when the left trian-
gulated category C is a stable category. We denote as always by 8 : ¢ — S(C) the
stabilization functor and by R : R(C) — C the costabilization functor.

Definition 3.13. (1) The left triangulated category C is called Gorenstein if there
exists a full left triangulated subcategory V of C, such that the composite functor
Siy V% 5 S(C) is a triangle equivalence, where iy : V < C is the inclusion.
In this case we say that V realizes the stabilization of C.

(2) The left triangulated category C is called Co-Gorenstein if there exists a
full left triangulated subcategory U of C, such that the inclusion iy : U < C is the
costabilization functor. In this case we say that U realizes the costabilization of C.
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The easy proof of the next Lemma is left to the reader (use Proposition 3.4).

Lemma 3.14. Ifiy : V < C is a left triangulated subcategory of C, then the loop
functor @ :V =V is fully faithful & the functor Siy : V — S(C) is fully faithful.

Theorem 3.15. The following are equivalent:

(1) C is Gorenstein.
(2) There exists a full triangulated subcategory V of C, such that: YC € C and
n € Z, there exists t > n,0 with Q~"(C) € V.
(3) There exists a full triangulated subcategory V of C, such that: VC € C, there
ezists t > 0 with Q}(C) e V.
In this case the triangulated category V is uniquely determined up to a triangle
equivalence and realizes the stabilization of C.

Proof. (1) = (2) Suppose that C is Gorenstein, and let iy : V < C be a full
triangulated subcategory of  realizing the stabilization. Let C be in C and n € Z.
Consider the object (C,n) € S(C). Since Siy is dense, there exists an object A € V
and an isomorphism f : (C,n) — Siy(4) = (4,0), with inverse § : (4,0) —
(C,n). Choose representatives fi : 2*~™(C) — Q*(A) of f with & > 0,n and
g : QN (A) —= Q"(C) of § with I > 0,n. Analyzing the relations §o f = 1o,
and f o § = 1(4,) and choosing t > k,, we see that Q=*(f;) : f="(C) — Q¢(A)
is invertible with inverse 2t=*(g;). Since Q!(4) € V, the assertion (2) follows. The
direction (2) = (3) is trivial.

(3) = (1) Since V is a triangulated subcategory, by the above Lemma the exact
functor Siy : V — S(C) is fully faithful. Let (C,n) be an arbitrary object of
S(C). Then by hypothesis there exists ¢ > 0 such that Q(C) := A € V. Applying
the functor S, we have S(R(C)) = S(4) = S(C) = SQ~t(4). Since 4 € V
and V is triangulated, we can write Q~*(A) = Q"(B) with B € V and r > 0,n.
Then (C,n) = Q7"8(C) = O "S(Q!(4)) = Q"S(O7(B)) = O~ "('S(B)
Q7~"S(B) = SQ™~"(B). Since B is in V, this shows that Siy is dense.

We denote the kernel of the stabilization functor S : ¢ — §(C), by
PR(C)=KerS={C €C:3n>0:0"C) =0}.

If C is Gorenstein, we call the uniquely determined triangulated subcategory of C
realizing the stabilization, the category of maximal Cohen-Macaulay objects
(or maximal CM-objects for short) of C, and we denote it by CM(C).

O

Proposition 3.16. If the left triangulated category C is Gorenstein, then
(1) The stabilization functor 8 : C = CM(C) s given as follows:

VC €C: S(C) =Q7tQ(C) where ¢ >0 is such that: QY(C) € CM(C).

(2) P(C) is a full left triangulated subcategory of C, P>(C) (YCM(C) = 0 and
the inclusions P2(C) — C and CM(C) < C induce isomorphisms:

Ko(P®(C)) =0 and Ko(CM(C)) & Ko(C).

Proof. (1) By Theorem 3.15, YC € C there exists ¢ > 0, such that Q*(C) € CM(C).
Suppose also that Q*(C) € CM(C) with s > 0 and assume without restriction that
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s=t+r. Then Q~*Q%(C) = Q7 7QH7(C) = Q7IQ"Q"QHC) = Q7'QHO), Le.
the object Q~tQH(C) € CM(C) is uniquely determined. We set §'(C) = 27*Q¢(C).
If f: C — D is a morphism in C, define §'(f) = Q7'Q%(f). A similar argument
as above shows that in this way we obtain a functor S’ : ¢ — CM(C) which clearly
is exact. If F 1 C — D is an exact functor to a triangulated category D with
translation functor ¥, then define F* : CM(C) = D by F* = F|cmc)y. Trivially
F* is exact and YC € C with Q*(C) € CM(C), we have F*S'(C) = F*Q~'QHC) =
TORQHC) = TTHFQHC) = TIEF(C) = F(C). It is easy to see that these
identifications are natural, so we have F*S’ = F. If G : CM(C) — D is another
exact functor with GS' = F, then VA € CM(C): G(4) = GS'(A) = F(4) =
F*(4). Hence G = F*. This shows that S' = S is the stabilization functor.
(2) Let C € P=(C)NCM(C). Since C € P*(C) we have S(C) = 0 and since
C € CM(C) we have 8(C) = C, so C = 0. All other assertions are trivial, noting
that S(P*=(C)) = 0, since the loop functor 2 in P*(C) is locally nilpotent. O

We turn now our attention to Co-Gorenstein left triangulated categories. We
consider the following full subcategory of C:

Q%) = ﬂ Q*C) = {C €C|3{Cr}ln>0 CC: Cy = QCny1),Yn > 0,Co = C}.

n>1

If C is Co-Gorenstein, we call the uniquely determined triangulated subcategory
of C realizing the costabilization, the category of maximal Co-Cohen-Macaulay
objects (or maximal Co-CM-objects for short) of C, and we denote it by CoCM(().

Theorem 3.17. The following are equivalent.

(1) C is Co-Gorenstein.
(2) Q%°(C) is a triangulated subcategory of C.
(3) There exists a triangulated subcategory U of C with the property: Q> (C) CU.

In this case U = CoCM(C) = Q%°(C), there ezists a triangle equivalence R(C) ~
Q=(C) and the inclusion N°(C) < C is the costabilization functor.

Proof. (1) = (3) If C is Co-Gorenstein, then there exists a triangulated subcategory
U of C such that the inclusion i : & — C is the costabilization functor. Since lf is
triangulated, we have i C 21°°(C) and since the strict image of the costabilization
functor ¢ is 2°°(C), we conclude that N°°(C) = U. (3) = (2) Trivial. (2) = (1) To
prove (1) it suffices to show that the costabilization functor R : R(C) — C is fully
faithful, since then R induces an equivalence: R(C) ~ Q°(C). If f, : (A,, ) —
(Bn, Br) is a morphism in R(C) with R(f,) = 0, then Q*(f,) = 0, Vn > 0 and
fn =0,Vn < 0. Since A,, B, € 2°°(C), and since the latter is triangulated, we
have f, = 0, Vn € Z. Hence fo = 0 and this shows that R is faithful. A similar
argument shows that R is full, using that ImR = Q°°(C) is triangulated. O

The next result, which is a consequence of Theorems 3.15, 3.17, shows that jn
some cases the stabilization and the costabilization of C coincide.

Corollary 3.18. Suppose that C contains e full triangulated subcategory V enjoy-
ing the property: 3d > 0 such that Q4(C) C V. Then C is Gorenstein and Co-
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Gorenstein, there are triangle equivalences
R(C) S Q®(C) S CoCM(C) 2 Vv 2 eM(C) S 5(0),

the functor Q=02 : C — V is the stabilization functor and the inclusioniy : V = C
i the costabilization functor.

We leave to the reader the formulation of the dual concepts and results concern-
ing (Co-)Gorenstein right triangulated categories.

4. GORENSTEIN CATEGORIES AND AUSLANDER-BUCHWEITZ CONTEXTS

Throughout this section we assume that C is an exact category and X is a full
contravariantly finite additive subcategory of C which is closed under isomorphisms,
direct summands, and such that any X —epic is an admissible epic.

4.1. Stabilization and X —Gorenstein Exact categories.

Definition 4.1. The exact category C is called X —~Gorenstein if the stable left
triangulated category €/ X is Gorenstein.

By section 2, we know that if C/X is Gorenstein, then the triangulated subcat-
egory of C/X realizing the stabilization is the stable category of an X —resolving
subcategory A of C. So we fix an X—resolving subcategory A of C, and let 74 :
A/ X < C/X be the inclusion functor. Then we know that A4/X is left triangulated
and the inclusion functor i 4 is exact. Let 4 be the full subcategory of C consisting
of all objects having finite X —resolutions by objects of .A. Hence an object C € C
is in A if there exists an X —exact sequence 0 — Ap, — -+ — A; — Ag = C — 0,
where A; € A, Vi > 0. Let S: (/X — S(C/X) be the stabilization functor.

Theorem 4.2. (1) The following are equivalent.
(a) The ezact functor Sig: A/X — S(C/X) is fully faithful.
(B) The loop functor Qx : AJX — A/X is fully fatthful.
() AC*X.
(2) The following are equivalent. )
(a) The functor Sig: A/X — S(C/X) is a triangle equivalence.
8) (i) ACta.
(ii) X is an X —cogenerator of A.
(i) VC € C and Yn € Z, 3t > 0 with t > n, such that: th_"(g) € A/X.
(1) () ACLX.
(ii) X is an X—cogenerator of A.
(iii) € = A.

Proof. Part (1) and the direction (a) < (8) of part (2) are consequences of Lemma
3.14, Theorem 3.15 and the results of section 2. (2)(8) = (y) If C € C, then by
Theorem 3.15, there exists ¢t > 0 such that 9% (C) = 4 € A/X. Hence there exists
an X —exact sequence 0 -+ A - X;_; = -+ =3 Xg = C — 0 with A € 4 and
Xie X CAVi=0,..,t~1. This implies that C € ]1:, and consequently C = A.
(7) = (a) By Theorem 3.15, it suffices to show that for any C' € C there
exists t > 0 such that Q4.(C) € A/X. Since A.= C, there exists an X'—exact
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sequence 0 — Ay — Agy — -+ = Ay = Ap = C — 0, where 4; € AV >
0. Consider the X —exact sequence 0 — A; — A;_y — My — 0, and let
Qx(M, ) = A, — A,_; = M, be the induced triangle in C/X. Since A is
X —resolving, imbedding the morphism 4, — 4,_; in a triangle in A/&, it follows
that Qx(M,_,) € A/X. Continuing in this way we see that 0% (M, ;) € A/X,
and finally that Q% (C) := A € A/X. O

Let PP (C) of C be the full subcategory of C of all objects with finite contravari-
ant X —dimension. Obviously P$(C) is an X' —resolving subcategory of C and we
know that the induced stable category P (C)/X = Ker(S). So in the notation of
Subsection 3.3, PL(C)/X = P=(C/X). If C is X —Gorenstein, then we know that
the stabilization of C/X is realized by the full subcategory CM(C/X). Hence there
exists an X' —resolving subcategory CM(C) of € such that CM{(C/X) = CM(C)/X.

Theorem 4.3. If C is X —Gorenstein, then the following are true.

(1) The stabilization functor S : C/X — CM(C/X) is the coreflection of the
category CM(C/X) in C/X and is given as follows:

S(C) = 3'2%(C), where ¢ >0 is such that Q%(C) € CM(C/X).
(2) For any C € C, there exists an X'—ezact sequence
(Ac) 00— Po S Ac 25 C -0 with Po e PP(C) and Ac € CM(C).

CM(C) is a contravariantly finite subcategory of C. The morphism ac : Ac
— C gives a right CM(C)—approzimation of C.

(3) Let f : Ac — Ac be a morphism such that foac = ac. Then f is an
isomorphism. All objects of C have minimal right CM(C)—approzimations if
CM(C) is a Krull-Schmidt category or if the ideal Jx(CM(C)) of morphisms
in CM(C) factoring through X, is contained in the Jocobson radical of CM(C).

(4) PE(C)NCM(C) = X. Moreover VC € C: C € PF(C) & Ac € X.

(5) VA € CM(C), YC € C we have: Exth(A,C) = AJX(Q4(4),40),Vi > L.
Moreover: C/X[CM(C/X),P*(C/X)]=0.

(6) CM(C) = +1PP(C) = *+X.

(7) For any C € C, there exists an X —ezact sequence

P%  0-C 25 PC 2% 4 0 with PC e PR(C) and AC € CM(C).

P(C) = CM(C)* is a covariantly finite subcategory of C. The left P (C)—
approzimation of C is given by the morphism p€ : C — PC.

(8) Let f : PC — PC be a morphism such that p© o f = pC. Then fisa
monomorphism and Q% (f) is an isomorphism ¥n > 1. All objects of C have
minimal left P (C)—approzimations if PP (C) is a Krull-Schmidt category
or if the ideal Jx(CM(C)) of morphisms in CM(C) factoring through X is
contained in the Jacobson radical Jac(CM(C)) of CM(C).

(9) The stable category PF(C)/X is a reflective left triangulated subcategory of
C/X and the reflection is given by the functor

T:C/X — PP(C)/X, defined by T(C) = P°.
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(10) The category C/X admits a “direct sum decomposition” C/X = PE(C)/X &
CM(C/X) in the sense that the sequences of categories and functors

0o PREC)/X L ejx S ome/x) =0

0 — CM(C/X) B c/x 5 PL(C)/X =0
satisfy the relations: 8j = 0, Ti =0, Si = Idomc/xy, Ti = ldpe(c)/x-
Moreover there exists an equivalence of categories:

C/X[PE(C)/X ~ CM(C/X)

where the first category indicates localization of the left triangulated category
C/X with respect to the (eppaise) subcategory P (C)/X.
(11) The pair [CM(C/X),P>(C/X)] is a torsion theory in C/X:
CM(C/X)* = {C e (/X :C/X(4,C) = 0,YA € CM(C/X)} = P2(C/X),
Lpec/x)y:={CeC/X:C/X(C,P)=0,YP € P®(C/X)} = CM(C/X).
In particular there ezists a triangle in C/X: QxT — 8 — Ide/x — T.
(12) Consider the relative Grothendieck groups Ko(C,X) and Ko(CM(C), X) and
the stable Grothendieck groups Ko(C/X) and Ko(CM(C/ X)) as defined in [15].
Then there are isomorphisms Ko(CM(C), X) 2 Ko(C, X) and Ko(CM(C/X))
= Ko(C/X) and an ezact commutative diagram (}):

Ko(X,®) —— Ko(CM((), &¥) —— Ko(CM(C/X)) —— 0

| ! !
Ko(X,8) ——  Ko(C,d) —— Ko(C/X¥) —— 0.

Proof. (1) By Proposition 3.16 it suffices to show that the functor S is the core-
flection of CM(C/X). If C € C, then by Theorem 4.1, there exists t > 0 such that
0% (C) := A with A € CM(C). Hence there exists an X ~resolution (@) : 0 = A —»
X5 X575 5 X% -+ C > 00of CinC. Since A belongs to CM(C) and
CM(C/X) is triangulated, A is an arbitrary X —syzygy object. Hence there exists
an X —exact sequence (8): 0 - A = X1 5 X2 5 ... 5 X0 3 A 0
in CM(C) and Ax = Q344) = Q704 (C). Consider the Y —exact sequences
M: 024> X5' > KS! >0inCand (§): 04— Xt=1 5 471 540
in CM(C). Since A*~! by construction is in CM(C) and CM(C) C 1 X, the push-out
of the above admissible sequence along the morphism A — X é"l splits, and this
induces a morphism (8) — (7) of short exact sequences. Continuing in this way
we obtain finally a morphism of X ~resolutions (8) = (), in particular we obtain
a morphism ac : Ac — C. It is easy to see that a. is independent of the above
construction and induces a natural morphism @ : 148 ~ Id¢,x. Since by construc-
tion Q% (ac) = Lot (¢, trivially @, gives the coreflection of €' in CM(C/X). Hence
CM(C/X) is a coreflective (triangulated) subcategory of C/X with coreflector the
stabilization functor S.

(2) We use the notation of part (1). Adding a right X —approximation X¢ to
Ac if necessary and using that any X —epic is admissible, we can assume that
ac : Ac — C is an (admissible X' —)epic. Hence the X —exact sequence 0 —
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Pe — Ac — C — 0 is defined. This sequence induces a triangle Qx(C) —
P, — Ac = C in C/X and a triangle QxS(C) — S(Pgs) — S(4e) — S(O)
in S(C/X). But obviously the stabilization functor S induces an isomorphism
S(ac) : Ac = S(4¢) = S(C). Hence S(P) = 0 which is equivalent to Pc being
of finite contravariant X' —dimension, i.e. Pc € P¥(C). It remains to show that
ac i Ag = C is a right CM(C)—approximation, but this follows directly from (1).

(3) Let f: Ac — Ac be a morphism such that foac = ac. Then foar = a,
in C/X. Applying the stabilization functor to this relation we see directly that S(f)
is an isomorphism. Since A is in CM(C/X), we have that f is an isomorphism.
If the ideal Jx(CM(C)) is contained in Jac(CM(C)) then the projection functor
CM(C) — CM(C/X) reflects isomorphisms. Hence f is an isomorphism and any
object of C has a minimal right CM(C)~approximation. If CM(C) is a Krull-Schmidt
category, then the proof of Lemma 2.6 of {1] can be applied, showing that any object
of C has a minimal right CM(C)—approximation.

(4) That P¥(C) N CM(C) = A, follows from Proposition 3.16. Suppose now
that C € P$(C). Then the sequence 0 = Po — Ag — C' — 0, induces a
triangle Qx(C) = Po — Ay = C — in C/X and then a triangle QxS(C) —
S(Pe) — S(4Ag) — S(C) in S{C/X). But since Pe,C have finite X'—dimension,
we have S(P.) = S(C) = 0. Hence S(4As) =0, so A¢ is in PP(C) NCM(C) = X.
Conversely if Ac € X, then obviously C € PL(C).

{(5) Consider objects A € CM(C) and C € C, and let 0 = Qx(4) — X4 —
A — 0 be a right X' —approximation of A. Applying the functor C(—,C) to this
sequence and using that CM(C) C 1Y, it is easy to see that there exists an iso-
morphism £zt (4,C) = C/X(Qx(A),C). Consider now the triangle Qx(C) —
Po — A, — C in C/X induced by the sequence (Ac) in (2). Since by (1),
CM(C/X) is coreflective in C/X and Qx(A) is in CM(C/X), it follows that we have
an isomorphism CM(C/X)(Qx(4), Ac) = C/X(1x(4),C). Hence £zt (A, C) =
C/X(Qx(A4),C) = CM(C/X)(2x(A), Ag). The general case follows by dimension
shifting since CM(C) is X' —resolving.

If f: A — Pis a morphism in C/X with A € CM(C) and P € P$(C), then
from the right CM(C)—approximation sequence (Ap): 0 — Pp — Ap — P — 0,
we see that f factors through Ap. But by (4), Ap € X. Hence f =0in C/X.

(6) By hypothesis on CM(C) and parts (3), (4) we have CM(C) C +P(C) C *A.
By part (2), if C' € *P$(C), then C € CM(C) as a direct summand of Ac. Hence
CM(C) = +P$(C) and it remains to show that *X C +P(C). So let C € +X.
We first prove that any morphism f : ¢ — P with P € P (C) factors through
X. If P € X, this is trivial. If XY~dimP =1land 0 — X; —» Xo - P = 0
is a X —resolution, then the pull-back sequence along the morphism f splits since
C € 1 X. An easy induction argument shows our claim. Now as in the proof of (4),
we have £xt% (C, P) = C/X(Qx(C), P) = 0, since P € PY(C) and N2(C) € 1 X.
By dimension shifting we conclude that C € P (C).

(7) Consider the X —exact sequence (Ag) of (2) andlet 0 = Ac 5 X 2 AC &
0 be an X —exact sequence in CM(C) with X € X, which exists since Az € CM(C).
Since the morphisms pc : Po — A¢ and k: Ac — X are admissible monics, their
composition pg o k : Po — X is admissible monic. Let 0 = P - X — P 0
be the induced admissible short exact sequence in C. Then we have a pull-back
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diagram, which defines the object P®, and a push-out diagram:

Po —2 4 Ac —2¢4 ¢ AC —E, x 2, 4C
L o A B 1]
Po 2% x 2 pC c ¥, pc o, 4o

Since the admissible sequence 0 = Ao — X — A® — 0 is XY—exact, from
the above diagram it follows directly that the admissible sequence (P€) : 0 —

C p—c) pe &5 40 0 is X—exact, hence induces a triangle 1S(4°) —
S(C) = S(P°) — S(A%) in CM(C/X). But from (2) we have A° = Q37'(4.) =
037104 (C). Hence OS(4°) = QS(03'710%(0)) = 007"7'S(Q%(C)) = S(O).
Obviously the morphism 1S(A®) — S(C) in the above triangle is the identity,
hence S(P¢) = 0 and then PC belongs to PF(C). Now let f : C — Q be a mor-
phism with @ € P (C) and consider the push-out sequence 0 — @ — M — A¢ —
0 of (P©) along the morphism f. Trivially the push-out sequence is also admissible
and X —exact, hence is split by (6). It follows that the morphism p€ : € — P€ is
the left P$°(C)~approximation of C, since then f factors through pC.

Finally by (6), P¥(C) C CM(C)*. If C € CM(C)*, then the X —exact sequence
(PC€) splits, and C € PL(C) as a direct summand of PC. So PL(C) = CM(C)*.

(8) Let f : P¢ — PC be a morphism such that p° o f = p©. Then from the
sequence (PC) of (7), there exists a unique morphism g : A° — A€ such that
a®og = foaC. Since A® € CM((), as in (3) we have that g is an isomorphism.
Then the triple of morphisms (1g, f, g) is an endomorphism of the induced triangle
in C/X of the sequence (PC). Applying Yoneda’s lemma we conclude directly that
Qx(f) is an isomorphism and f is a monomorphism. If the ideal Jx(CM(C)) is
contained in Jac(CM(C)) then the projection functor CM(C) — CM(C/X) reflects
isomorphisms. Hence g is an isomorphism and this implies that f is an isomorphism.
Hence any object of C has a minimal left P$°(C)~approximation. If P$(C) is Krull-
Schmidt, then as in (3) we can apply the method of proof of Lemma 2.6 of [1], to
conclude that any object of C has a minimal left P3°(C)—approximation.

(9) It suffices to show that P$(C) is reflective in C/X. For any C € C, we claim

that the object PC of part (7) is uniquely determined in C/X. Indeed if 0 — C -E—C—)

[o} C Lod
PC 25 A° -5 0and0 = C X5 Q° £, BC 5 0areleft P (C)—approximations
of C with A%, B¢ € CM(C), then we have the following commutative diagrams

c 24 po =, yo c L, g0 £, po
| | 2| 1] 5| 5 |
c £, g0 £, pe c 2, pc 2%, o

It is easy to see then that there are morphisms k : A — PC and m : B¢ — Q€
such that: 1pc — fog = a® ok and lgc —go f = B° om. But from part (5)
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we have that k = 0 and m = 0 in C/X. Hence f and g are isomorphisms in C/X.
We set T(C) := PC. If Q € P¥(C) and f:C — Q is a morphism, then by part
(7) there exists a morphism g : P — Q with p© o g = f. Then pPog=/If
h: P° — ( is another morphism with P_C oh=f, thenpo(g—h) =kom
where k : C — X,m:X = Qand X € X. Let t : P = X be a morphism with
pCot = k. Then p€o(g—h) = p€ otom, hence the morphism g—h—tom = aCoz
for a unique morphism z : A° — Q. Since @ has finite X —dimension, z = 0. Hence
g-h=tom=0andg=h So p© : C — T(C) is the reflection of C in P (C)/X.

(10) The first part.is a consequence of (9) and (1). Let T be the class of mor-

phisms f : C — D in C/X, such that in a triangle Qx(D) -+ P — C —£> D,
the object P € PL(C)/X. Obviously the functor S : C/X — CM(C/X) sends the
class T to isomorphisms. If F : (/X — D is a functor with the same property,
then since the morphism ap : A; — C of the sequence (A¢) belongs to T, F(as)
is an isomorphism. Define a functor F* : CM(C/X) — D by F* = Flomc/x)-
Then VC € C/X we have F*S(C) = F*(As) = F(Ag) = F(C). Hence F*S = F.
Trivially F* is the unique functor with this property. This implies that CM(C/X)
is equivalent to the localization C/X /P (C)/X = C/X[T7Y).

(11) Follows easily from part (5) and parts (2), (9).

(12) The diagram (1) is obviously commutative. By the results of section 3, the
morphism Kg(CM(C/X)) — Ko(C/X) is an isomorphism, since CM(C/X) is the
stabilization of C/X. Hence the middle morphism of (1) is an epimorphism, which
by [40] is actually an isomorphism, since 61\&(?) =C. O

Many of the consequences of the above Theorem are identical with the theory
developed by Auslander-Buchweitz in [4], in case € is abelian. The crucial points
of the Auslander-Buchweitz theory have been formulated by Hashimoto (see [30]
or Subsection 4.3 below), in the concept of an Auslander-Buchweitz context in an
abelian category. In our relative setting this concept can be formulated as follows.

Definition 4.4. Let C be an exact category and consider full additive subcategories
A,B, X of C. The triple (A, B, X) is called an X — Auslander-Buchweitz context
(or X~ AB-context), if the following conditions are true:
(a) A is X—resolving.
(8) B is closed under extensions of X —exact admissible sequences, direct sum-
mands and cokernels of X' —monics.
(v) ANB = & is an X —cogenerator of A4, and any X —exact admissible short
exact sequence 0 = X — C — A — 0 with X € X and A € A, splits.
9) A=C.

Next we characterize the exact categories which admit an X —AB-context.

Theorem 4.5. The following are equivalent.

(1) The subcategory X is part of an X — Auslander-Buchweitz contezt (A, B, X).
(2) The category C is X — Gorenstein.

In this case: A= Gx(C) =+ X = +PP(C) = CM(C) and B = PL(C).
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Proof. (2) = (1) is the content of Theorem 4.3, Conversely let (A4, B, X) be an
X — Auslander-Buchweitz context. Then 4 = C , and X is a cogenerator of A. Since
any X —exact admissible sequence of the form 0 -+ X - C - A 2 0with X ¢ ¥
and A € A, splits, and since A is X' —resolving, we have directly that 4 C L X. By
Theorem 4.2, the subcategory A realizes the stabilization, so C is X' —Gorenstein.
It remains to show that 4 = Gx(C) and B = PL(C). Let A € A. Then the
A ~resolution of A is by definition contravariantly X—exact and it is covariantly
X —exact since A = +X. Since X is a cogenerator of A, there exists an admissible
contravariantly X —exact sequence © » A —+ X® — B — 0 with B € 4. Since
B € Aand A = 12X, this sequence is also contravariantly X —exact. Continuing in
this way we obtain a contravariantly X' —exact X' —coresolution of A. Hence A has a
covariantly X' —exact X —resolution and a contravariantly X' —exact X' —coresolution,
ie. A € Gx(C). Conversely if C € Gx(C), then since the X' -resolution of C is
contravariantly X—exact, we have C € *X = A. Hence A = Gx(C). Since X C B,
by property (8) of definition 4.4 it follows easily that P (C) C B. Let C € B and
let 0 & C — P¢ — A® — 0 be the left P$(C)—approximation of C. By (8), (7)
of definition 4.4, we have A € BN A = X, so the above sequence splits since it is
X—exact. Then C € PF(C), since B is closed under direct summands. O

Hence for any X' —Gorenstein category C, we always have: Gx(C) = CM(().

Definition 4.6. Let 4 be an X —resolving subcategory of C and C € C. Then C
has finite A—resolution dimension iff there exists an X' —exact sequence 0 — A, —

-+ = Ay = Ap = C = 0 with 4y € A, Vk =0,1,...,n. In this case the least such
integer n is called the A—resolution dimension of C and is denoted by A—res.dimC.
Otherwise we define A—res.dimC = oo. The global A~ resolution dimension of C is
defined by A—gl.res.dimC = sup{A-res.dimC;C € C}.

It is not difficult to see, using that A is X—resolving, that A-res.dimC is well-
defined. Obviously A=Ciff any object of C has finite .A—~resolution dimension.

Corollary 4.7. Suppose that any left X —approzimation of an X — Gorenstein 0b-
Jject of C is admissible monic. Then the following are equivalent:

(1) The category C is X — Gorenstein.

(2) Any object of C has finite G»(C)~—resolution dzmenswn ie C= QX(C)

Proof. (1) = (2) Follows from Theorems 4.3 and 4.5. By hypothesis and Proposi-
tion 2.13, Gx(C) is X —resolving and the stable category Gx(C)/X is triangulated.
Then condition (2) implies that C is X —Gorenstein by Theorem 4.2. O

Corollary 4.8. Suppose that X' is an X—cogenerator of LX and for any object
C € C, there ezists d > 1 such that Extt.(C, X) = 0,Vi > d.
Then the triple (-L;t' PP(C), X) is an X — Auslander-Buchweitz contexzt.

Proof. The last assumption 1mplles that for any C' € C there exists d > 0 such

that 94(C) € *X. Hence C = LX and then the triple (X, P$(C), X) is an
X —Auslander-Buchweitz context by Theorem 4.2. O

4.2. Costabilization and ¥ -Co-Gorenstein Exact categories. We turn now
our attention to the representation of the costabilization R(C/X) of C/X as a
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full subcategory of C/X. Let again A be an X ~—resolving subcategory of C, and
consider the costabilization functor R : R(C/X) — C/X. By the description of
R(C/X) in Theorem 3.11, it follows that the essential image Im(R) of R is the
full subcategory QR (C/X) = QF(C)/X of C/X induced by all objects which are
arbitrary X' —syzygies. Hence A/X C Im(R) iff 4 C QP(C).

Definition 4.9. The exact category C is called X —Co-Gorenstein if the left tri-
angulated category C/X is Co-Gorenstein.

Theorem 4.10. The following are equivalent.
(1) C is X~ Co-Gorenstein.
(2) QF(0) € L.
(3) There exzist an X —resolving subcategory A of C satisfying the following:
(@) AC*AX. '
(B) X is an X —cogenerator of A.
(v) Q) c A
In one of the above equivalent statements ts true, then A = QF(C) and if the
left X —approzimation of any X' — Gorenstein object is admissible monic, then A =
Q% (C) = Gx(C) and A/X = CoCM(C/X).

Proof. The proof is a direct consequence of Theorem 3.17 and section 2. If C is
X —Co-Gorenstein, then by (3) it follows trivially that A C Gx(C). If A € G»(C),
then by hypothesis and section 2, G¢(C)/X is a triangulated subcategory of C/X.
Hence the exact inclusion Gx(C)/X < C/X, factors uniquely through the inclusion
A/X «— C/X. But then obviously Gx(C)/X C A/X. Hence A = Gx(C). ]

Our next result which is a consequence of Corollary 3.18, shows that in some
cases any X —Gorenstein exact category is X—Co-Gorenstein. For instance this is
true if C is X—Gorenstein with Gy (C)-gl.res.dimC < oco.

Corollary 4.11. Suppose that X is an X—cogenerator of A and A C L+X. If
NL(C/X) C A/X for some d > 0, then C is X— Gorenstein and X'~ Co-Gorenstein
and there are triangle equivalences

RC/X) D A/x B 8(CrX),

the functor Q0% : C/X — A/X is the stabilization functor and the inclusion
ia: AJX = C/X is the costabilization functor.

Remark 4.12. All the above results are true in case we deal with the dual sit-
uation of relative injectives, i.e. when X is a covariantly finite subcategory of
the exact category C and any X ~monic is an admissible monic. Then the stable
category C/X is right triangulated and its stabilization S{C/X) (costabilization
R(C/X)) is defined. Then C is called X—(Co-)Gorenstein if the category C/X is
(Co-)Gorenstein as a right triangulated category. We entrust to the reader the def-
inition of an X —Auslander-Buchweitz context in this case, which however we call
an dual X —Auslander-Buchweitz context.

4.3. Gorenstein and Co-Gorenstein Abelian Categories. We assume in this
subsection that C is an abelian category. Then a resolving subcategory of C is a full
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additive subcategory of C which is closed under extensions, kernels of epics and con-
tains the projective objects. Dually a coresolving subcategory of C is a full additive
subcategory of C which is closed under extensions, cokernels of monics and contains
the injective objects. We denocte always by P (Z) the full subcategories of projec-
tive (injective) objects and by P> (Z*°) the full subcategory of objects with finite
projective (injective) dimension. We call P—cogenerators simply cogenerators.

An Auslander-Buchweitz context as defined in [30], is a triple (A, B, X) of full
subcategories of C, such that the following conditions are true:

(1) A is closed under extensions, direct summands and kernels of epics.
B is closed under extensions, direct summands and cokernels of monics.
(ii) X = AN B is a cogenerator of A with the property

X C At ={CeC:Exti(A,C) =0, Vi>1).
(iii) C = A, i.e. any object of C has a finite resolution by objects of A.

We refer to [4], [30] for examples of Auslander-Buchweitz contexts, in Commuta-
tive Algebra, Algebraic Geometry and Ring Theory. Given an Austander-Buchweitz
context (A, B, X) in the abelian category C, we are interested in describing the sta-
ble category C/X, when the latter is left triangulated. This happens if X is in
addition contravariantly finite. So the results of Subsection 4.1 give a clear picture
of this situation. Now we restrict ourselves in the case when the abelian category C
has enough projectives (resp. injectives), studying when P (resp. I) is part of an
Auslander-Buchweitz context (A, B,P) (resp. dual Auslander-Buchweitz context
(A,B,TI)) in C. We shall see that in this case our results are more complete. So
from now on suppose that C has enough projectives. In case € has enough injec-
tives we entrust to the reader to formulate the dual definitions of an Z—Gorenstein
category, B-gl.cores.dimC for a coresolving subcategory of B of C, and of a dual
Auslander-Buchweitz context. The dual results using injectives are also true.

Corollary 4.13. The following are equivalent.

(1) The subcategory P is part of an Auslander-Buchweitz context (A, B, P).
(2) The triple (Y P, P>, P) is an Auslander-Buchweitz context.

(3) The category C is P— Gorenstein.

(4) The natural functor +P /P — DYC)/ICE(P) is a triangle equivalence.
(5) Any object of C has finite P— Gorenstein resolution dimension.

(6) The natural functor D¥(Gp(C)) — D*(C) is a triangle equivalence.

In this case A =+P = LP® = Gp(C) and B = P>.

Proof. By our previous results, the statements (1) to (5) are equivalent. So it suffice
to show that (3) is equivalent to (6). We view Gp(C) as an exact subcategory of
C with enough projectives. If one of the statements (1) to (5) is true, then we

e —

know from Corollary 4.7 that Gp(C) = C. Then by [28] we have that the natural
functor D°(Gp(C)) — DP(C) is a triangle equivalence. Conversely if the above
functor is a triangle equivalence, then the Verdier-quotients D*(Gp(C))/K*(P) and
D(C)/Kb(P) = S(C/P) are triangle equivalent. Since Gp(C)/P is triangulated, by
section 3, D*(Gp(C))/K*(P) = Gp(C)/P. Hence the canonical functor Gp(C)/P —
S(C/P) is a triangle equivalence. By Theorem 4.2, C is P~Gorenstein. O
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Corollary 4.14. Let A, B be P—Gorenstein abelian (or ezact) categories with
enough projectives. If there exists an equivalence Gp(A) = Gp(B), then there exists
a triangle equivalence: D*(A) =~ D*(B).

Corollary 4.15. The following are equivalent.
(1) There exists an Auslander-Buchweitz context (C, B, P).
(2) The category C is Frobenius.
(3) The natural functor C/P — D*(C)/K*(P) is a triangle equivalence.
(4) The natural functor K4.(P) = C/P is a triangle equivalence.
(5) Any object of C is P— Gorenstein.
In this case B=P.

Theorem 4.16. Let C be an abelian category with ezact products and coproducts
and with enough projectives and injectives. Then the following are equivalent.
C is P—Gorenstein.

C is T— Gorenstein.

(+P, P>, P) is an Auslander-Buchweitz context.

(Z1,2%,7) is a dual Auslander-Buchweitz context.

d: —sup{pdl I eI} =sup{idP:PeP}< 0.

’PDO

KPP ) le( ) as full subcategories of D*(C).

The natural functor LP/P — DP(C)/Kb(P) is a triangle equivalence.
The natural functor T+ /T — D*(C)/Kb(Z) is a triangle equivalence.
Any object of C has finite P— Gorenstein resolution dimension.

Any object of C has finite T— Gorenstein resolution dimension.

The natural functor D*(Gp(C)) — D¥(C) is a triangle equivalence.

) The natural functor D*(Gz(C)) — D¥(C) is a triangle equivalence.

ne of the above equivalent conditions is true, then we have the following:
() C is P—Co-Gorenstein and I— Co-Gorenstein and

Gp(C)—gl.res.dimC = G7(C)—gl.cores.dimC = d.

(8) P® =TI is functorially finite in C, Gp(C) = Q4(C) is coniravariantly finite
in C, Gz(C) = T4C) is covariantly finite in C, Gp(C)/P is coreflective in C/P
and G7(C)/T is reflective in C/T.

(v) If P is covariantly finite in C, then Gp(C) is functorially finite in C and
Gp(C)/P is reflective in C/P. If T is contravariantly finite in C, then Gz(C)
is functorially finite in C and Gz(C)/T is coreflective in C/T.

(8) There exist triangle equivalences:

Kac(P) = Gp(C)/P = +P[P = +(P®)/P ~ D*(C)/Kb(P)
~ DY(C)/KY(T) = (T®)H /T ~ T+ /T =~ G (C) /T ~ K a.(D).
(¢) The costabilization functors are the inclusions
Gp(C)/P = C/P and Gz(C)/T—C/T

and the stabilization functors are given by

Q744 C/P = Gp(C)/P and £79%¢:C/T = G1(C)/T.

1
)
)
)
)
)
)
)
)
)
)
)
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(¢) C 1is Frobenius iff Gp(C) = G1(C).

Proof. By our previous results we have that (1) is equivalent to (3), (8), (10) and
(12). By duality (2) is equivalent to (4), (9), (11) and (13). By the results of [25],
[18] we have (5) ¢ (6). Also it is easy to see that (7) is equivalent to (6). So it
suffices to show the equivalence (1) & (5). Then (2) & (5) will follow by duality.
We set d = sup{p.d.]: I € I} and § = sup{i.d.P: P € P}.

(1) = (5) Suppose that C is P—Gorenstein. By Theorem 4.2 we have that VC € C
there exists rc > 0 such that Q7°(C) € +P. Hence VC € C : £2t' (7 (C),P) =
0,Vi > 1or equivalently £2t*+7¢ (C,P) = 0,Vi > 1. This implies that any projective
object has finite injective dimension, i.e. P C I°. If I is an injective object, then
the left P> —approximation (P') of Theorem 4.3 splits, hence I has finite pojective
dimension as a direct summand of P’ , 80 Z C P, By the arguments of [25], {18]
it follows that d = é < oc.

(5) = (1) Since § = d < o0, for any C € C we have Q4(C) € +P, hence

Qd(C) 1P, Let A € P and consider an injective resolution 0 — 4 — I° —
It ... of A, with corresponding cosyzygies B™ = X"(A),Vn > 1. The exact
sequence 0 — A — I° — B! — 0 induces a triangle Q(B') = A - I° = Bl in
C/P. Applying the stabilization functor S to this triangle and using that Z C P,
we have S(4) = SQ(B') = SQ(Z(A)). Inductively we have S(4) = SOk (BY) =
SQk(X*(A)), Vk > 1, in particular S(4) = SQI+(BIH!) = SQIH(RI+I(A)),
Since Q4+1(54+1(A)) € 1P /P and since the stabilization functor S is fully faithful
restricted to LP/P, we have A = Q4+ (Ddt1(4)). Setting 4’ = QX4+ (4) € 1P
we see that A' € 1P and Q(4) = A Hence P is a cogenerator of +P. Since
Q4(C) = 1P, by Corollary 4.11 we have that C is P—Gorenstein, P—Co-Gorenstein
and Gp(C)—gl.res.dimC = d < 0.

If one of the equivalent conditions (1), (13) is true, then as the above proof shows,
we have Q¢(C) = LP and £¢(C) = T*. Hence by Corollary 4.11 and its dual, C is
P—-Co-Gorenstein and T—Co-Gorenstein. Also the above proof shows that P C I*
and Z C P, hence trivially P® = I° and by the Theorem 4.3 and its dual we see
that these categories are functorially finite. Since C is P—Gorenstein, by Theorem
4.2 the category Gp(C) is contravariantly finite in C and Gp(C)/P is coreflective in
C/P. Dually Gz(C) is covariantly finite in C and Gz(C)/Z is reflective in C/Z. If P
is covariantly finite in C, then by section 2, we have that Q4(C) is covariantly finite.
Since Gp(C) = 1P = Q¢(C), we conclude that Gp(C) is functorially finite. Dually
if Z is contravariantly finite, then Gz(C) is functorially finite. The other assertions
in parts (a), (8), (7), (8), (¢) are consequences of our previous results.

Finally if Gp(C) = G1(C), and if I is an injective object, the I is P—Gorenstein.
But since I also has finite projective dimension it is projective by Theorem 4.3.
Hence any projective is injective. By duality any injective is projective and C is
Frobenius. Conversely if C is Frobenius, then obviously Gp(C) = C = Gz(C). (]

The following are consequences of Theorem 4.10 and Corollary 4.8.

Corollary 4.17. The abelian category C with enough projectives (injectives) is
P—Co-Gorenstein ( I—Co-Gorenstein ) iff Q°(C) C +*P ( Z*(C) Cc I1).
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Corollary 4.18. Let C be an abelian category with enough projectives and enough
injectives and let A, resp. B, be a resolving, resp. coresolving, subcategory of C.
(1) Suppose that P is a cogenerator of A and A C Lp. If there exists d > 0, such
that Q4(C) C A, then there are triangle equivalences

- Kace(P) » A[P = D*(C)/K(P),
the functor Q79Q% : C/P — A/P is the stabilization functor and the inclusion
iq: AP < C/P is the costabilization functor.

(2) Suppose that T is generator of B and B C I*. If there exists d > 0, such that
$4(C) C B, then there are triangle equivalences

Kao(T) ~ BJT ~ DY(C)/KX(T),

the functor L4954 : C/T — B/T is the stabilization functor and the inclusion
ig: B/T — C/T is the costabilization functor.

Suppose that C in addition has ezact products and coproducts and A satisfies
the conditions in (1) or B satisfies the conditions in (2). Then C is

P —Gorenstein, P— Co-Gorenstein, T— Gorenstein, T—Co-Gorenstein.

—
[¥=]
~

Remark 4.19. If in the definition 4.4 of an X'—Auslander-Buchweitz context we
remove condition (4) that C = A and we add the condition B C A, then the triple
(A, B, X) is called a weak X —Auslander-Buchweitz context, see [30]. All the results
of this section are true for weak X' —Auslander-Buchweitz contexts in C, but now C
has to be replaced everywhere by A.

5. CoMPLETE RESOLUTIONS AND COMPLETE (Co-)HOMOLOGICAL FUNCTORS

5.1. Complete Resolutions and Complete Extension Functors. Troughout
this section we fix a pair (C,X), where C is an additive category and X C C is
a full contravariantly finite additive subcategory of C which is closed under direct
summands, such that any X —epic has a kernel. Then C/X is left triangulated.

Definition 5.1. The complete X —extension bifunctors of C are defined by
Exty(—,~) : C%? xC — Ab,
Exty (A, B) = Homs(c/x)[(4, -n), (B,0)], ¥n € Z.
IfS: (/X — S(C/X) is the stabilization functor, then since (4, —n) = ﬁ’/{,(é, 0)
= Q%S(A), it follows that
Exty (A, B) = Homs(c;x)[V3S(4), S(B)) = Homs(c/x)[S(4), 03"S(B)] =
= lim C/X[QEF™(A), 0% (B)).

— k,k+n>0

The above definition is inspired by the definition of the stable homotopy groups

of spheres and CW-complexes in algebraic topology, see for instance [24], [38]. We

shall see in the next section that the complete X' —Extension Bifunctors can be
regarded as generalized Tate-Vogel cohomology functors.

Remark 5.2. In case X’ is a covariantly finite subcategory of ¢ and any A'—monic
has a cokernel in C, so the stable category C/X is right triangulated, then we can
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define the complete X — Extension Bifunctors as follows:
Ext, (=, =) :CP x C — Ab,
Ext, (4, B) = Homsc/x)[(4,0), (B,n)) = S(C/X)(S(4), £18(B)] =
= lim C/X(E (4),=5(B)), ¥Yne Z,

—k,k+n>0

where S(C/X) is the stabilization of C/X as a right triangulated category, i.e.
inverting the suspension functor Xy to an automorphism Ly of S(C/X). Observe
that in case X is functorially finite, any X' —monic has a cokernel and any X —epic
has a kernel in C, then the above complete X' —extension bifunctors are different,
since in general the stabilizations of the stable category, first as a left triangulated
category and second as a right triangulated category are not equivalent.

Remark 5.3. (1) From the above description we see that we can define Yoneda
—Tn ~ ——m N

products. Indeed if & € Exty(4,B) and 8 € Exty(B,C), then a : QQ?(A) -
S(B) and § : S(B) — S(C). Then define the Yoneda product &@ ® 3 as the
composition ™(@) o § € E/;;cz:m(A,C). In this way for any object A € C, we
obtain a Z —graded ring Ext (A4, 4).

(2) Exty (0 (4),0%(B)) = Exty | (A, B), Vn€Z, ¥r,s > 0.

(3) If C/ X is triangulated, then since C/X is triangle equivalent to S(C/X):

Fxty(4, B) = Home, x[1"(4), B] & Home, x[4,02~"(B)), Vn € Z.

The next result shows in particular that the complete X' —cohomology of C is
non-trivial only if X'~gl.dimC = oco.
Proposition 5.4. (1) If Aor B¢ Pf{f’(C), then E/)x\t;(A, B) = 0. In particular if
X —gl.dimC < oo, then E}R;(— )=

(2) Let A 5 B %5 C be a sequence in C with f an X—epic and g = ker(f).
Then for any D € C, there are long ezxact sequences:

. = Exty(A, D) = Exta(C, D) — Exta(B, D) — Extw(A, D) —

— Exiy (C,D) — Exty (B,D) = Exty (A, D) = Exty (C,D) = - (a)
.. = Exiy (D,C) = Exty(D, A) = Bxty(D, B) = Ext(D,C)
— Exty(D, A) - Exty(D, B) ~ Exty(D,C) — Extr(D,4) = --- 8)

Proof. (2) The sequence A — B — C induces a triangle Qx(C) - A - B — C
in C/X by the definition of the triangulation Ay in [14]. Applying the stabilization
functor $: C/X — S(C/X) we have a triangle (C, —1) = (4,0) — (B,0) — (C,0)
in §(C/X). Since §(C/X) is triangulated, applymg to this triangle the cohomolog-
ical functor Homgc/x)[7, (D, 0)] we get the long exact sequence (a) and applying
the homological functor Homs(c/xy[(D,0),7] we get the long exact sequence (8).

Part (1) follows directly from the definition. ]

Our purpose here is to compute the complete X' —extension bifunctors by using
suitable resolutions. To simplify things, we suppose throughout that C is an exact
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category, any X —epic is an admissible epic and any left X' —approximation (which
always exist) of an X' —Gorenstein object, is an admissible monic.

Definition 5.5. A complete X —resolution of 4 € C is a functorially X —exact
complex

XA o XX XX s XM
for which there exists ¢ := t4 € Z, such that the complex .- — X?72 — X*71

Xt — 0 coincides with a part --- = X§ = X5 ! = X3 of an X~resolution
e Xy X a9 X 9 XS 9 A 00f A

The following is a direct consequence of the definition.

Lemma 5.6. An object A has a complete X ~resolution iff there exists t > 0 such
that Q% (A4) is an X — Gorenstein object or equivalently if A has finite X — Gorenstein

resolution dimension, i.e. A € Gx(C).

In particular any X —Gorenstein object A has a complete X —resolution (choose
t = t4 = 0 in definition 5.5). For simplicity we set G(C/X) := Gx(C)/X.

Theorem 5.7. The following are equivalent:

(1) The category C is X~ Gorenstein.
(2) Any object of C has a complete X —resolution.

Proof. (1) = (2) If C is X ~Gorenstein, then by section 4, we know that there exists
d > 0, such that 9%.(A4) is an X—Gorenstein object. Since 2%.(A) is an arbitrary
X —syzygy object, there exists a functorially X'~ exact complex 0 — 02%(4) —
X% 5 X! - .... Composing the complex 0 — X° — X! — ... with a deleted
X —resolution --- = X~2 — X~ — 0 of Q%(A4), since N4.(4) € + X, we obtain a
functorially X' —exact complex, which obviously is a complete X ~resolution of A.
(2) = (1) Suppose that any object C of C has a complete X —resolution X8 (C).
Then by the above Lemma, there exists d = d¢ > 0, such that Q‘/{,(C) is an
X —Gorenstein object. By Corcllary 4.7, we have that C is X' —Gorenstein. (|

Corollary 5.8. Suppose that C is X — Gorenstein. Then VA,B € C:
Exty(4, B) = G(C/X)IQ3 0% (4), 0% (B)], Yn € Z,
where t,r > 0 are such that: (% (4), 0% (B) € G(C/X).

Proof. This follows from the description of the stabilization of the X —Gorenstein
category C as the stable category G(C/X) in section 4. d

Corollary 5.9. Suppose that there exzists d > 0, such that 0%(C) C Gx(C). Then
the complete X —extension functors are given by:
Exty(-~) = G(C/X)[0%(-), 2% ()], Vne L.

5.2. Complete (Co-)Homological Functors. Our purpose in this subsection is
to define under some assumptions, another sequence of (co-)homological functors,
using resolutions of objects. Consider an object A in C, let
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i+l
Xy oo XA 2 A Xio XA 1 X325 A0

be an X' —resolution of A and let

X2 0 A xp I xp o sxa t xa

be an X' —coresolution of A. The complex

x.(A) —)Xl fA 0 '9A A fl Xl
where ¥4 := xa 0 XA_, is called an X —biresolution of A. Since we consider all our
complexes as cohomological, X§ is in degree 0 and X% is in degree —1.
Let A, B be two objects in C having X~ blresolutxons We define X —homology
groups HX (A, B) and X'—cohomology groups fin % (A, B), as follows:

fi¥(A,B) =H"(4,X*(B)) and H}(4,B) = H'(X"(4),B).
Let 0 = A = B — C — 0 be a functorially X —exact sequence in C of objects
having X —biresolutions. By section 2, VD € C, the following sequences are exact:
- H¥(D,4) - H¥(D,B) - H¥(D,C) —» X (D, 4) - ---

.. = B%(C, D) - HY(B, D) — HY(4, D) - HE(C, D) —
Qur aim is to study the relationship between the complete X —(co)homology func-
tors ﬁf (A, B), A}(A, B) and the complete X —extensions functors E/Jx\t;(A, B),
and E}Rf (A, B), n € Z, when all these functors make sense.

So let X be functorially finite in C, any X' —epic has a kernel and any X —monic
has a cokernel in C. As always X is the left adjoint of 1y in C/X as in section 2.

Proposition 5.10. For any A, B € C, we have the following

(1) H¥,(A, B) = H3;"(4,B) = C/X(4,0%(B)) = C/X(Z"(4),B), V¥n > 2. If
the right X —approzimation of A is epic and the left X —approzimation of B
is monic, then the above identifications are true, Vn > 0.

(2) If Ext™(A, X) = Exty(X,B) = 0,¥n > 1, then H¥(A,B) = H%(4,B) =
Ext (A, B) = Exty(4,B), Vn > 1.

(3) If C(A, B) = Ext% (A, B) = Eziy(A, B) and Exty(A,X) = Exiy(X,B) =
0,Yn > 1, then H%(A, —)(B) = HX (-, B)(A),Vn € Z.

Proof. Parts (1), (2) are consequences of Proposition 2.5 and Proposition 2.8. Part
(3) follows from (1), (2) and the definitions. O

The following result is a direct consequence of the definitions.

Proposition 5.11. The following are equivalent.
(1) A€ Gx(C), i.e. Ais an X—Gorenstein object.
(2) Any X—coresolution of A is coveriantly X —ezact and any X —resolution of
A is contravariantly X —ezact.
(3) HY(X,A) =H%(A,X) =0, YneZ.
4) Aetanat.

Let A, B be objects of C and consider the complex C(X*(A), B). By diagram
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chasing, there exists the following commutative diagram with exact rows:
C/X(Sx(4),B) —— L§(A,B) —— C(A,B) — C/X(4,B)

3l | | /|
A3(4,B) —— L§(AB) — Exty(4,B) — HY(4,B).

From the above diagram we see that that there exist natural morphisms
w:C/X(Zx(=),B) 2 C/X(~,Qx(B)) ~ Hy'(~,B), v:C/X(~,B) - H(~, B)
with ¢ monic. Hence the morphisms pg : C/X(4,Qx(B)) — ﬁ}l(A,B) and
v : C/X(A,B) — H%(A, B) are isomorphisms iff C(4, B) = £zt%(A, B), which
obviously happens if the right X'—approximation of A is epic. Suppose that the
right X —approximations of A and any of its X —syzygies K} are epics. From the
exact sequence 0 — C(4, B) — C(X$,B) — C(K}, B) — £zt (A, B) — 0, we see
directly that there exists an epic £xt% (4, B) = C/X(Qx(4),B). By dimension
shifting we obtain in this way epics €7 g : £2t’y (4, B) = C/X(Q%(A), B),Vn > 1.

Dually consider the complex C(A,X*(B)). Then we have the following commu-
tative diagram, with exact rows

C/X(4,9x(B) — L{(4,B) —— C((4,B) —— C/X(4,B)

{ | | !
fi%,(4,B) —— LF¥(A,B) — Exly(4,B) —— HI(4,B)
and natural morphisms £ : C/X(4,0x(-)) — ﬁfl(A,—) and ¢ : C/X(4,-) =
Hy (4, -), with & monic. Hence the morphisms &z : C/X (4, N2 (B)) — B%,(4, B)
and (g : C/X(4,Qx(B)) — ﬁé((A, B) are isomorphisms iff (A4, B) = £xt, (A, B),
which obviously happens if the left X' ~approximation of B is monic. If the left
X —approximations of B and any of its X' —cosyzygies LE are monics, then we have
epimorphisms Zxty (A, B) — C/X(4,2%(B)),Vn > 1.
Suppose that any X —epic is epic. Then there is a natural morphism
o p ¢ HY(-,B) = Exty(~,B), VBEC, VneL.
Indeed in this case ﬁ;"(A,B) =C/X(X%(A),B) =C/X(4,0™B)),Vn >0,VA €
C. Hence ¥n > 0 we have the natural morphism:
oy Hy" (= B) 5 €/ X (-, Q%(B) S S(C/X)[S(-), 0%S(B)] = Exty (-, B),
and for n > 1, we have the morphisms:

o ¢ HY(-, B) = £xt(~, B) 5 C/X(QL(-), B) S

5, 5(c/x)[04%8(~),8(B)] = Exty(-, B).

Lemma 5.12. Let C be an exact category and X be a contravariantly finite subcat-
egory such that any X —epic is admissible epic. Then the morphism

Sa.B:C/X(4,B) — S(C/X)[S(4),5(B)]
is an isomorphism, VA € L X and VB € C.
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Proof. Let f : A — B be a morphism with S(f) = 0. Then there exists ¢ > 0
such that Q%(f) = 0. Choose X'—resolutions X% and X} of A and B, with
correspondlng X —syzygies K%, K. We denote by k7 : K} — K the induced by
f morphisms, such that k} = Q% (f). Since Q% (f) = 0, the morphism k% factors
through X4. But since A € L X, taking the push-out of the X —exact admissible
sequence 0 = K% — X' — K[! — 0 along the morphism K% — X% we see
that there exists a morphism X' — X% such that composing this morphism with
K% — X! we obtain the morphism K% — X%. This implies that in the diagram

N t \ t—1 \ t—1 N
0 » K, y XY y Kt » 0
t=1 t—1
k;l z; l ky l
N t N t—1 N t—1 N
0 » Kb y X5 y K& » 0

the morphism k% factors through X% '. But then the morphism k%' factors
through Xg_l. Hence Q%( f)= E;‘l = 0. Continuing in this way we have finally
that f = 0. Hence Sy, p is a monomorphism. Suppose now that f:8(4) —» S(B)
is a morphism in S(C/X) and choose a representative f_: Q%(4) — Q5% (B) of 1
where s > 0. Let g, : K§ — K} be a morphism such that g, = f,- Arguing as

above and using that 4 € 1X, we see that there are morphisms g9, K4 = Kj,
¥Vt < s making the above diagram commutative. We set g = go : A — B Using
Corollary 3.3 it follows that S(g) = f. Hence S4 p is an epimorphism. O

The next result shows that the complete X —Extensions functors E/)x\t;((A, B)
defined using the contravariant finiteness of X' and the stabilization functor S :
C/X — S(C/X), can be computed via resolutions if A has a complete X —resolution
or equivalently if A has finite X —Gorenstein resolution dimension.

Theorem 5.13. Let C be an exact category and X be a contravariantly finite sub-
category of C, such that any X —epic is an admissible epic and the left X —appro-
zimation of any X — Gorenstein object of C is admissible monic. Then for any B € C
the following natural morphism is defined and is an isomorphism:

ot g : Hiy(=,B) o Exty(=,B): Gx(C) — Ab.
Proof. Since any object of finite X —Gorenstein resolution dimension has a complete
X —resolution, the morphism o7, 5 is defined, VB € C. Suppose first that 4 is
X —Gorenstein. Then we have seen in section 4 that the morphisms ¢ A,B above are
isomorphisms. Hence to prove that the morphisms ¢ p are isomorphisms for 4 an
X —Gorenstein object, it suffices to prove that the morphisms S4,p : C/X(4, B) —
S(C/X)[S(A),S(B)] are isomorphisms, for all B € C. But this follows from the
above Lemma, since Gx(C) C 1 X. Nowif A € Q/x\(C) has a complete X —resolution
then Q%4.(4) is in Gx(C) for some ¢ > 0. By dimension shlftmg we conclude that the

morphism ¢ g is an isomorphism, since the functors Ext x( ,B) and H}( —,B) are
both cohomologxcal with respect to X'—exact admissible short exact sequences. O

Suppose that any A'—monic is monic. Then dually there is a natural morphism

~ ey 14
= o HY(A,-) - Ext, (4,-), VA€C, VneZ
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but here the stabilization used in the definition of the complete X' —cohomology
refers to the stabilization of C/X as a right triangulated category, i.e. inverting the
functor L. The next result, which we state without proof, shows that the complete

X .

X —Extensions functors Ext, (4, B) defined by the covariant finiteness of X', can be
computed via resolutions if B has a complete X' —resolution or equivalently A has
finite X —Gorenstein coresolution dimension. The full subcategory of C consisting
of all objects with finite X' —exact coresolutions by objects of Gx(C), i.e. the dual
of Gx(C), is denoted by Gx(C).

Theorem 5.14. Let C be an exact category and X be a covariantly finite subcate-
gory of C, such that any X —monic is admissible monic and the right X —approzima-
tion of any X — Gorenstein object of C 1s admissible epic. ThenVA € C, the following
natural morphism is defined and is an isomorphism:

e

ri_ ¢ BX(4,-) — Bxt, (4,-) 1 Gx(C) — Ab.

6. (Co-)GORENSTEIN RINGS: APPLICATIONS TO RING THEORY

In this section we apply the results of the previous sections to the familiar setting
of module categories. We fix throughout an associative ring A. We denote by
Mod(A) the category of right A—modules and by Py, resp. I, the full subcategory
of projective, resp. injective, modules. The category of finitely presented right
A—modules is denoted by mod(A), and its full subcategory of projective, resp.
injective, modules is denoted by Pa, resp. Zx. The induced stable categories
are denoted by: Mod(A)/Pay = Mod(A),Mod(A)/Is = Mod(A), mod(A)/Py =
mod(A) and mod(A)/Zx = mod(A).

Throughout we choose C to be the module category Mod(A), resp. mod—A, and
X to be one of the categories P, Ia, resp. Pa, Zy. We use the terminology and
notations of the previous sections applied to the above choices.

6.1. Homologically finite Subcategories.

Proposition 6.1. Let A be an arbitrary ring.

(1) Py s covariantly finite & A is left coherent and right perfect. In this case
the loop functor 0 : Mod(A) — Mod(A) aedmits a left adjoint Tp.

(2) 1, is contravariantly finite & A is right Noetherian. In this case the suspen-
sion functor £ : Mod(A) — Mod(A) admits a right adjoint Q.

(3) AP is covariantly finite and I is contravariantly finite & A is right Artinian.

(4) Pa is covariantly finite & A is left coherent. If A is coherent then we have
an adjoint pair (2, Xp) defined on the left triangulated category mod(A), and an
adjoint pair (Q,Xp) defined on the left triangulated category mod(A°P).

Proof. Tt is well known [12}, [19] that A is left coherent and right perfect iff P, is
covariantly finite, that A is left coherent iff Py is covariantly finite and finally that
A right Noetherian iff I5 is contravariantly finite. Since A is right Artinian iff A is
right Noetherian and left perfect, (3) is a consequence of (1),(2). If A is coherent,
then mod(A), mod(A°P) are abelian with projectives, and Py, AP are covariantly
finite in them. The remaining assertions follow from section 2. O
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By the above result, if A is an Artinian ring then all the subcategories Py, 14,
AP and I are functorially finite. For n > 1, let Q"*(Mod(A)) be the full additive
subcategory of Mod(A) generated by P, and the nt*~syzygy modules, and let
Q*°(Med(A)) = (51 N*(Mod(A)) be the full subcategory of arbitrary syzygy
modules. The categories £™(Mod(A)) and £%°(Mod(A)) are defined similarly.

Proposition 6.2. (1) If A is left coherent and right perfect then Q"(Mod(A)) is
covariantly finite in Mod(A) and Q"(Mod(A)) is reflective in Mod(A), ¥n > 1.
The category 1°°(Mod(A)) is a covariantly finite subcategory of Mod(A) and the
category 2°°(Mod(A)) is a reflective subcategory of Mod(A).
(2) If A is coherent then the categories Q" (mod(A)), Q"(mod(A°P)) are covari-
antly finite in mod(A), mod(A°P) and the categories Q" (mod(A)), 2™ (mod(A°P))
are reflective in mod(A), mod(A°P) respectively, ¥n > 1.

Proof. Let Ip be the left adjoint of (@ in the stable category, which exists by
Proposition 6.1. Let A be a right A—module and let

A g A 7t g, P? A fin
S P L PAS. =, pa 1
be a PA—coresolution Wthh is a result of the composition of the exact sequences

Al prpp p =l —) P1 — L4 and so on, where 72 are left P —approxima-
tions and L# = Coker(n{_,). Then in Mod(A), we have ¥3(4) = L4 and
OSE(4) = Ker(w,';‘_l). We set for simplicity Z3(A) = LA. Then QZ3(4) =
Ker(n2_,), and we have the following exact commutative diagrams, Yn > 0:

£3(4) » PA s+ DRt (4) —— 0
| | |
0 —— QEFH(A) s PA » EH(4)

Hence we obtain morphisms p_ : 3(4) = QEpt(4), Vn > 0. This system of
morphisms induces a tower

455 azp(a) 28 g252(4) 2%, gavs (4)
in Mod(A), and we have projective presentations of increasing length:
(A1): 0 QZp(4) = P! - Tp(4) - 0,
(42): 0> Q?TL(4) - QM - P - T3(4) — 0,
(43): 0= 2°TH(4) - @Q** = Q™ = P 5 33 (4) — 0,
such that the tower A — QZp(4) — Q2TL(4) - 2S3(4) — --- induces
morphisms between the presentations. Hence we obtain a dlrect system of projective

presentations A — (A;) — (Az) — ---. Taking direct limits in this direct system,
we obtain an exact sequence

0 = limQ"LE — IimQ™" — limQ™*1" = imQ™*?" & ...
— - — —
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Since A is left coherent and right perfect, the above exact sequence is a coresolution
of imQ"E%(A) by projectives. Hence l_ii'nQ"Eg(A) € N°(Mod(A)), and there
—

exists a canonical map d2 (4) = l'i’ndfl(A) t A — imQ"TP(A), where d%(A) =
po o py) o0 Ny q) : A = QPER(A). Observe that the morphisms
d2(A) : A — Q"SR(A) by construction are left Q"(Mod(A))—approximations of
A. We claim that the map d2 (A4) is a left Q°°(Mod(A))—approximation of A.
Indeed let @ : A — B with B € 2°(Mod(A)). Since B € Q"(Mod(A)), Vn > 1,
and since d%(A) are left Q"(Mod(A))—approximations of A, there are morphisms
gn : Y"TE(A) — B with d2(A4)og, = a. Taking direct limits, we have that d2 (A)o
limg, = a. Hence Q®°(Mod(A)) is covariantly finite. Let 92°°(A) be the image of
[

@Q"EQ(A) in Mod(A). Then obviously the morphism d2 (4) : 4 = Q%®(A4) is

the reflection of A in 2°(Mod(A)) and the morphism d2(4) : 4 — Q"3 (4) is
the reflection of A in Q"(Mod(A)). Part (2) is left to the reader. O

If A is right Noetherian, then there is a similar result for the categories of
cosyzygy modules. We leave its formulation to the reader. Now let A be left co-
herent and right perfect. Consider the reflection 0% : Mod(A) — Q°(Mod(A)) of
Mod(A) in Q°(Mod(A)) constructed in the Proposition 6.2, and let R : R(Mod(A))
~ Mod(A) be the costabilization functor. By section 3, R(Mod(A)) = K 4.(Pa) is
the homotopy category of acyclic complexes of projectives.

Corollary 6.3. Let A be left coherent and right perfect. If Mod(A) is Py —Co-
Gorenstein, then the costabilization functor R : R(Mod(A)) — Mod(A) admits a
left adjoint Q2 : Mod(A) — R(Mod(A)).

Proof. If Mod(A) is Pp—Co-Gorenstein, then from section 4 we have an identifica-
tion R{Mod(A)) = 02°°(Mod(A)) and the assertion follows by Proposition 6.2. O

Remark 6.4. (1) Our standard assumptions in this paper refer to pairs (C, X),
where C is an additive category and any X' —epic has a kernel, and then we usually
require that any left X —approximation of an X' —Gorenstein object is an admissible
monic. The most natural example is the pair (Mod(A),P4). Dually the most
natural example of a pair satisfying the dual assumptions is the pair (Mod(A),I4).

(2) One can define X —Gorenstein objects in Mod(A), choosing X to be the full
subcategory of flat modules or the FP-injective modules or any other interesting
subcategory of modules and to apply the theory. We leave the details to the reader.

Suppose now that A is left coherent and right perfect, so that P, is functorially
finite. Then as in section 2, the functors £zt (A, B) and £ztp, (A, B) are defined.
Obviously £ztp, (~, ~) are the usual extension functors. The subcategory P4 =
{A € Mod(A) : Zztp, (P, A) = 0,¥n > 1 and Ezip, (P4, A) = Homa (P, A)}
consists of of all modules 4 such that there exists an exact sequence 0 =& 4 —
P — P! — ... where P’ are projective modules, such that the sequence --- —
Homy (P!, Pa) — Homa(P% P,) — Homa(A4,P,) — 0 is exact. Observe that
the subcategory P} is defined always, although the derived functors ztp . may
not exist globally. Then for an arbitrary ring A, the subcategory Py denotes the
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full subcategory of all modules with the property described above. For an arbitrary
ring A the definitions of section 2, take the following form.

Definition 6.5. (1) A module A is called (projectively) stable if A € +P,.
(2) A module A is called n—torsion-free if

Tzt (P4, A) = 0,1<i <n and Zatp, (Ps, A) = Homy (P4, A).

(3) A is called torsion-free if A € P}, or equivalently A is n—torsion-free,
vn > 1.

We leave to the reader the formulation of the above definitions using the sub-
category Pj and the subcategories In,Zs. The above terminology is natural since
if A is a two-sided Noetherian (or more generally two-sided coherent) ring , then
the modules in P} are exactly the n—torsion free modules ¥n > 1, in the sense of
Auslander-Bridger [3]. ’

Definition 6.6. [20], [3] A module A is called Gorenstein-projective if 4 is sta-
ble and torsionfree, i.e. A € 1Py ﬂPlJ\-. Equivalently there exists an exact sequence
.vv» P71 5 P® — P! — ... of projective modules with Im(P~* — P%) = A
and the sequence remains exact applying Homa (—,Py). The full subcategory of
all Gorenstein-projective modules is denoted by Gp (Mod(A)), and the induced sta-
ble category modulo projectives is denoted by Gp(Mod(A)). The full subcategory
G1(Mod(A)) of Gorenstein-injective modules is defined dually and the induced
stable category modulo injectives is denoted by Gy(Mod(A)).

By the results of sections 2,4, Gp(Mod(A)) is the largest resolving subcategory of
Mod(A), such that the stable category Gp (Mod(A)), is full triangulated subcategory
of Mod(A) and dually G1(Mod(A)) is the largest coresolving subcategory of Mod(A),
such that the stable category Gy(Mod(A)), is a full triangulated subcategory of
Mod(A). If A is a two-sided Noetherian (or coherent) ring, the finitely presented
Gorenstein-projective modules Gp(mod(A)), are exactly the modules in mod(A)
with zero G-dimension in the sense of [3]. We note that the categories of Gorenstein-
projective and Gorenstein-injective modules were introduced also in [20].

In case A is left and right coherent, then it is not difficult to see that the left
adjoint Xp of the loop functor € : mod(A) — mod(A) is given by Lp = TrQTr,
where Tr is the Auslander-Bridger duality [3], and there exists an exact sequence
0 — Ext!(Tr4,A) - A - P4 — %p(A) = 0, where A — P4 is the left
Pa—approximation. This follows from the easily established fact that a left Py~
approximation of A can be obtained as follows. We denote by d = (—)* both the
A—dual functors, d = (-)* = Homa{(—,A). Let f: Q — A* be an epimorphism

with @ € AP. Then the composition A — A** EAN Q" is a left Py —approximation
of A, where A — A** is the canonical morphism. Moreover, setting D} := Q¥4
the unit dfi : A — D2(4) of the adjoint pair (£%,0") is the natural morphism
introduced in (3], in case A is Noetherian. Similarly setting JZ = £5QF, the counit
of the adjoint pair (£%,Q*) is the natural morphism introduced in [3]. Note that
the functors J%, D play a fundamental role in [3]. One can develop the theory of [3]
for arbitrary modules in a right Noetherian ring A, using that in the stable category

Mod(A) modulo injectives, the suspension functor ¥ : Mod(A) — Mod(A) has a
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right adjoint Q1 and similarly in a left coherent and right perfect ring using that
in the stable category Mod(A) modulo projectives, the loop functor 2 : Mod(A) —
Mod(A) has a left adjoint Sp. Hence in each case one can define the corresponding
functors D2 = QFTk, J2 = T*QE, and D} = Q*Th, J2 = Th0F and also the
corresponding (adjunction) morphisms.

6.2. Complete Extension Functors, Complete Resolutions and Goren-
stein Rings. A complete projective (injective) resolution of a module is a Pp—
complete (I —complete) resolution in the sense of section 5. In this case the notions
of complete projective or injective resolutions coincide with the notions introduced
in [18]. First we note the following Corollary of section 5. The last part follows
from the description of the stabilization of the stable module category in section 3
and the Morita theorem of Rickard [41].

Corollary 6.7. (1) A right A—module A has a complete projective resolution iff A
has finite Gorenstein-projective resolution dimension.

(2) A right A—module A has a complete injective resolution iff A has finite
Gorenstein-injective resolution dimension.

(3) VB € Mod(A), the complete projective extension functors are computed as:

fip (-, B) = Extp(-,B) : Gp(Mod(A))” — Ab.

(4) VA € Mod(A), the complete injective estension functors are computed as:

fil (A4, —) = Exty(4,-) : Gi(Mod(A)) — Ab.

(5) If A and T are derived equivalent rings (and A,T' are right coherent), then
the projective stabilizations of their modules categories are triangle equivalent:

S(Mod(A)) = S(Mod(T'))  (and  S(mod(A)) = S(mod(I))).

Definition 6.8. An arbitrary ring A is called a right Gorenstein ring if any
projective right module has finite injective dimension and any injective right module
has finite projective dimension.

The following result presents various characterizations and properties of right
Gorenstein rings. Its proof is a direct consequence of the results of the previous
sections and of Propositions 6.1, 6.2.

Theorem 6.9. Let A be an arbitrary ring. Then the following are equivalent.

(1) A is a right Gorenstein ring.

(2) Mod(A) is Py — Gorenstein category.

(3) Mod(A) is In— Gorenstein category.

(4) (+PA, P, P,) is an Auslander-Buchweitz context.

(5) (Ix,I,1a) is o dual Auslander-Buchweitz contezt.

(6) PP = Ip

(7) d:=sup{pd.l: I €Ip} =sup{idP:PecPr}<oo.

(8) The functor *Ps/Px — D*(Mod(A))/Kb(P4) is a triangle equivalence.

(9) The functor It /Ix — D*(Mod(A))/K (1) is a triangle equivalence.
(10) K*(Xp) = K¥(Pa) as full subcategories of D*(Mod(A)).
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(11) Any right A—module has a complete projective resolution.

(12) Any right A—module has a complete injective resolution.

(13) Any right A—module has finite Gorenstein-projective resolution dimension.

(14) Any right A—module has finite Gorenstein-injective resolution dimension.

(15) The natural functor Db (Gp(Mod(A))) — DP(Mod(A)) is a triangle equiva-
lence.

(16) The natural functor D*(G1(Mod(A))) — D*(Mod(A)) is a triangle equiva-
lence.

If one of the above equivalent statements is true, then we have the following:
(@) Mod(A) is Pp—Co-Gorenstein and 15— Co-Gorenstein. Moreover:

Gp(Mod(A))—gl.res.dim(Mod(A)) = G1{Mod(A))—gl.cores.dim(Mod(A)) = d.

(B) The categories P = I are functorially finite, the category Gp(Mod(A)) is
contravariantly finite and the category Gi(Mod(A)) is covariantly finite.

(7) If A is left coherent and right perfect, then Gp(Mod(A)) is functorially finite.
If A is right Noetherian, then Gr(Mod(A)) is functorially finite.

(8) We have: 9°(Mod(A)) = Q4(Mod(A)) = Gp(Mod(A)) and £®°(Mod(A)) =
£4(Mod(A)) = G1(Mod(A)). Hence PP = P,%d and I = I5%, where P,%d, resp.
I,%d, is the full subcategory of all modules having projective, resp. injective, dimen-
ston bounded by d. The right finitistic projective dimension FPD(A) and the right
finitistic injective dimension FID(A) of A are finite: FPD(A) = FID(A) = d < 0.

(¢) There are triangle equivalences:

K4c(Pa) = Gp(Mod(A)) & Py /Py = *(PT)/Pa = D*(Mod(A)) /K (Py) »
~ D" (Mod(A))/KP(In) = (IX) /1 = Iz /Ip = Gi(Mod(A)) & K 4.(In).
The costabilization functors are the inclusions
Gr (Mod(A)) = Mod(A),  Gr(Mod(A)) = Mod(A)
and the stabilization functors are given by
0740 : Mod(A) = Gp(Mod(A)), =79%?: Mod(A) — Gi(Mod(A)).
(¢) The complete projective extension functors are given VB € Mod(A), by
Extp (-, B) = Mod(A)[2"Q%(~), Q4(B)), Vn € Z.
The complete injective extension functors are given VA € Mod(A), by
Exth (4, —) = Mod(A)[24(4), Z"24(-)], Vn € Z.
The triangle equivalence Gp(Mod(A)) = Gi(Mod(A)) in (€), induces isomorphisms
Exth(—, B)(4) = Ext!(4,—)(B).
Hence the complete extension bifunctor is defined:
Ext*(—, —) : Mod(A)°? x Mod(A) — Ab.

() If A and T are derived equivalent right Gorenstein rings then there are triangle
equivalences:

Gp(Mod(A)) = Gp(Mod(I')) and Gy(Mod(A)) ~ Gi(Mod(T)).
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(8) A is a QF-ring < Kac(Pa) ~ Mod(A) = D (Mod(A))/K8(Pr) & Kac(la)
~ Mod(A) = D*(Mod(A))/K*(Ia) & Gp(Mod(A)) = Gi(Mod(A)) & A is a right
Gorenstein ring of dimension zero & the above equivalences are true for A°P.

(1) A is (homologically) regular, i.e. any right A—module has finite projective di-
mension & Gp(Mod(A)) = Pa & Gi(Mod(A)) = Iz & the stabilization of Mod(A)
is trivial & the stabilization of Mod(A) is trivial. Similarly for left A—modules.

It follows by the above Theorem and also by the results of sections 4,5 that the
complete projective extension functors coincide with the Tate-Vogel cohomology
functors, see [17], (18], {25], [26], (39]. Our results generalize the corresponding
results of the above papers in much more general situations. In particular the above
Theorem shows that for module categories, the Gorenstein property of Mod(A) with
respect to the projectives and the injectives coincides.

From the above Theorem if A is a QF-ring or if r.gl.dimA < oo (more generally
if any right module has finite projective dimension), then A is right Gorenstein.
QObserve however that in these cases the theory is trivial.

Remark 6.10. The general setting of sections 3,4,5 can be applied directly to
the study of lattices over (Gorenstein) orders in the sense of Auslander [2], with
analogous results. We leave the details to the reader.

Corollary 6.11. For a Noetherian ring A the following are equivalent.

(1) A is a right Gorenstein ring.
(2) A is a left Gorenstein ring.
(3) i.daA < o0 and i.dAj < 0.

Proof. (1) & (3) If A is a right Gorenstein ring, then i.dAy < oo. By a result
of Iwanaga [35], i.daA = sup{flat.dimEy; Ex € Ix}. Since any right injective has
finite projective dimension bounded by d, we havei.dp A < co. The converse follows
from the results of [35]. The equivalence (2) < (3) follows similarly. [m]

So the Gorenstein property is symmetric for Noetherian rings. In this case
a Noetherian left (or right) Gorenstein ring is called simply a Gorenstein ring.
By the above Corollary it follows that our definition of a Gorenstein ring agrees
in the Noetherian case, with the definition introduced by Iwanaga [35] and used
extensively by Enochs-Jenda, et al, in a large list of papers, see for instance [20], [22].
Hence our theory covers, presents new features, and generalizes the corresponding
theory developed in [20], [22]. In particular we recover the results of [5] which were
obtained using tilting theory, since an Artin algebra is called Gorenstein in the
sense of Auslander-Reiten iff i.daA < oo and i.dApy < o0.

Example 6.12. Let A be a Noetherian ring.

(1) Trivially A is Gorenstein in case A is QF or of finite global dimension.

(2) If A is Gorenstein and G a finite group, then the group ring AG is Gorenstein.
Any Quasi-Frobenius extension of a Gorenstein ring is Gorenstein [35]. It is not
difficult to see that the ring of the lower triangular matrices of any size over a
Gorenstein ring is Gorenstein.

(3) If A is an Artin algebra and G a finite group of automorphisms of A, then
the skew group ring AG is Gorenstein iff A is Gorenstein [5]. If A,T are finite-
dimensional algebras over a field k, then A®, I is Gorenstein iff A, I’ are Gorenstein
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[5]). Also it is not difficult to see [13] that if A is a Cohen-Macaulay Artin algebra
[5] with dualizing bimodule w, then the trivial extension A xw is Gorenstein.

(4) Let A be an F—Gorenstein Artin algebra, were F is an additive subfunctor
of £zt (—,—) with enough projectives and injectives, in the sense of Auslander-
Sglberg [9]. Then mod(A) is P(F)—Gorenstein and Z(F)—Gorenstein category in
the sense of section 4, where P(F) and Z(F) are the categories of F—projective
and F—injective modules respectively.

(5) If A is a local Artin algebra with Jac(A)? = 0, then: A is Gorenstein iff A is
representation-finite.

(6) There is a extensive literature concerning commutative (local) Noetherian
Gorenstein rings. For more information we refer to {3], [11].

Definition 6.13. A ring A is called right Co-Gorenstein if any arbitrary syzygy
module is Py —torsion-free or equivalently if Mod(A) is Py —Co-Gorenstein.

We have seen that if A is Gorenstein then A is left (and right) Co-Gorenstein.
We don’t know if the converse is true. We don’t know also if for a (Noetherian)
ring A, being left Co-Gorenstein is equivalent to being right Co-Gorenstein.

6.3. Artin Algebras. For the remaining of this section, we assume that A is an
Artin algebra [10]. We denote by d = Homa(—,A) or by (—)* both the A—dual
functors and by D the usual duality of Artin algebras. All the results of this and
the previous sections are true for the module categories Mod(A) or mod(A) of a
(Gorenstein) Artin Algebra A. In particular we have the following,.

Corollary 6.14. (i) The following are equivalent.

(1) A is Gorenstein.
(2) mod(A) or equivalently Mod(A) is a Gorenstein category.
(3) PR° =1I¢-
(4) i.dpA < 0 and i.dAj < oo, in which case i.dpAA = i.dA,.
(5) There exists a triangle equivalence Gp(mod(A)) ~ D*(mod(A))/KP(Py) or
equivalently a triangle equivalence Gp(Mod(A)) ~ D*(Mod(A))/Kb(P4).
(6) There exists a triangle equivalence Gz(mod(A)) ~ Db(mod(A))/Kb(Zn) or
equivalently a triangle equivalence Gi(Mod(A)) ~ DP(Mod(A))/Kb(1,).
(7) The left-hand side analogues of (2), (3), (5) and (6).
If this is the case, the categories PR°, I3, Gp(mod(A)), Gz(mod(A)) are functori-
ally finite in mod(A) and any finitely presented right A—module has a minimal left
and right X' —approzimation, where X = P°,I3°, Gp(mod(A)), or Gz(mod(A)).
The categories Gp(mod(A)), Gz(mod(A)), PR, I have Auslander-Reiten sequen-
ces, and the triangulated categories Gp(mod(A)), Gz(mod(A)) are triangle equiva-
lent and they have Auslander-Reiten triangles.
(ii) (@) If A is Gorenstein, then there are isomorphisms

Ko(mod(A)) = Ko(Gp(mod(A))) and Ko(med(A)) = Ko(Gp (mod(A))).
(B) If A, T are derived equivalent Gorenstein algebras, then
Gp(mod(A)) ~ Gp(mod(T')), |Det(ca)| = [Det(cr)|, Ker(ca) = Ker(cr).
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Moreover the triangle equivalence Gp(mod(A)) = Gp(mod(T')) lifts to a triangle
equivalence mod(A) ~ mod(I") iff A,T' are selfinjective.

(y) If two Gorenstein Artin algebras have equivalent categories of Gorenstein
-projective or Gorenstein-injective modules, then they are derived equivalent.

(8) A is selfinjective & Kac(Pa) = mod(A) = Db (mod(A))/KP(PA) & Kac(Za)
~ mod(A) ~ D?(mod(A))/Kb(Za) & the above equivalences are true for A%

Remark 6.15. The equivalence (i)(1) < (2) has been proved first by Hoshino [34]
and by Auslander-Reiten [5] and in case A is a commutative local Noetherian ring it
has been proved by Auslander-Bridger [3]. The last part of (i) has been proved first
by Auslander-Reiten [5], using tilting theory. The direction (1) => (4) in (i) of the
above Corollary was proved first by Rickard [42] in the selfinjective case and then
by Happel [32] in the Gorenstein case. The generalized form of the Happel-Rickard
Theorem can be stated as follows (this is also a consequence of a general result due
to Keller-Vossieck, see [36}):

o For any right coherent ring A the stabilization of mod(A) is triangle equivalent
to D?(mod(A))/Kb(Pa). Further if two right coherent rings A and T' are
derived equivalent, then their stable module categories mod(A), mod(T") have
triangle equivalent stabilizations.

An Artin algebra A is called right Py-Co-Gorenstein if any finitely presented
arbitrary syzygy right module is torsion-free or equivalently if mod(A) is Pp—Co-
Gorenstein category. Similarly we can define, using the costabilization of mod(A),
when A is right Tpo — Co-Gorenstein. Since the duality D induces an exact duality D :
R(mod(A)) = R(mod(A°?)) and a duality D : Q%°(mod(A)) — Z°(mod(A°P)),
we have that A is right Py —Co-Gorenstein iff A is left AZ—Co-Gorenstein. From
now on we call a Py —Co-Gorenstein algebra, simply right Co-Gorenstein.

Corollary 6.16. (1) Suppose that f.p.dA < co. Then for the costabilization func-
tor R : R(mod(A)) — mod(A) we have: KertR = 0.

(2) If the costabilization functor R : R(mod(A)) — mod(A) satisfies KerR = 0 (
in particular if A is right Co-Gorenstein ), then A satisfies the so-called Nunke con-
dition for finitely presented left modules: if A is a finitely generated left A—module
satisfying Ext} (A,A) = 0,Vn > 0, then A = 0. In particular if A is right Co-
Gorenstein, then A satisfies the Generalized Nakayama Conjecture [10].

Proof. (1) If A satisfies the finitistic dimension conjecture with f.p.dA = d < oo
and P*® is a non contractible complex in KerR, then we have a non contractible

complex of projectives 0 — P° Joy pr Iy g mod(A). Hence 3t > 0 such
that Im(f;) is not projective. Since p.d.Im(fi+4) < oo, we have p.d.Jm(fi4+q) < d.
Hence Im(f;) is projective and this is not the case. So KerR = 0.

(2) Let P* — A be a projective resolution of A. Then we have an acyclic complex
of projectives P** in mod(A). Viewing P** as an object of the costabilization
R(mod(A)), we have that R(P**) = 0. Since KerR = 0, P** = 0 in R(mod(A)),
i.e. P** is contractible. But then P* = P*** is contractible, and then A =0. [

Proposition 6.17. (1) A is left Co-Gorenstein iff 1% (mod(A°P)) C +P. In this
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case we have: °(mod(A°)) = Gp(mod(A°P)) C 1P and 1Py = Gp(mod(A)) C
Q2% (mod(A)).

(2) A is right Co-Gorenstein iff 2°(mod(A)) C L1Pa. In this case we have:
Q°°(mod(A)) = Gp(mod(A)) C 1P, and P = Gp(mod(A°?)) C Q% (mod(A°P)).

Proof. (1) By our previous results it suffices to show that if A is left Co-Gorenstein
then 1Py C Gp(mod(A)). Let A in 1P5. Then Tr(A) € 0% (mod(A°P)). Since A is
left Co-Gorenstein, 2°°(mod(A°?)) C 1 P. Hence Tr(A) € xP and A is Gorenstein-
projective [3]. Part (2) is dual. O

The following is a direct consequence of the above Proposition.

Corollary 6.18. (1) A is right Co-Gorenstein iff the A—dual functor d induces a
duality d : xP — Q%°(mod(A)) or equivalently an ezact duality d : Gr(mod(A°?P))
- R(mod(A)). |
(2) A is left Co-Gorenstein iff the A—dual functor d induces a duality d : 1Py —
0% (mod(A°P)) or equivalently an ezact duality d : Gp(mod(A)) = R{mod(A°?)).
(3) A is left and right Co-Gorenstein iff the A—dual functor d induces an ezact
duality d : R(mod(A)) — R(mod(A°?)). In this case we have:

Q°(mod(A)) = Gp(mod(A)) = 1P, and +P = Gp(mod(A®?)) = Q°(mod(A%P)).

Lemma 6.19. (1) The following are equivalent:
(@) i.dAj < .
(8) PR C I}
(7) 3d > 0: Q4(mod(A)) C L1Ps.
If this is the case, then: +PL = 1Py and +P = Gp(mod(A°P)).
(2) If i.dAjp < oo, then A is right Co-Gorenstein.
(3) If the category Q%(mod(A)) is closed under extensions, ¥d > 1, then A is
right Co-Gorenstein.

Proof. Part (1) is easy and the proof is left to the reader. Suppose i.dAx =d < 00.
Then by (1) we have Q4(mod(A)) C +P,. But then 2°(mod(A)) C 1Ps. Then A
is right Co-Gorenstein by Proposition 6.17. Part (3) follows from [7]. ]

Proposition 6.20. The following are equivalent.
() A is Gorenstein.
(B) A is left Co-Gorenstein and i.dAx < oo.
() A is right Co-Gorenstein and i.dpA < o0.

Proof. We prove only that () is equivalent to (), since the proof of the other parts
is similar. By our previous results condition (a) implies (8). Suppose that (3) is
true. Since i.dAp = d < oo, we have by Lemma 6.19 that Q¢(mod(A)) C 1P;.
Hence by Proposition 6.17(1), we have 29(mod(A)) C 1Py = Gp(mod(A)) C
2% (mod(A)) C Q%(mod(A)). This implies that Gp(mod(A)) = Q%(mod(A)). Then
by Corollaries 4.11, 6.14 we have that A is Gorenstein. 0O

The next result includes simple proofs of some results due to Auslander-Reiten
(7], see also [29]. For the notion of a k—Gorenstein algebra we refer to [7).
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Corollary 6.21. (1) Suppose that A is k— Gorenstein Vk. Then A is left and right
Co-Gorenstein and A satisfies the Generalized Nakayama Congjecture.
(2) The following are equivalent:
) A is Gorenstein.
A is k— Gorenstein Vk and i.dAp < 0o (or i.dAA < 00 ).
A is k—Gorenstein Vk and P (or P, ) is contravariantly finite.
(8) A is k—Gorenstein Yk and f.p.dA < oo (or f.i.dA < oo .
(€) A is right Co-Gorenstein and f.p.dA < 0o (or f.idA < o).

(¢) A is right Co-Gorenstein and Qw@(A)) = mod(A).

Proof. (1) Suppose that A is k—Gorenstein for all k. Then by [3] we have that
Vd > 0, any d—syzygy module is d—torsionfree. Hence the category Q% (mod(A))
coincides with the category of torsionfree modules. Then by definition A is right
Co-Gorenstein. Since the notion of a k—Gorenstein algebra is left-right symmetric,
we have also that A is left Co-Gorenstein.

(2) (o) & (B) Follows directly from (1) and the above Proposition. (a) = () fol-
lows from Corollary 6.14. (y) = (6) holds for any Artin algebra (see [6]) and (§) =
(¢) follows from (1). (¢) = (a) Let fin.p.dimA = d < co. Then P<¢(mod(A)) =
P> (mod(A)), where P=¢(mod(A)) is the full subcategory of all modules with pro-
jective dimension bounded by d. By [7], we have that 29(mod(A)) = Q4+t(mod(A)),
¥t > 0. Hence Q%(mod(A)) = Q% mod(A)). Since A is right Co-Gorenstein,
by Theorem 4.10 we have 2°(mod(A)) = Gp(mod(A)). Hence Gp(mod(A)) =
%(mod(A)), and by Corollary 6.14, A is Gorenstein. The equivalence (a) < (¢)
follows from our previous results. The parenthetical cases are treated similarly. [

(c
(8
(v

é

By the above results it is reasonable to conjecture:
o A is right Co-Gorenstein < A is left Co-Gorenstein.

If the conjecture is true, by Proposition 6.18 and Lemma 6.17(2), the Auslander-
Reiten Conjecture, that any Artin algebra is Gorenstein if 1.dAjy < oo, is true. In
any case we have the inclusions Gor C Yk—Gor C Co — Gor between Gorenstein
algebras, k—Gorenstein algebras Vk and (left and right) Co-Gorenstein algebras.
The above inclusions also show that if any (left and right) Co-Gorenstein algebra is
Gorenstein, then another Conjecture due to Auslander-Reiten is true, namely that
any k—Gorenstein algebra Vk is Gorenstein.

The next Corollary follows directly from the above results and its proof is left
to the reader. We note only that if dom.dimA = oo then 2°°(mod(A)) = Dom(A),
is the full subcategory of modules of infinite dominant dimension [37].

Corollary 6.22. The following are equivalent.
(1) A is selfinjective.
(2) A is Gorenstein and dom.dimA = oo.
(3) A is ( left or right ) Co-Gorenstein and dom.dimA = oo.

Clearly the A—dual functors induce a duality d : Gp(mod(A)) = Gp(mod(AP))
and an exact duality d : Gp(mod(A)) — Gp(mod(A°P)), and the Nakayama func-
tor N* induces an equivalence N* : §p(mod(A)) — Gz(mod(A)) and a triangle
equivalence N¥ : Gp(mod(A)) = Gz(mod(A)). The next result contains another
characterization of Gorenstein algebras, which is based on the notion of duality
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of derived categories. It follows that the Gorenstein property is invariant under
derived equivalence.

Theorem 6.23. (1) For an Artin algebra A, the following are equivalent:

(a) A is Gorenstein.

(8) The functor d = Homa(—,A) induces an ezact duality:

Q”Hom(—,A) =§"d : D (mod(A)) — D*(mod(AP)).
(7) The functor N* = — ®, D(A) induces a triangle equivalence:
- ®K D(A) =L’N* : D’(mod(A)) — D*(mod(A)).
In this case we have the following commuting diagram of localization sequences,
where all vertical arrows are ezact dualities:
0 —— K¥Py) —— Db(mod(A)) —— Gp(mod(A)) —— 0

cuol w] |
0 — K*(1P) —— D*(mod(A°)) —— Gp(mod(A°?)) —— 0
and e commuting diagram of localization sequences, extending the "evact sequences”
0 — Pp = mod(A) — mod(A) = 0, 0 — T, — mod(A) = mod(A) — 0
where the vertical arrows are triangle equivalences:

0 — K¥(Py) —— Db(mod(A)) —— Gp(mod(A)) — 0

R |

0 — K¥Zp) —— D’(mod(A)) —— Gr(mod(A)) —— 0
(2) If A and I’ are derived equivalent, then: A is Gorenstein & T' is Gorenstein.

Proof. (1) (a) = (8) If A is Gorenstein, then since the functor d induces a duality
between the left and right Gorenstein projective modules, condition (3) follows from
parts (15), (16) of Theorem 6.9 and Corollary 6.14. (8) = () Trivial. (7) = (o) It
is well-known that under condition (), the module D(A) is a (generalized) tilting
module, and this is equivalent to i.dpA < 0o and i.dAj < 00, i.e. A is a Gorenstein
algebra. Clearly the above diagrams commute by construction.

(2) If F : D*(mod(A)) — D*(mod(I")) is a triangle equivalence, then by [43] we
have that F' commutes with the total derived functors LbNX and LbNF . Hence the
assertion follows from part (1). a h O

We note that if A is Gorenstein, then a Gorenstein-projective module is called
a Cohen-Macaulay module in [5]. Since D induces a duality 1P =~ Iy, if A is
Gorenstein, the Gorenstein-injective modules Gz{mod(A)) = T} coincide with the
Co-Cohen-Macaulay modules in the sense of Auslander-Reiten [5], i.e. with the full
subcategory D(1P). Note that many of the above results for Artin algebras can be
extended easily to (Gorenstein) rings with a Matlis duality in the sense of [21].

We close this section discussing briefly the complete projective or injective exten-
sion functors for an Artin algebra A and the relative homology induced in mod(A)
using the contravariant finiteness of Zy and the covariant finiteness of P5. Of course
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the relative homology using the covariant finiteness of Zpo and the contravariant
finiteness of Py is the usual (absolute) homology in mod(A). Define P5 —gl.codimA
= sup{Pp—codimA4; A € mod(A)}, Za—gl.dimA = sup{Zy—dimA; A € mod(A)}
as in section 2, using the covariant finiteness of Px and the contravariantly finite-
ness of Zp. Since Pa,Za are functorially finite the complete functors H3 (-, B),
HZ (A, -) are defined and it is easy to see that:

H3''(4,B) = DHZ™(TrDB, 4) and H3"(4, B) = DH3"'(B,DTr4), ¥n > 0.

Similarly for the complete functors ﬁf(A, —). Having describing the left projective
approximation of a right A—module, it is not difficult to see that a right injective
approximation of A is the composition N*(P) — N*N~=(4) — A, where P —
N—(A) is an epimorphism with P projective and N*N~=(4) — A is the counit of
the adjoint pair (N*,N~). In particular the right adjoint of the usual suspension
functor " in mod(A) is given by DTrQ™TxD, ¥n > 0, and there exists an exact
sequence 0 — DTrQTrD(A) —+ N*(P) - A — DEzti (TrD(A4),A) — 0. The
proof of our final result is left to the reader, noting that most of the assertions can
be generalized to right Noetherian or left coherent and right perfect rings.

Corollary 6.24. (1) Pyo—gl.codimA = 0 iff gl.dimA < 2 iff Ty —gl.dimA = 0 iff Py

is a reflective subcategory of mod(A) iff Zp is a coreflective subcategory of mod(A).

In this case the reflection of A in Pp is given by the natural morphism A — A**

and the coreflection of A in I, is given by the natural morphism NYN—(A4) — A.
(2) If gl.dimA > 2, then: Py—gl.codimA = gl.dimA — 2 = Z, —gl.dimA.
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