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Let C be an abelian or exact category with enough projectives and let P be 
the full subcategory of projective objects of C .  We consider the stable category 
C/P modulo projectives, as a left triangulated category [14], [36]. Then there is a 
triangulated category S(C/P)  associated to C/P,  which is universal in the following 
sense. There exists an exact functor S : C/P -t S(C/P)  such that any exact functor 
out of C/P to a triangulated category has a unique exact factorization through 
S. The triangulated category S(C/P)  is called the stabilization of C/P and the 
functor S is called the stabilization functor. There is also the dual construction 
of the costabilization R(C/P)  of C/P,  which is a triangulated category equipped 
with an exact functor R : R(C/P)  -+ C/P,  the costabilization functor, such 
that any exact functor from a triangulated category to C/P has a unique exact 
factorization through R. If C has enough injectives we can stabilize and costabilize 
in the above sense the stable category modulo injectives. These constructions have 
topological origin and make sense for any stable category C / X ,  where now C is an 
additive category and X is a contravariantly or covariantly finite subcategory of C 
in the sense of Auslander-Smal0 [8], assuming that C satisfies some mild condition. 
The stabilization construction in our setting is due to Heller [33], see also [24], [44], 
and later was used by Keller-Vossieck in 1361. For the costabilization construction 
we refer to the work of Grandis [27]. 
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4548 BELIGIANNIS 

Our purpose in this paper is to  investigate when the stabilization S(C/P)  or the 
costabilization R(C/P) can be represented as a full (triangulated) subcategory 7 of 
C/P.  In the first case we call the abelian or exact category C, P-Gorens te in ,  and 
in the second case we call the abelian or exact category C, P-Co-Gorenstein.  
In both cases 7 is realized by the stable category A I P  of a specific resolving 
subcategory A of C. In general if A is any resolving subcategory of C, then our 
results are dealing with the relations between the coordinates of the triple (C, A, P )  
in the following three levels. First in the exact level, i.e. inside the exact category 
C, second in the stable level, i.e. inside the stable categories C / P ,  A l p ,  CIA and 
finally in the derived level, i.e. inside the derived categories Vb(C), Vb(A), 'Db(p) 
and their Verdier-quotients v b ( C ) / V b ( ~ ) ,  vb (A) /vb(p) ,  v ~ ( c ) / v ~  (A). 
We study P-(Co-)Gorenstein categories with respect to the above three levels, 
with a close view to applications in the module theory of an associative ring or an 
Artin algebra. The organization of the article is as follows. 

In section 2, we study the relative homological algebra induced by a pair (C, X) 
consisting of an additive category C and a contravariantly finite subcategory X of 
C, assuming that any X-epic has kernel in C. Then the stable category C/X is 
left triangulated and we give necessary and sufficient conditions for C/X to con- 
tain a full triangulated subcategory. This suggests to introduce the concept of an 
X-Gorens te in  ob jec t  of C, which is a natural generalization of a module of zero 
Gorenstein dimension in the sense of Auslander-Bridger [3]. The full subcategory 
Gx(C) of X-Gorenstein objects of C is of central importance in this paper. 

In section 3 we recall the construction of the stabilization and costabilization of 
a left triangulated category from [33], [36], and we compute them in the case of 
the left triangulated category C/X induced by the pair (C, X) mentioned above, in 
terms of complexes of objects of X.  The representation of the stabilization of C/X 
by means of complexes generalizes (and is inspired by) a result of Keller-Vossieck 
[36]. In this section we introduce the important concept of a (Co-)Gorenstein 
left triangulated category, which will be used in the next sections. 

In section 4 we introduce the concept of an X-Gorenstein ca tegory  C, where 
C is an exact category and X is a contravariantly finite subcategory of C such 
that any X-epic in C is admissible in the sense of Quillen [40]. We prove that  
if C is X-Gorenstein, then the stabilization of the left triangulated category C/X 
is realized always by the stable category Gx(C)/X of the X-Gorenstein objects 
of C. The category Gx(C) can be thought of as a category of (relative) max- 
imal Cohen-Macaulay objects, and using this category we define the notion of 
the X-Gorenstein d imens ion  of an object of C. Then we prove that  C is 
X-Gorenstein iff any object of C has finite X-Gorenstein dimension. In this case 
the category Gx(C) is contravariantly finite in C and we give sufficient conditions 
for the existence of minimal Gx(C)-approximations. The results of this section are 
related to the fundamental work of Auslander-Buchweitz [4] on maximal Cohen- 
Macaulay approximations in an abelian category. If C is X-Gorenstein, then all 
the results of Auslander-Buchweitz in [4] are valid in C and conversely if, roughly 
speaking, the Auslander-Buchweitz theory is true in C, then C is X-Gorenstein. 
The crucial points of the Auslander-Buchweitz theory have been recently formu- 
lated by M. Hashimoto in the concept of an Auslander-Buchweitz  c o n t e x t  or 
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HOMOLOGICAL THEORY 

AB-context for short, which is a triple of full subcategories (A, B, X) of C satisfying 
certain properties [30]. We define AB-contexts relative to X and we prove that the 
exact category C is X-Gorenstein iff X is the base of a relative AB-context. We 
characterize also when the exact category C is X-Co-Gorenstein and we prove that 
in many cases any X-Gorenstein category is X-Co-Gorenstein. 

Inspired by the definition of the stable homotopy groups in Algebraic Topology 
[24], we introduce in section 5 the concepts of complete X-extension func- 
t o r s  and complete X-resolutions of objects of C, for the pair (C, X) mentioned 
above. The complete X-extension functors can be regarded as generalized Tate- 
Vogel cohomology functors and the complete X-resolutions as generalized Tate- 
Vogel resolutions. The main result of section 5 shows that C is X-Gorenstein iff 
any object has a complete X-resolution, and in this case we can compute the com- 
plete X-extension functors via complete X-resolutions. These results generalize 
the results of Gendrich-Gruenberg [25], Cornick-Kropholler [18], Mislin [39] and 
~vramov-~uchweitz-~artsinkovsk~-&iten [17] concerning complete projective or 
injective resolutions and complete extension functors. 

The theory developed in sections 4, 5, indicate that the concept of a Gorenstein 
category which is defined using universal properties of stable categories, unifies the 
concepts: AB-context, global existence of complete resolutions, globa1,existence of 
complete extension functors, finiteness of Gorenstein-dimension, and appears to be 
the natural setting for the study of stable phenomena in module theory. 

In section 6 we apply our results to module categories. If A is an associative 
ring, then we denote by Mod(A), resp. mod(A), the category of all, resp. finitely 
presented, right A-modules and by PA, resp, IA, the full subcategory of projective, 
resp. injective, modules. Choosing C = Mod(A) and X = P A ,  or X = IA,  we show 
that Mod(A) is PA-Gorenstein iff Mod(A) is IA-Gorenstein iff any projective 
right module has finite injective dimension and any injective right module has finite 
projective dimension. We call these rings right Gorenstein rings. It is easy to 
see that QF-rings or rings with finite right global dimension are right Gorenstein. 
It turns out that a Noetherian right Gorenstein ring is left Gorenstein and this 
class of rings coincides with the class introduced by Iwanaga [35] and studied by 
Enochs-Jenda et al., in a long series of papers (see for instance [22], [20]). The 
classical example of a Gorenstein ring is a local Noetherian ring of finite selfinjective 
dimension [3]. In case of Artin algebras this class of rings coincides with the class 
of Gorenstein algebras introduced by Auslander-Reiten [5] using tilting theory and 
studied also by Happel [32] using derived categories. Our theory has as corollaries 
the corresponding results of these papers, is valid for all modules not only finitely 
generated, and can be applied also to (Gorenstein) Orders. D. Happel considered 
in (321 a certain Verdier quotient V p  of the bounded derived category Db(A) of an 
Artin algebra A, and he computed this quotient in case A is Gorenstein. He says that 
the computation of V p  is hard in general. It turns out that VF is the stabilization 
of the stable category &(A) modulo projectives and an easy computation of V p  is 
available only in case A is Gorenstein or equivalently if Mod(A) is a PA-Gorenstein 
category. We close the paper applying our previous results to the study of some of 
the homological conjectures for Artin algebras, and we prove some reductions. 

Some of the results of this paper were obtained indepedently by L.L Avramov, 
R.O. Buchweitz, A. Martsinkovsky and I. Reiten [17]. A general convention used in 
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4550 BELIGIANNIS 

the paper is that we compose morphisms in a category in the diagrammatic order: 
the composition of f : A -+ B and g : B -+ C is denoted by f o g. 

2. RELATIVE HOMOLOGY AND STABLE CATEGORIES 

Troughout this section we fix a pair (C, X) ,  where C is an additive category and 
X 5 C is a full additive subcategory of C which is closed under direct summands 
and isomorphisms. First we recall some notions of relative homological algebra 

extracted from [8], [15], [23] 
A morphism f : A -+ B in C is called X-epic if the induced morphism C(X, f )  : 

C(X, A) -+ C(X, B)  in Ab is epic, and f is called X-monic if the induced morphism 
C(f, X) : C(B, X) -+ C(A, X) in Ab is epic. A morphism X A  : X A  -+ A is a right 
X-approximation of A [8], if X A  is an X-epic and X A  E X. Dually a morphism 
X A  : A -+ X A  is a left X-approximation of A if X A  is an X-monic and xA E X. 
The subcategory X is contravan'antly finite (covariantly finite) [8], if any object 
of C has a right (left) X-approximation. Finally X is functorially finite if X is 
covariantly and contravariantly finite in C. 

Consider a complex A* : . . . -+ Ai+1 -+ Ai -+ Ai-1 -+ . . . in C. The com- 
plex A* is called covariantly X-exact, if the induced complex C(X,A*) : . .  . -+ 
C(X, Ai+1) -+ C(X, Ai) -+ C(X, Ai-*) -+ . . .  is exact in Ab. Dually the com- 
plex A* is contravariantly X-exact, if the induced complex C(A*, X) : . . . + 
C(Ai-l, X) -+ C(Ai, X) -+ C(Ai+l, X) + . . .  is exact in Ab. The complex A' is 
functorially X-exact, if A* is contravariantly X-exact and covariantly X-exact. 
Using these notions we can define X-resolutions and X-coresolutions of objects 
of C. If 4 E C, then an X-resolution of A is a covariantly X-exact complex 

X ;  : . .  . -+ XI -+ Xo -+ A -+ 0, where X ,  E X,Vn 2 0. Then A has ji- 
nite contrauariant X-dimension if there exists an X-resolution of A of the form 

0 + X ,  + . . .  -+ Xo -+ A -+ 0. In this case we write X-dimA 5 n. The 
least such integer n is the contravariant X-dimension of A and is denoted by 
X-dimA. The global contrauariant X-dimension of C is defined by X-gl.dimC := 

sup{X-dimA; A E C). Dually if A E C, then an X-coresolution of A is a 
contravariantly X-exact complex X i  : 0 -+ A -+ X 0  -+ X1 -+ . . .  , where 
X" E X,Vn 2 0. The object A has finite covariant X-dimension if there exists 
an X-coresolution of A of the form 0 -+ A -+ X 0  + X 1  -+ ... -+ X n  -+ 0. In 
this case we write X-co.dimA 5 n. The couariant X-dimension, X-co.dimA, of 
A is the least such integer n. The global covare'ant X-dimension of C is defined by 
X-gl.co.dimC := sup{X-co.dimA; A E C). 

The following is a direct consequence of the definitions. 

Proposition 2.1. (1) X is coreflective in C iff X-gl.dimC = 0. 
(2) X is reflective in C iff X-gl.co.dimC = 0. 

We denote by CIX the stable category of C with respect to the subcategory X. 
We recall that the objects of CIX are the objects of C. If A, B are objects of C, then 
C/X(A, B) is the factor group C(A, B)/Cx(A, B) ,  where Cx(A, B)  is the subgroup 
of morphisms factorizing through an object of X. If A E C, then we denote by A 
the same object considered as an object of CIX, and if f : A + B is a morphism 
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HOMOLOGICAL THEORY 455 1 

in C, then we denote by f the residue class of f in C/X(A, B).  Setting w(A) = A 
and w(f )  = - f ,  we obtainthe additive projection functor KZ : C -+ C/X. 

2.1. Contravariant Finiteness. Suppose that X is contravariant finite and any 
X-epic has a kernel in C. Then any object in C has an X-resolution. Indeed 

let X A  : XA -+ A be a right X-approximation of A, let k i  : Kfi -+ XA be the 
kernel of X A ,  and let : Xfi -+ Kfi be a right X-approximation of Kfi. Setting 

f,?, = o k i  : Xfi -+ X i  and continuing in this way we obtain a complex 

which is an X-resolution of A. A deleted X-resolution of A is an X-resolution as 
above with A deleted. The objects K j  are called the nth - X-sysygy objects of A 
with respect to  the X-resolution Xi. 

Now let F : C -+ A and G : Cop -+ A be additive functors with values in an 
abelian category A. Then as in [15], we can define the left X-derived functorL:F 
of F and the right X-derived functor R$G of G: 

L $ F : C - +  A and R $ G : C o P - + A ,  V n 2 O  

as follows. If X >  is a deleted X-resolution of A, then L, XF(A) := Hn(F(X\) )  and 
R$G(A) := Hn(G(XI) ) .  Then VB E C, the contravariant X-extenszon functors 

&:(-,B) :Cop -+ Ab, Vn 2 0 

are defined as the right X-derived functor of C(-, B). Similarly for any object 
C E C, we have the left X-derived functors 

L$(C, -) : C -+ Ab, Vn 2 0 

defined as the left X-derived functors of C(C, -). In particular there are natu- 
ral morphisms dc,- : Lf(C,  -) -+ C(C, -) and $-,B : C(-,B) -+ a $ ( - , B ) ,  
VB, C E C. Moreover if 0 -+ A1 + A:! -+ A3 -i 0 is a contravariantly X-exact 
complex, then VB, C in C, we have long exact sequences: 

Remark 2.2. If X is contravariantly finite and any X-epic has a kernel in C, then 
the stable category C/X has a natural left triangulated structure (CIX, Rx,Ax),  

where Ox : C/X -t C/X is the loop functor and Ax is the triangulation. By 
construction Rx(AJ = K:, where Kfi is the kernel of a right X-approximation 
of A and the triangulation Ax consists of all diagrams Rx(G) -+ A -+ B -+ C 

f which are induced by X-exact sequences A 3 B + C in C, where g = ker(f).  See 
[14] for details. We consider always the stable category C/X as a left triangulated 
category with the described left triangulation. 

Lemma 2.3. For any object C E C, there are isomorphisms: 

and an exact sequence, with Im($c,-) = Cx(C, -): 
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Proof. Consider the X-resolution X: of A as above. Then by definition we have 

$(C, A) = KerC(C, ffi)/ImC(C, f i ) .  Let a : C + Xfi be a morphism with 
a o f i  =O. T h e n a o X f i o k i  = O j  aoxfi = O +  3!b: C +  K i s u c h t h a t  b o k i  = a .  

Define a morphism p : C ~ ( C ,  A) + C/X(C, a$(&) by p(a) = b. It  is easy to  see 
that p is a well-defined isomorphism. The general case follows by dimension shifting. 

c(c,f:) 
Now from the exact sequence C(C, Xi) C(C, Xi) 5 Cf(C,  A) --+ 0, there 

exists a unique morphism I$c,A : Lf(C,  A) -+ C(C, A) such that C O ~ ~ , ~  = C(C, xA) .  
The existence of the'desired exact sequence follows by a simple diagram-chasing 
argument in the following diagram 

2.2. Covariant  Fini teness .  Suppose that X is covariant finite and any X-monic 
has a cokernel in C. Then any object in C has an X-coresolution (see [15]). Let 
F : C -+ A and G : COP + A be additive functors with values in an abelian category 
A. Then as in subsection 2.1, we can define the X-derived functors of F, G: 

RgF : C -t A and C ~ G  : Cop -+ A, Vn / 0  

as follows. If X: is a deleted X-coresolution of A, then R'$F(A) := Hn(F(X!)) 

and CfG(A) := H,(G(X!)). Hence VB E C, the covariant X-extension functors 
- 
& x t > ( ~ ,  -) : C -+ Ab, Vn 2 0 

are defined as the right X-derived functor of C(A, -). Similarly for any object 
C E C, we have the left X-derived functors of C(-, C) denoted by 

LC(- ,C):CoP-+Ab,  V n 2 0 .  

In particular there are natural morphisms I$-,c : C$(-, C)  -+ C(-, C)  and : 

C(A, -) -+ %?>(A, -), VA,C E C. Moreover if O -+ B1 -+ B2 -+ B3 -+ 0 is a 
covariantly X-exact complex, then VA, C E C, there are long exact sequences: 

By [14], under the above assumptions the stable category C/X has a natural right 
triangulated structure (C/X, Ex ,  Vx) ,  where Ex : C/X + C / X  is the loop functor 
and Vx is the triangulation, see [14] for details. The dual of Lemma 2.3 also holds: 

L e m m a  2.4. For any object C E C, there are isomorphisms: 

~ : ( - , c )  -%C/X(E",+'(-),a tin 2 1 

and an exact sequence, with Im(q5-,c) = Cx(-, C): 



D
o
w

n
lo

a
d
e
d
 B

y
: 
[H

E
A

L
-L

in
k
 C

o
n
s
o
rt

iu
m

] 
A

t:
 1

0
:5

5
 1

0
 J

u
n
e
 2

0
0
8
 



D
o
w

n
lo

a
d
e
d
 B

y
: 
[H

E
A

L
-L

in
k
 C

o
n
s
o
rt

iu
m

] 
A

t:
 1

0
:5

5
 1

0
 J

u
n
e
 2

0
0
8
 

4554 BELIGIANNIS 

classical case, using a simple spectral sequence argument. 

Propos i t ion  2.8. If =;(x, B) = &&,(A, X) = 0,Vn 2 1 and the canonical 

morphisms $a ,x  : C(A, X) -+ &&(A, x),$x,B : C(X, B )  + m x ( x , ~ )  are 

invertible, then: m , ( ~ ,  -)(B) &$(-, B)(A), Vn 2 0. 

2.4. S t a b l e  Tr iangula ted  Categories .  We close this section studying when a 
stable category is triangulated. For the theory of (left or right) triangulated cate- 
gories and exact functors we refer to  [14], [31], [36],  [45]. 

Defini t ion 2.9. The category X is called an X-cogenerator of C if for any A E C, 
there exists an X-epic f : X + B with X E X such that A E K e r ( f )  in C/X. 

Dually X is called an X-generator of C if for any B 6 C, there exists an X-monic 

f : A -r X with X E X such that B r Coker(f) in C/X. 

If X is contravariantly finite in C and any X-epic has a kernel, the functors 
&&;(-,A) are defined, and if X is covariantly finite in C and any X-monic has 

a cokernel, the functors = 2 ~ ,  -) are defined, for any object A of C. In these 
cases we define the left X-orthogonal subcategory ' -X and the right X-orthogonal 
subcategory X I  of X as follows: 

'X = {A E C : &&>(A, X) = 0, Vn 2 1 and $A,x : C(A, X) % &$(A, x)], 

=---a 
X' = {B E C : =;(x, B) = 0, Vn 2 1 and Gx,s : C(X, B )  4 ExtX(X, B)}. 

Definition 2.10. Let A,B,  X be full subcategories of C. 

( a )  If any X-epic has a kernel in C, then A is called X-resolving, if X A and 
f A is closed under kernels of X-epics. Moreover if A 3 B B C is a diagram in C, 

where f is X-epic, g = ker(f)  and A, C E A,  then B E A. 
(p)  If any X-monic has a cokernel in C, then B is called X-coresolving, if 

f X c B and B is closed under cokernels of X-monics. Moreover if A -+ B 5 C is 
a diagram in C, where f is X-monic, g = coker(f) and A, C E B, then B E B. 

If X is contravariantly finite in C and any X-epic in C has a kernel, then for 
any X-resolving subcategory A, the stable category A / X  is a full left triangulated 
subcategory of C/X. Dually if X is covariantly finite in C and any X-monic in 
C has a cokernel, then for any X-coresolving subcategory B, the stable category 
B/X is a full right triangulated subcategory of C/X [14]. For the notions of an 
exact category, admissible epic, monic, short exact sequence, we refer to  [40]. 

T h e o r e m  2.11. Let X be a full subcategory of an exact category C 

(1) Suppose that X is contravariantly finite in C and any X-epic is an admissible 
epic. If A is an X-resolving subcategory of C,  the following are equivalent: 
( a )  A / X  is a triangulated subcategory of (C/X, Ox, Ax). 
( B )  A c 'X and X is an X-cogenerator of A. 

(2) Suppose that X is covariantly finite in C and any X-monic is an admissible 
monic. If B is an X-coresolving subcategory of C, the following are equivalent: 
(a)  B / X  is a triangulated subcategory of (C/X, Ex, Vx). 
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(p )  t3 & X I  and X is an X-generator of 13. 
(3) If the assumptions in (I), (2) are true for A = B, then the triangulated struc- 

tures (AIX, Rx ,  A x )  and (AIX, Cx,  V x )  on AIX coincide: Rx = xi1 and 

Proof. (1) By the above remarks C/X carries a left triangulated structure and AIX 
is a full left triangulated subcategory of CIX. An easy modification of Theorem 
3.3 of [l] in our setting, shows that the loop functor Rx is fully faithful in AIX iff 
A E I X .  Trivially Rx is surjective on objects iff X is an X-cogenerator of A. (2) 
Follows by duality, arid (3) follows from (I) ,  (2) and Proposition 2.5. 0 

Suppose again that X is a full subcategory of C. We define some classes of objects 
in C, which will play an important role in the next sections. First let PF(C)  be the 
full subcategory of C of all objects of finite contravariant X-dimension. 

Definition 2.12. (1) C E C is called X-stable if C has a functorially X-exact 
resolution. 

(2) C E C is called X - n-torsion free object ,  n 2 0, if there exists a functo- 
rially X-exact sequence 0 + C + X0 + . . .  + X n ,  with X i  E X, 0 5 i 5 n. 

(3) C E C is called X-torsion free, if C is X - n-torsion free, Va 2 0, i.e. if 
C has a functorially X-exact coresolution. 

(4) C E C is called an X-Gorenstein object  if C is X-stable and X-torsion 
free. Equivalently C has a functorially X-exact resolution and coresolution. 

We denote by Gx(C) the full subcategory of C consisting of all X-Gorenstein 
objects. By definition X is a functorially finite subcategory of Gx(C). Observe 
that if X is contravariantly finite in C and any X-epic has a kernel, then C is 
X-stable iff &(c, X) = 0, Vi 2 1. Hence if any X-epic is epic, then C is 
X-stable iff C E I X .  The category of arbitrary X-syzygy objects is defined by 
RF(C) = n,?, R;(C). Dually if X is covariantly finite in C and any X-monic 

has a cokernel, then C is X-torsion free iff m ; ( ~ ,  C) = 0,Vi > 1. Hence if 
any X-monic is monic, then C is X-torsion free iff C E X I .  The category of 
arbitrary X-cosyzygy objects CF(C) is defined similarly. The final result of this 
section shows that in many cases, the category Gx(C) of X-Gorenstein objects is 
the largest X-resolving subcategory of C, such that the stable category Gx(C)/X is 
a full triangulated subcategory of CIX. First we recall [33] that an exact category 
E is called Fkobenius, if E has enough projectives and injectives and the projectives 
coincide with the injectives. 

Proposit ion 2.13. Let C be an exact category and X a full subcategory of C. 
(1) if X is contravariantly finite, any X-epic is an admissible epic and any left 

X-approximation of an X-Gorenstein object is an admissible monic, then Gx(C) is 
an X-resolving Robenius exact subcategory of C and the stable category Gx(C)/X 
is a full triangulated subcategory of (C/X, Rx,  Ax).  

Moreover if A is a subcategory of C, such that AIX is a triangulated subcategory 
of CIX, then A is X-resolving and A C Qx(C). 

(2) If X is covariantly finite, any X-monic is an admissible monic and any right 
X-approxtmation of an X-Gorenstein object is an admissible epic, then Gx(C) is 
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a n  X- coresolving fiobenius exact subcategory of C and the stable category Gx (C)/X 
is a full triangulated subcategoy of (CIX, Ex, Vx) .  

Moreover if B is a subcategoy of C, such that B/X is a triangulated subcategory 
of C/X, then 13 is X- coresolving and B C Ex(C). 

Proof. (1) Since any X-epic is admissible epic, it has a kernel in C so C/X is left 

triangulated. Since any X-epic is epic, we have C(-, B) = a$(-, B).  If A is 

X-Gorenstein, then consider a covariantly X-exact X-coresolution 0 -+ A % 
X 0  % X1 -+ . . . of A. Since this coresolution is contravariantly X-exact, (YO is a 
left X-approximation, so by hypothesis there exists an admisssible exact sequence 

0 -+ A % X0 7 A1 -+ 0, and a factorization a1 = K o A, where X : A' -+ X1. 
Similarly X is a Ieft X-approximation of A', so it is admissible monic. Inductively 

we see easily that the objects An are X-Gorenstein and the above X-coresolution 

of A is a Yoneda composition of admissible and functorially X-exact sequences 

0 -+ An -t X n  -+ Anfl -+ 0, A0 = A. Suppose now that ( t )  : A 4 B 4 C 
is a sequence in C with A, C E Gx(C), f is an X-epic and g = k e r ( f ) ,  so ( t)  
is admissible and covariantly X-exact. Then we have the long exact sequence: 
0 + C(C, X) -+ C(B, X )  -+ C(A, X )  -+ &&(c, X) -+ . . . which implies that B E 
'X and (t) is contravariantly X-exact, since A,C are X-Gorensteiri. Moreover 
using that A, C E Gx(C), we can construct by standard arguments a covariantly 
X-exact X-coresolution of B ,  from the covariantly X-exact X-coresolutions of 

A, C. This shows that B E Gx(C). Let ( t)  : A 4 B 4 C be a sequence in C with 

B ,  C E Gx(C), f is an X -epic and g = ker (  f ), so ( t)  is admissible and covariantly 

X-exact. As above we see that A E IX and (t) is contravariantly X-exact. 

Consider the functorially X-exact admissible sequence 0 -+ B 4 X0 5 B1 -+ 
0 which starts a covariantly X-exact X-coresolution of B. Then we have the 

following exact commutative diagram: 

6 
and an admissible covariantly X-exact sequence 0 -+ C -+ D -$ B1 -+ 0. Since 
C, B1 E Gx(C), we have that D E Bx(C). Since, as easily seen, the sequence 

0 -+ A 3 X0 -% D -+ 0 is functorially X-exact and D is an X-Gorenstein 
object, we infer that A is an X-Gorenstein object. Hence Qx(C) is an X-resolving 
subcategory of C. We leave to the reader to show that Bx(C) is actually a Frobenius 
subcategory of C. By Theorem 2.11, Gx(C)/X is a full triangulated subcategory of 
C/X, since by definition X is an X-cogenerator of Gx(C) and Gx(C) C -'-X. 

If A C C is such that A/X is a triangulated subcategory of C/X, then it is not 
difficult to see that A is X-resolving using that the inclusion A/X 4 C/X is exact. 
Then by Theorem 2.11, A E 'X, so any object of A has a contravariantly X-exact 
resolution. Since X is a cogenerator of A, any object of A has a covariantly X-exact 
coresolution. We conclude that A E Gx(C). The proof of part (2) is dual. 0 
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HOMOLOGICAL THEORY 

3. STABLE CATEGORIES AND (CO)~TABILIZATION 

In this section we associate to a fixed left triangulated category C two triangu- 
lated categories: S(C), the stabilization of C and R(C), the costabilization of C. 
The category S(C) is the universal triangulated category for exact functors starting 
at C and R(C) is the universal triangulated category for exact functors ending at C. 
The existence of S(C) is a result of Heller [33], see also [24], 1361, and the existence 
of R(C) is due to Grandis [27]. Both existence results were inspired by well-known 
constructions in Algebraic Topology [38], and they are very useful tools for the 
study of stable categories. We define a looped category to be a pair (A, R) where 
A is an additive category and R : A -+ A is an additive functor. If (A, R), (B, C) 
are looped categories, then a stable functor (A, R) -+ (B, C) is a pair (F, 4) where 

F : A -+ B is an additive functor and 4 : C F  5 F R  is a natural isomorphism. 

3.1. Stabilization. Let C = (C, 0, A) be a left triangulated category. 

Definition 3.1. The stabilization of C is a pair (S, S(C)), where S(C) is a trian- 
gulated category and S : C -+ S(C) is an exact functor, the stabilization functor, 
such that for any exact functor F : C -+ V to a triangulated category D, there 
exists a unique exact functor F* : S(C) + V such that: F*S  = F. 

We recall the construction of S(C) from 1331, which consists of formally inverting 
the endofunctor R. An object of S(C) is a pair (A,n) where A E C and n E Z. If 
n,  m E 2, then we consider the directed set I,,, = {k E Z : k >_ n ,  k >_ m). The 
space of morphisms between (A, n), (B, m) E S(C) is defined by 

S(C)[(A, n), (B, m)] = lim c(flk-"(A), flk-m (B)). - k€I"," 

Then S(C) is an additive category and there exists an equivalence fi : S(C) -+ S(C) 

defined as follows: O(A, n) = (A, n - 1) and if f : (A, n) 4 (B, m) then choose 

a representative fk : Rk-"(A) + RLm(B) where k E I,,, and define f i(f)  to 

be the class of in S(C)[(A,n - I), (B, m - I)]. The inverse of fi is defined 

by fi-l (A, n) = (A, n + 1). There exists a natural additive functor S : C -+ S(C) 
defined as follows: S(A) = (A, O), and iff  : A B is a morphism in C then S ( f )  is 
defined by the zero-representative o_f f .  The functor S is a stable functor, i.e. there 
exists a natural isomorphism w : RS(?) = (?, -1) Z (R(?),O) = SO(?), and the 
pair (S, S(C)) has the following universal property. If (D, C )  is a looped category 
with C a self equivalence of D, and F : C + V is a stable functor, then there exists 
a unique stable functor F* : S(C) + 2) such that F * S  = F. Indeed this follows 
directly by defining F*(A,n) = C-"F(A). 

Using the functor S : C -+ S(C) and the triangulation A of C, we define a 
triangulation A of the pair (S(C), 0) as follows. A diagram f i ( ~ ,  1) -+ ( A ,  n) + 
(B,m) -+ (C,l) belongs to A if there exists k E 22 and a triangle of represen- 
tatives R(Rk-'(C)) -+ Rk-"(A) -+ Rkdm(B) -+ Rk-'(C) in C. Then the triple 
(S(C), fi, A) is a triangulated category and has the required universal property of 
definition 3.1. In fact the functor S is exact and if F : C + 2) is an exact functor to 
a triangulated category V, then the functor F* defined above, is the unique exact 
functor which extends F through the stabilization functor S. 
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HOMOLOGICAL THEORY 4559 

Proof. Since S is exact, we have the induced morphism Ko(S) which is defined 

by Ko(S)[A] = [(A,O)]. C o n s i d e r b e  function $ : Ob(S(C)) + Ko(C) defined 

by $(A,n) = (-l)"[A]. If (A,n) ( B 7 m )  then there exists k E I,,, and 
an isomorphism Rk-"(A) Y Rk-" (B). Then in Ko(C) we have (-l)k-n[A] = 
[Rk-"(A)] = [Rk-m(B)] = ( - l ) k - m [ ~ ] ,  hence $(A, n)  = $(B, m). If fi(C, 1) + 
(A, n) + (B, m) + (C, 1) is a triangle in S(C), then by definition there ex- 

ists a triangle R(flk-'(C)) + Rk-"(A) + Rk-"(B) + Rk-'(C) in C. Then 
in Ko(C) we have (-l)k-m[B] = (-l)k-n[A] + (-l)k-'[C]. This implies that 
$(B, m) = $(A, n) + $(C, 1). Hence there exists a unique group homomorphism 

$ : Ko(S(C)) -t Ko(C), such that $([A,n]) = $([(A,n)]) = (-l)"[A]. If A is 
an object of C, then $Ko(S)([A]) = $([(A,O)]) = [A] and if (A,n)  is an ob- 

ject of S(C), then Ko(S)$([(A,n)]) = KO@)((-l)"[A]) = (-l)n[(A,O)]. But 

(-l)"[(A,O)] = (-1)-"[(A,0)1 = [ f i - " (~ ,o) ]  = [(An)] .  So Ko(S)$([(A,n)l) 
= [(A, n)]. This shows that Ko(S) is an isomorphism with inverse 4. 0 

Consider now an additive category C and a full additive contravariantly fi- 
nite subcategory X g C, closed under direct summands and suppose through- 
out that any X-epic has a kernel in C. Our purpose i s  to  compute the sta- 

bilization S(C/X) of the left triangulated category C/X = (CIX, Ry ,Ax) .  Let 

K(X) be the unbounded homotopy category of complexes over X and let K-(X) 
be the full subcategory consisting of bounded above complexes, where a complex 

n-1 

X *  : . . . t Xn-I  d X n  5 Xn+' t . . .  is bounded above if X k  = 0 for all 
sufficiently large k > 0. We call a complex X *  n-acyclic, if the morphism dn-' 

ker (dn)  
admits a factorization Xn-' % Ker(dn) > X n 7  where en-' is X-epic. 

The complex X* is called acyclic, if it is n-acyclic, for any n E Z. Let K-tb(X) be 

the full subcategory of K-(X) consisting of all complexes which are acyclic almost 
everywhere, i.e. except of a finite number of degrees. Then we have exact inclusions 
of triangulated categories Kb(X) 9 K-lb(X) v K-(X) v K(X), where Kb(X) is 
the bounded homotopy category of complexes over X.  Obviously Kb(X) is closed 
under direct summands in K-vb(X), hence the Verdier quotient K - , b ( ~ ) / K b ( ~ )  is 
defined and it is a triangulated category. 

The following result generalizes (and is inspired by) a result of Keller-Vossieck 
(see [36], where the next result is proved for an exact category with enough injectives 
objects). 

Theorem 3.8. There exists a triangle equivalence 

S(C/X) r K - ~ ~ ( x ) / K ~ ( x ) .  

Moreover KerS = P y ( C ) / X  and S(C/X) = 0 iff VC E C: X-dimC < co, i.e. 
C = P'$'(C). Finally KerS = 0 iflX = P p ( C )  i#sup{X-dimC : C E PT(C)} = 0. 

Proof. Define a functor F : C + K-*b(X)/Kb(X) as follows. If A is an object 
of C, let XI be a deleted X-resolution of A as in section 2. Hence X I  : . . . + 

fi+' x:" --t X i  -+ . . .  -i X i  & X i  -t 0, where X' is in degree -i. We 

set F(A) = Q ( X I ) ,  where Q : K-lb(X) -t K - * b ( ~ ) / K b ( ~ )  is the quotient functor. 
Since any two X-resolutions are homotopy equivalent, the functor F is well-defined. 

f 
Obviously F ( X )  = 0. Moreover if C 4 B t A is a contravariantly X-exact 
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4560 BELIGIANNIS 

sequence in C, then there exists a sequence 0 t X: t Xb t X i  t 0 of 
complexes which is split short exact in each degree. Hence we obtain a triangle 
X i [ - 1 ]  t X ;  -i X t ,  t X I  in K - ' b ( ~ ) .  Applying the exact quotient functor 
Q, we see that the contravariantly X-exact sequence C t B -+ A  in C  induces a 
triangle F(A)[-11 t F ( C )  t F ( B )  t F ( A )  in K - l b ( X ) / K b ( X ) .  By Theorem 2.2 
of [12], there exists a unique exact functor G  : C / X  -+ K - l b ( X ) / K b ( x ) ,  such that  
Gw = F ,  where w : C  t C / X  is the projection functor. By the universal property 
of the stabilization S ( C / X ) ,  there exists a unique exact functor G* : S ( C / X )  t 
K - > b ( ~ ) / K - ( ~ ) ,  such that G*S = G. We claim that G' is an equivalence. This is 
easy to  see applying Proposition 3.4 and using the definition of the functor G ,  and 
the construction of the quotient K - - b ( X ) / K b ( ~ )  in [45]. The last part is trivial. 17 

Corol lary 3.9. Let C  be an  abelian ( o r  exact) category with enough projectives, 
and let P  be the full subcategory of projective objects o f  C .  

(1 )  There exists a triangle equivalence 

S ( C / P )  e v b ( ~ ) / K b ( p ) .  

S ( C / P )  = 0 iff Db(C) = K b ( p )  iff any object of C  has finite projective dimension. 
( 2 )  There exists an  isomorphism: K o ( C / P )  K O ( V ~ ( C ) / K ~ ( P ) )  such that the 

canonical morphisms K o ( P ,  CB) + K o ( K b ( P ) )  and Ko(C) t Ko(Vb(C) )  are embed- 
ded i n  the exact commutative diagram, where Q, c; are the Cartan morphisms: 

( 3 )  C  is Frobenius i f l  there exists a triangle equivalence: 

Proof. ( 1 )  Follows from Thorem 3.8, since if X  = P ,  then K - , b ( X )  = Db(C).  
( 2 )  By a well known result of Grothendieck, the central square of the above 

diagram commutes and the middle vertical arrows are invertible. Since the cokernel 
of cc is the stable Grothendieck of C  modulo projectives [15], the result follows from 
Proposition 3.7, [16] and part (1 ) .  

( 3 )  It  is well-known that if C  is Frobenius, then C / P  is triangulated (see 1311 or 
Theorem 2.11). Hence in this case C / P  is triangle equivalent to  its stabilization, 
and the result follows from (1). If C / P  is triangle equivalent to  D b ( C ) / K b ( P ) ,  
then C / P  is triangulated. Then by section 2, we know that C  = l P  and P is a 
P-cogenerator of C. The fact that C  = ' P  implies that any projective is injective. 
Since P is a P-cogenerator of C, for any object of C, there exists a short exact 
sequence 0 -i C  -i P t D t 0 with P E P .  In particular C  has enough injectives 
and trivially any injective is projective. Hence C  is Frobenius. 0 

3.2. Costabi l izat ion.  Let C  = (C, R, A) be a left triangulated category. 

Defini t ion 3.10. The costabilization of C  is a pair ( R , R ( C ) ) ,  where R ( C )  is a 
triangulated category and R : R ( C )  t C is an exact functor, the costabi l izat ion 
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HOMOLOGICAL THEORY 456 1 

functor, such that for any exact functor F : D - =  C from a triangulated category 
D, there exists a unique exact functor F* : D -t R(C) such that: RF* = F. 

We recall the construction of the pair (R,R(C)) from [27], which consists of 
constructing formal R-spectra. An object of R(C) is a family (A,, a,) where 

n E 2 and a, : A, 3 R(A,+l) is an isomorphism V n  E Z. A morphism f, : 

(An,an) + (B,, 8,) is a family f. = (fn), where f, : A, -t B, is a morphism in 
C such that the following diagram commutes, V n  E Z: 

Then R(C) is an additive category and defining f i ( ~ , ,  a,) = (B,, /3,) where B, = 
An-1 and 8, = an-1 and for a morphism f. : (A,,$ + (Bn,Pn) in R(C), 

6(f.) = g., where g, = f,-l, we obtainan equivalence R : R(C) + R(C). Hence 

the pair (R(C), 6 )  is a looped category. Now define an additive functor R : R(C) + 
C by R(A,,a,) = A. and R(f.) = fo. The functor R is stable since R ~ ( A , ,  a,) = 
A-1 S R(Ao) = RR(A,, a,), by the isomorphism a-1. The pair (R ,  R(C)) has 
the following universal property. If (D, C) is a looped category where C is a self- 
equivalence of D, and F : D + C is a stable functor, then there exists a unique stable 
functor F* : D + R(C) with R F *  = F .  Indeed define F'(D) = (Dn,dn) where 
D, = FC-,(D) and d, is the isomorphism D, = FC-"(D) = FCC-"-l(D) E 

RFC-"-'(D) = R(Dn+l). Then RF*(D)  = Do = F(D),  and F* is obviously the 
unique stable functor lifting F through the costabilization functor R. 

Using the functor R : R(C) -t C and the triangulation A of C, we define a trian- 

gulation A in the looped category ( R ( c ) , ~ )  as follows. A diagram 6 ( ~ , , ~ , )  3 
(f ) 

(Anla,) (Bn,/3,) -4 (Cn,.yn) belongs to A if for any n E Z there are tri- 
r,!, oh. 

angles R(C,,) ------+ A, 3 B, 3 Cn in A. Then the triple (R(C), 6, A) is a 
triangulated category, the functor R : R(C) + C is exact and if D is a triangulated 
category with translation functor C, and F : 2, + C is an exact functor, then the 
functor F* defined above is the unique exact functor lifting F through R. In case 
C has a right triangulation, then the above construction with the necessary mod- 
ifications also works, producing the costabilization of C which also is triangulated 
and satisfies the same universal property. We leave to the reader to state and prove 
the analogous results of Corollaries 3.3, 3.5 and Proposition 3.4. 

Consider now the pair (C, X) where C is an additive category and X C C is a 
full additive contravariantly finite subcategory of C, closed under direct summands 
and suppose that any X-epic has a kernel in C. Our purpose is to compute the 
costabilization R(C/X) of the left triangulated category C/X = (C/X,Rx,Ax). 
Let K(X) be the unbounded homotopy category over X and let KAc(X) be the full 
subcategory of acyclic complexes, as defined in Subsection 3.1. Clearly KAc(X) is 
a full triangulated subcategory of X(X). 

Theorem 3.11. There e ~ s t s  a triangle equivalence: 
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BELIGIANNIS 

KAe(X) Z3 R ( c / X ) .  

Moreover Im(R) = RF(C)/X. Hence: Im(R) = 0 iff R(C/X) = 0 iff X = RF(C). 

Proof. Define a functor F : KA,(X) -+ R(C/X) as follows. Let X' be an acyclic 

complex of X-objects. Then by definition, Vn E Z, there are sequences An-1 % 
X n  3 A,, where E,  is X-epic and pn-1 = ker(&,), such that the differential 
dn = ~ ~ o p , ,  : X n  -+ Xn+l .  We set F ( X 0 )  = (Anla,),   where^, : & 2  RX(A,+~) 

Yn-1  

is the natural identification. Let f. : X' -+ Y* be a morphism, and let Bn-1 ---+ 
Yn % Bn be sequences as above, where Cn is X-epic and u,-1 = ker(Cn), such 
that the differential dn = (n o un : Yn -+ Yn+l. Since the morphisms pt-1, ut-1 

are monics, we have that pi-1 : At-1 -+ X t  is the kernel of dtx. : X t  -+ Xt+' 
and similarly ut-1 : Bt-l + Yt+' is the kernel of db. : Yt -+ Yt+l. Hence there 
exists a unique morphism pt-1 : At-1 -+ Bt-1 with pt-1 o ut-1 = pt-1 0 f t .  The 
family of morphisms pt : At -+ Bt has obviously the property pt 0 vt = pt 0 ft+1 and 

ftoCt = E ~ O P ~ ,  Vt  E Z. Thismeans that c ~ , o R ~ ( p , + , )  = p t o E t , V t  E Z. Hencethe 

family p. : (&,g t )  -+ (&,[,) is a morphism in R(C/X). We set F(f.) = p.. It  

is easy to  see that in this way we obtain an exact functor F : KAc(X) -+ R(C/X). 
We leave to the reader the easy proof that F is an equivalence. The proof of the 
last assertion is trivial. 0 

Corol lary 3.12. Let C be an  exact category with enough projectiues, and let P be 
the full subcategory o f  projective objects. Then there is a triangle equivalence 

and R(C/P) = 0 i f f  P = Rm(C), i.e. the only arbitrary syzygy objects of C are the 
projectiues. I n  particular C is Frobenius iff there exists a triangle equivalence 

% xAC(p).  

We leave to the reader to state and prove the dual results concerning (co-)stabili- 
zations of right triangulated stable categories C/X, induced by covariantly finite 
subcategories X in C, such that any X-monic has a cokernel in C. For example 
stable categories modulo injectives of exact categories with enough injectives. 

3.3. (Co- )Gorens te in  Left Tr iangula ted  Categories .  Throughout this sub- 
section C will denote a left triangulated category (C, R, A).  Our purpose here is to  
examine when the (co-)stabilization of C can be realized as a full subcategory of 
C. We shall obtain more complete results in the next section when the left trian- 
gulated category C is a stable category. We denote as always by S : C -+ S(C) the 
stabilization functor and by R : R(C) -+ C the costabilization functor. 

Definition 3.13. (1) The left triangulated category C is called G o r e n s t e i n  if there 
exists a full left triangulated subcategory V of C,  such that the composite functor 

Siv : V 2 C -% S(C) is a triangle equivalence, where iv : V v C is the inclusion. 
In this case we say that V realizes the stabilization of C. 

(2) The left triangulated category C is called Co-Gorenstein if there exists a 

full left triangulated subcategory U of C, such that the inclusion iu : U C is the 
costabilization functor. In this case we say that U realizes the costabilization of C. 
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The easy proof of the next Lemma is left t o  the reader (use Proposition 3.4). 

Lemma 3.14. If iv : V v C is a left triangulated subcategory of C, then the loop 
functor R : V + V is fully faithful @ the functor Siv : V -+ S(C) is fully faithful. 

Theorem 3.15. The following are equivalent: 

(1) C is Gorenstein. 
(2) There exists a full triangulated subcategory V of C, such that: VC E C and 

n E Z, there exists t _> n, 0 with at-" (C) E V. 
(3) There exists a full triangulated subcategory V of C, such that: VC E C, there 

exists t 2 0 with Rt(C) E V. 

In this case the triangulated category V is uniquely determined up to a triangle 

equivalence and realizes the stabilization of C .  

Proof. (1) + (2) Suppose that C is Gorenstein, and let iv : V v C be a full 
triangulated subcategory of C realizing the stabilization. Let C be in C and n E Z. 
Consider the object (C, n) E S(C). Since Siv is dense, there exists an object A E V 

and an isomorphism f : (C,n) -t Siv(A) = (A,O), with inverse 3 : (A,O) -+ 
(C,n). Choose representatives fk : Rk-"(C) + Rk(A) of f with t 2 0 , n  and 

gl : R1(A) -i 0'-"(C) of 3 with 1 _> 0,n. Analyzing the relations 3 6 f = l(c,n) 

and j o  ij = l(A,o) and choosing t 2 k,l, we see that  Rt-k(fk) : Rt-"(C) + Rt(A) 

is invertible with inverse Rt-'(gl). Since Rt(A) E V, the assertion (2) follows. The 
direction (2) + (3) is trivial. 

(3) + (1) Since V is a triangulated subcategory, by the above Lemma the exact 
functor Siv : V + S(C) is fully faithful. Let (C,n) be an arbitrary object of 
S(C). Then by hypothesis there exists t 2 0 such that Rt(C) := A E V. Applying 
the functor S ,  we have S(Rt(C)) = S(A) + S(C)  = S W t ( A ) .  Since A E V 
and V is triangulated, we can write R-t(A) = Rr(B) with B E V and r 2 0,n.  

Then (C,n) = f i P n s ( c )  = fiF"'(Wt(~)) = f i - n ~ ( R r ( ~ ) )  = f i - " f i r ~ ( ~ )  = 

~?'-"s(B) = SOr-"(B). Since B is in V, this shows that Siv is dense. 0 

We denote the kernel of the stabilization functor S : C -t S(C), by 

Pm(C) = KerS = ( C  E C : 371 2 0 : Rn(C) = 0). 

If C is Gorenstein, we call the uniquely determined triangulated subcategory of C 
realizing the stabilization, the category of maximal Cohen-Macaulay objects 
(or maximal CM-objects for short) of C, and we denote it by CM(C). 

Proposition 3.16. If the left triangulated category C is Gorenstein, then 

(1 )  The stabilization functor S : C + CM(C) is given as follows: 

VC E C : S(C) = W t R t ( C )  where t 2 0 is such that : R t ( c )  E CM(C). 

(2) Pw(C) is a full left triangulated subcategory of C, Pw(C) nCM(C)  = 0 and 
the inclusions PW(C) v C and CM(C) L, C induce isomorphisms: 

Ko(Pw(C)) = 0 and Ko(CM(C)) Ko(C). 

Proof. (1) By Theorem 3.15, VC E C there exists t > 0, such that Rt(C) E CM(C). 
Suppose also that R8(C) E CM(C) with s 2 0 and assume without restriction that 
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s = t + 7 .  Then R-Sf is (C)  = R-~- 'R~+'(C)  = R-tR-'R'Rt(C) = R-tRt(C),  i.e. 

the object R P R t ( C )  E CM(C) is uniquely determined. We set S1(C)  = R-tRt(C).  
If f : C -+ D is a morphism in C, define S 1 ( f )  = fF tR t ( f ) .  A similar argument 
as above shows that in this way we obtain a functor S' : C -t CM(C) which clearly 
is exact. If F : C + 2) is an exact functor to a triangulated category 2) with 

translation functor C, then define F* : CM(C) -i 2) by F* = FICM(q.  Trivially 

F* is exact and VC E C with Rt(C)  E CM(C), we have F*S1(C)  = F*R-tRt(C) = 
CTtF*Rt(C)  = I?FRt(C) = Y t C t F ( C )  = F(C) .  It  is easy to  see that  these 

identifications are natural, so we have F'S' = F. If G : CM(C) + 'D is another 
exact functor with GS' = F ,  then V A  E CM(C): G(A)  = GSr(A)  = F ( A )  = 
F*(A) .  Hence G = F*. This shows that S' = S is the stabilization functor. 

(2) Let C E PW(C) (7CM(C). Since C E Pm(C) we have S ( C )  = 0 and since 
C E CM(C) we have S(C)  = C ,  so C = 0. All other assertions are trivial, noting 
that S(PW(C))  = 0, since the loop functor R in Pw(C) is locally nilpotent. 0 

We turn now our attention to Co-Gorenstein left triangulated categories. We 
consider the following full subcategory of C: 

If C is Co-Gorenstein, we call the uniquely determined triangulated subcategory 
of C realizing the costabilization, the category of m a x i m a l  Co-Cohen-Macaulay 
ob jec t s  (or maximal Co-CM-objects for short) of C ,  and we denote it by CoCM(C). 

T h e o r e m  3.17. The following are equivalent. 

( 1 )  C is Co-Gorenstein. 
( 2 )  RW(C) is a triangulated subcategory of C .  

(3) There exists a triangulated subcategory U of C with the property: Rw(C) E U .  

In this case U = CoCM(C) = Rw(C), there exists a triangle equivalence R(C) x 
Rw(C) and the inclusion RW(C) L+ C is the costabilization functor. 

Proof. ( 1 )  + (3)  If C is Co-Gorenstein, then there exists a triangulated subcategory 
U of C such that the inclusion i : U L+ C is the costabilization functor. Since I4 is 
triangulated, we have U C RW(C) and since the strict image of the costabilization 
functor i is RW(C), we conclude that Rw(C) = U. (3) + (2) Tkivial. (2) + (1) To 
prove ( 1 )  it suffices to show that the costabilization functor R : R(C) -+ C is fully 
faithful, since then R induces an equivalence: R(C) x RW(C). If f. : (A,, a,) -+ 
(Bn,pn) is a morphism in R(C) with R(f.) = 0, then R n ( f n )  = 0, Vn > 0 and 
f, = 0, Vn 5 0. Since A,, B, E Rw(C), and since the latter is triangulated, we 
have f ,  = 0, V n  E Z. Hence f. = 0 and this shows that R is faithful. A similar 
argument shows that R is full, using that ImR = Rm(C) is triangulated. 0 

The next result, which is a consequence of Theorems 3.15, 3.17, shows that  jn 
some cases the stabilization and the costabilization of C coincide. 

Coro l la ry  3.18. Suppose that C contains a full triangulated subcategory V enjoy- 
ing the property: 3d > 0 such that Rd(C) V .  Then C is Gorenstein and Co- 
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Gorenstein, there are triangle equivalences 

the functor R - ~ R ~  : C + V is the stabilization functor and the inclusion iv : V L, C 
is the costabilization functor. 

We leave to the reader the formulation of the dual concepts and results concern- 
ing (Co-)Gorenstein right triangulated categories. 

4. GORENSTEIN CATEGORIES AND AUSLANDER-BUCHWEITZ CONTEXTS 

Throughout this section we assume that C is an exact category and X is a full 
contravariantly finite additive subcategory of C which is closed under isomorphisms, 
direct summands, and such that any X-epic is an admissible epic. 

4.1. Stabilization a n d  X-Gorenstein Exact  categories. 

Definition 4.1. The exact category C is called X-Gorenstein if the stable left 

triangulated category C/X is Gorenstein. 
By section 2, we know that if C/X is Gorenstein, then the triangulated subcat- 

egory of CIX realizing the stabilization is the stable category of an X-resolving 
subcategory A of C. So we fix an X-resolving subcategory A of C, and let i A  : 

A/ X C/ X be the inclusion functor. Then we know that A/ X is left triangulated 
and the inclusion functor i.4 is exact. Let A  ̂ be the full subcategory of C consisting 
of all objects having finite X-resolutions by objects of A. Hence an object C E C 

is in A  ̂ if there exists an X-exact sequence 0 -+ A, -+ . . . -+ Al -+ A. -+ C -+ 0, 
where Ai E A, Vi 2 0. Let S : C/X -t S(C/X) be the stabilization functor. 

Theorem 4.2. (1) The following are equivalent. 
( a )  The exact functor SiA  : A/X -+ S(C/X) is fully faithful. 
(@) The loop functor Rx : A/X + A/X is fully faithful. 

(7) A c ' -x. 
(2) The following are equivalent. 

(a) The functor SiA : A/X -+ S(C/X) is a triangle equivalence. 
(PI (i) A c 'X. 

(ii) X is an X-cogenerator of A. 
(iii) VC E C and Vn E Z, 3t 1 0 with t > n, such that: Rgn(C') E AIX. 

(7) (i) A E I X .  
(ii) X is an X-cogenerator of A. 

A 

(iii) C = A. 

Proof. Part (1) and the direction (a)  6 (P) of part (2) are consequences of Lemma 
3.14, Theorem 3.15 and the results of section 2. (2)(8) + (7) If C E C, then by 
Theorem 3.15, there exists t 2 0 such that R>(C) = A E A/X. Hence there exists 
an X-exact sequence 0 + A -t Xt-I -+ . . .  -t Xo + C -+ 0 with A E A and 

Xi E X & A,Vi = 0, ..., t - 1. This implies that C E 2, and consequently C = 2. 
(7) * (a)  By Theorem 3.15, it suffices to show that for any C E C there 

exists t 2 0 such that &(C) E AIX. Since A^. = C, there exists an X-exact 
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 sequence 0 -+ At + At-1 -i . . . -+ A1 -t A. -+ C + 0,  where Ai E A ,  Vi 2 

0. Consider the X-exact sequence 0 -+ At -+ At-1 -t Mt-1 + 0 ,  and let 
Rx(Mt- , )  -+ At -+ At-, -+ be the induced triangle in C / X .  Since A is 
X-resolving, imbedding the morphism At + in a triangle in A / X ,  it follows 

that Rx(&f t - l )  E A I X .  Continuing in this way we see that O$(Mt-k) E A / X ,  
and finally that RL(C) := A E A / X .  0 

Let P?(C) of C be the full subcategory of C of all objects with finite contravari- 
ant X-dimension. Obviously PF(C)  is an X-resolving subcategory of C and we 
know that the induced stable category PF(C)/X = Ker(S). So in the notation o f  
Subsection 3.3, P,"(C)/X = Pm(C/X) .  I f  C is X-Gorenstein, then we know that 
the stabilization o f  C/X is realized by the full subcategory CM(C/X) .  Hence there 
exists an X-resolving subcategory CM(C) o f  C such that CM(C/X)  = CM(C)/X.  

Theorem 4.3. If C is X-  Gorenstein, then the following are true. 

(1) The stabilization functor S : C/X -+ CM(C/X)  is the coreflection of the 
category CM(C/X)  in C/X and is given as follows: 

S ( C )  = R , ~ R ~ ( C ) ,  where t 2 0 is such that RL(C)  E CM(C/X) .  

(2) For any C E C, there exists an X-exact sequence 

(Ac) 0 -t PC -% AC % C -+O with PC E P,"(C) and AC E CM(C). 

CM(C) is a contravariantly finite subcategory of C .  The morphism a c  : Ac 
-t C gives a right CM(C)-approximation of C .  

(3) Let f : Ac -i Ac be a morphism such that f 0 L Y ~  = crc. Then - f is an 
isomorphism. All objects of C have minimal right CM(C)-approximations if 
CM(C) is a Km11-Schmidt category or if the ideal &(CM(C)) of morphisms 
in CM(C) factoring through X ,  is contained in the Jacobson radical of CM(C). 

( 4 )  P p ( C )  n CM(C) = X. Moreover VC E C : C E P p ( C )  * Ac E X .  
(5) VA E CM(C), VC E C we have: &z&(A, C) E+ A/X(R$(A) ,&) ,V i  2 1. 

Moreover: C / X [ C M ( C / X ) ,  Pm(C/X)]  = 0. 

( 6 )  CM(C) = 'P,"(C) = ' X .  
(7) For any C E C ,  there exists an X-exact sequence 

(pC) 0 -+ C & pc 5 A' -+ 0 with pC E P?(C) and A' E CM(C). 

P p ( C )  = CM(C)' is a covariantly finite subcategory of C. The left PF(C)-  
approximation of C is given by the morphism : C -+ PC.  

( 8 )  Let f : PC -+ PC be a morphism such that o f = Then f is a 
monomorphisrra and R $ ( f )  is an isomorphism V n  > 1. All objects of i? have 
minimal left P p  ( C )  - approximations if P'$ ( C )  is a Krull-Schmidt catego y 
or 2 f  the ideal &(CM(C)) of morphisms in CM(C) factoring through X is 
contained in the Jacobson radical Jac(CM(C)) of CM(C). 

( 9 )  The stable category PT(C) /X  is a reflective left triangulated subcategory of 
C/X and the reflection is given by the functor 

T : C/X -i P,"(C)/X, defined by T ( C )  = eC. 
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(10) The category C/X admits a "direct sum decomposition" C/X = PF(C)/X @ 

CM(C/X) in  the sense that the sequences of categories and functors 

0 -+ CM(C/X) C/X 3 Pp(C) /X  -+ 0 

satisfy the relations: S j  = 0, T i  = 0, Si = IdcM(clx), Tj  = Idpxm(C)lX 

Moreover there exists an equivalence of categories: 

C/X/Pp(C)/X z CM(C/X) 

where the first categoy indicates localization of the left triangulated category 
C/X with respect to the (eppaise) subcategory PT(C)/X. 

(11) The pair [CM(C/X), Pm(C/X)] is a torsion theory in  C/X: 

CM(C/X)' := {c E C/X : C/X(A,C) = 0,VA E CM(C/X)} = Pm(C/X),  

I P m (C/X) := {C E C/X : C / X ( C , t )  = 0,VE Pw(C/X)} = CM(C/X). 

In  particular there exists a triangle in  C/X: RxT  -+ S -t Idclx -+ T .  

(12) Consider the relative Grothendieck groups Ko(C, X) and Ko(CM(C), X) and 
the stable Grothendieck groups Ko(C/X) and Ko(CM(C/X)) as defined in [15]. 
Then there are isomorphisms Ko(CM(C), X) % Ko(C, X) and Ko(CM(C/X)) 

2 Ko(C/X) and an exact commutative diagram (t): 

Ko(X, @) ---+ Ko(CM(C), X) ---+ Ko(CM(C/X)) ----+ 0 

Proof. (1) By Proposition 3.16 it suffices to show that the functor S is the core- 
flection of CM(C/X). If C € C, then by Theorem 4.1, there exists t > 0 such that 
Rk(C) := A with A E CM(C). Hence there exists an X-resolution ( a )  : 0 -+ A + 
XL-l t x A - ~  t . . . + Xg 3 C -+ 0 of C in C. Since A belongs to CM(C) and 

CM(C/X) is triangulated, A is an arbitrary X-syzygy object. Hence there exists 
an X-exact sequence (8) : 0 -+ A -t Xt-' -+ Xt-2 + ... -t X0 t Ac -+ 0 

in CM(C) and & = Rxt(A) = RitR$(C).  Consider the X-exact sequences 
(y) : 0 -t A -+ X&-I + Kg1 t 0 in C and (6)  : 0 -+ A + Xt-I t At-' -+ 0 
in CM(C). Since At-' by construction is in CM(C) and CM(C) E I x ,  the push-out 

of the above admissible sequence along the morphism A -+ x&-' splits, and this 
induces a morphism (6) -t (y) of short exact sequences. Continuing in this way 
we obtain finally a morphism of X-resolutions (B) + (a ) ,  in particular we obtain 
a morphism ac : AC -+ C. It is easy to see that % is independent of the above 
construction and induces a natural morphism a : ids -+ Idclx. Since by construc- 
tion RL(g+) = l n t  (,), trivially % gives the coreflection of C in CM(C/X). Hence 

CM(C/X) is a cor&&tive (triangulated) subcategory of C/X with coreflector the 
stabilization functor S. 

(2) We use the notation of part (1). Adding a right X-approximation Xc to 
Ac if necessary and using that any X-epic is admissible, we can assume that 

a c  : Ac -+ C is an (admissible X-)epic. Hence the X-exact sequence 0 -+ 
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PC -+ Ac -+ C -+ 0 is defined. This sequence induces a triangle Rx(C)  + 
.PC -+ .& + C in CIX and a triangle ~ X S ( C )  4 S(&) -+ S(&) -+ S ( a  
in S(C/X). But obviously the stabilization functor S induces an isomorphism 

S ( C Y ~ )  : .& = S(&) 2 S(C). Hence S(&) = 0 which is equivalent t o  PC being 
of finite contravariant X-dimension, i.e. PC E P p ( C ) .  It  remains to  show that  
ac : Ac -+ C is a right CM(C)-approximation, but this follows directly from (1). 

(3) Let f : Ac -+ Ac be a morphism such that f o ac = ac. Then f 0 gc = aC 
in C/X. Applying the stabilization functor to  this relation we see direcgy that  S( f )  

is an isomorphism. Since & is in CM(C/X), we have that f is an isomorphis&. 

If the ideal Jx(CM(C)) is contained in Jac(CM(C)) then the projection functor 
CM(C) -+ CM(C/X) reflects isomorphisms. Hence f is an isomorphism and any 
object of C has a minimal right CM(C) -approximation. If CM(C) is a Krull-Schmidt 

category, then the proof of Lemma 2.6 of [I] can be applied, showing that any object 
of C has a minimal right CM(C)-approximation. 

(4) That P y ( C )  n CM(C) = X ,  follows from Proposition 3.16. Suppose now 
that C E P?(C). Then the sequence 0 -+ PC -+ Ac -+ C + 0, induces a 

triangle &(C) -+ PC -+ & -+ C -+ in C/X and then a triangle f l x s ( c )  -+ 
S(&) -+ S(&) -+ S(C) in S(C/X). But since P c , C  have finite X-dimension, 
we have S(&) = S(C) = 0. Hence S(&) = 0, so Ac is in P p ( C )  n CM(C) = X. 
Conversely if Ac E X,  then obviously C E P p ( C ) .  

(5) Consider objects A E CM(C) and C E C, and let 0 -+ Rx(A) -+ X A  -+ 
A -+ 0 be a right X-approximation of A. Applying the functor C(-,C) t o  this 
sequence and using that CM(C) C 'X, it is easy to see that there exists an iso- 

morphism &;(A,c) C/X(Rx(A),G). Consider now the triangle &(C) -+ 
fc -+ Ac -+ C in C/X induced by the sequence (Ac) in (2). Since by ( I ) ,  
CM(C/X) is coreflective in C/X and Rx(A) is in CM(C/X), it follows that we have 

an isomorphism CM(C/X)(Rx(A), &) -t C/X(Ox(A), C). Hence &&(A, C) r 
C/X(Rx(A), C) 2 CM(C/X)(Rx(&, &). The general case follows by dimension 
shifting since CM(C) is X-resolving. 

If f : A -+ f is a morphism in C/X with A E CM(C) and P E P p ( C ) ,  then 
from t h e  right CM(C)-approximation sequence (Ap): 0 + Pp -+ Ap -+ P -+ 0, 
we see that f factors through Ap. But by (4), Ap E X. Hence f = 0 in C/X. 

(6) By hypothesis on CM(C) and parts (3), (4) we have C M ( C )  I P p ( C )  C ' -X.  
By part (2), if C E 'P?(C), then C E CM(C) as a direct summand of Ac. Hence 
CM(C) = 'PF(C) and it remains to  show that 'X C l P y ( C ) .  So let C E Ix. 

We first prove that any morphism f : C -+ P with P E P F ( C )  factors through 
X.  If P E X ,  this is trivial. If X-dimP = 1 and 0 -+ X I  -+ Xo -+ P -+ 0 
is a X-resolution, then the pull-back sequence along the morphism f splits since 
C f: 'X. An easy induction argument shows our claim. Now as in the proof of (4), 

we have &tfy(C, P )  C/X(Rx(C), f) = 0, since P E P p ( C )  and Qx(C) E Ix. 

By dimension shifting we conclude that C E I P F ( C ) .  

(7)  Consider the X-exact sequence (Ac) of (2) and let 0 -+ Ac 4 X 5 Ac -+ 
0 be an X-exact sequence in CM(C) with X E X, which exists since Ac E CM(C). 
Since the morphisrns p c  : PC -+ Ac and K : Ac -+ X are admissible monics, their 
composition p c  0 K : PC -+ X is admissible monic. Let 0 -+ PC -+ X -+ pC + 0 
be the induced admissible short exact sequence in C. Then we have a pull-back 
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diagram, which defines the object P C ,  and a push-out diagram: 

Since the admissible sequence 0 -+ Ac -+ X -+ AC -+ 0 is X-exact, from 

the above diagram it. follows directly that the admissible sequence (PC) : 0 + 
C 5 pc 3 AC -+ 0 is X-exact, hence induces a triangle f iS(dC) -t 

S(C) -+ s(P') -+ s(&) in CM(C/X). But from (2) we have & = Rxl(&) = 
f i - t - l ~ t  .(c). Hence f i S ( ~ ~ )  = ~~S(R;~-'R$(C)) = fifi;"-'s(R$(c)) = S ( c ) .  

Obviously the morphism f i S ( P )  -+ S(CJ in the above triangle is the identity, 

hence s ( p C )  = 0 and then PC belongs to  Pp(C) .  Now let f : C -+ Q be a mor- 
phism with Q E P p ( C )  and consider the push-out sequence 0 -+ Q -+ M -+ AC -+ 
0 of (pC)  along the morphism f .  Trivially the push-out sequence is also admissible 
and X-exact, hence is split by (6). It  follows that the morphism : C -+ pC is 

the left Pp(C)-approximation of C, since then f factors through 

Finally by (6), P p ( C )  C CM(C)'. If C E CM(C)', then the X-exact sequence 
(PC) splits, and C E P p ( C )  as a direct summand of PC. So P p ( C )  = CM(C)I. 

(8) Let f : PC -+ pC be a morphism such that pC o f = pC. Then from the 
sequence ( p C )  of (7), there exists a unique morphism g : AC -+ AC such that  
aC o g = f o a C .  Since AC E CM(C), as in (3) we have that g is an isomorphism. 

Then the triple of morphisms (Ic, f ,  g) is a n  endomorphism or the  induced triangle 

in CIX of the sequence (PC). ~ ~ ~ i ~ i n ~  Yoneda's lemma we conclude directly that 
Rx( f )  is an isomorphism and f is a rnonomorphism. If the ideal JX(CM(C)) is 
contained in Jac(CM(C)) then the  projection functor CM(C) -+ CM(C/X) reflects 
isomorphisms. Hence g is an isomorphism and this implies that  f is an isomorphism. 

Hence any object of C has a minimal left Pp(C)-approximation. If P p ( C )  is Krull- 
Schmidt, then as in (3) we can apply the method of proof of Lemma 2.6 of [I], to  
conclude that any object of C has a minimal left Pp(C)-approximation. 

(9) It  suffices t o  show that  P p ( C )  is reflective in CIX. For any C E C, we claim 

that  the object PC of part (7) is uniquely determined in CIX. Indeed if 0 -+ C 

pC 3 AC -t 0 and 0 -+ C % Q~ % BC -t 0 are left Pp(C)-approximations 
of C with AC, BC E CM(C), then we have the following commutative diagrams 

It is easy to see then that there are morphisms k : AC -+ PC and m : BC -+ QC 
such that: lpc - f 0 g = aC 0 k and lgc - g 0 f = PC 0 m. But from part (5) 
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we have that = 0 and 214 = 0 in CIX. Hence f and g - are isomorphisms in CIX. 

We set T ( C )  := PC. If Q E P'j?(C) and f : C -+ - Q is a morphism, then by part 

(7) there exists a morphism g : pC -t  with pC o g = f .  Then pC - - -  o g = f .  If 

h : tC -+ Q is another morphism with PC 0 h = f ,  then pC o (g - h) = k o m - 
where k : c X ,  m : X -+ Q and X E 2. Let t : PC -+ X be a morphism with 
p C o t =  k. ~ h e n p ~ o ( ~ - h )  =pCotom,hencethemorphismg-h- torn=aCoz 
for a unique morphism z : AC -+ Q. Since Q has finite X-dimension, g = 0. Hence 
g - -h = t o n  = 0 and g = h. So pC : C -+ T(C)  is the reflection of C in PF(C) /X.  

(10) The first a consequence of (9) and (1). Let T be the class of mor- 

phisms f : C -+ Q in CIX, such that in a triangle &(Q) -+ f + C 4 Q, 
the object 11 E Pp(C) /X.  Obviously the functor S : C/X + CM(C/X) sends the 
class T t o  isomorphisms. If F : C/X -+ V is a functor with the same property, 
then since the morphism CYC : & -+ C of the sequence (Ac) belongs to  T ,  F(crc) 
is an isomorphism. Define a functor F* : CM(C/X) -+ 2) by F* = FlcM(clxb 
Then Vc E C/X we have F'S(C) = F*(&) = F(&) F(C) .  Hence F'S = F. 
Trivially F* is the unique functor with this property. This implies that CM(C/X) 
is equivalent to the localization C/X/Pp(C)/X = C/X[T-'1. 

(11) Follows easily from part (5) and parts (2), (9). 
(12) The diagram (t) is obviously commutative. By the results of section 3, the 

morphism Ko(CM(C/X)) -+ Ko(C/X) is an isomorphism, since CM(C/X) is the 
stabilization of CIX. Hence the middle morphism of (1) is an epimorphism, which 

-Z 

by [40] is actually an isomorphism, since CM(C) = C. 0 

Many of the consequences of the above Theorem are identical with the theory 
developed by Auslander-Buchweitz in [4], in case C is abelian. The crucial points 
of the Auslander-Buchweitz theory have been formulated by Hashimoto (see [30] 
or Subsection 4.3 below), in the concept of an Auslander-Buchweitz context in an 
abelian category. In our relative setting this concept can be formulated as follows. 

Defini t ion 4.4. Let C be an exact category and consider full additive subcategories 
A, B, X of C. The triple (A, B, X) is called an X-Auslander-Buchweitz c o n t e x t  
(or X-AB-context), if the following conditions are true: 

(a)  A is X -resolving. 
( p )  B is closed under extensions of X-exact admissible sequences, direct sum- 

mands and cokernels of X-monics. 
(7) A n  B = X is an X-cogenerator of A, and any X-exact admissible short 

exact sequence 0 -+ X -+ C -+ A -+ 0 with X E X and A E A, splits. 
(6) A^= C. 

Next we characterize the exact categories which admit an X-AB-context. 

T h e o r e m  4.5. The following are equivalent 

(1) The subcategory X is part of an X- Auslander-Buchweitz context (A, B, X). 
(2) The category C is X- Gorenstein. 

In this case: A = Qx(C) = 'X = 'P?(C) = CM(C) and B = PT (C). 
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Proof. (2) (1) is the content of Theorem 4.3. Conversely let (A, B, X) be an 

X-Auslander-Buchweitz context. Then A = C, and X is a cogenerator of A. Since 
any X-exact admissible sequence of the form 0 -+ X -+ C -+ A -+ 0 with X E X 

and A E A, splits, and since A is X-resolving, we have directly that A 'x. By 
Theorem 4.2, the subcategory A realizes the stabilization, so C is X-Gorenstein. 

It remains to show that A = Gx(C) and t3 = PF(C).  Let A E A. Then the 
X-resolution of A is by definition contravariantly X-exact and it is covariantly 
X-exact since A = 'x. Since X is a cogenerator of A, there exists an admissible 
contravariantly X-exact sequence 0 + A + X0 + B -+ 0 with B E A. Since 
B E A and A = 'X, this sequence is also contravariantly X-exact. Continuing in 
this way we obtain a contravariantly X-exact X-coresolution of A. Hence A has a 
covariantly X-exact X-resolution and a contravariantly X-exact X-coresolution, 

i.e. A E Gx(C). Conversely if C E Gx(C), then since the X-resolution of C is 

contravariantly X-exact, we have C E 'X = A. Hence A = $x(C). Since X B, 
by property (8) of definition 4.4 it follows easily that PF(C) 5 13. Let C E B and 
let 0 + C -+ pC -t A~ + 0 be the left P?(C)-approximation of C.  By (P), (7) 
of definition 4.4, we have A' E B n A = X, so the above sequence splits since it is 
X-exact. Then C E PF(C),  since B is closed under direct summands. 0 

Hence for any X-Gorenstein category C, we always have: 4x(C) = CM(C). 

Definition 4.6. Let A be an X-resolving subcategory of c and C E C. Then C 
has finite A-resolution dimension iff there exists an X-exact sequence 0 -+ A, -+ 
. . + Al + A. -+ C + 0 with Ak E A, 'dk = 0,1, ..., n. In this case the least such 

integer n is called the A-resolution dimension of C and is denoted by A-res.dimC. 
Otherwise we define A-res.dimC = co. The global A-resolution dimension of C is 
defined by A-gl.res.dimC = sup{A-res.dimC; C E C). 

It is not difficult to see, using that A is X-resolving, that A-res.dimC is well- 

defined. Obviously Â  = C iff any object of C has finite A-resolution dimension. 

Corollary 4.7. Suppose that any left X-approximation of an X-Gorenstein ob- 
ject of C is admissible monic. Then the following are equivalent: 

(1) The category C is X-Gorenstein. - 
(2) Any object of C has finite Ex(C)-resolution dimension, i.e. C = Ex(C). 

Proof. (1) + (2) Follows from Theorems 4.3 and 4.5. By hypothesis and Proposi- 
tion 2.13, Gx(C) is X-resolving and the stable category Gx(C)/X is triangulated. 
Then condition (2) implies that C is X-Gorenstein by Theorem 4.2. 0 

Corollary 4.8. Suppose that X is an X-cogenerator of 'X and for any object 
C E C, there exists d _> 1 such that M x ( C ,  X) = 0,Vi > d. 

Then the triple ('X, Py(C) ,  X) is an X- Auslander-Buchweitz context. 

Proof. The last assumption implies that for any C E C there exists d 2 0 such 

that nd,(C) E 'X. Hence C = and then the triple ( I X ,  P ~ ( C ) ,  X) is an 
X-Auslander-Buchweitz context by Theorem 4.2. 0 

4.2. Costabilization a n d  X-Co-Gorenstein Exact  categories. We turn now 
our attention to the representation of the costabilization R(C/X) of CIX as a 
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full subcategory of C/X. Let again A be an X-resolving subcategory of C, and 
consider the costabilization functor R : R(C/X) + CIX. By the description of 
R(C/X) in Theorem 3.11, it follows that the essential image Im(R) of R is the 
full subcategory Ry(C/X)  = RY(C)/X of C/X induced by all objects which are 
arbitrary X-syzygies. Hence A / X  Im(R) iff A RW(C). 

Definition 4.9. The exact category C is called X-Co-Gorenstein if the left tri- 

angulated category C/X is Co-Gorenstein. 

T h e o r e m  4.10. The following are equivalent. 

(1) C is X- Co-Gorenstein. 

(2) RT(C) C 'X. 
(3) There exist an X-resolving subcategory A of C satisfying the following: 

(a )  A s L X .  
(p )  X is an X-cogenerator of A. 

(7) R?(C) C "4. 

In  one of the above equivalent statements is true, then A = RF(C) and if the 
left X-approximation of any X- Gorenstein object is admissible monic, then A = 

RF(C) = Gx(C) and A / X  = CoCM(C/X). 

Proof. The proof is a direct consequence of Theorem 3.17 and section 2. If C is 
X-Co-Gorenstein, then by (3) it  follows trivially that A E Gx(C). If A E Gx(C), 

then by hypothesis and section 2, Gx(C)/X is a triangulated subcategory of C/X. 
Hence the exact inclusion Gx(C)/X L) CIX, factors uniquely through the inclusion 
A / X  ~ _ t  CIX. But then obviously Gx(C)/X C_ A/X. Hence A = Qx(C). 0 

Our next result which is a consequence of Corollary 3.18, shows that in some 
cases any X-Gorenstein exact category is X-Co-Gorenstein. For instance this is 

true if C is X-Gorenstein with Gx(C)-gl.res.dimC < oo. 

Corol lary 4.11. Suppose that X is an X-cogenerator of A and A E Ix. If 

R$(C/X) A / X  for some d 2 0, then C is X-Gorenstein and X-Go-Gorenstein 
and there are triangle equivalences 

R(C/X) 5 A / X  3 S(C/X), 

the functor OidOd, : C/X -+ A / X  is the stabilization functor and the inclusion 
i A  : A / X  C/X is the costabilization functor. 

R e m a r k  4.12. All the above results are true in case we deal with the dual sit- 
uation of relative injectives, i.e. when X is a covariantly finite subcategory of 
the exact category C and any X-monic is an admissible monic. Then the stable 
category CIX is right triangulated and its stabilization S(C/X) (costabilization 
R(C/X)) is defined. Then C is called X-(Co-)Gorenstein if the category C/X is 
(Co-)Gorenstein as a right triangulated category. We entrust to  the reader the def- 
inition of an X-Auslander-Buchweitz context in this case, which however we call 
an dual X-Auslander-Buchweitz context. 

4.3. Gorens te in  a n d  Co-Gorens te in  Abel ian  Categories .  We assume in this 
subsection that C is an abelian category. Then a resolving subcategory of C is a full 
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additive subcategory of C which is closed under extensions, kernels of epics and con- 
tains the projective objects. Dually a coresolving subcategory of C is a full additive 
subcategory of C which is closed under extensions, cokernels of monics and contains 
the injective objects. We denote always by P (1) the full subcategories of projec- 
tive (injective) objects and by Pm (Zm) the full subcategory of objects with finite 
projective (injective) dimension. We call P-cogenerators simply cogenerators. 

An Auslander-Buchweitz context as defined in [30], is a triple (A, B, X) of full 
subcategories of C, such that the following conditions are true: 

(i) A is closed under extensions, direct summands and kernels of epics. 
B is closed under extensions, direct summands and cokernels of monics. 

(ii) X = A n  B is a cogenerator of A with the property 

(iii) C = A^, i.e. any object of C has a finite resolution by objects of A. 

We refer to (41, [30] for examples of Auslander-Buchweitz contexts, in Commuta- 
tive Algebra, Algebraic Geometry and Ring Theory. Given an Auslander-Buchweitz 
context (A, B, X) in the abelian category C, we are interested in describing the sta- 
ble category CIX, when the latter is left triangulated. This happens if X is in 
addition contravariantly finite. So the results of Subsection 4.1 give a clear picture 
of this situation. Now we restrict ourselves in the case when the abelian category C 
has enough projectives (resp. injectives), studying when P (resp. Z) is part of an 
Auslander-Buchweitz context (A, 13, P )  (resp. dual Auslander-Buchweitz context 
(A, B,Z)) in C. We shall see that in this case our results are more complete. So 
from now on suppose that C has enough projectives. In case C has enough injec- 
tives we entrust to the reader to formulate the dual definitions of an Z-Gorenstein 
category, L3-gl.cores.dimC for a coresolving subcategory of B of C, and of a dual 
Auslander-Buchweitz context. The dual results using injectives are also true. 

Corollary 4.13. The following are equivalent. 

( 1 )  The subcategory P is part of an Auslander-Buchweitz context (A,  D, P ) .  
(2) The triple ('P, P w ,  P )  is an Auslander-Buchweitz context. 

(3) The category C is P- Gorenstein. 
(4) The natural functor 'P/P + 'Db(C)/Kb(p) is a triangle equivalence. 
(5) Any object of C has finite P- Gorenstein resolution dimension. 
( 6 )  The natural functor IDb(GF(C)) 'Db(C) is a triangle equivalence. 

In this case A = I P  = 'Pw = Gp(C) and B = Pm. 

Proof. By our previous results, the statements (1) to (5) are equivalent. So it suffice 
to show that (3) is equivalent to ( 6 ) .  We view Gp(C) as an exact subcategory of 
C with enough projectives. If one of the statements (1) to (5) is true, then we 

know from Corollary 4.7 that Gp(C) = C. Then by [28] we have that the natural 
functor Db(Gp(C)) -+ Vb(C) is a triangle equivalence. Conversely if the above 
functor is a triangle equivalence, then the Verdier-quotients v ~ ( G ~ ( C ) ) / K ~ ( P )  and 
Db (C)/Kb (P)  = S(C/P) are triangle equivalent. Since G p  (C)/P is triangulated, by 
section 3, 'Db(Gp (C))/Kb(P) = Gp (C)/P. Hence the canonical functor Gp(C)/P -+ 
S(C/P) is a triangle equivalence. By Theorem 4.2, C is P-Gorenstein. 0 
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Corollary 4.14. Let A,  B  be P-Gorenstein abelian ( o r  exact) categories with 
enough projectives. If there exists an  equivalence Gp(A) M Gp(B),  then there exists 
a triangle equivalence: V b ( d )  sy V b ( B ) .  

Corollary 4.15. The following are equivalent. 

(1)  There exists an  Auslonder-Buchweit  context ( C ,  B , P ) .  
(2) The  category C i s  Frobenius. 
(3) The  natural functor C / P  + Vb(C) /Kb(P)  is a triangle equivalence. 
(4)  The natural functor KAc(P)  -+ C/P  is a triangle equivalence. 
(5)  A n y  object of C .is P- Gorenstein. 

I n  this case B = P .  

Theorem 4.16. Let C be a n  abelian category with exact products and coproducts 
and with enough projectives and injectives. Then the following are equivalent. 

( 1 )  C is P- Gorenstein. 
(2) C is 1- Gorenstein. 

(3)  ( i P ,  Pm,  P )  is an Auslander-Buchweitz context. 
(4)  (I1,  Zm, 2) is a dual Auslander-Buchweitz context. 
(5)  d := sup(p.d.1 : I E Z )  = sup{ i .d .P : P E P )  < cm. 
(6) Pm = Zm. 

( 7 )  K b ( P )  = Kb(Z) as full subcategories of Vb(C) .  
( 8 )  The  natural functor I P / P  + V b ( C ) / X b ( P )  is a triangle equivalence. 
( 9 )  The natural functor Z L / Z  -+ Vb(C) /Kb(Z)  is a triangle equivalence. 

(10) A n y  object of C has finite P- Gorenstein resolution dimension. 
(11) A n y  object of C has finite Z- Gorenstein resolution dimension. 
(12) The natural functor 'Db(Gp(C)) -+ Vb(C)  is a triangle equivalence. 
(13) The natural functor Vb(gx(C))  -t Vb(C)  is a triangle equivalence. 

If one of the above equivalent conditions is true,  then we have the following: 

( a )  C is P -  Go- Gorenstein and 1- Go-Gorenstein and 

(0) Pm = Zm is functorially finite i n  C ,  G p ( C )  = Rd(C) is contravariantly finite 
i n  C ,  gI(C) = Cd(C) is covariantlyfinite i n  C ,  Gp(C)/P i s  corejlective i n  C/P  
and &(C)/Z i s  reflective i n  C/Z.  

(7)  If P is covariantly finite i n  C ,  then G p ( C )  i s  functorially finite i n  C and 
gp(C) /P  i s  reflective i n  C/P .  If 2 is contravariantly finite i n  C, then 
is functorially finite i n  C and Gz(C)/Z is corejlective i n  CIZ. 

( 6 )  There exist triangle equivalences: 

v b ( c ) / K b ( z )  M (Zm)'/Z M Z L / 2  M Gx(C)/Z M K A ~ ( Z ) .  

( 6 )  The costabilization functors are the inclusions 

Gp(C)/P ~t C/P  and Gz(C)lZ L+ CIZ 

and the stabilization functors are given by 

n-Qd : C/P  -+ G p  (C) /P  and c - ~ C ~  : CIZ -+ Gz(C)/Z. 
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(0 C is Fkobenius iff G p  (C) = &(C). 

Proof. By our previous results we have that (1) is equivalent t o  (3), (8), (10) and 

(12). By duality (2) is equivalent to  (4), (9), (11) and (13). By the results of [25], 
(181 we have (5) ++ (6). Also it is easy t o  see that  (7) is equivalent to  (6). So it 

suffices to  show the equivalence (1) (5). Then (2) * (5) will follow by duality. 
We set d = sup{p.d.I : I E Z} and 6 = sup{i.d.P : P E P}. 

(1) (5) Suppose that C is P-Gorenstein. By Theorem 4.2 we have that  VC E C 
there exists rc 2 0 such that RPC(C) E '-P. Hence VC E C : Ext"RPc(C), P )  = 
0,Vi >_ 1 or equivalently Exti+'c (C, P )  = 0,Vi >_ 1. This implies that any projective 
object has finite injective dimension, i.e. P E ZM. If I is an injective object, then 
the left PM-approximation (PI) of Theorem 4.3 splits, hence I has finite pojective 
dimension as a direct summand of PI, so Z P m .  By the arguments of (251, [18] 
it  follows that d = 6 < oo. 

(5) + (1) Since S = d < co, for any C E C we have Rd(C) E l p ,  hence 

Rd(C) = 'P. Let A E '-P and consider an injective resolution 0 -+ A -+ I0 + 
I' -+ . . .  of A, with corresponding cosyzygies Bn = Cn(A),Vn 2 1. The exact 
sequence 0 + A -+ I0 -+ B' + 0 induces a triangle R(B') -+ A + + B' in 

C/P. Applying the stabilization functor S to  this triangle and using that Z PM, 
we have S(A) g SR(B') = SR(C(A)). Inductively we have S(A) 2 s R k ( a k )  = - 
SRk(Ck(A)), Vk 1 1, in particular S(A) SSR~+'(B~+') = SRd+'(Cd+'(A)). 

Since Rd+'(Cd+l(A)) E IP/P and since the stabilization functor S is fully faithful 

restricted to  '-PIP, we have A 2 Cld+'(~d+'(A)). Setting A' = RdCd+'(A) E 'P 

we see that A' E 'P and R(A1) = A. Hence P is a cogenerator of 'P. Since 
Rd(C) = l P ,  by Corollary 4.11 we have that C is P-Gorenstein, P-Co-Gorenstein 

and Gp (C) -gl.res.dimC = d < co. 
If one of the equivalent conditions (I),  (13) is true, then as the above proof shows, 

we have Rd(C) = and Cd(C) = ZL. Hence by Corollary 4.11 and its dual, C is 
P-Co-Gorenstein and Z-Co-Gorenstein. Also the above proof shows that P C_ ZM 

and Z P m ,  hence trivially Pw = 2" and by the Theorem 4.3 and its dual we see 
that these categories are functorially finite. Since C is P-Gorenstein, by Theorem 
4.2 the category Gp(C) is contravariantly finite in C and Gp(C)/P is coreflective in 
C/P .  Dually &(C) is covariantly finite in C and GI(C)/Z is reflective in C/Z. If P 
is covariantly finite in C, then by section 2, we have that Rd(C) is covariantly finite. 
Since Gp(C) = '-P = Rd(C), we conclude that Gp(C) is functorially finite. Dually 
if Z is contravariantly finite, then &(C) is functorially finite. The other assertions 
in parts (a) ,  (p) ,  (Y), (4, ( E )  are consequences of our previous results. 

Finally if Gp(C) = BT(C), and if I is an injective object, the I is P-Gorenstein. 
But since I also has finite projective dimension it is projective by Theorem 4.3. 
Hence any projective is injective. By duality any injective is projective and C is 
Frobenius. Conversely if C is Frobenius, then obviously Gp(C) = C = &(C). 

The following are consequences of Theorem 4.10 and Corollary 4.8. 

Corollary 4.17. The abelian category C with enough projectives (injectives) is 
P- Co-Gorenstein ( Z- Co-Gorenstein ) iff Rw(C) E 'P ( CM(C) C Z' ). 



D
o
w

n
lo

a
d
e
d
 B

y
: 
[H

E
A

L
-L

in
k
 C

o
n
s
o
rt

iu
m

] 
A

t:
 1

0
:5

5
 1

0
 J

u
n
e
 2

0
0
8
 

4576 BELIGIANNIS 

Corollary 4.18. Let C be an abelian category with enough projectives and enough 
injectives and let A, resp. B, be a resolving, resp. coresoluing, subcategory of C. 

( 1 )  Suppose that P is a cogenerator of A and A C 'P. If  there exists d > 0 ,  such 
that Rd(C) C A, then there are triangle equivalences 

the functor W d R d  : C l P  + A l p  is the stabilization functor and the inclusion 
ia : A l p  L) C l P  is the costabilization functor. 

(2) Suppose that Z is generator of l? and B C 1'. If there exists d 2 0 ,  such that 
Cd(C) 2 B,  then there are triangle equivalences 

the functor C-dCd : C/Z -+ B/Z is the stabilization functor and the inclusion 
ia : BIZ L) CIZ is the costabilization functor. 

(3) Suppose that C in addition has exact products and coproducts and A satisfies 
the conditions in  ( 1 )  or B satisfies the conditions in (2). Then C is 
P- Gorenstein, P- Co- Gorenstein, 1- Gorenstein, Z- Co-Gorenstein. 

Remark 4.19. If in the definiGon 4.4 of an X-Auslander-Buchyeitz, context we 
remove condition (6) that C = A and we add the condition B A,  then the triple 
(A, B, X) is called a weak X-Auslander-Buchweitz context, see (301. All the results 
of this section are true for weak X-Auslander-Buchweitz contexts in C, but now C 

has to be replaced everywhere by Â . 

5. COMPLETE RESOLUTIONS AND COMPLETE (CO-)HOMOLOGICAL FUNCTORS 

5.1 .  Complete Resolutions and Complete Extension Functors. Troughout 

this section we fix a pair (C, X), where C is an additive category and X C C is 
a full contravariantly finite additive subcategory of C which is closed under direct 
summands, such that any X-epic has a kernel. Then CIX is left triangulated. 

Definition 5.1. The complete X-extension bifunctors of C are defined by 
-n 
Ext,(-,-) : Cop X C  ---+ Ab, 

If S : CIX -+ S(C/X) is the stabilization functor, then since (A, - n )  = f i > ( ~ ,  0) 

= f i ;~ (A) ,  it follows that 

The above definition is inspired by the definition of the stable homotopy groups 
of spheres and CW-complexes in algebraic topology, see for instance [24], [38]. We 
shall see in the next section that the complete X-Extension Bifunctors can be 
regarded as generalized Tate-Vogel cohomology functors. 

Remark 5.2. In case X is a covariantly finite subcategory of C and any X-monic 
has a cokernel in C, so the stable category CIX is right triangulated, then we can 
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HOMOLOGICAL THEORY 

define the complete X-Extension Bifunctors as follows: 
-X 
Extn (-, -) : Cop x C -t Ab, 

= lim k f n  B 
- - S k , k + n > O  C I x ( x k , ( ~ ) ,  EX (A), vn  E Z, 

where S(C/X) is the stabilization of C/X as a right triangulated category, i.e. 

inverting the suspension functor Ex to an automorphism %x of S(C/X). Observe 
that in case X is functorially finite, any X-monic has a cokernel and any X-epic 
has a kernel in C, then the above complete X-extension bifunctors are different, 

since in general the stabilizations of the stable category, first as a left triangulated 
category and second as a right triangulated category are not equivalent. 

Remark 5.3. (1) Fkom the above description we see that we can define Yoneda 
-m 

products. Indeed if d E Gt;(A,B) and f i  E ExtX(B,C),  then d : f i : ~ ( ~ )  -+ 

S(B) and f i  : ~ ? S ( B )  -+ S(C). Then define the Yoneda product d 0 /3 as the 
-n+m 

composition fim(&) o 8 E Extx (A,C). In this way for any object A E C, we 

obtain a Z-graded ring G t L ( A ,  A). 
-n+r-s 

(2) &",(R>(A), R$(B)) = ExtX (A, B) ,  Vn E Z, Vr, s 2 0. 
(3) If CIX is triangulated, then since CIX is triangle equivalent to S(C/X): 

The next result shows in particular that the complete X-cohomology of C is 

non-trivial only if X-gl.dimC = oo. 

Proposition 5.4. (1) If A or B E Py(C) ,  then g t i ( A ,  B) = 0. In particular if 
-* 

X-gl.dimC < oo, then Extx(-, -) = 0. 

(2) Let A 3 B ft C be a sequence in C with f an X-epic cmd g = ker(f). 

Then for any D E C, there are long exact sequences: 

. . . -+ G ~ ( A ,  D) -+ G P , ( c ,  D) -+ G:(B, D) -+ =:(A, D) -+ 
--I --I --I --2 

-+ ExtX (C, D)  -+ ExtX (B, D) -+ ExtX (A, D )  -+ Extx (C, D) -+ . . . 
--I 

(a)  

. . . -+  EX^^ (D, C) -+ G>(D,A) -+ G:(D, B) -+ G $ ( D ,  C) 
-1 

-+ ExtX(D, A) -+ S t i ( ~ ,  B) -+ G~;(D, C) -+ G&(D, A) -+ . . . (PI 

Proof. (2) The sequence A -+ B -+ C induces a triangle Rx(Q -+ A -+ B -+ C 
in CIX by the definition of the triangulation Ax in [14]. Applying the stabilization 
functor S : CIX -+ S(C/X) we have a triangle (C, -1) -+ (A, 0) -+ (B, 0) -+ (C, 0) 
in S(C/X). Since S(C/X) is triangulated, applying to this triangle the cohomolog- 
ical functor (D, O)] we get the long exact sequence (a)  and applying 
the homological functor H ~ m s ( ~ ~ x ) [ ( D ,  0), ?] we get the long exact sequence (P). 
Part (1) follows directly from the definition. 0 

Our purpose here is to compute the complete X-extension bifunctors by using 
suitable resolutions. To simplify things, we suppose throughout that C is an exact 
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category, any X-epic is an admissible epic and any left X-approximation (which 

always exist) of an X-Gorenstein object, is an admissible monic. 

Defini t ion 5.5. A c o m p l e t e  X-resolut ion of A E C is a functorially X-exact 

complex 

XE(A) . . . -, X-" -+ . . . + x-l + x0 -+ x1 -) . . . + X n  -+ . . . 

for which there exists t := t~ E Z ,  such that the complex . . .  -i Xt-2 -+ Xt-' -+ 
X t  + 0 coincides with a part . . .  -i X i  -i xi-' -i Xi of an X-resolution 

. . - + X i - + ~ i - '  t . . . + X ~ - + X ~ - i A - i O o f A  . 

The following is a direct consequence of the definition. 

L e m m a  5.6. An object A has a complete X-resolution iff there exists t 2 0 such 
that RL(A) is an X-  or en stein object or equivalently if A has finite X-Gorenstein 

resolution dimension, i.e. A E Gx(C). 

In particular any X-Gorenstein object A has a complete X-resolution (choose 
t = t~ = 0 in definition 5.5). For simplicity we set g(C/X) := Gx(C)/X. 

T h e o r e m  5.7. The following are equivalent: 

(1) The category C is X- Gorenstein. 
(2) Any object of C has a complete X-resoltition. 

Proof. (1) + (2) If C is X-Gorenstein, then by section 4, we know that there exists 
d 2 0, such that @(A) is an X-Gorenstein object. Since R$(A) is an arbitrary 

X-syzygy object, there exists a functorially X- exact complex 0 -+ R$(A) -+ 
X 0  -+ X 1  -+ . . . . Composing the complex 0 -+ X o  -+ X 1  -+ . . . with a deleted 
X-resolution . . .  -+ X T 2  -+ X-I -+ 0 of R$(A), since R$(A) E 'X, we obtain a 
functorially X-exact complex, which obviously is a complete X-resolution of A. 

(2) + (1) Suppose that any object C of C has a complete X-resolution X:(C). 
Then by the above Lemma, there exists d = dc > 0, such that R$(C) is an 
X-Gorenstein object. By Corollary 4.7, we have that C is X-Gorenstein. 

Corol lary 5.8. Suppose that C is X-Gorenstein. Then VA, B 6 C: 

z t ; ( ~ ,  B) S ~(C/X)[R;-~+'R~(A),  R>(B)], Vn E Z, 

where t , r  2 0 are such that: Rk(A), R>(B) E G(C/X). 

Proof. This follows from the description of the stabilization of the X-Gorenstein 
category C as the stable category G(C/X) in section 4. 0 

Corol lary 5.9. Suppose that there exists d > 0, such that R$(C) GX(C). Then 
the complete X-extension functors are given by: 

g t l ( - ,  -) E(c/x)[R~R$(-) ,  a$(-)], Vn E Z .  

5.2. C o m p l e t e  (Co-)Homological Functors .  Our purpose in this subsection is 
to  define under some assumptions, another sequence of (co-)homological functors, 
using resolutions of objects. Consider an object A in C, let 
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be an X-resolution of A and let 

be an X-coresolution of A. The complex 

X O ( A )  . . . -, x: A+ xi 3 x; LC+ x: , . . . 

where d~ := X A  0 X A ,  is called an X-biresolution of A. Since we consider all our 
complexes as cohomological, X$ is in degree 0 and X: is in degree -1. 

Let A, B be two objects in C having X-biresolutions. We define X-homology 
groups fi; (A ,  B) and X-cohomology groups &(A, B),  as follows: 

@(A,  B) = Hn(A, X'(B)) and @(A, B) = Hn(X*(A),  B ) .  

Let 0 -+ A -+ B -+ C + 0 be a functorially X-exact sequence in C of objects 
having X-biresolutions. By section 2, VD E C ,  the following sequences are exact: 

Our aim is to study the relationship between the complete X-(co)homology func- 
-n 

tors G:(A, B) ,  &$(A, B) and the complete X-extensions functors Extx(A, B ) ,  
-X 

and Extn (A ,  B ) ,  n E Z, when all these functors make sense. 
So let X be functorially finite in C ,  any X-epic has a kernel and any X-monic 

has a cokernel in C .  As always C x  is the left adjoint of Ox in C/X as in section 2. 

Proposition 5.10. For any A, B E C ,  we have the following 

(1) @,(A,B) = f i sn (A ,B)  = C/X(A, f ln(B))  = C/X(Cn(A) ,B) ,  Vn > 2. If 
the right X-approximation of A is epic and the left X-approximation of B 
is monic, then the above identifications are true, Vn > 0. 

(2) If &$(A, X )  = G;(X,B) = 0,Vn 1 1, then G;(A,B) = @-$(A, B)  = 
&$(A, B )  = =,(A, B) ,  Vn 2 1. 

--O 
(3) If C(A, B )  = &$(A, B) = &xtx(A, B) and &tg (A ,  X )  = E2t> (x ,  B) = 

0,Vn 2 1, then &(A,-)(B) f i f ( - , B ) ( A ) , v ~  E Z .  

Proof. Parts ( I ) ,  ( 2 )  are consequences of Proposition 2.5 and Proposition 2.8. Part 
(3) follows from ( I ) ,  (2) and the definitions. 0 

The following result is a direct consequence of the definitions. 

Proposition 5.1 1. The following are equivalent. 

( 1 )  A E Gx(C), i e .  A is an X- Gorenstein object. 
(2) Any X-coresolution of A is covan'antly X-exact and any X-resolution of 

A is contravariantly X - exact. 
(3) f i $ ( ~ ,  A) = G'$(A, X )  = 0, Vn E Z. 

(4) A E I X  n X I .  

Let A, B be objects of C and consider the complex C(XO(A) ,  B ) .  B y  diagram 
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chasing, there exists the following commutative diagram with exact rows: 

C/X(Cx(A),B) ---+ L,X(A, B) -----+ C(A, B) ----+ C/X(A, B )  

A B )  -+ L,X(A,B) +&O~(A,B) --t G$(A,B). 

From the above diagram we see that that there exist natural morphisms 

p : C/X(Cx(-),B) 2 C/X(-,OX@)) -+ Gxl(-, B), v : C/X(-,B) -t go,(-, B) 

with p rnonic. Hence the morphisrns : C/X(A,Rx(B)) -+ Gxl(A, B) and 

v~ : C/X(A,B) -+ fi$(A, B) are isomorphisms iff C(A, B)  &&(A, B), which 
obviously happens if the right X-approximation of A is epic. Suppose that the 
right X-approximations of A and any of its X-syzygies K z  are epics. Fkom the 

exact sequence 0 -+ C(A, B) + C(Xi ,  B) -+ C(K1, B) -+ &&;(A, B) -+ 0, we see 

directly that there exists an epic &&(A, B) -+ C/X(Rx(A),B). By dimension 
shifting we obtain in this way epics E ! , ~  : &;(A, B)  -+ C/X(Ri(A),B),Vn 2 1. 

Dually consider the complex C(A, X0(B)). Then we have the following commu- 
tative diagram, with exact rows 

C/X(A,Rx(B)) + L,X(A,B) ----+ C(A,B) + C/X(A,B) 

@, (A, B) - - - -  Lf (A, B)  + e x ( A ,  B) 4 fif(A, B) 

and natural morphisms < : C/X(A, Ox(-)) -+ GX1(A, -) and C : C/X(A, -) -+ 

G$(A, -), with < rnonic. Hence the morphisrns tB : C/X(A, Rx(B)) -+ @,(A ,  B) 

and CB : C/X(A, Rx(B))  -+ @(A, B) are isomorphisms iff C(A, B )  r a x ( A ,  B), 

which obviously happens if the left X-approximation of B is rnonic. If the left 
X-approximations of B and any of its X-cosyzygies L: are monics, then we have 

epimorphisms =$(A, B) -+ C/X(A, C>(B)), Vn _> 1. 
Suppose that any X-epic is epic. Then there is a natural morphism 

Indeed in this case 6 s n ( A ,  B) = C/X(C;(A), B) C/X(A, Rn(B)), Vn 2 0 ,  VA E 
C. Hence Vn 2 0 we have the natural morphism: 

and for n 2 1, we have the morphisms: 

-n 
3 s(c/x)[~~;s(-), S(i?)] = Ext,(-, B). 

Lemma 5.12. Let C be an exact category and X be a contravariantly finite subcat- 
egory such that any X-ep i c  is admissible epic. Then the morphtsrn 

SA,B : C/X(A,B) -+ S(C/X)[S(A), S(B)I 

is an isomorphism, VA E 'X and VB E C. 
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Proof. Let f : A + B be a morphism with S(f )  = 0. Then there exists t 2 0 

such that $x(f) = 0. Choose X-resolutions-X: and Xk  of A and B,  with 
corresponding X-syzygies K;I, K i .  We denote by k? : K; + Kt; the induced by 

f morphisms, such that h; = R%(f). Since R$( f )  = 0, the morphism k; factors 

through Xk.  But since A E 'X, taking the push-out of the X-exact admissible 

sequence 0 + K i  + xi-' -+ Ki-' + 0 along the morphism K i  + XL we see 

that there exists a morphism xi-' + XL such that composing this morphism with 

K i  + x:' we obtain the morphism K i  + Xk.  This implies that in the diagram 

0 ---+ Ka + xi-' + KY' + 0 

k;-'L 

0 + K k  + xL-' + KL-' + 0 

the morphism k; factors through x;'. But then the morphism k;-' factors 

through xL-'. Hence Rg l ( f )  = $' = 0. Continuing in this way we have finally 

that f = 0. Hence S A , ~  is a monomorphism. Suppose now that f : S(A) + S(B) 
is a morphism in S(C/X) and choose a representative f : R$(A) + R$(B) of j , 

-8 

where s 2 0. Let g, : K i  + K k  be a morphism such that gs = f . .Arguing as 
-8 

above and using that A E 'X, we see that there are morphisms : K i  + K k ,  
Vt 5 s making the above diagram commutative. We set g = go : A + B. Using 

Corollary 3.3 it follows that S(g) - = j. Hence S A , ~  is an epimorphism. 0 

The next result shows that the complete X-Extensions functors g t > ( ~ ,  B) 
defined using the contravariant finiteness of X and the stabilization functor S : 

C/X + S(C/X), can be computed via resolutions if A has a complete X-resolution 

or equivalently if A has finite X-Gorenstein resolution dimension. 

Theorem 5.13. Let C be an exact category and X be a contravariantly finite sub- 
category of C, such that any X-epic is an admissible epic and the left X-appro- 
ximation of any X- Gorenstein object of C is admissible rnonic. Then for any B E C 
the following natural morphism is defined and is an isomorphism: - O P  

* : f i > ( - , ~ ) + g t > ( - , B ) :  Gx(C) +Ab. g-,B 

Proof. Since any object of finite X-Gorenstein resolution dimension has a complete 

X-resolution, the morphism 0 2 , ~  is defined, VB E C. Suppose first that A is 
X-Gorenstein. Then we have seen in section 4 that the morphisms EA,B above are 

isomorphisms. Hence to prove that the morphisms are isomorphisms for A an 
X-Gorenstein object, it suffices to prove that the morphisms S A , ~  : C/X(A,B) + 
S(C/X)[S(A),S(B)] are isomorphisms, for all B E C. But this follows from the - 
above Lemma, since Gx(C) C 'X. Now if A E Gx(C) has a complete X-resolution 
then R$(A) is in Gx(C) for some t 2 0. By dimension shifting we conclude that the 

A* 

morphism U ; I , ~  is an isomorphism, since the functors Ext,(-, B)  and &(-, B) are 

both cohomological with respect to X-exact admissible short exact sequences. 

Suppose that any X-monic is monic. Then dually there is a natural morphism 

-X 
T,A,- : f i , X ( ~ ,  -) t Ext, (A, -), VA E C, Vn E Z 
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but here the stabilization used in the definition of the complete X-cohomology 
refers to  the stabilization of CIX as a right triangulated category, i.e. inverting the 
functor Ex. The next result, which we state without proof, shows that  the complete 

AX 
X-Extensions functors Ext, (A, B)  defined by the covariant finiteness of X ,  can be 
computed via resolutions if B has a complete X-resolution or equivalently A has 
finite X-Gorenstein coresolution dimension. The full subcategory of C consisting 
of all objects with finite X-exact coresolutions by objects of Gx(C), i.e. the dual - IV 

of Gx(C), is denoted by Gx(C). 

T h e o r e m  5.14. Let 'C be an exact category and X be a covariantly finite subcate- 
gory of C ,  such that any X-monic is admissible monic and the right X-approxima- 
tion of any X- Gorenstein object of C is admissible epic. Then VA E C, the following 

natural morphism is defined and is an isomorphism: 
-X hl 

72,- : f i f ( ~ ,  -) -+ Ext, (A, -) : Gx(C) -+ Ab. 

In this section we apply the results of the previous sections to  the familiar setting 
of module categories. We fix throughout an associative ring A. We denote by 
Mod(A) the category of right A-modules and by PA, resp. I A ,  the full subcategory 
of projective, resp. injective, modules. The category of finitely presented right 
A-modules is denoted by mod(A), and its full subcategory of projective, resp. 

injective, modules is denoted by P A ,  resp. ZA. The induced stable categories 
are denoted by: M o d ( A ) / p ~  - = r n ( A ) , M o d ( A ) / 1 ~  = Mod(A), m o d ( A ) / P ~  = 
&(A) and mod(A) /Z~ = mod(A). 

Throughout we choose C to be the module category Mod(A), resp. mod-A, and 

X to  be one of the categories P A ,  I A ,  resp. P A ,  ZA. We use the terminology and 
notations of the previous sections applied to the above choices. 

6.1. Homologically f ini te  Subcategories .  

P r o p o s i t i o n  6.1. Let A be an arbitrary ring. 
(1) PA is covariantly finite % A is left coherent and right perfect. In this case 

the loop functor R : M ( A )  + M ( A )  admits a left adjoint Cp. 
(2) I* is contravariantly finite % A is right Noetherian. In this case the suspen- 

sion functor C : Mod(A) + Mod(A) admits a right adjoint RI.  
(3) AP is covariantly finite and IA is contravariantly finite % A is right Artinian. 
( 4 )  PA is covariantly finite % A is left coherent. If A is coherent then we have 

an adjoint pair ( 0 ,  Cp) defined on the left triangulated category &(A), and an 
adjoint pair ( R ,  C p )  defined on the left triangulated category &(hop). 

Proof. It  is well known [12], [19] that A is left coherent and right perfect iff PA is 
covariantly finite, that A is left coherent iff PA is covariantly finite and finally that  
A right Noetherian iff IA is contravariantly finite. Since A is right Artinian iff A is 
right Noetherian and left perfect, (3) is a consequence of (I),  (2). If A is coherent, 
then mod(A), mod(AoP) are abelian with projectives, and P A ,  AP are covariantly 
finite in them. The remaining assertions follow from section 2. 0 
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By the above result, if A is an Artinian ring then all the subcategories P A ,  I A ,  
AP and IA are functorially finite. For n  2 1, let Rn(Mod(A)) be the full additive 
subcategory of Mod(A) generated by PA and the nth-syzygy modules, and let 
flm(Mod(A)) = nnll fln(Mod(A)) be the full subcategory of arbitrary syzygy 

modules. The categories Cn(Mod(A)) and Cm(Mod(A)) are defined similarly. 

P r o p o s i t i o n  6.2. (1) If A is left coherent and right perfect then Rn(Mod(A)) is 
covariantly finite in Mod(A) and R n ( M ( A ) )  is reflective in M ( A ) ,  Vn 2 1. 

The category Rm(Mod(A)) is a covariantly finite subcategory of Mod(A) and the 
category R m ( M ( A ) )  is a reflective subcategory of M ( A ) .  

( 2 )  If A is coherent then the categories Rn(mod(A)), Rn(mod(AOP)) are covari- 

antly finite in  mod(A), mod(AoP) and the categories Rn(&(A)), Rn(&(AOP)) 
are reflective in &(A), &(AoP) respectively, Vn 2 1. 

Proof. Let Cp be the left adjoint of R in the stable category, which exists by 

Proposition 6.1. Let A be a right A-module, and let 

be a PA-coresolution, which is a result of the composition of the exact sequences 
,* 

A 9, P a  -+ L;', L: % P: + L,* and so on, where n: are left PA-approxima- 

tions and L t  = C o k e r ( n b l ) .  Then in M ( A ) ,  we have C$(A) = L: and 

RE$(& = K e r ( n b l ) .  We set for simplicity C$(A) = L:. Then RC$(A) = 

~ e r ( . r r L , ) ,  and we have the following exact commutative diagrams, Vn 2 0: 

Hence we obtain morphisms pn : :;(A) -+ flC:+l(~), Vn > 0. This system of 

morphisms induces a tower 

in M ( A ) ,  and we have projective presentations of increasing length: 

( A ~ )  : o -+ R ~ E $ ( A )  -+ Q ~ J  -+ P! -+ c$(A) -+ 0, 

(A3) : 0 -+ R3C$(A) -+ Q2,2 -+ Q2,1 + P! -+ C$(A) -+ 0,.  . . 
such that  the tower A -+ RCp(A) -+ R2C$(A) -+ R3Cb(A) -+ ... induces 
morphisms between the presentations. Hence we obtain a direct system of projective 
presentations A -+ (A,) -+ (A2) -+ . .. . Taking direct limits in this direct system, 
we obtain an exact sequence 
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Since A is left coherent and right perfect, the above exact sequence is a coresolution 
of l%RnC$(A) by projectives. Hence l&RnC$(A) E n"(Mod(A)), and there 

exists a canonical map d k ( A )  := l F d i ( A )  : A -+ lFRnC$(A),  where e ( A )  = 

po o R(pl) o . . . o Rn-l(pn-l) : A > RnCg(A). observe that  the morphisrns 
d i  (A) : A -+ RnC$ (A) by construction are left Rn(Mod(A)) -approximations of 
A. We claim that  the map d k ( A )  is a left Rw(Mod(A))-approximation of A. 
Indeed let a : A -+ B with B E RW(Mod(A)). Since B E Rn(Mod(A)), Vn > 1, 
and since di(A) are left Rn(Mod(A))-approximations of A, there are morphisms 
gn : RnC$ (A) -+ B with d:(A) ogn = a. Taking direct limits, we have that  d&(A)o 
limg, = a. Hence RW(Mod(A)) is covariantly finite. Let Rw(.4) be the image of 
+ 
limRnCG(A) in M ( A ) .  Then obviously the morphism &,(A) : A -+ RW(A) is 
.--t 

the reflection of A in R w ( M ( A ) )  and the morphism di(& : A -+ RnC$(A) is 
the reflection of A in R n ( M ( A ) ) .  Part (2) is left to the reader. 0 

If A is right Noetherian, then there is a similar result for the categories of 
cosyzygy modules. We leave its formulation to the reader. Now let A be left co- 
herent and right perfect. Consider the reflection Rw : m ( A )  -+ R W ( U ( A ) )  of 
U ( A )  in R W ( U ( A ) )  constructed in the Proposition 6.2, and let R : R ( M ( A ) )  
-+ m ( A )  be the costabilization functor. By section 3, R ( W ( A ) )  = KA,(PA) is 
the homotopy category of acyclic complexes of projectives. 

Corollary 6.3. Let A be left coherent and right perfect. If Mod(A) is PA-Co- 
Gorenstein, then the costabilization functor R : R ( U ( A ) )  -+ M ( A )  admits a 

left adjoint flw : w ( A )  -t R ( M ( A ) ) .  

Proof. If Mod(A) is PA-Co-Gorenstein, then from section 4 we have an identifica- 

tion R ( u ( A ) )  = R W ( W ( A ) )  and the assertion follows by Proposition 6.2. 0 

Remark 6.4. (1) Our standard assumptions in this paper refer to  pairs (C, X), 
where C is an additive category and any X-epic has a kernel, and then we usually 
require that any left X-approximation of an X-Gorenstein object is a n  admissible 
monic. The most natural example is the pair (Mod(A), P A ) .  Dually the most 
natural example of a pair satisfying the dual assumptions is the pair (Mod(A), IA).  

(2) One can define X-Gorenstein objects in Mod(A), choosing X to be the full 
subcategory of flat modules or the FP-injective modules or any other interesting 
subcategory of modules and to apply the theory. We leave the details to  the reader. 

Suppose now that A is left coherent and right perfect, so that PA is functorially 
finite. Then as in section 2, the functors &En (A, B)  and E L A  (A, B)  are defined. 

Obviously &:,(-, -) are the usual extension functors. The subcategory P i  = 
4 

{A E Mod(A) : ~ ; , ( P A , A )  = 0,Vn 2 1 and &+,(PA, A) = Homa(PA, A)) 
consists of of all modules A such that there exists an exact sequence 0 -+ A -+ 
Po -+ P' -+ . . . , where Pi are projective modules, such that the sequence . . . --+ 
HomA(P1, P A )  -+ Hom~(pO,  P A )  -+ H o ~ A ( A , P A )  -+ 0 is exact. Observe that  
the subcategory P i  is defined always, although the derived functors mpA may 

not exist globally. Then for an arbitrary ring A, the subcategory P i  denotes the 
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full subcategory of all modules with the property described above. For an arbitrary 
ring A the definitions of section 2, take the following form. 

Defini t ion 6.5. (1) A module A is called (projectively) s tab le  if A E I P A .  
(2) A module A is called n-torsion-free if 

--i 4 
Ext (Pn,,A) = 0 , l  5 i 5 n and & x t p , ( P ~ , A )  = HomA(PA,A).  

(3) A is called torsion-free if A E Pi, or equivalently A is n-torsion-free, 
Vn 2 1. 

We leave to  the reader the formulation of the above definitions using the sub- 
category Pi\ and the subcategories Ih,ZA. The above terminology is natural since 
if A is a two-sided Noetherian (or more generally two-sided coherent) ring , then 
the modules in Pf are exactly the n-torsion free modules Vn >_ 1 ,  in the sense of 
Auslander-Bridger [3]. 

Defini t ion 6.6. [20], [3] A module A is called Gorenstein-project ive if A is sta- 
ble and torsionfree, i.e. A E 'p~flP;\I.  Equivalently there exists an exact sequence 
. . -+ P-I -+ Po -+ P' -+ . . . of projective modules with Im(P-'  -+ P o )  = A 

and the sequence remains exact applying HornA(-,PA). The full subcategory of 
all Gorenstein-projective modules is denoted by Gp(Mod(A)), and the induced sta- 
ble category modulo projectives is denoted by G p ( W ( A ) ) .  The full subcategory 
&(Mod(A)) of Gorenstein- inject ive modules is defined dually and the induced 

stable category modulo injectives is denoted by &(Mod(A)). 

By the results of sections 2,4, Gp(Mod(A)) is the largest resolving subcategory of 
Mod(A), such that the stable category Gp ( M ( A ) ) ,  is full triangulated subcategory 
of W ( A )  and dually G1(Mod(A)) is the largest coresolving subcategory of Mod(A), 

such that the stable category &(Mod(A)), is a full triangulated subcategory of 
 mod(^). If A is a two-sided Noetherian (or coherent) ring, the finitely presented 
Gorenstein-projective modules Gp(mod(A)), are exactly the modules in mod(A) 
with zero G-dimension in the sense of [3]. We note that  the categories of Gorenstein- 
projective and Gorenstein-injective modules were introduced also in [20]. 

In case A is left and right coherent, then it is not difficult t o  see that the left 
adjoint Cp of the loop functor R : a ( A )  -+ &(A) is given by Cp = TrRTr, 
where Tr is the Auslander-Bridger duality [3], and there exists a n  exact sequence 
0 -+ &xtl(TrA,A) -+ A -+ PA -+ Cp(A) -+ 0, where A -+ pA is the left 
PA-approximation. This follows from the easily established fact that  a left PA- 
approximation of A can be obtained as follows. We denote by d = (-)* both the 
A-dual functors, d = (-)* = HornA(-,A). Let f : Q -t A* be an epimorphism 

f' with Q E AP. Then the composition A -+ A** t Q* is a left PA-approximation 
of A, where A -+ A*' is the canonical morphism. Moreover, setting D i  := RkC&, 
the unit 4 : A -+ Di(A) of the adjoint pair (C%,Rn) is the natural morphism 

introducedin [3], in case A is Noetherian. Similarly setting 5; = C$Rk, the counit 
of the adjoint pair (C&, Rk) is the natural morphism introduced in [3]. Note that 
the functors J i ,  D i  play a fundamental role in [3]. One can develop the theory of [3] 
for arbitrary modules in a right Noetherian ring A, using that in the stable category - 
Mod(A) modulo injectives, the suspension functor C :  mod(^) -+  mod(^) has a 
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right adjoint RI and similarly in a left coherent and right perfect ring using that 
in the stable category m ( A )  modulo projectives, the loop functor R : w ( A )  -t 
m ( A )  has a left adjoint Cp. Hence in each case one can define the corresponding 

functors D: = flkCk, j ; = CkRFl and D: = R k z k ,  j i  = CkRk and also the 
corresponding (adjunction) morphisrns. 

6.2. Complete Extension Functors, Complete Resolutions and Goren- 
stein Rings. A complete projective (injective) resolution of a module is a PA- 
complete (IA -complete) resolution in the sense of section 5. In this case the notions 
of complete projective or injective resolutions coincide with the notions introduced 
in [18]. First we note the following Corollary of section 5. The last part follows 
from the description of the stabilization of the stable module category in section 3 
and the Morita theorem of Rickard [41]. 

Corollary 6.7. (1) A right A-module A has a complete projective resolution iff A 
has finite Gorenstein-projective resolution dimension. 

(2) A right A-module A has a complete injective resolution i f f  A has finite 
Gorenstein-injective resolution dimension. 

(3) VB E Mod(A), the complete projective extension functors are computed as: 

-* - OP 
f i ~ ( - ,  B) S ExtP(-, B)  : Qp(Mod(A)) --+ Ab. 

(4) V A  E Mod(A), the complete injectiue extension functors are computed as: 

(5) If A and r are derived equivalent rings (and A, r are right coherent), then 
the projective stabilizations of their modules categories are triangle equivalent: 

Definition 6.8. An arbitrary ring A is called a right Gorenstein ring if any 
projective right module has finite injective dimension and any injective right module 
has finite projective dimension. 

The following result presents various characterizations and properties of right 
Gorenstein rings. Its proof is a direct consequence of the results of the previous 
sections and of Propositions 6.1, 6.2. 

Theorem 6.9. Let A be an arbitrary ring. Then the following are equivalent. 

(1) A is a right Gorenstein ring. 
(2) Mod(A) is PA - Gorenstein category. 
(3) Mod(A) is IA- Gorenstein category. 

(4) ( ' - P A ,  P r ,  P A )  is an Auslander-Buchweitz context. 
(5) (I;, I?, 4) is a dual Auslander-Buchweitz context. 
(6) Pr = IT 
(7) d := sup(p.d.1 : I E I A )  = sup{i.d.P : P E P A )  < co. 
(8) The functor 'PA/PA + Vb(Mod(A))/Kb(P~) is a triangle equivalence. 
( 9 )  The functor I;\I/IA + Vb(Mod(A))/Kb(I~)  is a triangle equivalence. 

P A )  as full subcategories of Vb(Mod(A)). (10) K b ( I ~ )  = K ( 
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(11) Any right A-module has a complete projective resolution. 
(12) Any right A-module has a complete injective resolution. 
(13) Any right A-module has finite Gorenstein-projective resolution dimension. 
(14) Any right A-module has finite Gorenstein-injective resolution dimension. 
(15) The natural functor Db(Gp(Mod(A)))  + V b ( M o d ( A ) )  is a triangle equiva- 

lence. 
(16) The natural functor V b ( & ( M o d ( A ) ) )  -+ V b ( M o d ( A ) )  is a triangle equiva- 

lence. 

If one of the above equivalent statements is true, then we have the following: 
(a) Mod(A) is P A  - Co-Gorenstein and IA - Co-Gorenstein. Moreover: 

(8) The categories P r  = I T  are functorially finite, the category Gp(Mod(A))  is 
contravariantly finite and the category &(Mod(A))  is covariantly finite. 
(7) If A is left coherent and right perfect, then Gp(Mod(A))  is functorially finite. 

If A is right Noethen'an, then Q I ( M o ~ ( A ) )  is functorially finite. 
(6) We have: RCO(Mod(A)) = Rd(Mod(A))  = Gp(Mod(A))  and CCO(Mod(A)) = 

Cd(Mod(A))  = QI(Mod(A)) .  Hence P r  = P ; ~  and I T  = 1 z d ,  where P ; ~ ,  resp. 

is the full subcategory of all modules having projective, resp. injective, dimen- 
sion bounded by d .  The right finitistic projective dimension FPD(A) and the right 
finitistic injective dimension FID(A) of A are finite: FPD(A) = FID(A) = d < m. 

( e )  There are triangle equivalences: 

x v ~ ( M o ~ ( A ) ) / K ~ ( I A )  x ( I?) ' / IA  I ; \ I / I A  X G ~ ( M o d ( i l ) )  KA,(IA).  

The costabilization functors are the inclusions 

and the stabilization functors are given by 

(C) The complete projective extension functors are given V B  E Mod(A),  by 

The complete injective extension functors are given V A  E Mod(A),  by 

The triangle equivalence G p ( M ( A ) )  x &(Mod(A))  in ( E ) ,  induces isomorphisms 

Hence the complete extension bafunctor is defined: 

Ext*(-,  -) : Mod(A)OP x Mod(A) + Ab. 

(77) If A and r are derived equivalent right Gorenstein rings then there are triangle 
equivalences: 
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(8) A is a QF-ring ej I C A ~ ( P A )  x W ( A )  D b ( M o d ( A ) ) / x b ( P ~ )  * ~ A ~ ( I A )  

x Mod(A) x D b ( ~ o d ( ~ ) ) / x b ( 1 ~ )  e !&(Mod(A)) = G1(Mod(A)) e A is a right 
Gorenstein ring of dimension zero e the above equivalences are true for AOP. 

( L )  A is (homologically) regular, i.e. any right A-module has finite projective di- 
mension e+ &(Mod(A)) = PA e G*(Mod(A)) = IA e the stabilization of m ( A )  
is trivial e+ the stabilization of Mod(A) is trivial. Similarly for left A-modules. 

It  follows by the above Theorem and also by the results of sections 4 , 5  that  the 
complete projective extension functors coincide with the Tate-Vogel cohomology 
functors, see [17], [18], [251, [26], [39]. Our results generalize the corresponding 

results of the above papers in much more general situations. In particular the above 

Theorem shows that for module categories, the Gorenstein property of Mod(A) with 
respect to  the projectives and  the injectives coincides. 

From the above Theorem if A is a QF-ring or if r.gl.dimA < co (more generally 
if any right module has finite projective dimension), then A is right Gorenstein. 
Observe however that in these cases the theory is trivial. 

Remark 6.10. The general setting of sections 3 , 4 , 5  can be applied directly to  
the study of lattices over (Gorenstein) orders in the sense of Auslander [2], with 
analogous results. We leave the details to  the reader. 

Corollary 6.11. For a Noetherian ring A the following are equivalent. 

(1) A is a right Gorenstein ring. 
(2) A is a left Gorenstein ring. 
(3) i.dAA < co and i.dAA < m. 

Proof. (1) (3) If A is a right Gorenstein ring, then i.dAA < co. By a result 
of Iwanaga [35], i.dAA = sup{flat.dimEA; EA E IA) .  Since any right injective has 
finite projective dimension bounded by d, we have i.dAA < co. The converse follows 
from the results of [35]. The equivalence (2) e+ (3) follows similarly. 0 

So the Gorenstein property is symmetric for Noetherian rings. In this case 
a Noetherian left (or right) Gorenstein ring is called simply a Gorenstein ring. 
By the above Corollary it follows that our definition of a Gorenstein ring agrees 
in the Noetherian case, with the definition introduced by Iwanaga [35] and used 
extensively by Enochs-Jenda, et all in a large list of papers, see for instance [20], [22]. 
Hence our theory covers, presents new features, and generalizes the corresponding 
theory developed in [20], [22]. In particular we recover the results of [5] which were 
obtained using tilting theory, since an Artin algebra is called Gorenstein in the 
sense of Auslander-Reiten iff i.dAA < co and i.dAA < co. 
Example 6.12. Let A be a Noetherian ring. 

(1) Trivially A is Gorenstein in case A is QF or of finite global dimension. 
(2) If A is Gorenstein and G a finite group, then the group ring AG is Gorenstein. 

Any Quasi-Frobenius extension of a Gorenstein ring is Gorenstein [35]. It  is not 
difficult to  see that the ring of the lower triangular matrices of any size over a 
Gorenstein ring is Gorenstein. 

(3) If A is an Artin algebra and G a finite group of automorphisms of A, then 
the skew group ring AG is Gorenstein iff A is Gorenstein [5]. If A , r  are finite- 
dimensional algebras over a field k, then A@k r is Gorenstein iff A, I? are Gorenstein 



D
o
w

n
lo

a
d
e
d
 B

y
: 
[H

E
A

L
-L

in
k
 C

o
n
s
o
rt

iu
m

] 
A

t:
 1

0
:5

5
 1

0
 J

u
n
e
 2

0
0
8
 

HOMOLOGICAL THEORY 4589 

[5]. Also it  is not difficult to  see 1131 that if A is a Cohen-Macaulay Artin algebra 
[5] with dualizing bimodule w ,  then the trivial extension A K w is Gorenstein. 

(4) Let A be an F-Gorenstein Artin algebra, were F is an additive subfunctor 
of E x t i ( - ,  -) with enough projectives and injectives, in the sense of Auslander- 
Solberg [9]. Then mod(A) is P(F)-Gorenstein and Z(F)-Gorenstein category in 
the sense of section 4, where P ( 7 )  and Z ( 7 )  are the categories of 3-projective 
and F-injective modules respectively. 

(5) If A is a local Artin algebra with Jac(A)' = 0, then: A is Gorenstein iff A is 
representation-finite. 

(6) There is a extensive literature concerning commutative (local) Noetherian 
Gorenstein rings. For more information we refer t o  [3], [ l l ] .  

Defini t ion 6.13. A ring A is called r igh t  Co-Gorenstein if any arbitrary syzygy 
module is PA-torsion-free or equivalently if Mod(h) is PA-Co-Gorenstein. 

We have seen that if A is Gorenstein then A is left (and right) Co-Gorenstein. 
We don't know if the converse is true. We don't know also if for a (Noetherian) 
ring A, being left Co-Gorenstein is equivalent to  being right Co-Gorenstein. 

6.3. A r t i n  Algebras .  For the remaining of this section, we assume that A is an 
Artin algebra [lo]. We denote by d = H o m ~ ( - , A )  or by (-)* both the A-dual 
functors and by D the usual duality of Artin algebras. All the results of this and 
the previous sections are true for the module categories Mod(A) or mod(A) of a 
(Gorenstein) Artin Algebra A. In particular we have the following. 

Coro l la ry  6.14. (i) The following are equivalent. 

(1) A is Gorenstein. 
(2) mod(A) or equivalently Mod(A) is a Gorenstein category. 

(3) P;p = 2r. 
(4) i.dAA < oo and i.dAA < oo, in which case i . d ~ A  = i.dAA. 
( 5 )  There exists a triangle equivalence Gp (&(A)) m vb (mod(A))/Kb (PA) or 

equzvalently a triangle equivalence Sp(Mod(A)) a Vb(Mod(A)) /Kb(P~) .  
( 6 )  There exists a triangle equivalence &(mod(A)) m Vb(mod(A))/Kb(Z~) or 

equivalently a triangle equivalence &(Mod(A)) x Vb(Mod(A))/Kb(IA). 
(7) The left-hand side analogues of (2), (3), (5) and (6). 

If this is the case, the categories P r , Z r ,  Gp(mod(A)), Gx(mod(A)) are functor+ 
ally finite in mod(A) and any finitely presented right A-module has a minimal left 
and right X - approximation, where X = P r  , 2 r ,  Gp (mod(A)), or G~(mod(A)). 
The categories Gp (mod(A)), Gx(mod(A)), P T ,  Z r  have Auslander-Reiten sequen- 

ces, and the triangulated categories Gp(&(A)), &(mod(A)) are triangle equiva- 
lent and they have Auslander-Reiten triangles. 

(ii) (a) If A is Gorenstein, then there are isomorphisms 

Ko(mod(A)) S Ko(Gp(mod(A))) and Ko(&(A)) 2 KO@P (&(A))). 

(p)  If A, r are derived equivalent Gorenstein algebras, then 
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Moreover the triangle equivalence Bp(&(A)) % Bp(&(r)) lifts to a triangle 
equivalence &(A) M &(I?) iff A, I? are selfinjective. 

(y) If two Gorenstein Artin algebras have equivalent categories of Gorenstein 

-projective or Gorenstein-injective modules, then they are derived equivalent. 
( 6 )  A is selfinjective e~ KA,(PA) % &(A) M Vb(mod(A))/Kb(P~) eJ KA,(ZA) - 

R mod(A) M ~ ~ ( m o d ( h ) ) / K ~ ( Z ~ )  the above equivalences are true for AOP. 

R e m a r k  6.15. The equivalence (i)(l) (2) has been proved first by Hoshino [34] 

and by Auslander-Reiten [5] and in case A is a commutative local Noetherian ring it  
has been proved by Auslander-Bridger [3]. The last part of (i) has been proved first 
by Auslander-Reiten [5], using tilting theory. The direction (I)  + (4) in (i) of the 
above Corollary was proved first by Rickard [42] in the selfinjective case and then 
by Happel [32] in the Gorenstein case. The generalized form of the Happel-Rickard 
Theorem can be stated as follows (this is also a consequence of a general result due 
to  Keller-Vossieck, see [36]): 

0 For any right coherent ring A the stabilization of &(A) is triangle equivalent 
to  'Db(mod(A))/Kb(PA). Further if two right coherent rings A and I? are 
derived equivalent, then their stable module categories &(A), &(I?) have 

triangle equivalent stabilizations. 

An Artin algebra A is called right PA-Go-Gorenstein if any finitely presented 
arbitrary syzygy right module is torsion-free or equivalently if mod(A) is PA-Co- 
Gorenstein category. Similarly we can define, using the costabilization of mod(A), 
when A is right ZA - Co-Gorenstein. Since the duality D induces an exact duality D : 
R(&(A)) + 7Z(mod(A0J')) and a duality D : Rm(mod(A)) + CW(mod(A0p)), 
we have that A is right PA-Co-Gorenstein iff A is left AZ-Co-Gorenstein. From 
now on we call a PA-Co-Gorenstein algebra, simply right Co-Gorenstein. 

Corol lary 6.16. (1) Suppose that f.p.dA < m. Then for the costabilization func- 

tor R : R(&(A)) -+ &(A) we have: KerR = 0. 
(2) If the costabilization functor R : R(&(A)) -+ &(A) satisfies KerR = 0 ( 

in particular if A is right Go-Gorenstein ), then A satisfies the so-called Nunke con- 

dition for finitely presented left modules: if A is a finitely generated left A-module 
satisfying &xtz(A, A) = 0,Vn 2 0, then A = 0. In particular if A is right Co- 
Gorenstein, then A satisfies the Generalized Nakayama Conjecture [lo]. 

Proof. (1) If A satisfies the finitistic dimension conjecture with f.p.dA = d < co 
and Po is a non contractible complex in KerR, then we have a non contractible 

complex of projectives 0 -+ Po 3 P1 fit . . .  in mod(A). Hence 3t 2 0 such 
that Im(ft)  is not projective. Since ~ . d . I r n ( f t + ~ )  < a, we have p.d.Im(ft+*) 5 d. 

Hence I m (  ft) is projective and this is not the case. So KerR = 0. 
(2) Let Po + A be a projective resolution of A. Then we have an acyclic complex 

of projectives Po* in mod(A). Viewing Po* as an object of the costabilization 
R(&(A)), we have that R ( P o * )  = 0. Since KerR = 0, Po* = 0 in R(&(A)), 
i.e. Po* is contractible. But then Po = Po** is contractible, and then A = 0. 

P r o p o s i t i o n  6.17. (1) A is left Co-Gorenstein i f f  Rw(mod(AOP)) i P .  In this 
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case we have: Rw(mod(AOP)) = Gp(mod(AoP)) i P  and 'PA = Gp(mod(A)) c 
Rm(mod(A)) . 

(2) A is right Co-Gorenstein i f f  Rw(mod(A)) c 'PA. In this case we have: 
Rw(mod(A)) = Gp (mod(A)) G 'PA and i P = Gp (mod(AOP)) C R"(mod(AOp)). 

Proof. (1) By our previous results it suffices to  show that if A is left Co-Gorenstein 
then 'PA c Gp(mod(A)). Let A in 'PA. Then Tr(A) E R"(mod(AOP)). Since A is 
left Co-Gorenstein, Rm(mod(AOP)) iP .  Hence %(A) E i P  and A is Gorenstein- 
projective [3]. Part (2) is dual. 0 

The following is a direct consequence of the above Proposition. 

Corollary 6.18. (1) A is right Co-Gorenstein iff the A-dual functor d induces a 
duality d : ;\lP + Rm(mod(A)) or equivalently an exact duality d : Gp(&(Aop)) 
+ R(&(A)). 

(2) A is left Co-Gorenstein ~ J J  the A-dual functor d induces a duality d : 'PA + 
Rm(mod(AOP)) or equivalently an exact duality d : Gp(&(A)) + R(&(Aop)). 

(3) A is left and right Co-Gorenstein iff the A-dual functor d induces an exact 
duality d : R(&(A)) + R(&(Aop)). In this case we have: 

Rw(mod(A)) = Gp(mod(A)) = 'PA and ;\lp = Gp(mod(AoP)) = Rw('mod(AoP)). 

Lemma 6.19. (1) The following are equivalent: 

(a)  i.dAA < oo. 
(P) P," c 1,". 
(7) 3d 2 0 : Rd(mod(A)) E 'PA. 

If this is the case, then: 'P," = 'PA and i P  = Gp(mod(Aop)). 

(2) If i.dAA < oo, then A is right Co-Gorenstein. 
(3) If the category R d ( m o d ( ~ ) )  is closed under extensions, Vd 2 1, then A is 

right Co-Gorenstein. 

Proof. Part  (1) is easy and the proof is left to  the reader. Suppose i . d A ~  = d < oo. 
Then by (1) we have Rd(mod(A)) C 'PA. But then Rw(mod(A)) E 'PA. Then A 
is right Co-Gorenstein by Proposition 6.17. Part (3) follows from [7]. 0 

Proposition 6.20. The following are equivalent. 

(a)  A is Gorenstein. 
(p) A is left Co-Gorenstein and i.dAA < oo. 
(7) A is right Co-Gorenstein and i.dAA < cm. 

Proof. We prove only that  (a)  is equivalent to  (D), since the proof of the other parts 
is similar. By our previous results condition (a)  implies (p). Suppose that  (B )  is 
true. Since i.dAA = d < a, we have by Lemma 6.19 that Rd(mod(A)) E IPA. 
Hence by Proposition 6.17(1), we have Rd(mod(A)) 'PA = Gp(mod(A)) E 
Rw(mod(A)) Rd(mod(A)). This implies that Gp(mod(A)) = Rd(mod(A)). Then 
by Corollaries 4.11, 6.14 we have that A is Gorenstein. 0 

The next result includes simple proofs of some results due to  Auslander-Reiten 
[7], see also [29]. For the notion of a k-Gorenstein algebra we refer t o  [7]. 
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Corol lary 6.21. (1) Suppose that A is k- Gorenstein Vk. Then A is left and right 
Go-Gorenstein and A satisfies the Generalized Nakayama Conjecture. 

(2) The following are equivalent: 

( a )  A is Gorenstein. 
(8) A is k-Gorenstein Vk and i.dAh < co (or i.dAA < oo ). 
(y) A is k-Gorenstein Vk and PT (or PEP ) is contravariantly finite. 
(6) A is k-Gorenstein Vk and f.p.dA < co (or f.i.dA < co . 
( E )  A is right Go-Gorenstein and f.p.dA < oo (or f.i.dA < co ). 
(C) A is right Co-Gorenstein and Rm(mod(A)) = mod(A). 

Proof. (1) Suppose that A is k-Gorenstein for all k. Then by [3] we have that  

Vd 2 0, any d-syzygy module is d-torsionfree. Hence the category Rw(mod(A)) 
coincides with the category of torsionfree modules. Then by definition A is right 
Co-Gorenstein. Since the notion of a k-Gorenstein algebra is left-right symmetric, 
we have also that  A is left Co-Gorenstein. 

(2) ( a )  H (8) Follows directly from (1) and the above Proposition. (a)  3 (y) fol- 
lows from Corollary 6.14. (y) + (6) holds for any Artin algebra (see [6]) and (6) 3 
( 6 )  follows from (1). ( 6 )  + (4 Let fin.p.dimA = d < oo. Then Pld(mod(A))  = 
Pw(mod(A)), where Psd(mod(A)) is the full subcategory of all modules with pro- 
jective dimension bounded by d. By [7], we have that Rd(mod(A)) = Rdft(mod(A)), 

Vt 1 0. Hence Rm(mod(A)) = Rd(mod(A)). Since A is right Co-Gorenstein, 
by Theorem 4.10 we have Rm(mod(A)) = Gp(mod(A)). Hence Gp(mod(A)) = 
Rd(mod(A)), and by Corollary 6.14, A is Gorenstein. The equivalence (a )  H (C) 
follows from our previous results. The parenthetical cases are treated similarly. 

By the above results it is reasonable to  conjecture: 

A is right Go-Gorenstein H A is left Co-Gorenstein. 

If the conjecture is true, by Proposition 6.18 and Lemma 6.17(2), the Auslander- 
Reiten Conjecture, that any Artin algebra is Gorenstein if i.dAA < oo, is true. In 
any case we have the inclusions G o r  Vk-Gor C o  - G o r  between Gorenstein 
algebras, k-Gorenstein algebras Vk and (left and right) Co-Gorenstein algebras. 
The above inclusions also show that if any (left and right) Co-Gorenstein algebra is 
Gorenstein, then another Conjecture due to  Auslander-Reiten is true, namely that  
any k-Gorenstein algebra Vk is Gorenstein. 

The next Corollary follows directly from the above results and its proof is left 
to  the reader. We note only that if dom.dimA = oo then Rm(mod(A)) = Dom(A), 
is the full subcategory of modules of infinite dominant dimension [37]. 

Corol lary 6.22. The following are equivalent. 

(1) A is selfinjective. 
(2) A is Gorenstein and dom.dimA = oo. 
(3) A is ( left or right ) Co-Gorenstein and dom.dimA = oo. 

Clearly the A-dual functors induce a duality d : Gp(mod(A)) -+ Gp(mod(AOP)) 
and an exact duality I! : Gp(&(A)) -+ Gp(&(Aop)), and the Nakayama func- 
tor N+ induces an equivalence N+ : Gp(mod(A)) + &(mod(A)) and a triangle 

equivalence N+ : Gp(&(A)) -+ Gz(mod(A)). The next result contains another 
characterization of Gorenstein algebras, which is based on the notion of duality 
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of derived categories. It  follows that the Gorenstein property is invariant under 
derived equivalence. 

Theorem 6.23. (1) For an Artin algebra A, the following are equivalent: 

( a )  A is Gorenstein. 

(8) The functor d = HornA(-, A) induces an exact duality: 

( y )  The functor N+ = - @A D(A) induces a triangle equivalence: 

In this case we have the following commuting diagram of localization sequences, 
where all vertical arrows are exact dualities: 

0 ---+ Kb(p,) ----+ Db(mod(A)) 4 Ep(&(A)) 4 0 

and a commuting diagram of localization sequences, extending the "exact sequences" 

where the vertical arrows are triangle equivalences: 

0 ---+ Kb(P,) 4 Db(mod(A)) 4 Gp(&(A)) 4 0 

(2) If A and r are derived equivalent, then: A is Gorenstein I? is Gorenstein. 

Proof. (1) (a)  =$ (8) If A is Gorenstein, then since the functor d induces a duality 
between the left and right Gorenstein projective modules, condition (P )  follows from 
parts (15), (16) of Theorem 6.9 and Corollary 6.14. (8) + (7) llivial.  (y) + (a)  I t  
is well-known that under condition (y), the module D(A) is a (generalized) tilting 
module, and this is equivalent t o  i . d ~ A  < co and i . d h  < oo. i.e. A is a Gorenstein 
algebra. Clearly the above diagrams commute by construction. 

(2) If F : Db(mod(A)) + Db(mod(r)) is a triangle equivalence, then by 1431 we 

have that F commutes with the total derived functors C ~ N ~  and ~ ~ N r f .  Hence the - - 
assertion follows from part (1). 0 

We note that if A is Gorenstein, then a Gorenstein-projective module is called 
a Cohen-Macaulay module in [5]. Since D induces a duality i P  ,N T i ,  if A is 
Gorenstein, the Gorenstein-injective modules &(mod(A)) = 1,: coincide with the 
Co-Cohen-Macaulay modules in the sense of Auslander-Reiten [5], i.e. with the full 
subcategory D(;\lP). Note that  many of the above results for Artin algebras can be 
extended easily to  (Gorenstein) rings with a Matlis duality in the sense of 1211. 

We close this section discussing briefly the complete projective or injective exten- 
sion functors for an Artin algebra A and the relative homology induced in mod(A) 
using the contravariant finiteness of ZA and the covariant finiteness of PA. Of course 
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the relative homology using the covariant finiteness of ZA and the contravariant 
finiteness of PA is the usual (absolute) homology in mod(A). Define PA-gl.codimA 
= sup{PA-codimA; A E mod(A)), ZA -gl.dimA = sup{Z~-dimA; A E mod(A)) 
as in section 2, using the covariant finiteness of PA and the contravariantly finite- 

ness of ZA. Since P A ,  ZA are functorially finite the complete functors g%(- ,  B) ,  

G ~ ( A ,  -) are defined and it is easy t o  see that: 

A 

Similarly for the complete functors H ~ ( A ,  -). Having describing the left projective 
approximation of a right A-module, it is not difficult to  see that a right injective 
approximation of A is the composition N+(P) -+ N+N-(A) -+ A, where P -+ 
N-(A) is an epimorphism with P projective and N+N-(A) -+ A is the counit of 
the adjoint pair (Nf,  N-). In particular the right adjoint of the usual suspension 

functor En in mod(A) is given by DTrRnTrD, Vn 2 0, and there exists an exact 
sequence 0 -+ DTrRTrD(A) -+ N+(P) -+ A -+ D&xti(TrD(A),A) -+ 0. The 
proof of our final result is left to  the reader, noting that most of the assertions can 
be generalized to right Noetherian or left coherent and right perfect rings. 

Corollary 6.24. (1) PA-gl.codimA = 0 iff gl.dimA 5 2 iffZA-gl.dimA = 0 iff PA 
is a reflective subcategory of mod(A) iff ZA is a corejlective subcategory of mod(A). 
In  this case the reflection of A in PA is given by the natural morphism A -+ A** 
and the corejlection of A in ZA is given by the natural morphism Nf N-(A) -+ A. 

(2) If gl.dimA > 2, then: PA-gl.codimA = gl.dimA - 2 = ZA -gl.dimA. 
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