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Abstract. Let Pe2n denote the subposet obtained by selecting even ranks in the partition lattice P2n. We show

that the homology of Pe2n has dimension (2n)! E2n-1, where E2n-1 is the tangent number. It is thus an
integral multiple of both the Genocchi number and an Andre or simsun number. Using the general theory of rank-
selected homology representations developed in [22], we show that, for the special case of Pe2n, the character
of the symmetric group S2n on the homology is supported on the set of involutions. Our proof techniques lead
to the discovery of a family of integers bi(n), 2 < i < n, defined recursively. We conjecture that, for the full
automorphism group S2n, the homology is a sum of permutation modules induced from Young subgroups of the
form Si2 x S2n-2i1, with nonnegative integer multiplicity bi(n). The nonnegativity of the integers bi(n) would
imply the existence of new refinements, into sums of powers of 2, of the tangent number and the Andre or simsun
number an(2n).

Similarly, the restriction of this homology module to S2n-1 yields a family of integers di(n), 1 < i < n — 1,
such that the numbers 2 - id i(n) refine the Genocchi number G2n. We conjecture that 2 - i d i (n) is a positive
integer for all i.

Finally, we present a recursive algorithm to generate a family of polynomials which encode the homology
representations of the subposets obtained by selecting the top k ranks of Pe2n, 1 < k < n — 1. We conjecture
that these are all permutation modules for S2n.

Keywords: homology representation, permutation module, Andre permutations, simsun permutation, tangent and
Genocchi number

0. Introduction

Let Pen denote the subposet of the partition lattice Pn consisting of those set partitions of
{1,..., n} which have an even number of blocks. This subposet may also be obtained
by selecting alternate ranks in the partition lattice. It is well known that rank-selected
subposets of a Cohen-Macaulay poset are also Cohen-Macaulay (see [3, Theorem 6.4],
[13, Corollary 6.6] and [16, Theorem 4.3]). Since Pn is Cohen-Macaulay, the subposet Pen

is also. In general, Pen is not a lattice.

In this paper we study the representation of the symmetric group Sn on the homology
of the subposet Pen. A systematic study of the homology representations of rank-selected
and other Cohen-Macaulay subposets of Pn was initiated in [22], where a number of tools
were introduced. We shall use these techniques to show that, when n is even, the homo-
logy representation of Pen has remarkable properties. The formulas in [22, Theorem 2.8]
can be programmed using Stembridge's symmetric functions package for Maple, and first

*This research was begun while the author was on leave during the academic year 1991-92.
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allowed us to compute the homology representations. This data overwhelmingly supports
the surprising conjecture that the (reduced) top homology is a permutation module for the
full automorphism group Sn, when n is even.

Our approach to this problem begins with a recurrence, derived in [22], for the Frobenius
characteristics of these representations. The exposition of the representation-theoretic
results in this paper is cast entirely in the language of symmetric functions, as in [12].
Consequently no attempt is made to define homological concepts.

For readers who have some knowledge of symmetric functions, the contents of this paper
may be summarised briefly as follows. We begin with a family of symmetric functions R2n,

each homogeneous of even degree 2n, defined only by means of a plethystic recurrence
(Theorem 2.1). By means of a purely computational and rather unilluminating argument,
we are able to show (Theorem 2.5) that the symmetric function R2n is in fact a polynomial
with integer coefficients in the homogeneous symmetric functions h1 and h2. Extensive data
indicates that these integers are nonnegative, and representation-theoretic considerations
suggest that these integers somehow encode mysterious refinements, into powers of 2, of
several well known numbers, such as the tangent number E2n-1.

The main result of Section 1 is the computation of the Mobius number of Pe
2n. We also

discuss some interesting enumerative aspects of this number.

In Section 2 of the paper we examine the plethystic recurrence for the Frobenius char-
acteristic of the homology representation of Pe

2n more closely. The plethystic generating
function yields valuable information on the representation; we prove that the character val-
ues vanish outside the set of involutions. We show that the representation is completely
determined by a two-variable polynomial with integer coefficients, by the simple condition
that all terms of even degree within a given range, vanish identically. This eliminates the
need for plethystic calculations, and allows us to compute explicitly the data supporting our
conjecture on the nature of the homology module.

In fact we present a recursive algorithm to compute a more general polynomial q2n(x, y)

with integer coefficients, which determines, for m such that 2n < m < 2n + 1, (the
symmetric functions encoding) the homology representation of Pe

m as well as that of the
subposet of Pe

m consisting of the top k ranks. The results of this computation support the
stronger conjecture that the homology of these subposets of Pe

2n, is also a permutation
module for S2n, for all 1 < k < n - 1. The algorithm has allowed us to verify this for
2 < 2n < 40. An equivalent formulation of our conjecture is that the polynomial q2n(x,y)

has nonnegative coefficients.

The truth of our conjecture also implies that the homology modules of these posets are
permutation modules for the subgroup S2n-1. This is a less surprising phenomenon in the
partition lattice; see [17, Corollary 7.6] and, more generally, [22, Theorem 2.1].

Finally in Section 3 we outline the enumerative implications of our representation-
theoretic conjecture. The techniques we use to analyse the homology representation lead to
the discovery of a family of integers bi(n), 2 < i < n, for which we give an explicit but un-
enlightening recurrence. The integer bi(n) may also be defined as the (virtual) multiplicity
of the permutation module induced from the Young subgroup S

i
2 x S2n-2i

1 in the homology
module H(P

e
2n). Our representation-theoretic conjecture is equivalent to the nonnegativity
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of the integers bi(n). If true, this conjecture would yield apparently new refinements of the
tangent number, the Genocchi number, and certain Andre or simsun permutations.

A formula for computing the homology representations of rank-selected subposets of Pn

was given in [22, Theorem 2.13]. It is curious that of all the proper rank-selected subposets
of Pm, the class studied in this paper seems to be the only one whose homology is interesting
as an Sm-module. In particular there seems to be a special significance to the selection of
even ranks. A similar significance seems to be attached to the selection of alternate ranks
in an Eulerian poset P with nonnegative cd-index; see [20, Corollary 1.7].

One might ask if there are other approaches to showing that a homology module is a
permutation module. In the case of posets which are homotopy equivalent to a wedge of
spheres, one can argue that if the homology spheres themselves are permuted by the group
action, then there must be an element of the poset which is fixed by the group action, namely,
an element belonging to the facet which (eventually, by contraction) serves as a common
wedge point for the bouquet of spheres in homology. Clearly no partition in Pe

2n is fixed
by S2n, and hence one cannot hope to find a basis of fundamental cycles in homology (or
dually, a basis of cochains in cohomology) which is permuted by S2n .

Two other instances when a (co)homology representation turns out to be a permutation
module for the full automorphism group, have recently appeared in the algebraic combi-
natorics literature. One is the classical case of the cohomology of the flag variety, (see
[12, p. 136, Example 9]), more recently studied from a combinatorial viewpoint by Garsia
and Procesi. The other example arises most recently in the work of Stembridge [21], who
shows that the cohomology of the toric variety associated to the Coxeter complex of a
crystallographic root system is always a permutation module for the corresponding Weyl
group. In both cases the cohomology is a graded version of a permutation representation;
the graded components themselves are not always permutation modules. The proofs in both
the above cases use formal rather than constructive methods; indeed in neither instance does
it seem to be known how to exhibit a basis that is actually permuted by the group.

The isotropy groups of the induced modules appearing in this paper will always be Young
subgroups. Hence notation such as Sa x Sb or Sm

n = Sn x ··· x Sn will always refer to

1. Betti numbers

Denote by Bn the absolute value of the Mobius number of the poset Pe
n. By the Cohen-

Macaulay property of the poset, this is also the rank of the unique nonzero homology group
over the integers, that is, the Betti number of the simplicial complex of chains of the poset.
Thus B2n = (-1)nu(Pe

2n).

We shall use the classical compositional formula, as stated in [19], to compute B2n.

Theorem 1.1 ([19, Theorem 5.1.4]). Let K be a field of characteristic zero, and let f and

g be K-valued functions defined on the set of nonnegative integers, with f(0) = 0, and

the appropriate Young subgroups in Sa+b and Smn respectively.
m copies



72 SUNDARAM

with respective exponential generating functions Ef, Eg. Define a K-valued function h on

the nonnegative integers by

where the sum ranges over all set partitions P = {B 1 /B 2 / ··· /B k} of a set of size n into

nonempty blocks.

Then the exponential generating function for h is given by

Proposition 1.2 For k > 0 define g(k) to be 0 if k is odd, and (-1)
n
B2n, if k = 2n is

even; in particular g(0) = 1. Set B(x) = Eg(x) - 1 = Zn>1(-1)nB2nx2n. Then B(x)

satisfies the functional equation

Proof: We apply the compositional formula to the functions g and f such that f(n) = 1 for
all n > 1, f(0) = 0. Note that Ef (x) = e

x
-1 . Letting S(m,k) denote as usual the Stirling

number of the second kind (which counts the number of set partitions in Pm with k blocks)
we find that h(2n) = Zn

k=1 S(2n, 2k)( -1)
k
B 2 k , since the sum in Theorem 1.1 must now

range over all partitions with an even number 2k of blocks. Observe that the top element,
denoted by i, has to be artificially adjoined to Pe

2n. Thus h(2n) = ZxEPe2n u(x, 1). which
x=1

in turn is -uPe
2n(1,1) = -1, by definition of the Mobius function.

-u(Pe
2n+1), since now the top and the bottom element (0) have to be artificially adjoined

to the poset Pe
2n+1.

Now from Theorem 1.1, using the expression for Eg (x) in the statement of the proposition,
we obtain

Eliminating the odd powers of x in this identity and substituting log(1 + x) for x, we
obtain the required functional equation.

We can now deduce explicitly the value of B2n. Let S2n-1 be the nth tangent number,

Similarly
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The author is grateful to Richard Stanley and Ira Gessel for showing her the following
elegant technique, which eliminated the cumbersome calculations of her original proof. De-
fine a map 9 on the ring of formal power series with coefficients in a field K of characteristic
zero as follows:

Lemma 1.3 Let F(x) = Zn>0 f(n)xn. Under the map t, the image of the power series

Proof: Write b2n-1 = (-1)nB2n.

Note that the exponential generating function for the numbers (-1)nE2n-1 is i tan(ix),
where i2 = -1. Hence it suffices to show that the generating function

for the numbers b2n-1 is

Apply Lemma 1.3 to the functional equation of Proposition 1.2, taking
The result now follows by applying the map 6, noting that

Remark 1.4.1 Here we collect some identities involving the Betti numbers B2n =

(-1)nu(Pe
2n).

(i) If we use the defining equation for the Mobius function on the poset Pe
2n U {1}, we obtain

the identity 0 = Zn
k=0(-1)

k
S(2n, 2k)B2k, or equivalently, from the preceding result,

(ii) Recall from [18, Example 3.13.5] that an atom-ordering of a geometric lattice gives
an R-labelling (in fact an admissible labelling) of the lattice; Theorem 3.13.2 of [18]
then says that the Betti number of a rank-selected subposet of the lattice is given by the

For a proof, see [18, Exercises 37(a) and 36(a)].

Theorem 1.4 The top homology of the poset P
e
2n is a space of dimension

E2n-1. Equivalently, this is the value of (-1)
n
 times the Mobius number.
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number of chains with descents in the positions corresponding to the ranks selected. (It
is shown in [4] that an admissible labelling of a lattice is in fact an EL-labelling, and
consequently defines a shelling order on the maximal chains of the lattice.) The atom-
ordering corresponding to Gessel's EL-labelling for the partition lattice as described in
[4] is (12) < ··· < (1i) < (2i) < ··· < (i-1,i) < ···< (1,i+1) < ··· < (n-1,n).
The chains in P2n with descents in the positions corresponding to even ranks may be
termed up-down chains; counting up-down chains with respect to this labelling yields
the formula ([7, Theorem 1.7])

and hence, by Theorem 1.4,

(iii) The well known recurrence

for the tangent number E2n-1, translates into the following recurrence for the Betti

number B2n:

It is unclear to us how this latter formula can be explained by means of the combinatorial
interpretation of up-down chains in P2n described in (ii).

(iv) It is worth noting that, by a result of Stanley [15], the tangent number E2n-1 is itself the
Betti number of a subposet of the partition lattice, namely, the join sublattice P2

n of P2n

generated by the partitions with n blocks all of size 2. The homology representation of
S2n for this lattice was determined in [6].

(v) Finally, the Euler number Em-1 is also the Betti number of the subposet of the Boolean
lattice Bm consisting of alternate ranks. The homology representation of Sm in this
case was computed by Solomon ([14]) to be one of the Foulkes representations: it is the
representation of Sm indexed by a skew-hook or border strip (see [12] for definitions)
formed by horizontal strips all of size 2, with the exception of the top-most strip, which
may be of size 1.
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Remark 1.4.2 From the proof of Proposition 1.2, the Betti numbers B2n-1 of the poset
Pe

2n-1 are determined by equation (A) in the proof. We are unable to obtain an explicit
closed formula for B2n_1. The first few values, for n = 1,2,3 and 4, are 1, 2, 46 and 5522.

Next we present some numerical evidence which suggests the following: The numbers B2n

are related to the number of maximal chains in the full partition lattice P2n which are orbit
representatives of chains fixed by the action of Sn

2 , or equivalently, representatives of orbits

of size (2n)!. This in turn implies a connection with certain types of Andre permutations [8].

In [22], the action of Sn on the maximal chains of Pn was studied, and the following
theorem was proved.

Define positive integers a i(n) by means of the recurrence

with initial conditions

We have

Theorem 1.5 ([22, Theorem 3.2]). The action of Sn on the chains of Pn decomposes into

orbits as follows:

where Wi denotes the transitive permutation representation of Sn acting on the cosets of

S
i
2 x Sn-2i

1.

It follows from [17, Theorem 7.7] that the positive integers a i(n) refine the Euler
number En_1 .

R. Simion and this author observed from the above recurrence that the numbers ai(n)
admit the following combinatorial interpretation: a i(n) is the number of permutations in
Sn_2 with exactly i - 1 descents, none consecutive, and with the hereditary property that
when the letters n — 2,n — 3, . . . ,3,2,1, are erased in succession, the property of not having
any consecutive descents is preserved after each erasure. We call these simsun permutations.
The equinumerous set of Andre permutations appears in work of Foata and Schutzenberger
(see [23] and also the references in [22]). Both sets reappear in recent work of Purtill and
Stanley on the cd-index (see [20]). With the Foata-Schutzenberger interpretation, a i(n) is
the number of Andre permutations in Sn_1 with exactly i peaks, where j is a peak if either
j = 1 and a(1) > z(2), or if 2 < j < n - 2 and z(j) > max(z(j - 1 ) , z ( j + 1)).

Note in particular that an(2n) is the number of alternating (up-down or down-up) permu-
tations in S2n-2 with the hereditary property of no consecutive descents described above.
It now transpires that the Betti number B2n is an exact multiple of the number an(2n):
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Proposition 1.6 We have

Proof: From Theorem 1.5, we see that an (2n) is the number of orbits of maximal saturated
chains in P2n which are fixed point-wise under the action of a subgroup conjugate to S

n
2.

In order that a partition be fixed by all involutions generated by (1, 2 ) , . . . (2i - 1, 2 i ) , . . . ,
(2n - 1,2n), it must be the case that either 2i - 1 and 2i are in the same block, or they are
both singletons. Hence an(2n) is the number of orbits of chains in the subposet of partitions
with the property that the only blocks of odd size are the singletons, and the latter occur in
pairs. We use this fact and a counting argument completely analogous to [ 17, Theorem 7.7]
to obtain the recurrence

To see this, first choose the element of maximal rank in the representative chain; such an
element is of the form P = B 1 /B 2 , where B1 and B2 are blocks of sizes 2i and 2n — 2i
respectively, 1 < i < n - 1. Since we are counting orbit representatives it is enough to
choose one pair of blocks for each pair of sizes. Now choose representative chains from
P|B1| in ai(2i) ways and from P|B2| in an-i(2n — 2i) ways; these can be intertwined in

(2n-2
2i-1) ways to produce a maximal chain in P2n.

Now from (iii) of Remark 1.4.1, it is clear that this coincides with the recurrence satisfied
by the numbers E2n-1 . Q

Remark 1.6.1 Let cn denote the number of maximal saturated chains in Pn. Counting

from the bottom, we have cn = n!(n-1)!. We then have (see [22, Remark 3.2.1])

this decomposition is explained combinatorially in [9] and [10], by means of an action of
[n-1]

the subgroup S2 on the set of (n — 1)! permutations. See also [23],

It would be interesting to investigate combinatorially the various enumerative formulas
of this section.

2. The homology representation

It is instructive to look at the first nontrivial example, Pe
4. Here the elements are all at

rank 1; there are four partitions in the orbit of /123/4/, and three in the orbit of /12/34/.
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The reduced homology is concentrated in dimension zero, and as an S4-module it is a sum
of two transitive permutation representations, with one copy of the trivial representation
removed. A little thought reveals the following surprising fact: the homology module is
simply the (single) transitive permutation module induced from the Young subgroup S2 x S2

(although, as observed in the introduction, this is not obvious from any basis of fundamental
cycles). This is our first hint that the homology modules of Pe

2n have interesting properties.
We refer to [12] for all background on symmetric functions. As in [12], we denote the

plethysm of symmetric functions f,g by f [ g ] . If f and g are respectively Frobenius charac-
teristics of the Sm-module V and the Sn-module W, then the plethysm f[g] is the charac-
teristic of the module V[W] induced up to Smn from the wreath product subgroup Sm[Sn],

where Sm acts on TO copies of Sn. (Note that Sm[Sn] is the normaliser in Smn of the Young

while terms in this sum of even degree smaller than (2n) vanish identically.

(ii) Let P
e
m(k) denote the rank-selected subposet of P

e
m consisting of the top k nontrivial

ranks {n - 1,.. .n - k}, 0 < k < n, for 2n < m < 2n + 1. (In particular,

if k = n — 1, this is the whole poset P
e
m). Then the Frobenius characteristic of the

top homology of this subposet as an Sm-module is given by the degree m term in the

alternating sum

77

subgroup Sn x ··· Sn .)

The remainder of this section is devoted to studying the symmetric functions associated
to the homology representations, via the Frobenius characteristic map. We begin with a
family of symmetric functions Rn. For the purposes of this paper, the plethystic recurrence
of Theorem 2.1 below may be taken to be the defining equation for the functions Rn. (We
note in passing that because Rn is the Frobenius characteristic of a representation, we know
in addition that it is a nonnegative integer combination of Schur functions.)

Theorem 2.1 (See [22, Theorem 2.8]). Let Rn denote the Frobenius characteristic of the

representation of Sn on the top homology of P
e
n. Then

Equivalently, separating terms of even and odd degree, we find that R2n (respectively

(-1)n-1
 R2n-1) is the degree (2n) (respectively degree (2n-1)) term in the alternating

sum of plethysms

m copies
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In this section we shall use the defining equation above to investigate the representa-
tions R2n. The following well known expansion of the plethysm h 2 [h n ] into Schur func-
tions is easily established by routine computation. It also provides an explanation for the
phenomenon noticed at the beginning of this section, for the representation R4.

Now write He for the sum Zn>1 h2n, H0 = Zn>0 h2n+1, and H = He + H0. The
following identity is the essential trick to simplifying the plethystic recurrence, and is the
crucial ingredient in the proof of Theorem 2.5 below.

Proposition 2.2

Proposition 2.3 h2[H] = He(1 + H) = He(1 + He) + H0He.

Proof: From the rules for computing plethysm of symmetric functions, we have h 2 [H]

= Zn>1 h2[hn] + Zn>1 Zi:1<i<n-i h ihn-i. Using Proposition 2.2, the result follows.
D

The next observation will be used frequently:

Lemma 2.4 The lowest degree term in H
i
eH

2n-2i
o is of degree 2n, and equals h

i
2h

2n-2i
1.

We are now ready to establish the following surprising result:

Theorem 2.5 The Frobenius characteristic R2n is a polynomial in the homogeneous

symmetric functions h2 and h1. Equivalently, the character values of S2n acting on the top

homology of P
e
2n are supported on involutions.

Proof: We shall proceed by induction on n. Note first that, using the defining equation,
we have R2 = h2, since h 1 [ H ] = He + H0. Now R4 is the degree 4 term in (R2 -h1 )[H],
that is, (using Propostion 2.3), the degree 4 term in H

2
e + H0(He - 1). Hence R4 = h

2
2.

Our induction hypothesis will be that the plethysm

is a polynomial in He and H0 with integer coefficients. More specifically, isolating the
terms of even and odd degree with respect to the grading deg(He) = 2, deg(H0) = 1,

we assume that there exist polynomials Q 2 ( n - 1 ) ( x , y ) and Q'2(n-1)(x,y) in the variables
x and y, with integer coefficients, such that

we further assume that Q2(n-1)(x, y) is divisible by x
2 for n > 3. (Note in particular that

with respect to the above grading, Q 2 ( n - 1 ) (H e ,H 2
o ) and Q'2 ( n - 1 )(H e ,H

2
o) are both of

even degree.)
From the first paragraph of the proof, we have Q 2 (H e , H

2
o) = He, Q'2(He,H

2
o) = 1,

and Q4(H e ,H
2

o) = H
2
e, Q'4(He,H

2
o) = He - 1; hence these hypotheses are satisfied

for n = 2,3.
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Note that by (A), only the terms in Q 2 ( n - 1 ) (H e ,H
2

o ) contribute to R2n. The defining
equation of Theorem 2.1 (i) implies that R2n is the degree 2n term in Q 2 ( n - 1 )(H e ,H

2
o);

by Lemma 2.4, since all terms of smaller even degree in the left-hand side of (A) must
vanish identically, this is the lowest degree term in Q 2 ( n - 1 ) (H e , H2

o), as a polynomial in
He and H

2
o.

Now let n > 3. By induction hypothesis the lowest degree term in Q 2 n - 2 ( H e , H
2

o) is of
the form

for some integers bi(n), 2 < i < n. By Lemma 2.4, R2n equals Zn
i=2 b i(n)h

i
2h

2n-2i
1, and

hence, using Proposition 2.3, R 2 n [H] equals

In particular, R 2 n [H] is divisible by H
2

e.

It follows that there are polynomials Q 2 n(x , y) and Q'2n(x, y) with integer coefficients,
such that

where, by inspecting the right-hand side of (B), since

it is clear that Q2n(He, H
2

o) is divisible by H
2

e.

Note also that, with respect to the grading deg(He) = 2, deg(H o ) = 1, the lowest degree
term in (B) coincides with the lowest degree term in Q 2 n - 2 (H e ,H

2
o ) , and has degree 2n.

Hence the lowest degree term in Q2n(He, H
2

o) has degree (2n + 2), and is of the form

for some integers bi(n + 1 ) , 2 < i < n + l.
It now follows, by another application of Lemma 2.4, that R2(n+1), which by the defining

equation is the term of degree 2(n + 1) in the symmetric function Q2n(He ,H
2

o), is of
the form

where the bi(n +1) are integers, uniquely determined from (A), (B) and (C).
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The second assertion in the statement of the theorem follows from the fact that the
character of the permutation representation on cosets of the Young subgroup S

i
2 x S2n-2i

1

is supported on the set of involutions.

Now let n > 2, and let bi(n) be the unique integers such that

Remark 2.5.1 Converting the homogeneous symmetric functions to power-sums, we see
that the character of the homology representation on involutions of type (2i, 1 2 n - 2 i ) is
given by

In particular, the character value on fixed-point-free involutions is bn(n)n!.

Let P2n+2(z, y) be the polynomial defined recursively by P2 = x, P4 = x
2
, and

We have

Corollary 2.6 With respect to the grading deg x = 2, deg y = 1, all terms of total (even)

degree at most 2n in P2n+2(x,y) + P 2 n + 2 ( x , - y ) vanish identically, and the resulting

equations determine the bi(n),for n>2.

This gives the recurrences b2(n) = 1 and b3(n) = 3b3(n - 1) + 2(2n - 5), b3(3) = 2,
and b4(n) = (6b4(n - 1) - b4(n - 2)) + (2n - 7)(3b3(n - 1) - b3(n - 2)).

Proof: Define b1(1) = 1. Then R2 = b1(1)h2 . The defining equation of Theorem 2.1
implies that all terms of even degree at most 2n vanish in the symmetric functions expan-
sion of
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Using Proposition 2.3, we find that all terms of even degree at most 2n in the symmetric
function expansion of

must vanish identically. Recall that He (respectively Ho) contributes only even (respectively
odd) degree terms. Write P2n+2(x, y) for the polynomial obtained by substituting x for He

and y for Ho, i.e.,

The defining equation for the bi(n) now translates into the statement that, with respect to the
grading deg x = 2, deg y = 1, all terms of total even degree at most 2n in P2n+2(x, y) +

P2n+2(x, -y) vanish identically.
In particular, extracting the coefficient of x2y2k-4 in P2n+2(x, y), we find that b2(k) -

b2(k - 1) = 0 for all k > 2. Since b2(2) = 1, it follows that b2(k) = 1 for all k > 2.
Similarly, extracting the coefficient of x 3

y
2 k - 6

, we obtain b3(k) = 3b3(k - 1) + 2(2k

- 5)b2(k). a

The recurrences of Corollary 2.6 imply that bi(n) > 0 for i = 2,3, and 4. To see that
b4(n) is positive, note first that b3(n) > b3(n - 1) for all n. Assume inductively that
b4(n - 1) > b4(n - 2). (This is true for n - 1 = 4.) Then the recurrence shows that
b4(n) > b4(n - 1) > 0 for all n > 5.

Remark 2.6.1 The general recurrence for the bi(n) can be extracted from this corollary,

and is recorded in Conjecture 3.1 of Section 3.

The proof of Theorem 2.5 yields an efficient way to compute the characteristic R2n with-
out going through laborious plethystic calculations: It is enough to extract the coefficient
of t2n in the polynomial P2n(t

2h2, th1). We obtain, up to n = 7:
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These computations lead us to make the following:

Conjecture 2.7 The homology of P
e
2n is in fact a permutation module for S2n: it is a sum

of induced modules whose isotropy groups are Young subgroups of the form S
i
2 x S2n-2i

1,
with nonnegative integer multiplicity bi(n), 2 < i < n. The integers bi(n) are defined as

in Corollary 2.6.

It is also clear from Theorem 2.5 that R2n may be viewed as a sum of (possibly virtual)
representations induced from the Young subgroup S

n
2. In fact we have a second way of

writing R2n as such:

Corollary 2.8 For 2 < i < n, let Vi be the irreducible representation of S
n
2 which acts

like the trivial representation on i copies of S2, and like the sign on the remaining (n - i)

copies. Define integers Ek (n) by

Then one has a (possibly virtual) direct sum decomposition

In particular, E2(n) = 1, E 3 (n) = 3E3(n -1) + (2n - 3), and En(n) is the multiplicity

of the trivial representation in the top homology of H(P
e
2n).

Proof: Make the substitution h
2
1 = h2 + e2 in the characteristic R2n.

It follows that Conjecture 2.7, if true, would also imply the positivity of the integers
Ei(n). We already know that this is the case for En(n), since it is the multiplicity of the
trivial representation in H(P

e
2n).

The first few values of the Ei(n), up to n = 6, are given below, as the coefficient of
h

i
2e

n-i
2, the characteristic of the module Vi of Corollary 2.8.

Finally, Theorem 1.1 can also be used to compute the Whitney homology of the dual of Pe
2n;

combined with Proposition 1.9 of [22], one can then compute the homology of the rank k+1

subposets P e
2 n ( k ) obtained by selecting the top k nontrivial ranks of Pe

2n, (1 < k < n — 1).
We have the following particular cases:
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Proposition 2.9

(i) The characteristic of H0(P
e

2 n(1)) is equal to

where Dn,even equals 1 if n is even, and 0 otherwise.

(ii) If u is an integer partition of n, denote by l(u) the number of parts of u. Also write

mi (u) for the multiplicity of the part i in u. The characteristic of H1 (P
e
2n (2)) is equal to

where the first and second sums run over partitions u with all parts even, and the third

sum runs over pairs of partitions (u, v) such that all the parts of u are even, and all the

parts of v are odd.

Proof:

(i) From Theorem 2.1 (2), the characteristic is the degree 2n term in R2[H] - H =
H e (1 + He + H0) - H, hence equals the degree 2n term in H

2
e.

(ii) This time the characteristic is the degree 2n term in R4[H]- R2[H]+H = H
3

e(1+He +

H0)
2
-H e(1+H e + H0) + H, hence equals the degree 2n term in H

4
e + (2H3

e + H
2
eH

2
0).

The results follow. D

Notice that both homology modules of Proposition 2.9 are permutation modules for S2n.
This observation is reinforced by data from further computations. We can now strengthen
Conjecture 2.7 by the following representation-theoretic conjecture:

Conjecture 2.10 The homology Hk-1(P
e
2n(k)),for 1 < k < n - 1 , i s a permutation

module for the action of S2n, and can be written as a sum of induced modules whose point

stabilisers are all Young subgroups.

In general we are unable to discern any particular distinguishing qualities for the isotropy
subgroups, beyond the fact that Young subgroups indexed by the conjugacy classes of
involutions appear only for k = n - 1.

Remark 2.10.1 For the case k = 1, we can describe a basis for the (co)homology which
is permuted by the group action:
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For each i such that 1 < i < n, let Ti be the partition whose blocks are {1,2 , . . . , i}
and {i + 1 , . . . , 2n}. For each k such that 1 <2k < 2n — 2k < 2n, consider the sums of
fundamental cycles

where z(T) is the image of the partition T under the permutation z, and Ti is the subgroup
of S2n which fixes the first 2n — i letters point-wise. Here we identify Si with the subgroup
of S2n which fixes the 2n- i largest letters point-wise.

The stabilisers of Xk and yk are respectively Xk = S{1,...,2k} x S{2k+1,...,2n} and Yk

= S{1,...,2n-2k} x S{2n-2k+1,...,2n}, if 2k < 2n — 2k. If 2k = 2n-2k, then the stabiliser
is Zk = S

2
2. Also the elements {z(xk),R(yk)}, where z and R range respectively over

the coset representatives of Xk and Yk, are all independent. When n is even and 2k = n,

similarly the collection { R ( x k ) } for R ranging over the coset representatives of Xk, is
independent of all the others. A more detailed analysis shows that in this case also, the set
{ R ( x k ) } is itself independent.

Hence for 2k < 2n - 2k, Xk (respectively yk) generates the transitive permutation
module with stabiliser subgroup Xk (respectively Yk). A similar statement holds for the
case 2k=2n- 2k.

Remark 2.10.2 Note that the Betti number of the poset Pe
2n (k) can be computed using the

defining recurrence for the Mobius function (see also [22, Proposition 2.16]). We then have

where B2k is the Betti number of the poset Pe
2k.

The proof of Theorem 2.5 shows that the representation H(Pe
2n (k)) is in fact determined

by the degree 2n term in the polynomial Q 2 k ( H e , H
2

o), which was shown to have integral
coefficients. Hence Conjecture 2.10 is equivalent to the conjecture that this polynomial has
nonnegative integral coefficients. From the proof of Theorem 2.5, we extract the following
recursive algorithm for computing the homology representations:

Algorithm 2.11 Define polynomials F 2 n ( x , y ) , n > 1, recursively by setting
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(iv) F2n+2(x, y) = t
2n

r2n(x(t
2
x + ty + 1), tx + y) - F2n(x,y). Then

(a) The characteristic R2n of the top homology of P
e
2n is given by T2 n(h2 , h 1 ) ;

(b) The characteristic of the top homology of P
e

2 n ( k ) (respectively P
e

2 n - 1(k), for

1 < k < n - 1, is given by substituting x = He,y = H0 in q2k+2(x,y)

(respectively F2 k + 2(x,y) - q 2 k + 2 (x ,y) ) and then extracting those terms which

are homogeneous polynomials of degree 2n (respectively 2n - 1) in the {hi}i>1.

We may now summarise the content of the preceding conjectures by the statement that
q2n(x, y) is a polynomial in t, x and y, all of whose coefficients are nonnegative integers.

Conjecture 2.7 implies that the Whitney homology (see [2], [5] and [22]) of the dual poset
is also a permutation module. However, computations show that the Whitney homology of
Pe

2n is not, in general, a permutation module.
The first few polynomials q2n(x, y) are recorded below. (The coefficient of t2n is T2n.)

For odd m, the representations Rm do not seem to have especially nice properties. We
have, using Algorithm 2.11,

Using the techniques in [22, Section 4], we obtain from the defining equation of Theo-
erm 2.1 a relation between the multiplicities of (Schur functions indexed by) hooks in the
R2n-1 and the multiplicity of the trivial representation in R2n.

Proposition 2.12

(i) H(Pe
m) is not a permutation module for Sm when m > 3 is odd.
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(ii) Let En(n) denote the multiplicity of the trivial representation in H(H
e

2n) (cf. Corol-

lary 2.8), and let C i(j) be the multiplicity in H(P
e

2i+1) of the irreducible indexed by

the hook (2i + 1 - j, 1
j
) , f o r i such that n < 2i + 1 < 2n. Then

Proof:

(i) From Algorithm 2.11 we see by induction that the polynomial F2n(x, y) — q2n(x, y)

contains the term ( - 1 )
n - 1

( t
3
x y - ty). This contributes (-1)n Zn-1

i=1 h2ih2n-1-2i -

h2n-1) to the expansion of R2n-1 in the homogeneous symmetric functions. It follows
that if n is odd, the character value of R2n-1 is (-1) on a (2n - 3)-cycle, while if n is
even, the character value is (-1) on a (2n - 1)-cycle. Consequently the homology of
Pe

2n-1 is never a permutation module for n > 2.

(ii) Use [22, Lemma 4.1 ] and the fact that the plethystic inverse of Zi>1 hi is Z i>1(-1)
i -1

Pi where Pn is the characteristic of the representation of Sn on the top homology of the
full partition lattice Pn. (See for example [22, Example 1.6 (i)].) D

Note that the truth of our conjectures would imply that the homology of the subposet
P 2 n ( k ) is a permutation module for S2n-1, for all k = 1,.. . ,n - 1. In particular the
characteristic of the restriction of the homology of Pe

2n to S2n-1 may be easily computed
from the polynomial expansion of R2n(h2, h1) given by Theorem 2.5. We have

Corollary 2.13 As an S2n-1-module, the homology of P
e
2n decomposes into a (possibly

virtual) direct sum of induced modules as follows:

The integers d i ( n ) are determined by the equations

Conjecture 2.7 implies that the integers d i ( n ) are nonnegative for all i = 1 , . . . , n — 1.
(From Corollary 2.6, d 1 ( n ) = 2 and d2(n) = 3d2(n - 1) + 8(n - 2) > 1 for all n > 2.)

We conclude this section with some remarks on other methods for showing that a ho-
mology module is a permutation module. As argued in the introduction, and as shown by
the basis for Pe

2n(1) constructed in Remark 2.10.1, it is not true that the homology spheres
themselves are permuted by S2n. On the other hand, since Pe

2n(1) does contain a unique
element fixed by S2n-1, namely, the two-block partition T2n-1 = /1 ,2 , . . . , (2n- 1) /2n/
in which 2n is a singleton, there is some hope that the homology spheres of the subposets



PARTITIONS WITH AN EVEN NUMBER OF BLOCKS 87

Pe
2n(k), 1 < k < n - 1, (which in fact contain a maximal chain fixed by S2n-1) are

permuted by the action of the subgroup S2n-1.
While it seems unusual for homology modules to be permutation modules for the action

of the full automorphism group, there are several examples of this phenomenon when the
automorphism group is restricted to a subgroup. The examples we have in mind arise as
subposets of the partition lattice Pn, considered as modules for the subgroup Sn-1. It was
shown in [22] that the action of Sn-1 on the homology of the subposets P n ( k ) obtained
by taking the top k ranks of Pn, excluding the top element of rank n - 1, is a permutation
module for Sn-1 (see [22, Theorem 2.1 (2)] for an explicit determination of the orbits).
Here 1 < k < n -1. (For k = n - 2 one obtains the regular representation of Sn - 1 , a result
first obtained in [17].) The proof given in [22] for arbitrary k is by formal manipulation
of the Frobenius characteristics. Wachs ([24]) has constructed bases of fundamental cycles
for these subposets which are indeed permuted by Sn-1.

3. Enumerative implications

The results of the preceding section have consequences which may be described in a purely
enumerative setting.

By combining Theorems 1.1 and 2.5, we see that our conjecture would have the following
intriguing consequence: denote as before by E2n-1 the number of alternating (up-down)
permutations on (2n - 1) letters.

Conjecture 3.1

(i) The integers {bi(n), 2 < i < n}, b2(n) = 1,n > 2, (bi(n) = 0 unless 2 < i < n),

defined by the recurrence

are nonnegative.

(ii) The integers {Ei(n), 2 < i <n} defined by the transformation Ek(n) = Z
n

i=2 bi(n)
2 < k < n, are also nonnegative.

Since furthermore we have

this would yield apparently new refinements of the numbers E2n-1.

It is difficult to see how to make an inductive argument in favour of the positivity of the
bi(n), from the above recurrence.
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Notice that the decomposition of Conjecture 2.7 is strongly reminiscent of the orbit
decomposition (Theorem 1.5) for the action of S2n on the chains of P2n; the characteristic
of this action is

where the a i(2n) count the number of simsun permutations in S2n-2 with exactly i — 1
descents (see Section 1).

From Proposition 1.6, we obtain an equivalent implication of Conjecture 2.7, which is
perhaps more natural from the enumerative point of view:

Conjecture 3.2 The number of simsun permutations in S2n-2 with exactly (n—1) descents

(and hence the number of Andre permutations in S2n-1 with n peaks) admits the further

refinements (into nonnegative integers) :

In fact the dimension equality of Proposition 1.6 strongly suggests that the homology
representation of Pe

2n is isomorphic to an induced module V, where V is a permutation
module for Sn

2 of dimension an(2n), whose orbit decomposition is specified by the numbers
b i(n)(cf. Remark 1.6.1).1

By examining the dimensions of each induced module in the decomposition of Corol-
lary 2.13 for the restriction of R2n to S2n-1, we are led to conjecture the existence of the
following apparently new refinement for the Genocchi number G2n. One way to define
the Genocchi numbers is by means of the exponential generating function [19, Chapter 5,
Exercise 5 (d)-(f)]

The Betti number of Pe
2n is therefore related to the Genocchi number by the equation

B2n = (2n-1)!G2 n .

Conjecture 3.3 The integers di(n) of Corollary 2.13 are positive, and are divisible by

2
i
, f o r all i = 1, . . . ,n — 1. Consequently, we have the following refinement of the nth

Genocchi number into a sum of (n — 1) positive integers for n > 2:

For n > 2, define polynomials R'2n(x) = Z
n-1

i=1 di(n)x
i Then R'2n(1) = G2n. The first

few coefficients of the polynomials R'2n are as follows:
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Numerical verification reveals that this refinement does not coincide with any of the
refinements for the Genocchi numbers discussed in the seemingly exhaustive survey article
of Viennot [23].

All of these phenomena are in need of a combinatorial explanation.
We have been able to find a refinement of the Genocchi numbers into sums of powers of 2,

by defining an equivalence relation on a certain combinatorial model for objects counted
by the Genocchi numbers. The combinatorial interpretation that we use is due to Viennot.
A more recent reference is [19, Chapter 5, Exercise 5(f)(ii)].

Proposition 3.4 [23, Proposition 5.5]. The Genocchi number G2n is the number of

permutations a in S2n-1 with the property that z ( i ) < z(i + 1) iff z ( i ) is even, for
1 < i < 2n - 2.

Now consider the representation, due to Foata and Schutzenberger, of a permutation as
an increasing binary tree (see [8], [23] and [18]). Then z( i) < z(i + 1) iff z(i + 1) is
a right child of z(i). Thus G2n is also the number of increasing binary trees on (2n - 1)
nodes, with the property that a node has a right child if and only if it is even. We shall refer
to such a tree as a Genocchi tree.

We define the following operation on a Genocchi tree: choose a node of degree 2, and
exhange the left and right subtrees of this node. Note that a node of degree 2 necessarily
has one odd child and one even child, and is itself even. Call two Genocchi trees equivalent
if one can be obtained from another by a series of such reflections. Clearly this defines an
equivalence relation on the set of G2n Genocchi trees, whose classes are of size 2i where
i is the number of nodes of degree 2 in any one representative of the class.

It is easy to see that there is a unique class of size 1, corresponding to the tree in which
all nodes except 2n - 1 have degree 1. Also the maximum number of nodes of degree 2
is (n - 2), and is attained when all the even nodes, with the exception of (2n - 2), have
degree 2. In this case, working backwards from the node 2n - 4, it is clear that the children
of 2n - 2i - 4 must be 2n - 2i - 3 and 2n - 2i - 2, for i = 0 , . . . , n - 3, and hence the
representative tree for a class of size 2n-2 is uniquely determined.

Proposition 3.5 Let g i (n) denote the number of equivalence classes of size 2i
 under

the above equivalence relation. The enumerative refinement of the Genocchi number G2n

arising from this relation is thus

where g 0 ( n ) = g n - 2 ( n ) = 1 for all n > 2.
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For example, G4 = 1, G6 = 1 + (1)2, G8 = 1 + (6)2 + (1)22 and G10 = 1 + (21)2 +
(26)22 + (1)23.

4. Partitions with number of blocks divisible by d

Denote by Pm,d the rank-selected subposet of Pm consisting of all partitions such that the
number of blocks is divisible by d. (In the preceding sections we wrote Pe

2n for the poset
P2n,2.) It is natural to wonder whether these posets yield interesting homology representa-
tions for d > 2. Again the representations may be computed from the plethystic generating
functions of [22, Theorem 2.8].

It is easy to see that these representations are not, in general, permutation modules, for
instance by examining the simplest case of partitions of 2d consisting of d blocks. The only
nontrivial partition left invariant under the action of the (2d - l)-cycle which fixes 2d, is
the two-block partition with 2d forming a block by itself. Hence for d > 2, the trace of a
(2d —1)-cycle on the 0-dimensional chains is 0, and consequently on the reduced homology
it is(-1).

Let Bm,d denote the absolute value of the Mobius number of Pm,d. (In particular B2n =
B2n,2 .) As in the proof of Proposition 1.2, we obtain the following generating function for
the Betti numbers Bm,d.

Denote by Pd
n the d-divisible lattice first studied in [6], that is, the sublattice of Pnd

consisting of partitions whose block sizes are divisible by d. Remark 1.4.1 (iv) points out
the relation between the Betti numbers of Pe

2n = P2n,2 and P2
n. We do not know if there

is any relation between the Betti number Bnd,d of the poset Pnd,d and the Betti number of
the poset Pd

n.
There is some enumerative motivation for studying these posets. Consider the case of

Pnd,d. Define an (n + 1) by (n + 1) matrix Mn by letting the element in row i and column
j, 0 < i, j < n, be the Stirling number of the second kind S(di, dj) if i,j > 1; define the
(i, 0) entry to be 1, for all i > 0, and the (0, j) entry to be zero for all j > 1. The matrix
Mn is lower triangular with 1's on the diagonal, hence its inverse is a lower triangular
integer matrix with 1's on the diagonal. Let bi,j denote the (i, j) entry of the inverse. From
the recursive definition of the Mobius function it follows that bi,1 = (-1)

i-1
 B ( i -1)d ,d.

(Remark 1.4.1 (i) is a special case of this observation.) More generally, we have that bi,j is
the Whitney number Wi,i-j of the first kind of the poset Pnd,d. See [1, Proposition 4.211.

SUNDARAM

Proposition 4.1

(The Whitney numbers of the second kind are the Stirling numbers S(di, dj).)

where B
denotes the Betti number.
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Notes

1. A refinement of an(2n) into sums of powers of 2, different from the one predicted by Conjecture 3.2, has
recently been discovered by Wachs ([25]), who defines an action of S

n-1
2 on a subset of the symmetric group

S2n-1, which is equinumerous with the set of simsun permutations counted by an(2n).
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