
THE HOMOTOPY TYPE OF TWO-REGULAR K-THEORY

Luke Hodgkin and Paul Arne Østvær

Abstract. We identify the 2-adic homotopy type of the algebraic K-theory space

for rings of integers in two-regular exceptional number fields. The answer is given in
terms of well-known spaces considered in topological K-theory.

1. Introduction.

Let E be a number field, OE its ring of algebraic integers, and RE = OE [ 1
2
] the

corresponding ring of 2-integers. For the definition of the algebraic K-theory space
K(OE) (resp. K(RE)) we refer to [Q1]; it is the usual ‘plus construction’ on the
stable classifying space BGL(OE) (resp. BGL(RE)). A related, homotopically
more accessible space is the étale topological K-theory space K(RE)ét of RE , see
[D-F1]. The purpose of this paper is to pin down the 2-adic homotopy type of
K(RE) for some special E. Our results rely on the following recent advances.
In [R-W1], Rognes and Weibel determined up to extensions the 2-completed groups
Kn(RE)2̂ (= Kn(OE)2̂ for n ≥ 2). Their computation is expressed in terms of
the étale cohomology groups H∗(RE ; Z2̂ (i)) of RE with coefficients twisted by the
action of the roots of unity. A case where the extension problems disappear is the
‘2-regular case’, (see definition below) for which Rognes and Østvær [R-Ø] gave
a complete description of Kn(RE)2̂ , for all n. The above results are among the
consequences of Voevodsky’s solution of the Milnor conjecture [V], as developed in
subsequent work [S-V], [B-L]. A particular interesting end-product is ‘étale descent
for K-theory of number fields at 2’, i.e. the strong Quillen-Lichtenbaum conjecture
is true for number fields at the prime 2. See [R-W2] for the case of totally imaginary
number fields, and [Ø1] for the case of real number fields. In particular, we have:
(a) the spaces K(RE) and K(RE)ét are the same on zero-connected components at
the prime 2, and
(b) in consequence one can try to adopt the étale homotopy methods from [D-F1] to
determine the 2-completed homotopy type of K(RE) (= K(OE) on one-connected
components).
Part (b) was solved in the case where E is 2-regular and ‘non-exceptional’ (see
definition below), in [Ø2]; the result is satisfyingly simple, in that the homotopy
type is a product of well-known components. In this paper we apply a similar
analysis to the more complicated ‘exceptional’ case. Here the product structure is
replaced by a twisting (fibration), but the degree of complication is minimal, and
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almost all of the factors are untwisted, and again of a simple type. As a check, we
verify that our result gives the homotopy groups calculated in [R-Ø].
To state the results, we need some definitions and notation. Let r1 respectively
r2 denote the number of real embeddings respectively pairs of conjugate complex
embeddings of E. We say that E is 2-regular if any of the following equivalent
conditions is satisfied:
1) The ‘modified tame kernel’ of E vanishes. This latter can be identified with the
kernel of the natural surjection:

α2 : H2(RE ; Z2(2)) →
r1

⊕

H2(R; Z2(2)) ∼= r1.Z/2

summed over the real embeddings of E.
2) The ideal (2) does not split in E and the narrow Picard group Pic +(RE) of RE
has odd order.
3)

H2(RE; Z2(i)) =

{

r1.Z/2 (i 6= 0 even)

0 (i 6= 1 odd)

For a discussion, and further criteria, see proposition 2.2 of [R-Ø].

Next, let ζm denote an mth root of unity and ζm its conjugate. For each r, we
have the cyclotomic extension E(ζ2r). E is said to be exceptional if Gal (E(ζ2r)/E)
is not cyclic for some r; otherwise it is non-exceptional. It is easy to check that
E is non-exceptional if and only if ζ4 ∈ E or ζ2k + ζ2k ∈ E for some k ≥ 3. Any
real number field is exceptional, while any 2-cyclotomic field Q(ζ2r ), r ≥ 2, is non-
exceptional. In our case (exceptional), the description of K(OE)2̂ is complicated
by the above-mentioned twisting, and we require some names for the spaces which
will be our building blocks.
We consider all spaces completed at the prime 2, where not explicitly stated; we
hope that the reader will accept statements such as ‘π1(S

1) = Z2̂ ’ which result
from this. We also abusively write SpecR for what is properly the étale homotopy
type (SpecR)ét. As usual U,O are the stable unitary and orthogonal groups, and
BU,BO their classifying spaces. The complexification c maps O into U as a sub-
group, with quotient U/O. For q odd, let ψq be the Adams operation on BU . Note
in particular that ψ−1 is the conjugation map. By Quillen’s fundamental result
[Q2], when q is an odd prime-power the K-theory space of the finite field Fq is the
fibre of ψq − 1 : BU → BU ; we shall denote this space by Fψq. Similarly, we write
Fψ−1 for the fibre of ψ−1 − 1. We require two variants of Fψq:
1) In analogy with a construction of Bökstedt, define JK(q) to be the fibre of the
composite:

BO
c→BU

ψq
−1−→ BU

(This is K(Z) if q ≡ ±3 mod 8.)
2) Let j : Fψ−1 → BU be the inclusion of the fibre, and define Jc(q) to be the
fibre of the composite (ψq − 1) ◦ j : Fψ−1 → BU . (Note the analogy between this
construction and the previous one.)
Our next points concern Galois groups. Let µ∞(E) respectively µ∞ be the group
of 2-primary roots of unity in E respectively C, and let Γ′

E = Gal(E(µ∞)/E). The
natural action of Γ′

E on µ∞ gives a monomorphism

(1) φ : Γ′

E → Aut(µ∞) ∼= Z2̂ ⊕ Z/2
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— compare §1 of [Mi2]. By considering π1(SpecRE) as the Galois group of the
maximal unramified extension of RE , we see that the action of π1(SpecRE) on µ∞

factors through Γ′

E to give a composite:

(2) π1(SpecRE) → Γ′

E

φ→Aut(µ∞)

which we shall call φ̂. Clearly the images of φ and φ̂ in Aut(µ∞) are the same
subgroup, say Λ. If E0 = E(

√
−1), it is a consequence of the ‘exceptional’ condition

on E that Γ′

E = ΓE × Z/2, where ΓE = Gal (E(µ∞)/E0). Still following [Mi2], set
aE = ν2(|µ∞(E0)|) (the 2-adic valuation). Then Λ is (topologically) generated by
elements q, σ where σ (order 2) is conjugation and q ∈ Z2̂ is represented by any
integer such that q is ≡ ±1 mod 2aE but not mod2aE+1. By Čebotarev’s theorem
we can always choose a prime P in RE such that the order q of the finite field
RE/(P) is an integer with these properties.
For future reference, we define numbers wm = wm(E) by: wm = 2 (m odd),
wm = 2aE+ν2(m) (m even). (Compare e.g. the definition in [R-W1], which is
equivalent in the exceptional case. Mitchell [Mi2] writes wi for the exponents,
rather than the powers of 2.)
Our main result is as follows:

Theorem 1.1. With the preceding notation, let E be 2-regular and exceptional.
Then at the prime 2:
(i) If E is totally imaginary (r1 = 0), K(RE) is homotopy equivalent to the product

Jc(q) ×
r2−1
∏

U

(r2 − 1 factors in the product)
(ii) If r1 > 0, K(RE) is homotopy equivalent to the product

JK(q) ×
r2
∏

U ×
r1−1
∏

(U/O)

Our strategy in proving this result is based on ideas present in [D-F1], and is
as follows. We find a space X, and map f : X → SpecRE which induces an
isomorphism on mod 2 homology. The space X is a wedge of r2 + 1 circles and
r1 copies of the infinite projective space RP∞. The key question is then how the
wedge components of X map via the composite:

(3) π1(X)
f∗→π1(SpecRE)

φ̂→Aut(µ∞)

Specifically, the condition required is that Im(φ̂ ◦ f∗) = Im(φ̂) = Λ. According to
[D-F1], in the given circumstances, K(RE) is homotopy equivalent to a space called
K(X); and to find K(X) we need to know the wedge components, and the way that
their fundamental groups map into Aut(µ∞). We therefore find these, simplify as
much as possible, and our theorem will follow from Dwyer and Friedlander’s result.
As can be seen from the statement of the theorem, cases (i) and (ii) need separate
treatment; they are dealt with in sections 2, 3 respectively.
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It should be noted that all of these computations could have been done at the time
of the original paper [D-F1], modulo replacing the K-theory spaces by their étale
topological versions; indeed, our reliance on the methods of Dwyer and Friedlander
is substantial. However, the étale descent results we mentioned in the beginning
make it possible to state the results for the K-theory spaces themselves.

A general solution to the problem of finding K-theory spectra of number rings at
the prime 2 has been undertaken by Mitchell [Mi1, Mi2]. The results are fuller,
and give in fact the 2-adic homotopy type when combined with [R-W2] and [Ø1].
But their interpretation requires knowledge of the ’Iwasawa module’, which appears
difficult in general.

2. The totally imaginary case.

In this section, E will denote a number field which is 2-regular, exceptional, and
totally imaginary. We can deduce immediately (cf. [R-Ø]):

Lemma 2.1. The mod 2 homology of RE is given by:

H1(RE ; Z/2) = (r2 + 1).Z/2

Hi(RE ; Z/2) = 0 (i > 1).

However, in this case we can do better, since the 2-completed homology is also
simple; for this we write Hi( ), omitting the coefficients.

Lemma 2.2. The 2-completed homology of RE is given by:

H1(RE) = (r2 + 1).Z2̂

Hi(RE) = 0 (i > 1).

Proof. Let α be the unique prime above 2 in OE . Then by theorem 2.2 of [D-F1],
H1(RE) is a quotient of (OE)∗αˆ (since the narrow Picard group vanishes); that is,
of a direct sum of copies of Z2̂ and 2-torsion groups. From the description of the
mod 2 homology in lemma 2.1, there is no 2-torsion, so H1 is a sum of copies of
Z2̂ , and the rank, again from lemma 2.1, is r2 + 1. �

Next, recall from §1 the homomorphism φ̂ : π1(SpecRE) → Aut(µ∞). In [Ø2]
(following a model from [D-F1]) it was shown that in the non-exceptional case
there is a map, f : X → SpecRE, inducing an isomorphism on mod 2 homology,
where:
(i) X is a wedge of r2 + 1 circles;

(ii) The circles can be chosen in such a way that the first one maps to a topological
generator of Z2̂ , and the rest map trivially.

Our first result in this section is parallel to this, if slightly more complicated. It
states:

Proposition 2.1. In the exceptional totally imaginary case, there is a map f :
X → SpecRE such that:

(i) X is a wedge of r2 + 1 circles;

(ii) The first circle, considered as an element of π1(X), maps under φ̂◦f∗ to q ∈ Λ;
the second to the non-trivial element σ of order 2 in Λ; and the rest (if any) map
trivially;
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(iii) f induces an isomorphism on mod 2 homology.

Proof. This is essentially elementary topology, using what we know of the homol-
ogy of SpecRE . In fact, we can clearly choose r2 + 1 maps from S1 to SpecRE
whose images under the Hurewicz map generate H1(RE) (Z2̂ or Z/2 coefficients).
The key adjustments to be made concern their images under φ. We know the

structure of Im(φ̂) = Λ, and since the latter is Abelian, φ̂ factors through H1(RE).
Hence we can find maps f1, f2 : S1 → SpecRE which represent generators of H1,
such that f1 maps under φ to q, and f2 maps to σ.
Now let f3, . . . , fr2+1 : S1 → SpecRE represent the remaining generators of H1.
We can multiply (in π1) by suitable powers of f1, f2 to obtain maps g3, . . . , gr2+1

which still define a basis of H1 together with f1, f2, and map trivially under φ̂. We
can now use f1, f2, g3, . . . , gr2+1 to construct a map f from the wedge X of r2 + 1
circles to SpecRE which has the properties claimed in proposition 2.1. �

Now proposition 3.2 of [D-F1] tells us that f induces a homotopy equivalence from
K(RE) to a space K(X), whose definition strictly depends not on X as space but
on the composite map

X
f→ SpecRE → Spec Z[ 1

2
].

Again using the methods of [D-F1], we write X = V1∨V2∨W , where V1, V2 are the
first two circles and W is the wedge of the remaining ones. There is a fibre square

K(X) //

��

K(V1 ∨ V2)

��

K(W ) // K(∗) = BU

and K(W ), by the arguments of [D-F1] proposition 4.5, is the unpointed function

space BUW = BU ×
∏r2−1

U . It follows easily that:

Proposition 2.2. The space K(X) is homotopy equivalent to the product:

K(V1 ∨ V2) ×
r2−1
∏

U

And our main challenge is to identify the space K(V1 ∨ V2). For this we have a
second fibre square:

K(V1 ∨ V2) //

��

K(V1)

��

K(V2) // BU

The space K(V1) is essentially well-known, and often used, being the ‘finite fields’
K-theory space Fψq of Quillen [Q2]. It follows from the choice of the prime P and
the integer q in §1 that the composite

S1 → SpecRE/(P) → SpecRE
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where the generator of π1(S
1) is mapped into the Frobenius of the finite field, can

be taken for the inclusion of V1 — its image under φ̂ is precisely q. We can therefore
identify K(V1) with the 2-adic K-theory space of the finite field; and this is Fψq,
the fibre of ψq − 1 : BU → BU .
The following result is now not surprising, given its similarity to the foregoing:

Lemma 2.3. The spaceK(V2) is homotopy equivalent to the fibre Fψ−1 of ψ−1−1 :
BU → BU .

Proof. We give a rather ad hoc proof of what is probably a special case of a larger
result. Let R denote the ‘ground ring’ Z[ 12 ]. The map f2 : V2 → SpecR, which

defines K(V2) (see above), has an obvious double cover f̃2 : Ṽ2 → SpecR. However,

f̃2 is trivial on π1, so that the corresponding space K(Ṽ2) is homotopy equivalent

to BU Ṽ2 as before. (Ṽ2 is still a circle, of course.) Now the theory of [D-F2] tells us

that K(V2) can be identified with the ‘homotopy fixed points’ HomΣ(EΣ, K(Ṽ2)),
where Σ is the covering group (=Z/2). In our case these are equivalent to the

fixed points, i.e. to the equivariant maps λ : Ṽ2 → BU ; where Σ acts on Ṽ2 by the
antipodal map, and on BU by complex conjugation ψ−1.
Clearly such a map λ is determined by its values on the upper half-circle, and a
standard argument shows that we can identify the space of such maps with the
space of maps λ′ : [0, 1] → BU satisfying λ′(1) = ψ−1(λ′(0)). But this is (one
definition of) the homotopy fibre Fψ−1. �

Now we can compute K(V1∨V2). In fact, again following [D-F1], the wedge product
gives rise to a fibre square, which we extend to the right:

K(V1 ∨ V2) //

��

K(V2) //

j

��

BU

K(V1) // BU
ψq

−1
// BU

¿From this it is clear that K(V1 ∨ V2) is the fibre of the composite (ψq − 1) ◦ j :
Fψ−1 → BU , which is the space denoted Jc(q) in §1. This identification, together
with proposition 2.2, give us case (i) of theorem 1.1.

3. The case where r1 > 0.
The case where E admits real embeddings is (contrary to what one might expect)
simplified by the fact that the ‘Z/2 part’ of the model space X can be absorbed into
the real embeddings and dealt with there. In this section we suppose E 2-regular,
with r1 > 0; again we begin by producing a space X which will serve as a model for
the homology of SpecRE . The homology (again adapted from [R-Ø]) is described
by:

Lemma 3.1. The mod 2 homology of RE is as follows:

H1(RE ; Z/2) = (r1 + r2 + 1).Z/2

Hj(RE ; Z/2) = r1.Z/2 (j > 1)

The r1 real embeddings RE
fi→R (i = 1, . . . , r1) induce isomorphisms from the group

Hj(RE; Z/2) to ⊕r1Hj(R; Z/2) in dimensions j > 1.
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The last sentence in the above statement is Tate’s theorem: the higher homology
of RE comes solely from the real embeddings. The fact that E is 2-regular makes it
possible to extend the statement (true in general only for j > 2) to the case j = 2.
As is the previous section, we can extend the statement to the Z2̂ homology:

Lemma 3.2. (i) The 2-completed homology of RE is as follows:

H1(RE) = (r2 + 1).Z2̂ ⊕ r1.Z/2

H2j(RE) = 0 (j > 0)

H2j+1(RE) = r1.Z/2 (j > 0)

(ii) The r1 real embeddings RE
fi→R (i = 1, . . . , r1) induce isomorphisms from the

group ⊕r1Hj(R) to Hj(RE) in dimensions j > 1.
(iii) For i = 1, . . . r1, the image of the non-trivial element of H1(R) under (fi)∗
maps to σ under φ̂.

Proof. Parts (i), (ii) require essentially the same as the proof of lemma 2.2. Part
(iii) is a consequence of the statement that π1(Spec R) = Z/2 is generated by
complex conjugation, which corresponds to σ. �

Parallel to proposition 2.1 we have the following result setting up a space X for
this case.

Proposition 3.1. There is a map f : X → SpecRE such that:
(i) X is a wedge of r2 + 1 circles and r1 copies of Spec R;
(ii) The first circle, considered as an element of π1(X), maps to q under the com-

posite φ̂ ◦ f∗, and the rest (if any) map trivially;
(iii) For each copy of Spec R, the non-trivial element of π1(Spec R) maps to σ ∈
(Z2̂ )∗;
(iv) f induces an isomorphism on mod 2 homology.

Note. The copies of Spec R can be replaced by the infinite projective space RP∞ ∼
BZ/2 (cf. [D-F1]), but this is not particularly useful for our purposes.
Proof. First note that the copies of Spec R are already taken care of by lemma
3.2. Now as before consider the homomorphism from H1(RE) onto Λ ⊂ Aut(µ∞).
Since the 2-torsion subgroup maps onto the subgroup generated by σ ∈ Aut(µ∞),
we can, by subtracting 2-torsion elements if necessary, choose a free direct summand
(r2 +1).Z2̂ which maps entirely into the Z2̂ part of Λ. By choosing generators for
this summand as in the proof of proposition 2.1, we can ensure that the first maps
to q and the others to zero.
Now represent these (r2 + 1) generators by maps S1 → SpecRE . The wedge of
these, and of our r1 copies of Spec R, with the given mappings into SpecRE , is the
required space X. �

We now have once again to find the space K(X), representing wedges by fibred
products over BU . However, we can speed up this process by dealing with all the
copies of Spec R at once.

Proposition 3.2. Let X1, . . . , Xk be copies of Spec R mapping into SpecRE by
maps f1, . . . , fk which arise from real embeddings. Then K(X1 ∨ X2 · · · ∨ Xk) is

homotopy equivalent to the product BO × ∏k−1
(U/O); where the structure map
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from K(X1 ∨ X2 · · · ∨ Xk) to BU is the complexification on BO, and the trivial
map on each factor U/O.

Proof. First, by proposition 4.1 of [D-F1], we can identify K(R) with BO, mapped
into BU in the usual way. We therefore need to find the fibred product of k such
copies of BO. To do this, replace the maps BO → BU by principal fibrations
p1, . . . , pk, with fibre U/O. A point of the fibred product is a sequence (x1, . . . xk)
with p1(x1) = · · · = pk(xk). It follows that there are unique elements g2, . . . gk
of U/O such that xi = x1.gi (i = 2, . . . , k); and that the map (x1, . . . , xk) 7→
(x1, g2, . . . , gk) is a homeomorphism from the fibred product to BO×∏k−1

(U/O).
The statement about the structure map is now obvious. �

It is now relatively easy to complete the proof of theorem 1.1. Let us write V for
the wedge of the circles in the space X, and W for the wedge of the Spec R’s. We
know that the circles, as in the previous section (but here simplified by the absence
of a Z/2-component) combine to give a space K(V ) = Fψq × ∏r2 U ; while K(W )
is given by the preceding result. To find the fibred product of K(V ) and K(W )
we need only look at those parts which are non-trivial over BU , i.e. at the Fψq in
K(V ) and the BO in K(W ). Now the fibred product of these is again well-known,
going back to Bökstedt and Dwyer-Friedlander; from the diagram

K(Spec Fq ∨ Spec R) //

��

K(R) = BO //

c

��

BU

K(Fq) = Fψq // BU
ψq

−1
// BU

we see that it is precisely the fibre of the composite

BO
c→BU

ψq
−1−→ BU

or what we have called JK(q). Theorem 1.1 in the case of real embeddings follows
immediately. �

4. The homotopy groups.

As a check on the correctness of the preceding results, it makes sense to show that
they imply the results on Ki(RE) = πi(K(RE)) proved in [R-Ø]. Some attention
to details is needed since the homotopy groups of a fibre may not be uniquely
determined by the exact sequence of the fibration (there may be extensions).

Again, we have to separate the two cases. In the totally imaginary case, since
πi(

∏r2−1
U) is well-known to be (r2−1).Z2̂ for i odd and 0 for i even, the question

reduces to finding the homotopy groups of the factor we have called Jc(q), the
homotopy fibre of the composite

Fψ−1 j→BU
ψq

−1−→ BU

where j is the fibre inclusion. The homotopy groups of Fψ−1 (the classifying space
of self-conjugate K-theory) were computed by D. Anderson in his thesis from 1963,
but see also Atiyah’s paper ‘K-theory and Reality’ [At].
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Lemma 4.1. The homotopy groups of Fψ−1 are:

π4k+1 = Z/2

π4k+2 = 0

π4k+3 = Z2̂

π4k = Z2̂

and the fibre inclusion from Fψ−1 to BU induces an isomorphism on π4k, and zero
in all other cases.

Clearly we can deduce that ((ψq − 1) ◦ j)∗ is zero from πi(Fψ
q) to πi(BU) unless

i = 4k, in which case it is multiplication by q2k − 1 — this from the known action
of the ψ’s on the homotopy groups of BU .
It should be noted that Fψ−1, or ‘KSC’ as it is traditionally called, is one of a
family of K-spaces, and admits Adams operations ψq for q > 1 and odd, say. The
fibre of ψq − 1 : Fψ−1 → Fψ−1 will be called JSC(q), by an obvious analogy.
Similarly, we use JO(q) to denote the fibre of ψq − 1 : BO → BO.
From the above, we can deduce:

Proposition 4.1. The homotopy groups of Jc(q) are zero in even dimensions; for
the odd ones we have:

π4k−1(Jc(q)) = Z2̂ ⊕ (Z/(q2k − 1))2

and there is a split exact sequence

0 → Z2̂ → π4k+1(Jc(q)) → Z/2 → 0

Proof. The kernel of ((ψq − 1) ◦ j)∗ is Z/2 for π4k+1, Z2̂ for π4k−1, and zero
otherwise, from the lemma; the cokernel is Z2̂ for π4k+2, (Z/(q2k − 1))2 for π4k,
and zero otherwise. Hence it remains to prove that the exact sequence is split.
Consider the digram of fibre sequences:

JSC(q) //

��

Fψ−1
ψq

−1
// Fψ−1

��

Jc(q) // Fψ−1 // BU

The map π4k+1(JSC(q)) → π4k+1(Fψ
−1) is an isomorphism by the choice of q, so

we get the claimed splitting. �

How does this fit with the results of [R-Ø]? Once we have added (r2 − 1) copies of
πi(U) as required, we have obvious agreement in the even dimensions. In dimension
4k + 1, [R-Ø] give:

π4k+1(K(RE)) = r2.Z2̂ ⊕ Z/w2k+1

where w2k+1 = 2 is as defined in §1; hence our result agrees. In dimension 4k + 3,
their result is

π4k−1(K(RE)) = r2.Z2̂ ⊕ Z/w2k
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This agrees with our result provided we can identify w2k with the 2-part of q2k− 1.
However, from the requirements on q and on wi in §1, this is immediately evident.

We now consider the case where r1 > 0. Here we need the homotopy groups of
U/O; these are periodic of period 8, as follows:

π8k(U/O) = 0

π8k+1(U/O) = Z2̂

π8k+2(U/O) = Z/2

π8k+3(U/O) = Z/2

π8k+4(U/O) = 0

π8k+5(U/O) = Z2̂

π8k+6(U/O) = 0

π8k+7(U/O) = 0

(These groups are well-known in the study of Bott periodicity; they also follow from
identifying U/O with B(Z2̂ ×BO).)
The homotopy groups πi(K(RE)) = Ki(RE) are the sum of (r1 − 1) copies of
these, r2 copies of πi(U), and πi(JK(q)), which we must now determine. From the
fibration

JK(q) → BO
(ψq

−1)◦c−→ BU

we derive an exact homotopy sequence. All homomorphisms from πi(BO) to
πi(BU) are necessarily zero (torsion to zero or free) except when i = 4k. It is
known that c∗ is an isomorphism for i = 8k and multiplication by 2 for i = 8k+ 4,
and hence ((ψq− 1) ◦ c)∗ is multiplication by q4k− 1 for i = 8k and by 2(q4k+2 − 1)
for i = 8k + 4. From this (using the relation between q and the wi’s as before) we
deduce the following.

Proposition 4.2. The homotopy groups of JK(q) are as follows:

π8k = 0

π8k+2 = Z/2

π8k+3 = Z/2w4k+2

π8k+4 = 0

π8k+5 = Z2̂

π8k+6 = 0

π8k+7 = Z/w4k+4

and there is a split short exact sequence

0 → Z2̂ → π8k+1 → Z/2 → 0

Once again, these give exactly the results computed in [R-Ø].
Proof. Using the above remarks, we see:
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(a) that the cokernel of ((ψq − 1) ◦ c)∗ is zero on odd dimensions, Z2̂ in dimension
4k + 2, Z/2w4k+2 in dimension 8k + 4, and Z/w4k+4 in dimension 8k + 8;
(b) that the kernel is Z/2 in dimensions 8k + 1, 8k + 2, and zero otherwise.
Hence in the short exact sequence

0 → Coker((ψq − 1) ◦ c)∗(i+ 1) → πi(JK(q)) → Ker((ψq − 1) ◦ c)∗(i) → 0

either the kernel or cokernel vanishes except for i = 8k + 1. This therefore gives
the only extension problem, and the other calculations are immediate. To solve the
extension question we may look at the diagram of fibre sequences:

JO(q) //

��

BO
ψq

−1
// BO

c

��

JK(q) // BO // BU

The map π8k+1(JO(q)) → π8k+1(BO) is a split surjection from Z/2 ⊕ Z/2 to Z/2,
and we are done. �
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