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Abstract

In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the
same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To
determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study
to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using
shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of
selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in
the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show
significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns.
The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to
drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between
methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate
our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially
methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes
belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA
methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity
previously unknown in honey bees that might be important for generating phenotypic flexibility not only during
development but also in the adult post-mitotic brain.
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Introduction

Many animal species have evolved the capacity to generate

organisms with contrasting morphological, reproductive, and

behavioral phenotypes from the same genome. However, the

question of how such strikingly different organismal outputs occur

with no standard genetic changes remains one of the key

unresolved issues in biology.

The nutritionally controlled queen/worker developmental

divide in the social honey bee Apis mellifera is one of the best

known examples of developmental flexibility in any phylum.

Despite their identical nature at the DNA level, the queen bee and

her workers are strongly differentiated by their anatomical and

physiological characteristics and the longevity of the queen [1].

Furthermore, the behaviors of queens and workers are remarkably

divergent, varying from the navigational proficiency of foragers to

the colony-bound omnipresent chemical influences of the queen

which control many aspects of the colony’s existence. A diet of

royal jelly during larval development clearly influences the

epigenetic status of the queen’s cells without altering any of the

hardwired characteristics of her genome. As a result, two

contrasting organismal outputs, fertile queens and non-reproduc-

tive workers, are generated from the same genome.

Recently, we have shown that diet is not the only modulator of

developmental trajectories in honey bees. By silencing the activity

of DNA methyltransferase 3 (DNMT3), a key component of

epigenetic machinery controlling global gene reprogramming, we

were able to generate adult bees with queen characteristics [2].

This relatively simple perturbation of the DNA methylation system

not only mimicked the dietary effect of royal jelly on phenotype

but also changed the cytosine methylation pattern of an illustrator

gene. Furthermore, analysis of gene expression in both queens and

workers suggested that their alternative developmental pathways

are associated with subtle transcriptional changes in a particular
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group of genes encoding conserved physio-metabolic proteins

[2,3]. These findings prompted us to examine the hypothesis that

significant behavioral differences between queens and workers are

partly underpinned by differences between their brain epigenomes

that have arisen from basically identical genomes during

development. The choice of brain tissue is critical because it is a

non-dividing, largely diploid tissue and is thus free of any

complications that arise from differential genomic replication that

may characterize polytene and endopolyploid tissues (nearly all

adult tissues of insects are non-diploid). In the context of

methylomes, the use of whole bodies, or abdomens, creates an

unacceptable mixture of methylomic signatures that simply cannot

be deconvoluted in regards to function in any biologically

meaningful manner.

We used bisulfite converted brain DNA of both castes together

with Solexa (Illumina GA) sequencing technology [4] to generate a

DNA methylation map at single-nucleotide resolution across the

Apis genome. This powerful approach has recently been used to

compare DNA methylation profiles across a group of selected

species, including DNA from a worker honey bee whole body [5].

The results confirm the antiquity of DNA methylation in

eukaryotes [6,7] and provide more experimental evidence that

this epigenomic modification is utilized in a lineage-specific

manner [8–10].

Here we confirm that in contrast to heavily methylated

mammalian genomes [11], only a small and specific fraction of

the honey bee genome is methylated [5,10,12,13]. Furthermore,

the methylated cytosines occur in a group of genes showing a

higher level of conservation than non-methylated genes. Nearly

600 of those genes show significant methylation differences in the

brains of queens and workers, suggesting that their transcription

might be epigenetically modulated in a context-dependent

manner. Additional deep sequencing of selected genes in all three

castes—queens, workers, and drones (haploid males)—suggests

that brain methylation patterns are unique to each behavioral

system. We discuss our findings in the context of epigenetic

influences on global regulatory networks and their ability to

generate contrasting phenotypic and behavioral outcomes from

the same genome.

Results

Characterization of Brain Methylomes in Queens and
Workers
The sequencing of bisulfite converted Apis DNA yielded a

dataset of 131 million reads after filtration and quality checks,

68.5% of which were mapped to unique genomic regions. The

total sequence output was 18.8 giga bases (10.2 Gb for the queen

and 8.6 Gb for the worker) yielding a combined 206 coverage of

the 260 Mb genome. Our reads also contained multiple coverage

of thousands of unmethylated repeated elements (ALUs and

mariners) giving false-positive rates of only 0.1% for the queen

DNA and 0.2% for the worker DNA. Figure S1A shows the

distribution of the coverage depth for all cytosines on both strands,

whereas distribution of the CpG nucleotides is shown in Figure

S1B. More than 90% of the 10,030,209 CpGs in the Apis genome

were covered by at least two sequencing reads, allowing for the

methylation status of individual sites to be determined with

confidence.

The characteristics of the brain methylomes of queens and

workers are shown in Tables 1 and 2. Three firm conclusions can

be drawn. First, of the over 60 million cytosines that exist in the

Apis genome, only approximately 70,000 are methylated. Second,

nearly all the methylated cytosines occur in CpG dinucleotides.

Third, the overriding majority of these methylated sites are in

exons. Finally, the number of methylated cytosines in Apis is nearly

three orders of magnitude lower than in the human genome [11].

This relatively small number of mCs overcomes the large technical

hurdles that exist in both mammalian and plant genomes where

the number of methylated sites that need to be examined in terms

of their importance to biological phenomena is in the hundreds of

millions.

As shown in Table 1 the quantities of methylated CpGs

(mCpGs) in queen and worker brain DNA are very similar, 69,064

and 68,222, respectively, with 54,312 mCpGs in common.

Similarly, the methylation levels of mCpG are almost identical

in both castes (Figure S2). Methylation in honey bees appears to be

restricted to cytosines associated with CpG dinucleotides, with no

significant non-CpG or asymmetric methylation detected in either

genomic or mitochondrial DNA (Table 1). Therefore, we conclude

that methylation at non-CpG sites is either extremely rare or non-

existent in the honey bee genome. In accord with previous

analyses [2,5,12,13], methylated sites in Apis appear to be

exclusively located in exons with only infrequent mCpGs detected

in intronic regions (Table 2). Most importantly, the methylated

exons reside in genomic regions with low CpG observed/expected

(o/e) ratios (Figure 1), whereas non-methylated exons fall into the

category with high CpG o/e ratios. This bimodal profile is

consistent with previous predictions based on bioinformatics

analyses [10,12,13] and reflects the propensity of methylated Cs

to be converted over time to thymines, resulting in a lower than

expected density of the CpGs in methylated genes. However, the

Author Summary

The queen honey bee and her worker sisters do not seem
to have much in common. Workers are active and
intelligent, skillfully navigating the outside world in search
of food for the colony. They never reproduce; that task is
left entirely to the much larger and longer-lived queen,
who is permanently ensconced within the colony and uses
a powerful chemical influence to exert control. Remark-
ably, these two female castes are generated from identical
genomes. The key to each female’s developmental destiny
is her diet as a larva: future queens are raised on royal jelly.
This specialized diet is thought to affect a particular
chemical modification, methylation, of the bee’s DNA,
causing the same genome to be deployed differently. To
document differences in this epigenomic setting and
hypothesize about its effects on behavior, we performed
high-resolution bisulphite sequencing of whole genomes
from the brains of queen and worker honey bees. In
contrast to the heavily methylated human genome, we
found that only a small and specific fraction of the honey
bee genome is methylated. Most methylation occurred
within conserved genes that provide critical cellular
functions. Over 550 genes showed significant methylation
differences between the queen and the worker, which may
contribute to the profound divergence in behavior. How
DNA methylation works on these genes remains unclear,
but it may change their accessibility to the cellular
machinery that controls their expression. We found a
tantalizing clue to a mechanism in the clustering of
methylation within parts of genes where splicing occurs,
suggesting that methylation could control which of several
versions of a gene is expressed. Our study provides the
first documentation of extensive molecular differences
that may allow honey bees to generate different
phenotypes from the same genome.

Brain Methylomes in Honey Bees
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total number of methylated genes in Apis revealed by genome-wide

bisulfite sequencing is 5,854 instead of the 4,000 predicted to be

methylated on the basis of local CpG bias. One reason for this

difference might be that some genes do not display significant CpG

depletion as a result of evolutionary pressure to maintain a

particular protein coding sequence.

The genome-wide profiling of mCpGs confirms that methylated

genes in Apis encode proteins showing a higher degree of

conservation than proteins encoded by non-methylated genes

[10]. Figures S3, S4, S5 and Table S1 show the results of our

cross-species comparisons for methylated and non-methylated

genes (Figure S3), for high-CpG and low-CpG genes (Figure S4),

and high-CpG methylated and non-methylated genes (Figure S5).

Most of the highly conserved genes are expected to be utilized by

most tissues. In contrast, less conserved genes expressed in

specialized tissues, such as those encoding odorant-binding

proteins or odorant receptors, are not methylated (not shown).

The repeated elements, ALUs, and mariners that harbor most of

the DNA methylation content in humans and plants are not

methylated in the bee genome, certainly not in the brain (Figures

S6). Similarly, the multi-gene families encoding rRNAs and

tRNAs, mitochondrial DNA, and CpG islands show no evidence

of methylation in the brain (Figure S6). Lastly, while methylation

of sub-telomeric regions has been shown to be important for the

control of telomere length and recombination [14], the honey bee

telomeres are also not methylated (not shown). The lack of

methylation in ALUs and transposons has also been reported in a

recent study performed on DNA extracted from a worker’s whole

body [5]. Given the proposed role of cytosine methylation in

defense against genomic parasites in plants and vertebrates [7], the

lack of methylation in ALU repeats and mariner transposons

suggests that these mobile elements do not significantly impact on

genome stability in honey bees. Indeed the bee genome contains

an unusually small percentage of common types of transposons

and retrotransposons found in other insects, possibly as a result of

a strong selective pressure against mobile elements in male bees

(drones) that develop from unfertilized eggs and carry a haploid set

of chromosomes [15].

As in the human and Arabidopsis genomes [4,11], methylation in

Apis shows evidence of periodicity, although due to a much lower

density of modified CpGs in this species the periodicity of 10

nucleotides (one helical DNA turn) is not obvious. However, a 3-

base periodic pattern is clearly detectable, reflecting a preferential

methylation of CpGs occupying the first and second position of the

arginine codons (autocorrelation data in Figure S7).

Detailed Analysis of Methylation Patterns in Selected
Amplicons by Deep Bisulfite Sequencing
To validate our Solexa-based methylation results, we designed

primers for selected regions of eight nuclear and four mitochon-

drial genes and re-sequenced the PCR-generated amplicons using

454 technology. As illustrated in Figure 2, the 454 sequencing

profiles are essentially identical with the Solexa-based results. All

nuclear genes show differential methylation in the brains of queens

and workers, including those cases where the methylation is almost

absent, such as GB18602 in queen brains (Figure 2). No

methylation was detected by this approach in the four selected

mitochondrial amplicons (not shown).

To further expand our analysis, we increased the 454 bisulfite

sequencing coverage of the eight nuclear genes selected for

validation and also included DNA from drone brains. We

obtained several thousand high-quality reads for 24 amplicons

(eight genes in three castes), with the total coverage ranging from

48 to 2,4276. The results shown in Figure 3 reveal both the

dynamics and uniqueness of the methylation patterns in each cast.

Out of the eight genes with differential worker/queen methylation,

three show similar methylation patterns in workers and drones, but

a distinct methylation pattern in queens (Figure 3A). Three

additional genes show similar methylation patterns in queens and

drones, but a distinct pattern in workers (Figure 3B). Two out of

eight analyzed genes (GB11061 - seryl-tRNA synthetase and

GB15356 - syd, chromosome segregation; Figure 3C) show distinct

Table 1. Cytosine DNA methylation in queens and workers in CG, CHG, and CHH genomic contexts (H =A, T, or C).

Total Methylated in Queens Methylated in Workers Methylated in Both Castes

CG 10,030,209 69,064 68,222 54,312

CHG 8,673,113 14 130 0

CHH 45,072,611 561 3,019a 0

The thresholds used for methylation calls are detailed in the Methylation Assessment section.
aNearly all of the 3,019 CHH that were inferred to be methylated in worker brains on the basis of Solexa reads were found to be not methylated by an additional
sequencing of selected amplicons using the 454 technology.
doi:10.1371/journal.pbio.1000506.t001

Table 2. Cytosine DNA methylation in CG dinucleotides (mCG) in the exonic, intronic, and ‘‘intergenic’’ regions of queens and
workers.

Genomic Location Queens % mCGs % of All mCGs Workers % mCGs % of all mCGs

Exons 54,378 8.6 78.74 51,658 8.16 75.72

Introns 5,992 0.2 8.68 6,720 0.22 9.85

Introns + exons 60,370 1.64 87.41 58,378 1.57 85.57

Intergenic regionsa 8,694 0.16 12.59 9,844 0.17 14.43

aThe annotation of the Apis transcriptome is largely limited to the coding regions, and it is likely that some of the intergenic regions may correspond to untranslated
segments of mRNAs.
doi:10.1371/journal.pbio.1000506.t002

Brain Methylomes in Honey Bees
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Figure 1. CpG (o/e) bias of protein-coding regions in the honey bee genome. Since the profiles for both queens and workers are virtually
identical, only the queen profile is shown.
doi:10.1371/journal.pbio.1000506.g001

Figure 2. Comparison of CpG methylation profiles in differentially methylated genes generated by two technologies, Solexa
genome-wide shotgun sequencing and 454 sequencing of PCR produced amplicons. The ‘‘heat maps’’ represent the 454 sequencing of
PCR amplified segments, whereas the bars illustrate the Solexa reads. The eight nuclear genes for this experiment were chosen from the list of DMGs
shown in Tables 3 and S2, taking into account the availability of convenient CpG-containing regions for primer design. Six genes are shown in this
figure and the others in Figure 3. Gene annotations: GB18602 - membrane protein; GB18207 - cadherin; GB15132 - TAP42 (TOR signaling); GB14848 -
clathrin assembly protein; GB15356 - syd, chromosome segregation; GB11061 - seryl-tRNA synthetase.
doi:10.1371/journal.pbio.1000506.g002

Brain Methylomes in Honey Bees
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methylation patterns in all three castes. The latter finding was also

confirmed by the analysis of full methylation heatmaps of

GB15356 (Figure 3D). GB15356 is strongly methylated in workers,

with many reads showing complete methylation in the 59-half of

the amplicon (Figure 3D). In queens, GB15356 methylation is

strongly reduced and many reads show no methylation at all.

Intriguingly, drones show a bimodal methylation pattern with

approximately half of the reads methylated and the other half

unmethylated (Figure 3D). These results further illustrate caste-

specific differences in methylation patterns and suggest a complex

role of DNA methylation in the regulation of caste-specific

epigenomic differences in the brain.

Identification of Differentially Methylated Genes
To determine if there is a link between DNA methylation

patterns and the striking morphological and behavioral polymor-

phisms of queen bees and workers, we examined the levels of CpG

methylation in all annotated transcription units in both brains

using high stringency criteria (Supporting Information). This

approach generated a list of 561 differentially methylated genes

(DMGs, Tables 3 and S2) showing significant methylation

differences between the two castes. With the exception of highly

expressed genes encoding ribosomal proteins, DMGs in Apis are

expressed at low or moderate levels across all analyzed tissues

(Tables 3 and S2). In several cases their transcriptional activities

Figure 3. Detailed analysis of deep sequencing of selected genes. The bisulfite converted amplicons of selected genes were sequenced
using 454 technology. The selection was based on differential methylation in brains of queens and workers, but DNA from male brains (drones) was
also used in this experiment. The panels illustrate the uniqueness of brain methylation patterns in bees. 3A: Genes showing similar methylation
patterns in workers and drones, but a distinct methylation pattern in queens. 3B: Genes with similar methylation patterns in queens and drones, but a
distinct pattern in workers. 3C: Gene with distinct methylation patterns in all three castes. Panel 3D shows the full methylation heatmaps of GB15356.
This result is discussed in the chapter ‘‘Detailed Analysis of Methylation Patterns in Selected Amplicons by Deep Bisulfite Sequencing.’’ Gene
annotations: GB18798 - ubiquitin conjugation factor; GB13464 - RhoGAP93B. For other genes, see Figure 2.
doi:10.1371/journal.pbio.1000506.g003

Brain Methylomes in Honey Bees

PLoS Biology | www.plosbiology.org 5 November 2010 | Volume 8 | Issue 11 | e1000506



were found to be significantly up-regulated in some tissues relative

to others. For example, the expression of 3-hydroxyl-CoA

dehydrogenase (GB13368) is much higher in the larva than in

the adult brain, and RNA-binding protein (GB12560) is

significantly up-regulated in the ovaries relative to other tissues

(Table 3). Almost all DMGs encode highly conserved, well-

characterized proteins that have been implicated in core processes

such as metabolism, RNA synthesis, nucleic acids binding, and

signal transduction (Table S2). While a number of genes could not

be clearly assigned to functional categories, their high level of

conservation across phyla indicates that they are nevertheless likely

to be involved in essential cellular processes (e.g. GB18943,

GB13480, and GB18037). Several differently methylated genes

encode proteins previously shown to be involved in either brain

development or activity-dependent neural functions in both

vertebrates and invertebrates. These include the Ephrin receptor

GB1258516 [16], a nicotinic acetylcholine receptor GB19703, ‘‘no

extended memory’’ GB16408 that is encoded by cytochrome B561

in Drosophila, two NMDA receptors GB19334 and GB15722, and a

membrane channel GB12287 that mediates cell adhesion. When

defective, GB12287 results in the ‘‘big brain’’ phenotype (Table

S2). We note that Dynactin, used in our previous study [2] to

illustrate the methylation differences between the two castes during

larval growth in both royal jelly-fed and RNAi-treated individuals,

does not show differential methylation in the brain. However, two

genes, GB11197 and GB13866, encoding proteins associated with

the large Dynein complex to which Dynactin also belongs are

differentially methylated in the brain. Thus, the multi-protein

Dynein complex appears to be epigenetically modulated during

larval growth and in adult brains.

CpG Bias and Epigenetic Modulation
Recently, Elango et al. [13] on the basis of bioinformatic

analyses of a dataset of differentially expressed genes in brains of

queens and workers proposed that ‘‘high-CpG genes in A. mellifera

generally are more prone to epigenetic modulation than low-CpG

genes.’’ We have tested this hypothesis using our new caste-specific

brain methylome data. The results summarized in Table S3

suggest that (a) the methylation of a gene is a decreasing function

of its CpG richness (Figure S8), (b) the ‘‘caste-specific genes’’ [13]

that are methylated have a lower CpG content than the non-

methylated genes (Table S3), and (c) DMGs are over-represented

in the low CpG genes (Table S3). Therefore, our results do not

support the hypothesis of Elango et al. [13]. However, it is

noteworthy that although the DMGs are generally CpG-depleted,

they tend to be less CpG-depleted than those genes that are not

differentially methylated (Table S3). This intermediate CpG

density observed in DMGs underscores the uniqueness of this

class of genes and suggests that they might be methylated in a

distinct manner from the rest of methylated genes. This class of

genes showing differential patterns of methylation associated with

phenotypic polymorphism is thus of special importance in the

study of complex context-dependent phenotypes.

Unraveling the Link between CpG Methylation and
Splicing
To explore the relationship between differential methylation

and expression patterns in queens and workers, we examined in

more detail the first gene on the DMG list (GB18602) encoding a

putative transmembrane protein with the YhhN domain con-

served from bacteria to mammals. Figure 4 shows the distribution

Table 3. Differentially methylated genes in brains of queens and workers.

Relative Expressionb

Gene IDa No. of CpGs Antenna Brain HPG Larva Ovary Thorax Gene Annotation

GB18602 30 1 1 1 1 1 1 Transmembrane protein YhhN

GB18303 13 1 1 1 1 1 1 Activator protein of Rab-like
small GTPases

GB13368 9 2 1 2 10 1 3 3-hydroxyacyl-CoA
dehydrogenase, NAD-binding

GB13215 34 1 1 1 1 1 1 Glycine cleavage system P-
protein,

GB15588 9 1 1 1 1 1 1 Low-density lipoprotein receptor
domain class A

GB15132 24 1 1 1 1 1 1 TAP42 (regulates the TOR
signaling pathway)

GB12560 12 1 1 1 1 9 1 RNA-binding protein

GB11648 13 1 1 1 1 2 1 Catalase

GB19645 12 1 1 1 1 1 1 Phosphodiesterase 6

GB12929 39 1 1 1 1 1 1 Paralytic - Na channel

GB11421 31 1 1 1 1 1 1 Tight junction associated protein

GB19503 33 1 1 1 1 1 1 Heat shock protein 8

GB13740 24 1 1 1 1 1 1 Dysfusion, TF with PAS domain

GB10394 8 1 1 1 1 1 1 TNF-receptor-associated factor 1

GB16628 9 10 6 8 10 10 10 Ribosomal protein L6

Only the top 15 genes are shown; see Table S2 for list of 561 genes that fall into this category. Based on microarray data from Foret et al. [10]. The genome assembly
v.02 was used throughout this study.
aGB numbers refer to the proteins at BeeBase: genomes.arc.georgetown.edu/drupal.
bGenes were ranked into 10 bins based on their expression levels from low (1) to high (10).
doi:10.1371/journal.pbio.1000506.t003
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of mCpGs against the GB18602 gene model (Figure 4A and 4B)

and the relative expression of two spliced variants in both castes

(Figure 4C). The L variant (L) encoding a long protein shows

identical expression levels in both queens and workers, whereas

the S variant (S) encoding a short protein is significantly up-

regulated in queen relative to worker brain (Figure 4C). The

majority of the differentially methylated sites in the GB18602 locus

map to the region spanning the additional cassette-exon that

contains a Stop codon for the short protein encoded by the S

transcript, suggesting a correlation between methylation and the

outcome of alternative splicing of this gene in Apis. The increased

level of methylation spanning the conditional splicing event

(insertion or skipping of the cassette-exon) in the worker brain

may impede the inclusion frequency of this exon into the mature

transcript. Since the L variant is expressed at the same levels in

both castes, the increased methylation in workers appears to be

specifically affecting splicing, but not transcription. The observed

differential pattern of expression of both transcripts in the brains of

queens and workers (Figure 4C) supports this idea. Although the

function of this gene is not known, the expression profiles of the

Figure 4. Expression profile of an alternatively spliced and differentially methylated gene GB18602 in queen and worker brains. (A)
The CpG methylation pattern indicating the level of methylation for individual CpGs (blue squares, workers; red squares, queens). (B) Gene model of
GB18602 showing the two spliced variants S (short protein) and L (long protein) and the positions of PCR primers used for variant-specific
amplifications. The green and orange arrows indicate the positions of two alternative Stop codons. (C) Relative expression of the two spliced variants
in brains of queens and workers examined by real-time PCR. The level of transcript S (green) encoding the truncated protein is significantly up-
regulated in the queen brain, whereas the L variant (orange) is expressed at the same level in both castes. The queen expression represents a
combined set of data from three independent queen samples: 4 mo old (1 brain), 12 mo old (2 brains), and swarm queens of unknown age (2 brains).
Workers were 8 d old (6 brains in 3 replicates). The reference gene was calmodulin [2]. Whisker-box plot of expression ratio values: dotted line,
median value; box, inter-quartile range of values; whiskers, outer 50% of observations. For more details, see Table S4.
doi:10.1371/journal.pbio.1000506.g004

Brain Methylomes in Honey Bees
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Drosophila melanogaster ortholog CG7582 suggest that it encodes a

protein involved in fat and sugar metabolism [17]. In the fly,

which has no CpG methylation, this gene is not alternatively

spliced and shows the highest levels of expression in the nervous

system (FlyAtlas.org). In contrast, the human ortholog of

GB18602, designated TMEM86A, produces alternatively spliced

variants, including one encoding a truncated protein similar to the

honey bee variant S. In addition to GB18602 we found numerous

other examples of methylated genes in Apis in which most or even

all clusters of mCpGs show a non-random, highly significant

tendency to be near differentially spliced exons (Figure S9).

Another salient finding relevant to methylation of intron-

containing genes is the differential methylation of the multi-gene

histone family in Apis. As illustrated in Table 4 and Figure S10, all

intron-containing histone genes are methylated, whereas intronless

histone genes show no evidence of methylation. It is noteworthy

that the methylated histone genes in Apis belong to a distinct class

of histone variants. Unlike the canonical histones these variants are

expressed constitutively and independently of replication and act

as multifunctional regulators in a range of processes including

DNA repair, transcription initiation and termination, meiotic

recombination, etc. [18]. It is believed that they represent lineage

specific innovation that is important for each organism’s

evolutionary specialization [18].

Discussion

The discovery of a functional DNA methylation system in

honey bees and other invertebrates [1,7–10,19] has brought a

fresh perspective to the study of epigenetic regulation of

development and behavior. It reinforced the view that this

covalent modification of DNA is an ancient and widely utilized

evolutionary mechanism that was present in the basal Metazoa

and has been recruited to serve diverse functions in modern

organisms, including regulation of gene expression, cell differen-

tiation, and silencing of transposons [20–22]. However, the

trajectories from methylation changes to complex phenotypes

are indirect, multi-level, and virtually unknown. For example, the

hundreds of millions of methylated cytosines in the human genome

and their large variation in different cell types in vivo pose a major

challenge to uncovering those changes causative to phenotype. By

contrast, the honey bee Apis mellifera shares its basic methylation

enzymology with humans, yet as shown in this and other studies

[5,10,12,13] only a small and specific fraction of its genome is

methylated. The present results show that honey bees utilize

methyl tags to mark a core of mostly conserved and ubiquitously

expressed critical genes whose activities cannot be switched off in

most tissues. Recent data suggest that in spite of their permanent

expression these genes might not be required at the same level

Table 4. Annotation of the histone gene family in Apis mellifera.

Class Proposed Subclass Type

Apis Histone

Genes NCBI RefSeq mRNA

Proposed

Gene ID

Proposed

Protein ID

Splicing

Status

Methyl

CpG

H1 H1 canonical GB12700a XM_001121111 H1.1 H1.A

GB12218 XM_001122184 H1.2 H1.B

H2A H2A canonical GB18806 XM_001120186 H2A.1 H2A.A

GB12818 XM_001120346 H2A.2 H2A.B

GB13800 XM_001119899 H2A.3 H2A.C

N/Ac XM_001120934 H2A.4 H2A.D

H2A.X variant GB18954 XM_624697 H2A.X H2A.X Spliced Yes

H2A.Z/H2AV variant GB12991 XM_624164 H2A.Z H2A.Z Spliced Yes

Pseudogene Pseudogene yH2A

H2B H2B canonical GB12700a XM_001120238 H2B.1 H2B.A

GB13012 XM_001120889 H2B.2 H2B.B

N/Ac XM_001122218 H2B.3 H2B.C

GB12922b XM_001119846 H2B.4 H2B.D

GB11889 XM_001120014 H2B.5 H2B.D

H3 H3 canonical GB11223 XM_001120304 H3.1 H3

GB14620 XM_001121026 H3.2 H3

N/Ac XM_001120132 H3.3 H3

H3.3 variant GB12948 XM_001120696 H3.3.1 H3.3 Spliced Yes

GB11228 XM_624496 H3.3.2 H3.3 Spliced Yes

CENPA variant GB18566 N/A CENPA CENPA Spliced Yes

H4 H4 canonical GB20104 XM_001120066 H4.1 H4

GB12644a XM_01119948 H4.2 H4

GB14107 XM_001120988 H4.3 H4

GB17789 NM_001011609 H4.4 H4

See Figure S10 for additional details. These Bee Base protein entries are either incorrect or missing:
achimeras,
btruncated,
cnot available.
doi:10.1371/journal.pbio.1000506.t004
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throughout development, or under changing environmental

conditions [23–25].

In honey bees, feeding of newly hatched larvae destined to

become queens with royal jelly leads to metabolic acceleration and

increased growth driven by global but relatively subtle changes in

the expressional levels of a large number of ubiquitous genes

[2,3,10]. These initial stages of larval development are later

followed by the activation of more specific pathways to lay down

caste-specific structures [3,10]. Interestingly, adult queen bees

continue to be fed royal jelly, suggesting that this highly specialized

diet is important for maintaining their reproductive as well as

behavioral status. One possibility is that adult queens adjust their

brain methylomes according to external instructions from their

diet. One of the ingredients of royal jelly, phenyl butyrate [26], is a

known histone deacetylase inhibitor and growth regulator that has

been implicated in improving cognitive deficits in mice [27] and in

life extension of Drosophila [28]. Although the significance of

phenyl butyrate in royal jelly is not yet understood, it is

conceivable that this complex diet evolved to provide two

important functions for honey bees. It primarily serves as the

source of nutrients for queen development but also as the regulator

of epigenetic networks controlling gene expression in the brain. In

addition to having different morphologies, reproductive capacities,

and distinct behaviors, the genetically identical queen and worker

honey bees also have different synaptic densities in their brains. In

a recent study, Groh and Rossler [29] proposed that such

developmental, diet-induced heterochrony results in fewer synap-

ses in olfactory centers in queens, which may result in poorer

performance on olfactory learning tasks compared to workers.

Recent studies using rodent models provided strong support for

an idea that the nervous system has co-opted epigenetic

mechanisms utilized during development for activity-dependent

brain functions, including the generation and maintenance of

long-term behavioral memories in adulthood [30,31]. Not

surprisingly, DNA methylation has also been found to be involved

in memory processing in honey bees [32], highlighting the

significance of this epigenomic setting in conserved brain

functions. These findings also provided evidence that DNA

methylation, once believed to be an inert process after cellular

differentiation, is dynamically regulated in the adult brain.

Although both DNA methylation and chromatin remodeling have

been implicated in these processes, the specific biological

mechanisms underlying such adaptations remain largely unknown.

Our study provides experimental evidence that at least 560

differentially methylated ubiquitously expressed genes are involved

in generating molecular brain diversity in female honey bees.

Although it is still unclear how methylation might be linked to the

gene regulatory networks, it has been proposed that DNA

methylation together with changes in the histone profiles has the

capacity to adjust DNA accessibility to cellular machinery by

changing chromatin density [33–35]. Our findings support this

notion and suggest that this mechanism provides an additional

level of transcriptional control to fine tune the levels of messenger

RNAs, including differentially spliced variants, encoded by the

conserved genes. The association of mCpG clusters with

alternatively spliced exons and genes containing introns in Apis is

reminiscent of the distribution of mCpGs around the exon/intron

junctions in human genes [36]. Epigenetic control of both splicing

and mRNA levels might be utilized in different lineages, suggesting

that a direct relationship between gene methylation and

transcription is a widely spread phenomenon in both the animal

and plant kingdoms [8,37].

Cytosine methylation may interact with other epigenetic

features, such as distinctive histone modification signatures that

have been shown to correlate with the splicing outcome in a set of

human genes [33–35]. The correlation between methylation and

splicing is further highlighted by the differential methylation of two

classes of histone genes in Apis. We find that only intron-containing

histone variants are methylated, whereas intronless canonical

histone genes are not methylated. Interestingly, histone variants

have been implicated in multiple conserved roles in eukaryotes

[18] and therefore are part of the cellular maintenance systems

together with other ubiquitously expressed genes. In a broader

context, methylated cytosines may specify information to set up,

proliferate, and regulate splicing patterns during cellular processes

such as development and differentiation.

Thus, rather than switching the genes on and off by promoter

methylation, the intragenic methylation in Apis operates as a

modulator of gene activities. As a result the entire topology of a

complex brain network can be reprogrammed by subtle

adjustments of many genes that act additively to produce a given

phenotype [38]. Such adjustable DNA methylation levels

generating variability in the transcriptional output of methylated

genes could underlie genetically inherited propensity to pheno-

typic variability in accord with the recently proposed model of

stochastic epigenetic variations as a heritable force of evolutionary

change [39].

The technical advantages of the low number of methylated

cytosines in the genome, together with diet-controlled phenotypes

arising from the same genome, make the honey bee an extremely

tractable, simplified in vivo system in which to examine

fundamental principles underpinning transitions from methylomes

to organismal plasticity. In particular, the absence of promoter

methylation in honey bees brings into focus gene body methylation

as an important mechanism controlling various aspects of

transcription. The utility of honey bees for understanding the

intricacies of this process in the behavioral context can now be

experimentally tested.

Materials and Methods

Source of DNA
Total DNA was extracted from dissected gland-free brains of 50

age-matched egg-laying queens (2.5 wk old) and from fifty 8-d-old

workers. These individuals represent early stages of the reproduc-

tive life of queen bees and mature young workers capable of

performing foraging tasks [19].

Sequencing of Bisulfite Converted DNA Libraries Using
the Solexa GAIIx Platform (Illumina)
5 mg of high molecular weight DNA were used for fragmenta-

tion using the Covaris S2 AFA System in a total volume of 100 ml.

Fragmentation-run parameters: Duty cycle 10%; Intensity: 5;

Cycles/burst: 200; Time: 3 min; number of cycles: 3, resulting in a

total fragmentation-time of 180 s. Fragmentation was confirmed

with a 2100 Bioanalyzer (Agilent Technologies) using a DNA1000

chip. Fragment sizes were 140 bp on average for queen and

worker DNAs, respectively. The fragmented DNAs were concen-

trated to a final volume of 75 ml using a DNA Speed Vac. End

repair of fragmented DNA was carried out in a total volume of

100 ml using the Paired End DNA Sample Prep Kit (Illumina) as

recommended by the manufacturer. For the ligation of the

adaptors, the Illumina Early Access Methylation Adaptor Oligo

Kit and the Paired End DNA Sample Prep Kit (Illumina) were

used, as recommended by the manufacturer. For the size selection

of the adaptor-ligated fragments, we used the E-Gel Electropho-

resis System (Invitrogen) and a Size Select 2% precast agarose gel

(Invitrogen). Each fragmented DNA was loaded on two lanes of
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the E-gel. Electrophoresis was carried out using the ‘‘Size Select’’

program for 16 min. According to the standard loaded (50 bp

DNA Ladder, Invitrogen), 240 bp fragments were extracted from

the gel, pooled, and directly transferred to bisulfite treatment

without further purification. For the bisulfite treatment we used

the EZ-DNA Methylation Kit (Zymo) as recommended by the

manufacturer with the exception of a modified thermal profile for

the bisulfite conversion reaction. The conversion was carried out

in a thermal cycler using the following thermal profile: 95uC for

15 s, 50uC for 1 h, repeat from step 1, 156, 4uC for at least

10 min. The libraries were subsequently amplified, using the Fast

Start High Fidelity PCR System (Roche) with buffer 2, and

Illuminas PE1.1 and PE2.1 amplification primers. PCR thermal

profile: 95uC for 2 min, 95uC for 30 s, 65uC for 20 s, 72uC for

30 s, then repeat from step 2, 116, 72uC for 7min, hold at 4uC.

PCR reactions were purified on PCR purification columns

(MinElute, Qiagen) and eluted in 20 ml elution buffer (Qiagen).

Validation of the Libraries
1 ml of the libraries were analyzed on a 2100 Bioanalyzer

(Agilent Technologies) using a DNA1000 chip. The fragment sizes

were 240 bp and 243 bp for the queen and worker libraries,

respectively. The estimated concentrations of the libraries were

0.8 ng/ml for the queen library and 5.8 ng/ml for the worker

library.

Sequencing and Analysis
We used 8 pM of single stranded DNA per lane for Solexa

sequencing. In total we sequenced 6 lanes. Worker: 1. single end -

36 bp - 10,187,567 reads (62); 2. paired end - 76 bp - 7,960,842

reads (62); 3. paired end - 76 bp - 7,444,938 reads (62); 4. paired

end - 76 bp - 11,642,135 reads (62). Queen: 1. paired end - 76 bp

- 16,752,247 reads (62); 2. paired end - 76 bp - 16,778,784 reads

(62). For sequencing we used a Solexa Genoma Analyzer GAIIx

with a v2 Paired End Cluster Generation Kit - GA II (Illumina)

and v3 36 bp Cycle Sequencing Kits (Illumina). Extraction of

sequences was done using Illumina Pipeline v1.4 software. Image

analysis and basecalling was done using Illumina SCS v2.5

software.

Mapping
Reads were mapped using BSMAP-1.0240 with minor

modifications [40]. A number of trimming and mapping options

were assessed, and the conditions yielding the highest genome

coverage depth was used for further processing (-s 12 -v 5 -k 6, for

word size, number of mismatches, and number of words). Only the

reads mapping uniquely were used. Mapping was carried out on a

Linux cluster running Debian 5.0 (lenny).

Methylation Assessment
To increase the accuracy of methylation calls, only those

cytosines fulfilling neighborhood quality standards NQS41 were

counted [41]; namely, we only took into account bases of quality

20 or more, flanked by at least three perfectly matching bases of

quality 15 or more. Deamination efficiency was assessed using the

observation that the genomic repeats are not methylated in the

honeybee (Figure S3). The deep coverage of these repeated

sequences allowed us to estimate that the deamination rate is

99.76% for the queens and 99.71% for workers. The methylation

status of each cytosine was then assessed by comparing the number

of methylated and non-methylated reads to a binomial distribution

with a probability of success equal to the deamination rate and a

number of trials equal to the number of reads mapping to that

cytosine and adjusting the resulting p values for multiple testing

with the method of Benjamini and Hochberg [42]. An adjusted p

value of 0.05 was used as a threshold for methylation calls. All

statistical computations were carried out using the R language

(www.r-project.org).

Honeybee ESTs and predicted genes were loaded into a Mysql

database and visualized with Gbrowse (www.gmod.org), where

CpG methylation levels in queens and workers were added as

separate tracks.

Differential Methylation
Base-wise differences between queen and workers were

estimated using Fisher exact tests. Gene-wise differences were

assessed by generalized linear models of the binomial family,

where methylation levels were modeled as functions of two

categorical variables: caste and CpG position. p values were

adjusted for multiple testing with the method of Benjamini and

Hochberg [42].

Amplicon Sequences Selection
Illumina sequencing and BSMAP mapping results were

confirmed by 454 sequencing of a set of bisulfite amplicons.

Amplicon sequences were selected using raw methylome data and

the following criteria: minimum coverage - 5 mapped reads for

each queen and worker sample; minimum 2 mCpGs within a

maximum of ,600 bp of sequence showing at least 50%

difference in methylation levels between the two samples. In

addition, four regions of mtDNA were selected. All primers and

other details are listed in Table S4.

Other Protocols
All molecular protocols are described elsewhere [2,9,10,43].

Supporting Information

Figure S1 Coverage of all cytosines. (A) Cumulative

distribution of the coverage of all cytosines, on either strand of

the genome, in workers and queens. On the x-axis, coverage refers

to the coverage depth that is the number of reads uniquely

mapped to a given cytosine. The y-axis is the cumulative

distribution; for instance, approximately 50% of all cytosines are

covered by less than 5 reads, and about 80% are covered by less

than 10 reads. (B) Cumulative distribution of the coverage of all

CpGs in the genome, in workers and queens. On the x-axis,

coverage refers to the coverage depth that is the number of reads

uniquely mapped to a given CpG dinucleotide. The y-axis is the

cumulative distribution (for instance, approximately 50% of the

CpGs are covered by less than 15 reads, and about 80% are

covered by less than 25 reads).

Found at: doi:10.1371/journal.pbio.1000506.s001 (0.41 MB PDF)

Figure S2 Methylation levels of methylated CpGs.

Distribution of the methylation level of methylated CpGs. The

methylation level is the proportion of methylated reads mapping to

a given CpG. Over 30% of the CpGs are fully methylated.

Found at: doi:10.1371/journal.pbio.1000506.s002 (0.16 MB PDF)

Figure S3 Number of methylated and non-methylated

Apis genes with BLAST hits to different species at

various E-value thresholds. The amino acid sequences of

the genes were compared. Fisher exact tests were conducted to

assess whether significantly more methylated genes have a BLAST

hit than non-methylated genes. Statistically significant tests at the

5% level are denoted with a star, and non-significant tests are
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shown with a dot. The details of this analysis can be found in

Table S3.

Found at: doi:10.1371/journal.pbio.1000506.s003 (0.13 MB PDF)

Figure S4 Number of high and low CpG honey bee genes

with BLAST hits to different model species at various E-

value thresholds. The amino acid sequences of the genes were

compared. Fisher exact tests were conducted to assess whether

significantly more low CpG genes have a BLAST hit than high

CpG genes. Statistically significant tests at the 5% level are

denoted with a star, and nonsignificant tests are shown with a dot.

The details of this analysis can be found in Table S3.

Found at: doi:10.1371/journal.pbio.1000506.s004 (0.13 MB PDF)

Figure S5 Number of high CpG methylated and non-

methylated honey bee genes with BLAST hits to different
model species at various E-value thresholds. The amino

acid sequences of the genes were compared. Fisher exact tests were

conducted to assess whether significantly more high CpG

methylated genes have a BLAST hit than high CpG non-

methylated genes. Statistically significant tests at the 5% level are

denoted with a star, and non-significant tests are shown with a dot.

The details of the analysis can be found in Table S3.

Found at: doi:10.1371/journal.pbio.1000506.s005 (0.13 MB PDF)

Figure S6 Coverage (red) and methylation ratio (green)

along various kinds of repetitive elements. The methyla-

tion ratio is the proportion of the reads where a cytosine is either

methylated or unconverted. The y-axes are logarithmic in base 10

(the x-axis is truncated to the nearest multiple of 50, just like the y-

axis is truncated to the nearest integer).

Found at: doi:10.1371/journal.pbio.1000506.s006 (0.63 MB PDF)

Figure S7 Periodicity of methylation patterns. (A)

Autocorrelation of CpG methylation status over 1 kb. (B)

Autocorrelation over 100 bp. Figures A and B show that the

correlation of methylation status of neighboring CpGs increases

sharply between 1 bp and 20 bp, then drops rapidly between

40 bp and 100 bp, and then slowly fades away. CpGs within a

neighborhood of 2 bp to 100 bp are thus more likely to share the

same methylation status than more distant CpGs. (C) Fourrier

transform of autocorrelation showing a clear periodicity peak at 33

cycles per 100 bp (every 3 bp). (D) Distribution of codon position

of mCs, and distribution of methylation level depending on the

position. These two panels indicate that the distance between

methylated CpGs is often a multiple of three and that the

methylated cytosine corresponds most frequently to the first

nucleotide of an arginine codon.

Found at: doi:10.1371/journal.pbio.1000506.s007 (0.33 MB PDF)

Figure S8 Correlation between CpG o/e and proportion

of methylated CpGs. Genes with a lower CpG content tend to

have a higher proportion of methylated CpGs. The red line is a

polynomial regression through the points. The Akaike Information

Criterion for model selection and a (monotonously decreasing)

polynome of degree three was identified as the best model.

Found at: doi:10.1371/journal.pbio.1000506.s008 (0.71 MB PDF)

Figure S9 Distribution of methylated CpGs relative to
splicing sites. For 169 genes, each containing a single well-

defined alternative splicing event, the distance of all mCpGs to the

centre of the alternatively spliced intron was computed, and the

median of all these distances was calculated. A null distribution of

this median distance was constructed using a randomization

procedure (Manly, 2007): the methylation status of mCpGs of

these genes were randomly shuffled 1,000 times, and the

corresponding median distances computed. The observed value

(1,224) is smaller than the smallest of the null distribution (1,259);

the probability of the methylated CpGs to be as close or closer to

the alternatively spliced intron as in this dataset is thus less than

0.001.

Found at: doi:10.1371/journal.pbio.1000506.s009 (0.77 MB PDF)

Figure S10 Annotation of the histone gene family in Apis

mellifera showing the methylation profiles. See Table 4

for details.

Found at: doi:10.1371/journal.pbio.1000506.s010 (0.34 MB PDF)

Table S1 Sequence conservation of methylated and non-

methylated genes. (A) Number of high and low CpG Apis

genes with blast hits to different species at various E-value

thresholds. The amino acid sequences of the genes were

compared. Fisher exact tests were conducted to assess whether

significantly more low CpG genes have a blast hit than high CpG

genes. (B) Number of methylated and non-methylated honey bee

genes with blast hits to different model species at various E-value

thresholds. The amino acid sequences of the genes were

compared. Fisher exact tests were conducted to assess whether

significantly more methylated genes have a blast hit than non-

methylated genes. (C) Number of high CpG methylated and non-

methylated honey bee genes with blast hits to different model

species at various E-value thresholds. The amino acid sequences of

the genes were compared. Fisher exact tests were conducted to

assess whether significantly more high CpG methylated genes have

a blast hit than high CpG non-methylated genes.

Found at: doi:10.1371/journal.pbio.1000506.s011 (0.19 MB

DOC)

Table S2 Differentially methylated genes in queens and

worker brains. A generalized linear model of the binomial

family was used to identify genes that are differentially methylated

between castes. The methylation level of each gene was modeled

as a function of the caste and of each of its CpG dinucleotides. In

the table, ‘‘Caste’’ indicates whether the caste is a statistically

significant factor explaining differences in methylation levels,

‘‘CpG’’ represents the different dinucleotides of that gene, and

‘‘Caste * CpG,’’ the interaction factor, indicates whether the CpG

dinucleotides behave differently between castes. GB numbers refer

to the proteins at BeeBase: genomes.arc.georgetown.edu/drupal.

Genes were ranked into 10 bins based on their expression levels

from low (1) to high (10). No value in the relative expression

column indicates those genes that are not represented on the

microarray. Based on microarray data from Foret et al. [10].

Found at: doi:10.1371/journal.pbio.1000506.s012 (1.13 MB

DOC)

Table S3 Evaluation of the Elango et al. hypothesis. (A)

CpG o/e in methylated genes. (B) Differential methylation and

differential gene expression.

Found at: doi:10.1371/journal.pbio.1000506.s013 (0.04 MB

DOC)

Table S4 Details on genes used for deep 454 sequencing.

Found at: doi:10.1371/journal.pbio.1000506.s014 (0.03 MB XLS)
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