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20 ALLEN KNUTSON, TERENCE TAO, AND CHRISTOPHER WOODWARD

1. Introduction, and summary of results

We continue from [Hon1] the study of the cone BDRY(n), which is the set of triples
of weakly decreasing n-tuples (λ, µ, ν) ∈ (Rn)3 satisfying three conditions proved
there to be equivalent:

(1) regarding λ, µ, ν as spectra of n × n Hermitian matrices, there exist three
Hermitian matrices with those spectra whose sum is the zero matrix;

(2) (if λ, µ, ν are integral) regarding λ, µ, ν as dominant weights of GLn(C), the
tensor product Vλ⊗Vµ⊗Vν of the corresponding irreducible representations
has an invariant vector;

(3) regarding λ, µ, ν as possible boundary data on a honeycomb, there exist
ways to complete it to a honeycomb.

In the present paper we determine the minimal set of inequalities defining this
cone, along the way giving new proofs of the results in [HR, T, Kl, Be] which gave
a sufficient list of inequalities in terms of Schubert calculus on Grassmannians. We
show that this list is in fact minimal (establishing the converse of the result in [Be]).
As in [Hon1], our approach to this cone is in the honeycomb formulation. We also
replace the use of Schubert calculus by puzzles, defined below.

1.1. Prior work. Most prior work was stated in terms of the sum-of-Hermitian
matrices problem. That was first proved to give a polyhedral cone in [H].1 Many
necessary inequalities were found (see [F1] for a survey), culminating in the list of
Totaro [T], Helmke-Rosenthal [HR], and Klyachko [Kl]—hereafter we call this the
H-R/T/K result. Klyachko proved also that this list is sufficient. A recursively
defined list of inequalities had been already conjectured in [H]; this conjecture is
true, and in fact gives the same list as Klyachko’s—see [Hon1].

One of us (CW) observed that this list is redundant—some of the inequalities
given do not determine facets but only lower-dimensional faces of BDRY(n)—and
proposed a criterion for shortening the list (again in terms of Schubert calculus).
That this shorter list is already sufficient was proved by Belkale [Be]. Our primary
impetus for the present work was to prove the converse: each of these inequalities
is essential, i.e. determines a facet of BDRY(n).

1.2. Puzzles. A puzzle will be a certain kind of diagram in the triangular lattice
in the plane. There are three puzzle pieces:

(1) unit equilateral triangles with all edges labeled 0;
(2) unit equilateral triangles with all edges labeled 1;
(3) unit rhombi (two equilateral triangles joined together) with the outer edges

labeled 1 if clockwise of an obtuse angle, 0 if clockwise of an acute angle.
A puzzle of size n ∈ N is a decomposition of a lattice triangle of side-length n into
lattice polygons, all edges labeled 0 or 1, such that each region is a puzzle piece.
Some examples are in Figure 1.

The main result about these puzzles (Theorem 1, stated below, proved in Section
5) is that they compute Schubert calculus on Grassmannians. While there are many
other rules for such computations, e.g. the Littlewood-Richardson rule, this one
has the greatest number of manifest symmetries. (A lengthy discussion of this will
appear in [KT2].)

1In fact Horn only proves that the cone is locally polyhedral; convexity follows from nonabelian
convexity theorems in symplectic geometry.
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Figure 1. Some examples of puzzles.

Readers only interested in a solution to the Hermitian sum problem can skip the
statement of this theorem and, in fact, quit after Section 4. A central principle in
the current paper is that in determining the facets of BDRY(n), the connection to
Schubert calculus is quite irrelevant, and it is more natural combinatorially to work
with the puzzles directly, which we do until Section 5. This nicely complements the
principle of [Hon1], in which we worked not with triples of Hermitian matrices but
used honeycombs as their combinatorial replacement. We will not in general take
space to repeat the honeycomb-related definitions from [Hon1].

We fix first our conventions to describe “Schubert calculus,” which in modern
terms is the ring structure on the cohomology of Grassmannians. To an n-tuple
σ like 00101 . . .110 of r ones and n − r zeroes, let Cσ denote the corresponding
coordinate r-plane in Cn, and Xσ the Schubert cycle defined as{

Vr ∈ Grr(Cn) : dim(Vr ∩ Fi) ≥ dim(Cσ ∩ Fi), ∀i ∈ [1, n]
}
,

where {Fi} is the standard flag in Cn. Alternately, Xσ is the closure of the set
of r-subspaces Vr ≤ Cn such that σi = dim((Vr ∩ Fi)/(Vr ∩ Fi−1)), i ∈ [1, n]. The
Schubert class Sσ ∈ H∗(Grr(Cn)) is the Poincaré dual of this cycle. These are
well known to give a basis for the cohomology ring.

Theorem 1. Let π, ρ, σ be three n-tuples of r ones and n−r zeroes, indexing Schu-
bert classes Sπ, Sρ, Sσ in H∗(Grr(Cn)). Then the following (equivalent) statements
hold:

(1) The intersection number
∫

Grr(Cn)
SπSρSσ is equal to the number of puzzles

whose NW boundary edges are labeled π, NE are labeled ρ, and S are labeled
σ, all read clockwise.

(2)

Sπ Sρ =
∑

puzzles P

Ssouthern side of P , read left to right

where the sum is taken over puzzles with NW side labeled π, NE side labeled
ρ, both from left to right.

The first is the advertised Z3-invariant formulation. The second formulation is
very suitable for computations; an example is in Figure 2.

Puzzles have another symmetry, which we call puzzle duality: the dualization
of a puzzle is defined to be the left-right mirror reflection, with all 0s exchanged
for 1s and vice versa. This realizes combinatorially another symmetry of Schubert
calculus, coming from the isomorphism of the r-Grassmannian in an n-dimensional
space V with the (n−r)-Grassmannian in V ∗. We will use puzzle duality to reduce
the number of cases considered in some arguments.
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Figure 2. The four puzzles P with NW and NE boundaries each
labeled 010101, computing S2

010101 = S110001 + 2S101010 + S011100

in H∗(Gr3(C6)).

1.3. Organization of this paper. In Sections 2–4 we classify the facets of BDRY(n)
in terms of puzzles. In Sections 5–6 we prove and make use of the connection of
puzzles to Schubert calculus. To emphasize again: the reader who is only looking
for the minimal list of inequalities determining BDRY(n) may completely ignore this
connection, and take puzzles as the more relevant concept than Schubert calculus!

Here is a slightly more detailed breakdown of the paper. In Section 2 we prove the
puzzle-theoretic analogue of the H-R/T/K result: each puzzle gives an inequality
on BDRY(n).

In Section 3 we essentially repeat Horn’s analysis of the facets of BDRY(n), but in
the honeycomb framework; the analogues of his direct sums turn out to be clock-
wise overlays. Using these we prove the puzzle-theoretic analogue of Klyachko’s
sufficiency result (a converse of H-R/T/K): every facet comes from a puzzle. Easy
properties of puzzles (from Section 5) then imply Horn’s results (but not his con-
jecture).

In Section 4 we study “gentle loops” in puzzles, and show that the minimal
list of inequalities is given by puzzles with no gentle loops. Then comes the only
particularly technical part of the paper: showing that puzzles without gentle loops
are exactly the rigid ones, meaning those determined by their boundary conditions.
That the rigid-puzzle inequalities are a sufficient list is the puzzle analogue of
Belkale’s result [Be]; conversely, that every rigid-puzzle inequality determines a
facet, is the central new result of this paper.

In Section 5 we describe the connection of puzzles to Schubert calculus, and in
Section 6 give puzzle-free statements of our theorems. This Section also serves as
a summary of the old and new results in this paper.

Since Schubert calculus is itself related to the tensor product problem (in a lower
dimension), this gives a combinatorial way to understand the still-mysterious Horn
recursion. We also give an application of the no-gentle-loop characterization of rigid
puzzles to prove an unpublished conjecture of W. Fulton.

In the last section we state the corresponding results for sums of m Hermitian
matrices. The proofs extend almost without change to the m ≥ 3 case. In an
appendix we give a quick proof of the equivalence between the three definitions
of BDRY(n), replacing Klyachko’s argument by the Kirwan/Kempf-Ness theorem,
which allows for rather stronger results.

Since completing this work, we received the preprint [DW1], which studies repre-
sentations of general quivers; our results can be seen as concerning the very special
case of the “triple flag quiver”. Assuming Fulton’s conjecture as input (see Con-
jecture 30 of [DW1]), their results provide a (completely different) proof of the
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THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS II 23

converse of Belkale’s result. We have been unable to find any generalization of our
honeycomb and puzzle machinery to general quivers.

We are most grateful to Anda Degeratu for suggesting the name “puzzle”, and
the referee for many useful comments. The once-itinerant first author would like
to thank Rutgers, UCLA, MSRI, and especially Dave Ben-Zvi for their gracious
hospitality while part of this work was being done.

2. Puzzles give inequalities on BDRY(n)

In this section we determine a list of inequalities satisfied by BDRY(n), which will
eventually be seen to be the puzzle-theoretic version of the H-R/T/K result.

Recall from [Hon1] that BDRY(n) is defined as the image of the “constant coordi-
nates of boundary edges” map ∂ : HONEYn → (Rn)3. In Proposition 1 of [Hon1] we
showed that the nondegenerate honeycombs (those whose edges are all multiplicity
1 and vertices all trivalent) are dense in HONEYn. So in determining inequalities on
BDRY(n) one can safely restrict to boundaries of nondegenerate honeycombs. This
reduction is not logically necessary for the rest of the section but may make it easier
to visualize.

Let h be a nondegenerate n-honeycomb, and let π be a lattice equilateral triangle
of side-length n. There is an obvious correspondence between h’s vertices and the
unit triangles in π, as in Figure 3. More importantly for us, one can also correspond
the bounded edges of h (connecting two vertices) and the unit rhombi in π (the
union of two triangles). Finally, the semiinfinite edges in h correspond to the
boundary edges of π (to which they are perpendicular).

g
e f

c
b

d

a

c
d

b

a

f
jii

g
j

e

Figure 3. Vertices of nondegenerate honeycombs correspond to
triangles in puzzles. The n = 3 case is pictured.

Given a puzzle P of side-length n, define a linear functional fP : HONEYn → R
by

fP (h) =
∑

R rhombus in P

the length of the corresponding edge in h.

(This does not really use h nondegenerate—in the degenerate case, some of these
terms are 0.) Note that this functional is automatically nonnegative, as it is a
sum of nonnegative terms. We define “length” relative to the triangular lattice, i.e.
1/
√

2 of the usual Euclidean length.
As defined above, the quantity fP (h) seems to depend on the internal structure

of P and h. However, there is a “Green’s theorem” which allows us to write fP (h)
purely in terms of the boundary labels on P and h:
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24 ALLEN KNUTSON, TERENCE TAO, AND CHRISTOPHER WOODWARD

Theorem 2. Let P be an n-puzzle, and fP the corresponding functional on HONEYn.
Then

fP (h) =
∑

P ’s boundary edges
labeled 0

the constant coordinate on the corresponding

boundary edge of h

and in particular descends to give a nonnegative functional on BDRY(n). Put another
way, the inequality fP ≥ 0 is satisfied by BDRY(n).

Proof. We compute what at first seems to be a different functional, in two different
ways. Call an edge on a puzzle piece right-side-up if its outward normal is parallel
to an outward normal of the entire puzzle, and upside-down if the outward normal
is antiparallel. So on a right-side-up triangle, all three edges are right-side-up, and
vice versa for an upside-down triangle. Whereas on a rhombus, two of the edges
are right-side-up, two upside-down.

Define the functional gP : HONEYn → R by

gP (h) =
∑

p a piece

∑
e a 0-edge

of p

(±1)constant coordinate on the corresponding edge of h,

where the sign is +1 if e right-side-up, and −1 if e upside-down.
We claim first that gP = fP . Consider the contribution a piece p makes to

the sum in gP : a 1, 1, 1-triangle contributes nothing, a 0, 0, 0-triangle contributes
the three coordinates of a vertex (which sum to zero), and we leave the reader to
confirm that a rhombus contributes the length of the corresponding edge in h.

To show that gP also matches the conclusion of the theorem, rewrite by switching
the order of summation:

gP (h) =
∑

e a 0-edge
of P

∑
p containing e

(±1)constant coordinate on the corresponding edge of h

=
∑

e a 0-edge
of P

constant coordinate on the corresponding edge of h
∑

p containing e

(±1)

For every edge e internal to the puzzle, this latter sum is +1 − 1, which cancels,
whereas for every exterior 0-edge it is 1. The claim follows.

And as stated before, this functional is a sum of honeycomb edge-lengths, so
automatically nonnegative on HONEYn. �

(As we will review in Subsection 3.1, these inequalities fP ≥ 0 are automatically
of the sort that Horn predicted in [H]—a sum of r distinct elements from each
of λ, µ, and ν.) In Figure 4 we repeat the puzzles from Figure 1 and give the
corresponding inequalities.

Since the sum of all the boundary coordinates is zero, this inequality can be
restated as coming from a nonpositive functional,∑

e a boundary
edge of P

(label on e) · (constant coordinate on h’s edge corresponding to e) ≤ 0,

as it does in some of the literature (e.g. [F1]).
This Theorem 2 will in Section 6 be seen to be the puzzle analogue of the neces-

sary conditions of H-R/T/K. In the next section we show that every facet (except for
some easy, uninteresting ones) does indeed come from a puzzle inequality fP ≥ 0,
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λ1 + λ4
+µ1 + µ4

+ν1 + ν2 ≥ 0

λ1 + λ2
+µ2 + µ3

+ν3 + ν4 ≥ 0

λ2 + λ3
+µ2 + µ3

+ν1 + ν2 ≥ 0

λ2 + λ3
+µ1 + µ2

+ν3 + ν4 ≥ 0

λ2 + λ3
+µ1 + µ3

+ν1 + ν3 ≥ 0

Figure 4. Some puzzles and the corresponding inequalities on
BDRY(n). The subscripts on λ correspond to the locations of the 0s
on the NW side, µ on the NE, and ν on the south.

which will be the puzzle-theoretic analogue of Klyachko’s sufficiency theorem (a
converse of H-R/T/K).

3. Facets come from puzzles, via clockwise overlays

In this section we study the honeycombs that lie over facets of BDRY(n). We
begin by recalling Horn’s results [H] on triples of Hermitian matrices which sum to
zero, to help make intuitive the corresponding results we will find on honeycombs.

3.1. Horn’s results. Horn considered the function “take eigenvalues in decreasing
order” from zero-sum Hermitian triples to (Rn)3 = {(λ, µ, ν)}. By definition, the
image satisfies the chamber inequalities, i.e. that λi ≥ λi+1 ∀i (similarly µ, ν).
The remaining facets we call regular facets.

Away from the chamber walls, the “take eigenvalues” map is differentiable, and
one can use calculus to find its extrema: Horn did this, and found that the critical
points occur exactly when the zero-sum Hermitian triple is a direct sum of two
smaller ones. (This is nowadays a standard calculation in Hamiltonian geometry;
see [K] for an exposition of this viewpoint.) Since that implies that the traces of
each subtriple sum to zero, one sees that the equation of the facet so determined
says that the sum of a certain r eigenvalues from λ, another r from µ, and another
r from ν add to zero.

Also, the Hessian is definite at an extremal point, which gives another condition
on these three r-element subsets I, J,K of {1, . . . , n}. Define an inversion of such
a subset S as a pair (a < b) ⊆ {1, . . . , n} such that a ∈ S, b /∈ S. Then Horn shows
that definiteness of the Hessian implies that the total number of inversions, over
the three subsets I, J,K, is r(n − r). (Both of these conditions are automatic for
puzzles, as shown later in Proposition 4; in particular this will give combinatorial
proofs of Horn’s results.)

We now undertake the same extremal analysis on honeycombs, rather than zero-
sum Hermitian triples. We will need the following lemma, whose proof is immediate,
to recognize inequalities from individual boundary points. Recall that a facet of a
polyhedron is a codimension-1 face.

Lemma 1. Let P be a polyhedron (convex, but not necessarily compact), p a point
on a facet Φ of P , and f a nonzero affine-linear function vanishing at p. If Φ
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26 ALLEN KNUTSON, TERENCE TAO, AND CHRISTOPHER WOODWARD

contains a neighborhood of p in f−1(0), then p is an interior point of Φ, the equation
of Φ is f = 0, and the inequality determining Φ is either f ≥ 0 or f ≤ 0.

To apply this to BDRY(n), we will need to know its dimension; via the Hermitian
picture, this is well known to be 3n − 1 (it is cut down from 3n by the fact that
the sum of the traces must be zero). We give a honeycomb-theoretic proof in
Proposition 1, mainly in order to introduce the construction by which we will vary
the boundary of a honeycomb.

Define the natural sign of an oriented edge in a honeycomb to be +1 if the
edge points northwest, northeast, or south, and −1 if it points north, southwest,
or southeast. (By these six compass directions we of course really mean directions
that are at 60◦ angles from one another, not 45◦ and 90◦.) Observe that a path
in a nondegenerate honeycomb must alternate natural sign (orienting the edges to
follow the path). In particular, a path coming in from infinity on one boundary
edge (natural sign −1) and going out on another (natural sign +1) must be of odd
length.

Proposition 1. The cone BDRY(n) is (3n− 1)-dimensional.

Proof. This is certainly an upper bound: by Lemma 1 of [Hon1], the sum of all the
constant coordinates of boundary edges is zero.

Let h be a nondegenerate honeycomb, ε a (possibly negative) real number such
that 2|ε| is smaller than the length of any of h’s edges, and e, f two boundary
edges. Then there exists a path γ in the honeycomb tinkertoy τn connecting e and
f (which we can ask be non-self-intersecting). We can add ε times the natural sign
to the constant coordinates of h’s edges along γ and get a new honeycomb.

This changes e’s coordinate by −ε, and f ’s by +ε. By repeating this with other
pairs, we can achieve arbitrary small perturbations of the boundary coordinates,
subject to the sum staying zero. So BDRY(n) contains a (3n−1)-dimensional neigh-
borhood of ∂h. �

Call the construction in Proposition 1 the trading construction. We will need
it not only for the honeycomb tinkertoy τn, but (connected) tinkertoys constructed
from τn by eliding simple degeneracies, as we did in the Corollary to Theorem 1 of
[Hon1]. In particular if h is a simply degenerate honeycomb, and τn stays connected
after eliding h’s simple degeneracies, then ∂h is in the interior of BDRY(n).

3.2. Extremal honeycombs are clockwise overlays. Recall the overlay opera-
tion from [Hon1]; it makes an n-honeycomb A⊕B from an (n−r)-honeycomb A and
an r-honeycomb B. If p is a point common to A and B, call it a transverse point
of intersection if it is a vertex of neither, and isolated in the intersection. Call
A⊕ B a transverse overlay if all intersection points are transverse. In this case
every small perturbation of A and B is again a transverse overlay; by Proposition
1 this gives a (3r − 1) + (3(n− r)− 1) = 3n− 2-dimensional family of boundaries.

If p is a transverse intersection point of A⊕B, then up to rotation a neighborhood
of p looks like exactly one of the two pictures in Figure 5; say that A turns
clockwise to B at p or B turns clockwise to A at p depending on which.

Recall from [Hon1] that a simple degeneracy of a honeycomb is a vertex where
two multiplicity-one edges cross in an X. We can deform a simple degeneracy to a
pair of nondegenerate vertices connected by an edge. If we do this in an overlay
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THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS II 27

Figure 5. In the left figure, A turns clockwise to B, whereas in
the right the reverse is true. Any transverse point of intersection
of two overlaid honeycombs must look like exactly one of these, up
to rotation.

as in Figure 6, who is clockwise to whom determines the resulting behavior of the
boundary, as explained in the following lemma.

Figure 6. The solid honeycomb A is clockwise to the thin one B
at the point p, and vice versa at q. The dashed line indicates the
result of trading an A edge up and a B edge down, using a path
through the crossing p.

Lemma 2. Let h = A⊕B be a transverse overlay of two nondegenerate honeycombs,
and p a point of intersection, such that A turns clockwise to B at p. Let γA be a
path in A that comes from infinity to p, and γB a path in B that goes from p to
infinity. Then we can extend the trading construction to γA ∪ γB and increase the
constant coordinate on the first edge of γA while decreasing the constant coordinate
on the last edge of γB the same amount, leaving other boundary edges unchanged.

Proof. By rotating if need be, we can assume p looks like the left figure in Figure
5, a simple degeneracy. Assume the path γA comes from the southwest, γB going
to the southeast (the other three cases are similar).

We can pull the edges in γA, γB at p down and create a vertical edge in the
middle (as in the Figure 6 example). To extend this change to the rest of the
honeycomb, we apply the trading construction to γA∪γB , but we must move edges
a negative ε times their natural signs (or else the vertical edge created will have
negative length). In particular the first edge of γA, whose natural sign is negative,
has its constant coordinate increased. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 ALLEN KNUTSON, TERENCE TAO, AND CHRISTOPHER WOODWARD

The definition of “largest lift with respect to a superharmonic functional” was
one of the more technical ones from [Hon1]; the details of it are not too important in
the following lemma, except for the application of [Hon1]’s Theorem 2 (as explained
within).

Lemma 3. Let b be a generic point on a regular facet Φ of BDRY(n), and h a largest
lift of b (with respect to some choice of superharmonic functional on HONEYn). Then
h is a transverse overlay A⊕B of two smaller honeycombs, where at every point p
of intersection A turns clockwise to B.

In addition, the inequality determining Φ says that the sum of the constant co-
ordinates of h’s boundary edges contained in A is nonnegative.

The genericity condition on b is slightly technical: we ask that at most one
proper subset of the boundary edges (up to complementation) has total sum of
the constant coordinates being zero. This avoids a finite number of (3n − 3)-
dimensional subspaces of the (3n− 2)-dimensional facet Φ, and as such is an open
dense condition. Also we ask that b be regular.

Proof. By Theorem 2 of [Hon1], h is simply degenerate and acyclic (this uses b
regular and h a largest lift). Let τ be the post-elision tinkertoy, of which h can be
regarded as a nondegenerate configuration. We first claim that τ is disconnected.
For otherwise, we could use the trading construction to vary the boundary of h
in arbitrary directions (subject to the sum of the coordinates being zero), and
therefore b would not be on a facet of BDRY(n). So we can write τ = ρ ∪ σ, and
h = A⊕B, where A,B are honeycombs with tinkertoys ρ, σ, respectively.

The boundary b = ∂h therefore satisfies the equation “the sum of the boundary
coordinates of h belonging to ρ is zero.” (Likewise σ.) This remains true if we
deform A and B as individual honeycombs. By the genericity condition on b, A
and B must each be connected, so varying them gives us a (3n − 2)-dimensional
family of variations of b with b in the interior. By Lemma 1 we have found the
equation for the facet containing b.

It remains to show that A turns clockwise to B at every intersection; actually
we will only show that all the intersections are consistent (and switch the names of
A and B if we chose them wrongly). For each intersection p, let τp be the tinkertoy
made from the honeycomb tinkertoy τn by eliding all of h’s simple degeneracies
other than p. Since the fully elided τ is acyclic with two components, each τp is
acyclic with one component.

We can now attempt to trade A’s boundary coordinates for B’s. Fix a semi-
infinite edge of A and one of B. Since τp is acyclic, there will be only one path
γ connecting them, necessarily going through p. By Lemma 2 we can apply the
trading construction to γ, increasing the constant coordinate on our semiinfinite
edge of A if A turns clockwise to B at p, decreasing it in the other case.

If there exist vertices p, q such that A turns clockwise to B at p, but vice versa
at q, then by trading we can move to either side of the hyperplane determining
the facet. This contradiction shows that the intersections must be consistently all
clockwise or all counterclockwise. �

The analogy between the Hermitian direct sum operation and the honeycomb
overlay operation is even tighter than this: at the critical values of “take eigenval-
ues” that are not at extrema, one also finds transverse overlays, and the index of
the Hessian can be computed from the number of intersections that are clockwise.
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However, until a tighter connection is found someday in the form of, say, a measure-
preserving map from zero-sum Hermitian triples to the polytope of honeycombs,
the Hermitian and honeycomb theorems will have to be proven independently.

This Lemma 3 motivates the following definition: say that an overlay A ⊕ B
is a clockwise overlay (without mentioning a particular point) if the overlay is
transverse, and at all points of intersection A turns clockwise to B. This is probably
not the right definition: because of the insistence on transversality, it is not closed
under limits. However, since in this paper we will only be interested in transverse
overlays, it will be more convenient to build it into the definition.

A very concrete converse to this lemma is available:

Lemma 4. Let h = A ⊕ B be a clockwise overlay. Let A be the subset of τn’s
semiinfinite edges in the A part of h. Then the inequality∑

e∈A
the constant coordinate on e ≥ 0

defines a regular facet of BDRY(n), containing ∂h. Moreover, there exists a puzzle
P such that this inequality is the one fP ≥ 0 associated by Theorem 2.

Proof. Plainly h satisfies this inequality with equality. We can deform A and B to
nondegenerate honeycombs A′ and B′; if we move the vertices of each little enough,
they will not cross over edges of the other, and the result will again be a clockwise
overlay h′, satisfying the same equality.

Build a puzzle P from h′ as follows:
• to each vertex in A′, associate a 0,0,0-triangle,
• to each vertex in B′, associate a 1,1,1-triangle,
• to each crossing vertex in h′, associate a rhombus,

with the puzzle pieces glued together if the vertices in h share an edge. Then the
fact that A′ turns clockwise to B′ means that the labels on the rhombi will match
the labels on the triangles, so P will be a puzzle. An example is in Figure 7.

Figure 7. A clockwise overlay, a deformation of its constituents
to nondegenerate honeycombs, and the puzzle built from that. The
corresponding inequality on BDRY(5) is λ1+λ3+µ2+µ3+ν2+ν4 ≥ 0.
Note that some edges of the original overlay have multiplicity 2,
leading to repetitions along the boundary of the puzzle.

We can perturb A′ and B′ small amounts and vary the boundary coordinates
in arbitrary directions. This gives us a (3n − 2)-dimensional family of possible
boundaries containing our original point ∂h, all satisfying the stated inequality. By
Lemma 1, h is in the interior of a facet determined by this inequality, which is the
inequality fP ≥ 0. �
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Call a clockwise overlay a witness to the facet it exhibits via Lemma 4. This
gives us a convenient way to exhibit facets.

Applying Lemma 4 to Lemma 3, we get

Theorem 3. Let Φ be a regular facet of BDRY(n). Then there exists a puzzle P
such that Φ is the facet determined by fP ≥ 0, i.e. Φ = BDRY(n) ∩ f−1

P (0).

So each regular facet gives a puzzle, and each puzzle gives an inequality, which
together with the list of chamber inequalities, determine BDRY(n) (and as we will
see in Section 6, this list is the same as Klyachko’s, itself the same as Horn’s).

But not every inequality is satisfied with equality on a facet. Define an inequality
f ≥ 0 on a polyhedron Π to be essential if f−1(0) ∩ Π is a facet of Π, and
inessential if f−1(0)∩Π is lower-dimensional. Equivalently, some positive multiple
of it must show up in any finite list of inequalities that determine Π. For example,
for a point in the plane to be in the first quadrant it is necessary and sufficient that
it satisfy the inequalities {x ≥ 0, y ≥ 0, x+ y ≥ 0}, but the third inequality is only
pressed at the origin, and can be omitted from the list. In the next section we will
cut our list of inequalities on BDRY(n) down to the essential inequalities.

3.3. Independence of the chamber inequalities for n > 2. We have thus far
ignored the chamber inequalities λi ≥ λi+1, etc. on BDRY(n), focusing attention
on the inequalities determining regular facets. We thank Anders Buch for pointing
out to us the following subtlety that this perspective misses.

Theorem 4. For n > 2, the chamber inequalities on BDRY(n) are essential. For
n = 2, they are implied by the regular inequalities and the equality λ1 + λ2 + µ1 +
µ2 + ν1 + ν2 = 0.

Proof. Consider a honeycomb h satisfying λi = λi+1 for some i, but otherwise
minimally degenerate; an example is in Figure 8. (By Z3 symmetry it is enough to
consider the λ case.) Note that there is only one nongeneric vertex, at the end of

Figure 8. A generic honeycomb over the chamber facet deter-
mined by λ2 = λ3.

the multiplicity-two semiinfinite edge. It is straightforward to construct a similar
such honeycomb for any n and i.
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We mimic the proof of Proposition 1, in using the trading construction to exhibit
a (3n − 2)-dimensional family in BDRY(n) satisfying λi = λi+1. We can move the
doubled edge wherever we like by translating the whole honeycomb. To trade the
constant coordinates of any other two boundary edges, we use paths avoiding the
bad vertex in h, which exist for n > 2. This proves the first claim.

For n = 2 we hit a snag—sometimes the only paths will go through the bad
vertex. But we can check n = 2 directly. The regular inequalities are

λ1 + µ1 + ν2 ≥ 0, µ1 + ν1 + λ2 ≥ 0, ν1 + λ1 + µ2 ≥ 0.

Sum the first two, and subtract the equality λ1 + λ2 + µ1 + µ2 + ν1 + ν2 = 0 to
get µ1 − µ2 ≥ 0. The other two inequalities are proved in ways symmetric to this
one. �

4. Gentle loops vs. rigid puzzles

We have at this point an overcomplete list of inequalities, coming from puzzles; in
Section 6 we will see it is exactly that of H-R/T/K (which by [Hon1] is exactly that
of Horn’s conjecture [H]). Our remaining goal is to cut down the list of inequalities
to the essential set—those that determine facets of BDRY(n), rather than lower-
dimensional faces.

To do this, we will shortly introduce the concept of a gentle loop in a puzzle, and
prove two things:

• regular facets correspond 1:1 to puzzles without gentle loops;
• a puzzle has no gentle loops if and only if it is rigid, i.e. is uniquely

determined by its boundary conditions.
The first is remarkably straightforward; the second a bit more technical.

Cut a puzzle up along the interior edges that separate two distinct types of
puzzle pieces; call the connected components of what remains the puzzle regions,
coming in the three types 0-region, 1-region, and rhombus region. Define a
region edge in a puzzle as one separating two distinct types of puzzle piece. Thus
every region edge either separates a rhombus region from a 0-region, or a 1-region
from a rhombus region. Orient these edges, so that 0-regions are always on the left,
and 1-regions are always on the right. (Viewed as edges of the parallelograms, this
orients them to point away from the acute vertices. Stated yet another way, they
go clockwise around the 1-regions, and counterclockwise around the 0-regions.) An
example is in Figure 9.

Define a gentle path in a puzzle as a finite list of region edges, such that the
head of each connects to the tail of the next, and the angle of turn is either 0◦ or
60◦, but never 120◦. Define a gentle loop as a gentle path such that the first and
last edges coincide. The smallest puzzles with gentle loops are of size 6; the one in
Figure 9 is one of the only two of that size.

(For this definition we did not really need to introduce puzzle regions, only region
edges. We will need the regions themselves in Section 5.)

To better understand gentle paths, we need to know the possible local structures
of a puzzle around an interior vertex, which are straightforward to enumerate.
Clockwise around a lattice point in a puzzle, we meet one of the following (see
Figure 10 for examples of each):

• six triangles of the same type;
• four rhombi at acute, obtuse, acute, obtuse vertices;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



32 ALLEN KNUTSON, TERENCE TAO, AND CHRISTOPHER WOODWARD

Figure 9. A puzzle, and its decomposition into regions, with re-
gion edges oriented. This is one of the two smallest examples with
a gentle loop; it goes counterclockwise around the central hexagon.

• three triangles of the same type, then two rhombi;
• some 0-triangles, an acute rhombus vertex, some 1-triangles, and an obtuse

rhombus vertex.
Only the latter two have region edges. This fourth type we call a rake vertex of
the puzzle. (The reason for the terminology will become clearer in Lemma 5.)

1 1 1

1 1 1

0 0
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1

1

1

11

1

1

1 1

1

1 1

1

0

1

0

1 1

0

0

1

0
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0

0

0

0
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0

1

0

1

0

1

Figure 10. The possible local structures of a puzzle near an in-
terior vertex, up to rotation and puzzle duality. The region edges
incident on the vertex are oriented. This makes visible a “traffic-
planning” mnemonic about gentle turns: any turn off a straight-
away onto side roads is gentle, whereas there are no gentle on-
ramps onto straightaways.

From this list, one sees easily that puzzle regions are necessarily convex: travers-
ing their boundaries clockwise, one never turns left. In particular rhombus regions
are necessarily parallelograms.

4.1. Puzzles have either witnesses or gentle loops. Let P be a puzzle con-
structed from a clockwise overlay A⊕B of two generic honeycombs, as in Lemma
4. A gentle path in P is in particular a sequence of puzzle edges, each successive
pair sharing a vertex; there is a corresponding sequence of edges in A ⊕ B, each
successive pair being sides of the same region.

Proposition 2. Let A ⊕ B be a clockwise overlay of two generic honeycombs, P
the corresponding puzzle (as in Theorem 3), γ = (γ1, . . . , γm) a gentle path in P ,
and γ̃ the corresponding sequence of edges in A ⊕ B. Then the edge γ̃1 is strictly
longer than the edge γ̃m.

Proof. It is enough to prove it for gentle paths of length two, and then string the
m − 1 inequalities together. In Figure 11 we present all length two paths (up to
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rotation and dualization), and the corresponding pairs of edges in an overlay. In
each case the angles around the associated region force the strict inequality.

1
1

0 0

0
1

1

0 0

0 1
1

0 0

000

1

0 0

Figure 11. Gentle turns (through the latter two diagrams in Fig-
ure 10) and the associated pairs of edges in a generic witness, up
to rotation and dualization. Note that in each of the four gentle
paths shown, the initial edge is necessarily longer than the terminal
edge. Dualization flips the pictures, and exchanges 0 for 1, giving
the same geometric inequality.

�

Corollary. Let P be a puzzle with a gentle loop. Then P does not arise from
a clockwise overlay (“no witnesses”), and the inequality P gives on BDRY(n) is
inessential.

Proof. If P arises from a clockwise overlay A ⊕ B, we can perturb A and B a bit
to make them generic (as in the proof of Theorem 3). Recall that a gentle loop
is a gentle path whose first and last edges agree. Then by the proposition the
corresponding edge in A⊕B is strictly longer than itself, contradiction.

By the contrapositive of Lemma 3, P ’s inequality is inessential. �

We now show that, conversely, gentle loops are the only obstructions to hav-
ing witnesses. In other words, if a puzzle contains no gentle loops, then one can
construct a witness h. The coming Proposition 3 is inspired by the Wiener path
integral, in which a solution to a PDE at a point x is constructed as the sum of
some functional over all possible paths from x to the boundary. In our situation
the role of the PDE is played by the requirement that the edges around a region of
h close up to form a polygon. This construction will give a witness to the puzzle
provided that the number of gentle paths is finite, or equivalently if there are no
gentle loops.

Lemma 5. Let P be a puzzle without gentle loops, and v a rake vertex, as in Figure
12, where four region edges meet. Call the east edge on v the handle and the west
edges the tines. Then the number of gentle paths starting at each of those four
edges and terminating at the boundary is a + b from the handle, a from the two
outer tines, and b from the inner tine, for some a, b ∈ N.
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a+b

a

b

a

Figure 12. Every vertex of a puzzle region, interior to a puzzle,
looks like a rake (up to rotation and reflection). This one has the
“handle” on the right, and the three “tines” on the left.

Proof. Of the two outer tines of the rake, one points toward the vertex, one points
away. Every gentle path starting at the inward-pointing tine goes into the outward-
pointing tine (to turn into the middle tine would not be gentle), and conversely
every path from the outward-pointing can be extended; this is why they both have
a gentle paths to them for some a ∈ N.

The gentle paths starting at the handle go either into the middle tine, or the
outward-pointing outer tine. So if b ∈ N gentle paths start from the middle tine,
a+ b start from the handle. �

We will use an equivalent geometrical statement: these numbers a, b, a, a+b form
the side lengths of a trapezoid in the triangular lattice.

Proposition 3. Let P be a puzzle of size n with no gentle loops. Then there exists
a clockwise overlay h = A ⊕ B such that the puzzle that Theorem 3 associates to
h is P . Therefore by Lemma 4, the inequality defined by the puzzle determines a
facet of BDRY(n).

Moreover, in this witness h every bounded nonzero edge of A crosses a bounded
nonzero edge of B, and vice versa.

We do this by direct construction. One example to follow along with is the left
honeycomb in Figure 7, whose regions are indeed all trapezoids.

Proof. First note that for this purpose, it is enough to specify a honeycomb up to
translation. To do that, it is enough to specify the lengths and multiplicities of the
bounded edges, and say how to connect them. Not every specification works—the
vertices have to satisfy the zero-tension condition of [Hon1], and the vector sum of
the edges around a region must be zero.

To specify a clockwise overlay, we must in addition two-color the edges “A”
and “B”, and make such edges only meet at crossing vertices such that the colors
alternate A,B,A,B when read clockwise around each crossing vertex.
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We now build a clockwise overlay h as a sort of graph-theoretic dual2 of P—one
vertex for each puzzle region of P , one bounded edge for each region edge of P
(almost—two region edges on the same boundary of a region determine the same
edge of P ), one semiinfinite edge for each exterior edge of P . If eh is a bounded
edge of h corresponding to a region edge eP of P , then eh

• is perpendicular to eP ;
• is labeled A or B depending on whether eP is adjacent to a 1 or 0 region;
• has multiplicity equal to the length of eP ;
• has length equal to the number of gentle paths starting at eP and ending

on the boundary of P .
This last number is finite exactly because there are no gentle loops.

The vertices of h are zero-tension because the vector sum of the edges around a
region in P is zero. The regions in h are all trapezoids, dual to the meeting of four
regions in P at rakes, and close up by Lemma 5.

For the second statement, note that no edge of h connects two distinct vertices in
the same honeycomb, because the corresponding region edge in P does not bound
two regions of the same type. �

The witnesses produced by this construction seem so minimal and natural that
we are tempted to christen them “notaries”. It would be interesting if there are
correspondingly canonical witnesses in the Hermitian matrix context.

Together, this Proposition 3 and the Corollary to Proposition 2 prove

Theorem 5. There is a 1 : 1 correspondence between n-puzzles without gentle loops
and regular facets of BDRY(n), given by the assignment P 7→ “fP ≥ 0”.

At this point we have a complete, combinatorial characterization of the regular
facets of BDRY(n)—they correspond one-to-one to puzzles of size n with no gentle
loops. However, to better tie in to Belkale’s result we need to characterize such
puzzles in terms of rigidity. One direction (Belkale’s) is the following theorem, the
other to come in the next subsection.

Theorem 6. Let P be a puzzle with no gentle loops. Then P is rigid. In particular
(by Theorem 5), the set of rigid puzzles of size n gives a complete set of inequalities
determining BDRY(n).

In this proof we use one result that does not come until Proposition 4: the
number of rhombi in a puzzle is determinable from the boundary conditions.

Proof. Let h = A⊕B be a witness to P produced during the proof of Proposition
3. By slight perturbation of A and B to nondegenerate A′ and B′, small enough
that no vertex of one crosses an edge of the other, we can create an h′ whose only
degenerate edges correspond to the rhombi in P . (One can modify the construction
in Proposition 3 to give such an h′ directly, but it is not especially enlightening.)

Puzzles are easily seen to be determined by the set of their rhombi, and by
Proposition 4 (to come) the number of rhombi in a puzzle is determinable from
the boundary conditions. Thus, if P is not rigid, so there exists another puzzle Q
with the same boundary, then this Q has a rhombus that P does not. Then by
its definition as a sum of edge-lengths, fQ(h′) > 0. But by Theorem 2, fQ(h′) =
fP (h′) = 0, contradiction. �

2 Not in the sense of “puzzle duality”.
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One way to think about this is that if a puzzle inequality can be “overproved,”
there being two distinct puzzles P,Q giving the same inequality fP = fQ ≥ 0, then
the inequality is inessential.

(We will prove a stronger version of this result, in Theorem 8.)

4.2. Breathing gentle loops. It remains to be shown that puzzles with gentle
loops are not rigid. The proof of this is very direct; given a sufficiently nice gentle
loop γ in a puzzle P , we will modify P in a radius-1 neighborhood of γ to get
a new puzzle P ′ agreeing with P outside that neighborhood, in particular on the
boundary. The technical part comes in showing that minimal gentle loops are
“sufficiently nice.”

Define the normal line to a vertex v along a gentle path γ to be a pair of edges
attached to v such that

• they are 180◦ apart;
• neither is in γ;
• neither cuts through the middle of a rhombus puzzle piece.

Checking the four cases in Figure 11, one sees that a normal line exists uniquely
at each v. Note that the half of the normal line connected to the left side of γ is
always labeled 0, and the right half always 1.

We have not needed to speak of the distance between two puzzle vertices
before; define it to be the graph-theoretic distance, where the graph in question is
made from the lattice triangle’s vertices and edges (not just the edges appearing in
the puzzle).

Lemma 6. Let P be a puzzle with a gentle loop γ, such that the only pairs of γ-
vertices that are at distance 1 in the puzzle are consecutive in γ. (In particular, the
loop does not cross itself.) Then there exists a different puzzle P ′ 6= P that agrees
with P on any edge not touching γ.

Proof. LetNγ denote the radius-1 neighborhood of γ, i.e. the set of pieces of P with
a vertex on γ. By the condition about nonconsecutive vertices, this neighborhood
does not overlap itself, i.e. every edge connected to γ (but not in γ) is connected
to a unique vertex of γ.

Cut Nγ up along its normal lines. It is easy to check that it falls into only four
kinds of “assemblages” up to rotation, listed in Figure 13. Notice that for each
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Figure 13. The four assemblages possible when a neighborhood
of a gentle path is cut along normal lines (here drawn dashed).
These have been rotated to make the gentle path point East.

assemblage, there is a unique other of the same shape, but rotated 180◦. This pairs
up the two triangular assemblages, the parallelograms each being self-matched. The
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crucial observation to make is that two matching assemblages have the same labels
on the boundary (away from the normal lines).

In particular, if we simultaneously replace each assemblage in Nγ by the other
one with the same shape, the new collection fits together (because all the normal
lines have been reversed), fits into the rest of the original puzzle (because the labels
on the boundary are the same), and gives a new gentle loop running in the opposite
direction. �

We call this operation breathing the gentle loop, for reasons explained at the
end of Section 5. An example is given in Figure 14.
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Figure 14. The left figure has a gentle loop running clockwise,
with its neighborhood broken along normal lines into assemblages,
as indicated. Removing that neighborhood gives the middle figure,
and filling it in with each assemblage replaced by its match gives
the right figure, which has a gentle loop running counterclockwise.

(In fact the new puzzle constructed this way is unique, and breathing the new
gentle loop reproduces the original puzzle.)

Theorem 7. If a puzzle has gentle loops, it is not rigid.

We will cut down the cases considered in this theorem using the following lemma,
easily checked from Figure 11:

Lemma 7. If a 2-step gentle path (γ1, γ2) in a puzzle P turns while passing through
a vertex (as opposed to going straight), there is another path (γ′1, γ2) turning from
the opposite direction.

Proof of Theorem 7. We will show that minimal gentle loops satisfy the condition
of Lemma 6.

First we claim that minimal gentle loops do not self-intersect. Let γ be a gentle
loop that does self-intersect, and let v be a vertex occurring twice on γ such that
the two routes through v are different. (If there is no such v, then γ is just a
repeated traversal of a loop that does not self-intersect.) There are

(
3
2

)
= 3 local

possibilities, corresponding to choosing two of the rightmost three gentle paths in
Figure 11; in each one we can break and reconnect the gentle loop to make a shorter
one, contradicting minimality.

Second (and this is the rest of the proof) we claim that minimal gentle loops do
not have nonconsecutive vertices at distance 1. If γ is a counterexample, then there
exists an edge E /∈ γ connecting two points on γ. (This E is just an edge in the
lattice, not necessarily in the puzzle P—it may bisect a rhombus of P or whatever.)
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Removing the endpoints of E from γ separates γ into two arcs; call the shorter one
the minor arc and the longer the major arc. (If they are the same length, make
the choice arbitrarily.) Choose E such that the minor arc is of minimal length.

For the remainder we assume (using puzzle duality if necessary) that the gentle
loop is clockwise. We now analyze the local picture near E, which for purposes of
discussion we rotate to horizontal so that the minor arc starts at the west vertex
of E, and ends at the east vertex. This analysis proceeds by a series of reductions,
pictured in Figure 15.

EE

major arc

minor arc

E E

1. 2. 3. 4.

E

Figure 15. The steps of Theorem 7. The dashed lines indicate
possible edges at each step 1–4, the solid lines definite ones.

1. The first edge of the minor arc goes either west, northwest, or northeast (to
have room for a gentle turn from the major arc); likewise, the last edge goes either
southeast, southwest, or west.

2. If the first edge of the minor arc went northeast, we could shift E to E′

connecting the second vertex of the minor arc to the last vertex, contradicting the
assumption that the minor arc was minimal length. So in fact the first edge goes
west or northwest, and the last southwest or west (by the symmetric argument).

3. We now involve the major arc. Its last edge goes northwest or northeast. If it
goes northeast, then the first edge of the minor arc goes northwest (for gentleness).
But then by Lemma 7 E is oriented west; therefore we could shorten γ to a loop
that used E, contradicting γ’s assumed minimality. So the last edge of the major
arc goes northwest.

4. Therefore the first edge of the major arc goes southeast (since γ does not
intersect itself), so the last edge of the minor arc goes southwest. But then Lemma
7 says that E is oriented east.

At this point the west vertex of E has an oriented edge coming in from the
southeast, one going out to the east, and another going out either west or northwest
(at least). This matches none of the vertices (or their puzzle duals) in Figure 10.
The contradiction is complete; there was no such E. �

The following strengthening of Theorem 6 was also observed experimentally by
W. Fulton.

Theorem 8. Let P be a nonrigid puzzle. Then the face of BDRY(n) determined by
fP = 0 lies on a chamber wall.

Proof. If not, there exists a regular boundary b ∈ BDRY(n) such that fP (b) = 0. Let
h be a largest lift of b; by Theorem 2 of [Hon1] h is simply degenerate. Since P is
nonrigid, by Theorem 6 it has a gentle loop; a minimal such loop γ is breathable,
by the proof of Theorem 7. Let P ′ be the result of breathing P along γ.

We claim that some rhombus ρ′ of P ′ overlaps some rhombus ρ of P in a triangle.
To see this, divide γ up along its normal lines into the assemblages of Lemma 6,
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Figure 13. At least one such assemblage must be a triangle, for otherwise the loop
cannot close up. (In fact there must be at least six triangles.) When we breathe
the loop, the rhombus ρ in the original assemblage in P overlaps the rhombus ρ′ in
the new assemblage in P ′ in a triangle.

Dually, the edges of the honeycomb tinkertoy τn corresponding to those two
rhombi meet at a vertex.

Since fP (h) = f ′P (h) = 0, and they are defined as the sum of certain edge-lengths
of h, all those edges of h must be length zero. Therefore, the two adjacent edges in
h corresponding to ρ and ρ′ are length zero. But then h is not simply degenerate,
contradiction. �

At this point we have a second characterization of the regular facets of BDRY(n);
they correspond to rigid puzzles. For our final characterization we need to involve
the other life of puzzles, which is in computing Schubert calculus of Grassmannians.

5. Puzzle inflation, rhombi, and Schubert calculus

We start with an “inflation” operation on puzzles, taking a puzzle P and a
natural number N to a new puzzle N · P .

Lemma 8. Let P be a puzzle of size n. For N ∈ N, define N · P to be the puzzle
whose puzzle regions are in correspondence with P ’s, and glued together the same
way, but every edge labeled 1 has been stretched by the factor N . Then N · P is a
well-defined puzzle. In addition, N · P is rigid if and only if P is rigid.

An example is in Figure 16.

0

0

0

1

0

10

0

1

10
0

0

0 1

1

0

0

Figure 16. A puzzle P broken into regions, 2 · P , and 3 · P .

Proof. To see that N · P is a well-defined puzzle, we need to check that each new
region is well defined—that traversing its boundary we return to where we started.
For 0-regions there is nothing to show, for 1-regions the whole region is inflated by
the factor N , and for rhombus regions two opposite sides of the parallelogram are
stretched.

There is an evident correspondence between gentle loops in P and gentle loops
in N · P , so by Theorems 6 and 7 they are either both rigid or neither is. �

Our principal use of this will be the deflation 0 · P of a puzzle.
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Proposition 4. Let P be an n-puzzle, such that one side has r 1-edges. Then the
other two sides also have r 1-edges, and the puzzle consists of

• r2 1-triangles, of which
(
r+1

2

)
are right-side-up and

(
r
2

)
are upside-down;

• (n − r)2 0-triangles, of which
(

(n−r)+1
2

)
are right-side-up and

(
n−r

2

)
are

upside-down;
• r(n − r) rhombi.

Since we already know every facet comes from a puzzle (Theorem 3), this implies
Horn’s results on the structure of the inequalities determining facets, explained in
Subsection 3.1.

Proof. The deflation of P is an (n−r)-puzzle consisting only of 0-triangles, letting us
count the number of 0-triangles in the original puzzle (namely, (n−r)2) and also the
number of 0-edges on the three sides (namely, n− r). By deflating the dual puzzle,
one can count there to be r2 1-triangles. The remaining area is n2− r2− (n− r)2 =
2r(n − r) in units of triangle, and all that is available are rhombi which each use
up 2. �

We now prove that puzzles compute Schubert calculus on Grassmannians (our
reference for the latter is [F2]), as stated in the introduction. Recall that we index
Schubert classes in H∗(Grr(Cn)) by n-tuples consisting of r ones and n− r zeroes.3

What we will actually prove is that the puzzle rule is equivalent to the honey-
comb rule from [Hon1]. (A direct proof will appear in [KT1], in turn giving an
independent proof of the honeycomb rule.) First we need a lemma on honeycombs.

Lemma 9. Let h be a honeycomb with boundary coordinates (λ, µ, ν) ∈ (Rn)3

on the northwest, northeast, and south sides, each a weakly decreasing list of real
numbers. Then

(1) The first coordinate of any vertex of h is in the interval [λn, λ1]. (Likewise
the second coordinate is in [µn, µ1], and the third coordinate in [νn, ν1].)

(2) The third coordinate of any vertex is in the interval [−λ1 − µ1,−λn − µn].
(3) If λi, µi,−νi ∈ [0,M ] for all i = 1, . . . , n, then all of h’s vertices are in the

triangle with vertices (0, 0, 0), (M, 0,−M), (0,M,−M).

Proof. 1. Follow a path in the honeycomb, going northwest whenever possible,
southwest when not, eventually coming out on an edge with constant coordinate
λi ≤ λ1. Each southwest sojourn increases the first coordinate, and each northwest
leaves it unchanged, so the original first coordinate must have been at most λ1.
Replacing “southwest” with “north” gives the opposite inequality. The other two
coordinates come from rotating this proof ±120◦.

2. Since the sum of the three coordinates is zero by definition, the third one can
be bounded in terms of the first two.

3. This is just a special case of (1). �

3 It is more usual to encode these classes by partitions fitting inside an (n− r) × r rectangle.

The correspondence is as follows. Given one of our n-tuples, read the 0s as “left” and the 1s as
“down”; this gives a path from the upper right corner of such a rectangle to the lower left. Above
this is a partition, and conversely, given a partition in this rectangle we can read off an n-tuple of
“left”s and “down”s.
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Theorem (Theorem 1 from the introduction). Let π, ρ, σ be three strings of r ones
and n − r zeroes. Then the number of puzzles with π, ρ, σ clockwise around the
boundary is the Schubert intersection number

∫
Grr(Cn)

SπSρSσ.
Equivalently, write SπSρ =

∑
τ c

τ
πρSτ . The the number of puzzles with π, ρ on

the NW and NE boundaries, and τ on the south boundary, all written left to right,
is the structure constant cτπρ.

Proof. We prove the second statement: the first follows from the second, since∫
Grr(Cn)

SπSτ is 1 if π is the reversal of τ , and 0 otherwise.
The structure constants for multiplication of Schubert classes are well known to

also be the structure constants for tensor products of polynomial representations of
GLn(C) (the first to observe this seems to be Ehresmann; see [F2] or [KT2]). The
precise statement is as follows. Let λi be the number of 0s after the ith 1 in π, so
λ1 ≥ λ2 ≥ . . . ≥ λr, and λ is a partition of the number of inversions of π. Likewise
construct µ from ρ, and ν from τ . Then

cτπρ = dim HomGLn(C)(Vν , Vλ⊗Vµ).

This latter can be calculated using honeycombs, as proved in [Hon1]; it is the
number of honeycombs with boundary coordinates (λ1 ≥ . . . ≥ λr) on the northwest
side, (µ1 ≥ . . . ≥ µr) on the northeast, and (−νr ≥ . . . ≥ −ν1) on the south.

We now construct a map from our puzzles to these honeycombs. To create a
honeycomb from a puzzle is a three-step process (follow along with the example in
Figure 17):

(1) Place the puzzle in the plane R3∑
=0 such that the bottom right corner is at

the origin, and turn it 30◦ counterclockwise.
(2) At each boundary edge labeled 1, attach a rhombus (outside the puzzle),

then another (parallel to the first), and repeat forever. Fill in the rest of
the plane with 0-triangles.

(3) Deflate the extended puzzle, keeping the right corner at the origin. The
honeycomb’s vertices then come from the deflated 1-regions, and the honey-
comb’s edges come from the deflated rhombus regions, with the multiplicity
on the edge coming from the thickness of the original rhombus region.
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Figure 17. A puzzle, and the three stages in creating a honey-
comb from it. Regions with 1s on their boundary are shaded, and
then deflated. The origin (0, 0, 0) is indicated in each figure by a
heavy dot.
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The resulting diagram obviously has finitely many vertices, all edges in triangular-
coordinate directions, and semiinfinite edges only going NW/NE/S (coming from
the 1-edges on the boundary of the original puzzle). The remaining condition for it
to be the diagram of a honeycomb is that each vertex have zero total tension; this
is equivalent to the fact that the original 1-region was a closed polygon.

To see that this is a bijection, we construct the inverse map. Start with a honey-
comb computing cτπρ. By part 2 of Lemma 9, it fits inside the triangle with vertices
(0, 0, 0), (n− r, 0, r− n), (0, n− r, r− n). Inflate each edge of the honeycomb inter-
sected with the triangle to a rhombus region, the thickness given by the multiplicity
of the edge, and each vertex to a polygon of 1-triangles, the lengths of the edges of
the polygon given by the multiplicities of the edges at the vertex. The result is a
puzzle with boundary λ, µ, ν. �

In [KT1] will appear an alternate proof of this theorem not using honeycombs,
which shows also that puzzles compute T -equivariant cohomology of Grassmanni-
ans, when one includes an additional “equivariant puzzle piece”.

We conclude this section with some observations.
1. This intersection number problem has 12 manifest symmetries; 3! from per-

muting π, ρ, σ, and 2 from the duality diffeomorphism Grr(Cn)∼= Grn−r(Cn). As
with honeycombs and Berenstein-Zelevinsky patterns, only half of these are man-
ifest in the rule; rotating the puzzles gives the even permutations of π, ρ, σ, and
puzzle duality gives the composition of Grassmann duality with the odd permuta-
tion π ↔ σ. None of these are directly visible in the Littlewood-Richardson rule
(for a deeper discussion of this, see [KT2]).

2. This theorem makes possible a (rather forced) duality on honeycombs, as
already observed in [GP, Hon1]: pick a triangle containing the honeycomb, inflate
to a puzzle, apply puzzle duality, and deflate back to a new honeycomb, the total
effect being to exchange vertices for regions and vice versa. Unfortunately this
depends on the choice of triangle, and only works for integral honeycombs. This
is quite different from the much more natural duality on honeycombs that comes
from flipping them over, (x, y, z) 7→ (−y,−x,−z).

3. In [Hon1] we defined a way of locally modifying a honeycomb in the vicinity
of a loop through nondegenerate vertices, which was also called breathing. It is
easy to check that any breathing operation on honeycombs is, under the deflation
correspondence above, the deflation of a gentle-loop breathing on a puzzle. (The
reverse is not true: gentle-loop breathing of puzzles is a strict generalization.)

4. Note that this connection of puzzles and honeycombs is completely different
from the one in Theorem 3, and serves as a combinatorial explanation of the re-
cursive nature of Horn’s list of inequalities. To recapitulate the chain of reasoning
involved: first one studies extremal n-honeycombs (as we did in Section 3), and
from an extremal honeycomb, which is necessarily an overlay of an r-honeycomb
and an (n − r)-honeycomb, one constructs a puzzle encoding the pattern of over-
lay. That puzzle then deflates to an r-honeycomb, necessarily integral. Therefore
inequalities on n-honeycombs can be “blamed” on integral r-honeycombs. This is
not recursive until one knows that honeycombs exist with given integral boundary
conditions if and only if integral honeycombs exist with the same boundary; this
was (the honeycomb version of) the saturation conjecture, proved in [Hon1].
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6. Replacing puzzles by Schubert calculus

So far we have used puzzles to give inequalities on the boundaries of honeycombs.
In this section we replace puzzles by Schubert calculus, and honeycombs by zero-
sum Hermitian triples, to formulate puzzle- and honeycomb-free versions of most
of our results. The only casualty is the characterization of rigid puzzles as those
without gentle loops; but this too has an application, in proving a conjecture of
W. Fulton.

First we recall the connection of honeycombs to Hermitian matrices: Let (λ, µ, ν)
∈ (Rn)3 be three weakly decreasing lists of real numbers. Then there exists a
honeycomb with boundary coordinates (λ, µ, ν) if and only if there exists a triple
of Hermitian matrices (Hλ, Hµ, Hν) with spectra λ, µ, ν and adding to the zero
matrix. This follows from [Hon1] and [Kl]; we make a more precise statement in
the appendix, replacing Klyachko’s argument with more direct use of the relation
between geometric invariant theory quotients and symplectic quotients.

Corollary. Avoiding direct mention of honeycombs and puzzles, we have
(1) [T, HR, Kl] If Sπ, Sρ, Sσ are three Schubert classes on Grr(Cn) such that∫

Grr(Cn) SπSρSσ > 0, then for any triple Hλ, Hµ, Hν of n × n Hermitian
matrices with zero sum and spectra λ, µ, ν (written in decreasing order),
respectively, we have the inequality

n∑
i=1

πiλi + ρiµi + σiνi ≤ 0.

(2) [Kl] This list of inequalities on the spectra is sufficient for the existence of
such a triple.

(3) [Be] If Sπ, Sρ, Sσ are Schubert classes on Grr(Cn) such that
∫

Grr(Cn) SπSρSσ
> 1, then the corresponding H-R/T/K inequality is inessential . . .

(4) . . . and equality can only occur when (λ, µ, ν) are not all regular.
(5) If Sπ, Sρ, Sσ are three Schubert classes on Grr(Cn) such that

∫
Grr(Cn) SπSρSσ

= 1, then the corresponding H-R/T/K inequality is essential.

Proof. These are Theorem 1 combined with
(1) Theorem 2 (the inequality is reversed because we are summing over 1s here

instead of 0s);
(2) Theorem 3;
(3) Theorem 6;
(4) Theorem 8;
(5) Theorems 5 and 7.

�

We have another puzzle-free application of Theorem 1:

6.1. Fulton’s conjecture. In a private communication, W. Fulton proposed the
following

Conjecture. Let λ, µ, ν ∈ (Zn)3 be a triple of dominant weights for GLn(C), and
Vλ, Vµ, Vν the corresponding irreducible representations. If Vν occurs exactly once
as a constituent of Vλ⊗Vµ, then ∀N ∈ N, VNν occurs exactly once as a constituent
of VNλ⊗VNµ.
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It is interesting to compare this to the saturation conjecture (proven in [Hon1]).
Saturation says that if a polytope of honeycombs with fixed integral boundary
is nonempty, the polytope contains at least one lattice honeycomb. The present
conjecture is sort of a next step: its contrapositive says that if a polytope of honey-
combs with fixed integral boundary is not only nonempty but positive-dimensional,
the polytope contains at least two lattice honeycombs.

We need one additional construction in order to prove this conjecture: the dual
inflation of a puzzle by a factor M , defined as dualizing the puzzle, M -inflating,
then dualizing again. This amounts to thinking of the inflation of a puzzle in terms
of the 0-edges instead of the 1-edges.

Proof of Fulton’s conjecture. Let det = (1, 1, . . . , 1) denote the high weight of the
determinant representation, and cνλµ denote the number of times Vν appears in
Vλ⊗Vµ. Then using the equality

cνλµ = c
ν+(L+M) det
λ+L det, µ+M det,

we can reduce to the case that λ and µ are nonnegative (so, high weights of polyno-
mial representations). Therefore ν is also nonnegative, for otherwise cNνNλ,Nµ would
be zero for all N ∈ N.

From there, we can use Theorem 1 to convert to a Schubert problem, i.e. counting
puzzles rather than honeycombs. One then has to check that rescaling a honeycomb
by the factor N corresponds to dual-inflation on puzzles.

Since the original honeycomb h is rigid, so too is the corresponding puzzle P ;
therefore by Lemma 8 so too is the dual inflation of P by the factor N , and therefore
so is N · h. �

6.2. (N,M)-inflation and nonpolynomiality. Define the (N,M)-inflation of a
puzzle by N -inflating it, and then M -dual-inflating it (these operations commute).

Note that this descends to a well-defined notion of the (N,M)-inflation of a
boundary condition on a puzzle, and as such one can study the functions

f(N,M) := #puzzles with boundary (N,M) · π, (N,M) · ρ, (N,M) · σ
for fixed initial boundary conditions π, ρ, σ. Because of the connections of puzzles to
honeycombs and thereby to sections of a line bundle over (GLn(C)/B)3//GLn(C)
(see the appendix), one can show that f(N,M) is a polynomial function of one
argument when the other is held fixed.4

Taken together, though, the growth is usually exponential; the reader may enjoy
showing that for π = ρ = σ = 010101 (as in Figure 9), f(N,M) =

(
N+M
N

)
.

7. Summing more than three matrices

The cone BDRY(n), whose facets we have now completely determined, has a gen-
eralization for any m ∈ N: the set of m-tuples of spectra

BDRYm(n) :=
{

(λi)i=1...m : ∃{Hi},
∑
i

Hi = 0
}

4Geometrically, this results from the fact that the GIT quotients (GLn(C)/B)3//GLn(C) are
usually manifolds and never orbifolds, a fact special to the group GLn(C). A different proof is
given in [DW2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS II 45

such that there exist n × n Hermitian matrices with those spectra adding to the
zero matrix. (Again, this is equivalent to the corresponding m-fold tensor product
problem.) Then BDRY3(n) is just the cone BDRY(n) we have already determined,
and BDRY1(n), BDRY2(n) are uninteresting.

To study this cone for m > 3 by the techniques in [Hon1] and this paper, we
need to determine the corresponding honeycomb extension problem. We do this by
factoring the problem: sum the first m−2 matrices and call the eigenvalues of that
µ, then see if µ goes with the last two spectra.

BDRYm(n) =
{

(λi)i=1,...,m : ∃µ, (λ1, . . . , λm−2, µ
∗) ∈ BDRYm−1(n),

(µ, λm−1, λm) ∈ BDRY3(n)
}

(Here µ∗ denotes −µ, reversed so as to again be in decreasing order.) Repeat
this factorization5 until everything is in terms of BDRY3(n) = BDRY(n). Then we
can think of BDRYm(n) in terms of an (m − 2)-tuple of honeycombs such that one
boundary of each honeycomb anti-agrees with one boundary of the next. Define an
m-ary honeycomb as exactly such an (m− 2)-tuple.

Graphically, the easiest way to think about these is to draw the honeycombs in
the same plane, half of them upside down, and very far from one another, as in
Figure 18. To get them far from one another we can add a large-enough constant
x to the coordinates.6 Note that we do not have to go beyond two dimensions, as
is many people’s first guess about m > 3 (or indeed n > 3).

µ3

λ1

λ3*+x λ5∗+3x

λ2 λ4+2x λ6+4x

µ6−2x

λ7−2x

µ4−x

µ5−x

Figure 18. A honeycomb whose boundary lies in BDRY7(n).

All the same techniques developed for m = 3 go through without change. Define
an m-ary puzzle as an (m−2)-tuple of puzzles (every other one upside down) that
can be fitted together into a line, and call the individual puzzles the constituents
of the m-ary puzzle. (Careful: these are not merely arrangements of puzzle pieces
into a trapezoid/parallelogram; they satisfy the extra condition that no rhombus
is allowed to cross from one constituent into the next.) On the Schubert calculus

5In an alternate view of the Hermitian sum problem that we have not discussed, about flat
U(n)-connections on an m-punctured sphere with small holonomies around the punctures, this
corresponds to taking a pants decomposition of the punctured surface.

6Mathematically, it is nicer to deal with the (m − 2)-tuple, because it does not require one
to choose this large-enough x. If one insists on actually working with these single composite
diagrams, one must use part 3 of Lemma 9 bounding the size of a honeycomb in terms of two of
its boundaries.
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side, these count intersections of m cycles in a Grassmannian. In Figure 19 we give
the famous count (two) of the number of lines touching four others in CP3.

Figure 19. Given four generic lines in CP3, exactly two lines
touch all four. The gentle loops are drawn around the central
hexagons.

A gentle path in an m-ary puzzle has essentially the same definition, with
the only tricky point that it cannot include one of the edges joining one constituent
puzzle to the next. With these definitions we have the analogous results:

Theorem 9. Each m-ary puzzle gives a nonnegative functional on BDRYm(n). The
regular facets of BDRYm(n) come precisely from the m-ary puzzles with no gentle
loops. These m-ary puzzles are exactly the rigid ones, corresponding to m Grass-
mannian Schubert cycles intersecting in a unique point.

Proof. All the proofs go through without modification, except for one: we need
to check that when we breathe a gentle loop in an m-ary puzzle using the loop-
breathing Lemma 6, we do not introduce any rhombi that cross from one constituent
puzzle to the next, for that would remove a boundary edge from a puzzle. But the
edges separating constituents are obviously on normal lines to the gentle path, and
the loop-breathing construction does not remove these edges. �

7.1. A representative example. In Figure 19 we exhibited two 4-ary puzzles
with the same boundary. By our theorems, we know that these have gentle loops,
and determine the same true inequality

λ1 + λ3 + µ1 + µ3 + ν1 + ν3 + π1 + π3 ≥ 0

on spectra of four Hermitian matrices with zero sum, but that this inequality is
inessential.

8. Appendix: the equivalence of the definitions of BDRY(n)

All the arguments in this paper study BDRY(n) purely in terms of its interpre-
tation as the possible boundary conditions of honeycombs. In [Hon1], these are
related to invariants in tensor products of GLn(C)-representations, which in turn
are related to Hermitian matrices in [Kl].
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We include here a stronger result (which could already have been given in
[Hon1]), replacing Klyachko’s argument by the Kirwan/Kempf-Ness theorem, al-
lowing for a more precise result. While this involves some somewhat formidable
machinery, its application really is a routine matter, and so we label the following
a corollary.

Corollary (to Theorem 4 of [Hon1]). Let (λ, µ, ν) ∈ (Rn)3 be a triple of weakly
decreasing n-tuples of reals. The volume (resp. real dimension) of the polytope of
honeycombs in HONEY(τn) with boundary coordinates (λ, µ, ν) is equal to the sym-
plectic volume (resp. complex dimension) of the space of zero-sum Hermitian triples
with these spectra modulo the diagonal action of U(n). In particular, there exists
such a honeycomb if and only if there exists such a zero-sum Hermitian triple.

Proof. The machinery used here is geometric invariant theory, particularly the “geo-
metric invariant theory quotients are symplectic quotients” theorem [MFK, Chap-
ter 8].7 To begin with, take (λ, µ, ν) integral, and consider the graded ring

R :=
⊕
k

Vkλ⊗Vkµ⊗Vkν .

By the Borel-Weil theorem, ProjR is a product of three (partial) flag manifolds
as an algebraic variety, and from its induced projective embedding inherits a sym-
plectic structure. By Kostant’s extension of Borel-Weil, it is symplectomorphic to
the product of the U(n) coadjoint orbits through λ, µ, and ν. We use the trace
form on u(n) to identify these with the corresponding isospectral sets of Hermitian
matrices.

Now consider the invariant subring RGLn . By definition, ProjRGLn is the geo-
metric invariant theory quotient of this product of three flag manifolds by the
diagonal action of GLn. By Theorem 4 of [Hon1], the Hilbert function of this vari-
ety is the Erhart function of the polytope of honeycombs with boundary conditions
(λ, µ, ν). In particular its leading coefficient (resp. its degree), which as for any
projective variety is the variety’s symplectic volume (resp. its complex dimension),
is also the volume (resp. real dimension) of the polytope.

By the GIT/symplectic equivalence, this GIT quotient by GLn can alternately
be constructed as a symplectic quotient by its maximal compact U(n). This con-
struction takes the zero level set of the U(n) moment map—here the moment map is
the sum of the three matrices—and quotients it by U(n). Combining these results,
we find that the symplectic volume (resp. complex dimension) of the moduli space
of zero-sum Hermitian triples is the volume (resp. real dimension) of the polytope
of honeycombs.

The same holds for rational triples (λ, µ, ν) because both sides behave the same
way under rescaling, and then for arbitrary triples because both sides are continu-
ous. �

In particular (as Klyachko proves): an invariant tensor implies the existence of
a zero-sum Hermitian triple, and a zero-sum Hermitian triple implies the existence
of an invariant tensor in Vkλ⊗Vkµ⊗Vkν for some k > 0. To go from there to k = 1
is harder, requiring the saturation conjecture proved in [Hon1].

7Klyachko’s proof of the relation between these two problems follows the same essential lines
as this more general theorem.
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