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THE HOPF ALGEBRA OF FINITE TOPOLOGIES AND

MOULD COMPOSITION

by Frédéric FAUVET, Loïc FOISSY & Dominique MANCHON

Abstract. — We exhibit an internal coproduct on the Hopf algebra of finite
topologies recently defined by the second author, C. Malvenuto and F. Patras, dual
to the composition of “quasi-ormoulds”, which are the natural version of J. Ecalle’s
moulds in this setting. All these results are displayed in the linear species formalism.

Résumé. — Nous mettons en évidence un coproduit interne sur l’algèbre de
Hopf des topologies finies introduite récemment par C. Malvenuto, F. Patras et
le second auteur. Ce coproduit est dual de la composition des “quasi-ormoules”,
version naturelle des moules, selon la terminologie de J. Ecalle, dans ce contexte.

1. Introduction

The study of finite topological spaces was initiated by Alexandroff in

1937 [4], and revived at several periods since then, using the natural bi-

jection, recalled below, which exists between these spaces and finite sets

endowed with a quasi–order. In [16], the topic was reexamined through

the angle of Hopf algebraic techniques, which have proved quite pervasive

in algebraic combinatorics in recent years. A number of so–called com-

binatorial Hopf algebras (graded and linearly spanned by combinatorial

objects) are now of constant use in many parts of mathematics, with fre-

quent occurences of the Hopf algebras of shuffles and quasishuffles, quasi-

symmetric functions QSym [19], non commutative symmetric functions,

Connes–Kreimer, Malvenuto–Reutenauer, word quasisymmetric functions

WQSym, etc [8, 17, 18, 19, 20, 21]. This type of machinery to study fi-

nite spaces was implemented in the article [16], with the introduction of

a commutative Hopf algebra H based on (isomorphism classes of) quasi–

posets. These constructions were investigated further in the article [15] (see

Keywords: finite topological spaces, Hopf algebras, mould calculus, posets, quasi-orders.
Math. classification: 05E05, 06A11, 16T30.
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also [13, 14]) with in particular the description of a non commutative and

non cocommutative Hopf algebra HT based on labelled quasi–posets. In

the present text we show that both H and HT can be endowed with a sec-

ond coproduct, which is degree–preserving and as such called internal. The

construction of the coproduct is non–trivial and is in fact achieved within

the formalism of linear species.

In [15], a family of natural morphisms from HT to WQSym was also

constructed, based on the classical concept of linear extensions [28]. In the

present text, we show that one of these morphisms also respects the internal

coproduct. Once again, this is realized at the level of species: we construct

a morphism L : T →→ SC where T is the linear species of finite topolog-

ical spaces and SC is the linear species of set compositions (or ordered

partitions). This morphism specializes to maps from the Hopf algebras of

quasi–posets H and HT onto QSym and WQSym, respecting the products

and both the external and internal products.

The internal coproduct on the species T would certainly have been very

difficult to find by simple guess but it is in fact directly inspired by an

operation known in J. Ecalle’s mould calculus [9, 11, 12, 24] as mould

composition. A mould is a collection M• = {Mω} of elements of some

commutative algebra A, indexed by finite sequences ω = (ω1, . . . , ωr) of

elements of a set Ω; equivalently, it is an A–valued function on the set

of words ω1 . . . ωr in the alphabet Ω. In what follows, the alphabet is in

fact the underlying set of an additive semi–group, a typical example in the

applications being the set of positive integers Ω = N>0. We can already

notice that from the outset, moulds involve combinatorial objects which

are both labelled and decorated: the labels form a finite sequence [n] =

{1, . . . , n} and the decorations belong to ω. When the values of a mould

M• are in fact independent from any set Ω, the mould M• is said to be of

constant type.

In the context in which they originated, namely the classification of

dynamical sytems, moulds naturally appear matched with dual objects,

named comoulds, in expansions of the following form:

F =
∑

MωBω =
∑

r>0

∑

ω=(ω1,...,ωr)

MωBω

A comould B• = {Bω} is a collection, indexed by sequences ω as above,

of elements of some bialgebra (B, +, ., σ) , and such expansions, known as

mould–comould contractions, make sense in the completed algebra spanned

by the Bω, with respect to the gradings given by the length of sequences

(other gradings may be relevant). In most situations, the Bω are products

ANNALES DE L’INSTITUT FOURIER



QUASI-ORMOULDS 913

of some building blocks Bω (ω ∈ Ω) : Bω = Bωr
. . . Bω1

; the building blocks

themselves are abstracted from the dynamical system under study and are

mapped to ordinary differential operators acting on spaces of formal series,

through some evaluation morphism ([9, 12]).

Accordingly, these expansions can be realized as elements of completions

of huge linear spaces of operators, typically End(C[[x]]), and as such they are

naturally endowed with a linear structure and two non–linear operations,

a product × and a composition product ◦. Indeed, for a given comould

B• and two moulds M• and N•, the product of the operators associated

respectively to N• and M• can be expanded as a contraction with B•,

yielding a new mould P • = M• × N• :
(∑

NωBω

)(∑
MωBω

)
=
∑

P ωBω =
∑

r>0

∑

ω=(ω1,...,ωr)

P ωBω

and the formula giving the components of the product mould P• is as

follows:

P (ω1,...,ωr) =
∑

M (ω1,...,ωi)N (ωi+1,...,ωr)

The product is obviously associative, non commutative in general, and

distributive over the sum.

But besides this product of operators, we can also use some given mould

M to change the alphabet Bω and this will give us the composition ◦ of

moulds, B• −→ C• with:

Cω0
=

∑

‖ω‖=ω0

MωBω

where the norm of the sequence ω is by definition ‖(ω1, . . . , ωr)‖ =

ω1 + . . . + ωr.

Performing this natural change of alphabets successively with two moulds

M• and N• , amounts to a change of alphabet with respect to a mould

Q• = M• ◦ N• which is given by:

Q(ω1,...,ωr) =
∑

M (‖ω1‖,...‖ωs‖)Nω1

. . . Nωs

the sum being performed over all the ways of obtaining the sequence ω by

concatenation of the subsequences ωi : ω = ω1 . . . ωs.

The composition product is also associative, non commutative in general,

and right–distributive over the sum and product. It is worth noticing that

the operation of mould composition involve compositions of integers.

Next, to tackle difficult questions of analytic classification, J. Ecalle had

been driven to reorder mould–comould contractions by a systematic use

of trees ([9]), by considering so–called arborescent moulds, armoulds for

TOME 67 (2017), FASCICULE 3



914 Frédéric FAUVET, Loïc FOISSY & Dominique MANCHON

short, which are indexed by sequences with arborescent partial orders (each

element has at most one antecedent) on the labelling sets [r] = {1, . . . , r}.

In this context, the product of armoulds is nothing but the convolution

with respect to Connes–Kreimer coproduct, when armoulds are seen as

characters of the relevant Hopf algebra on trees ([12]). There is also a nat-

ural definition of composition of armoulds (it appears in particular in [23]),

related to another coproduct on the algebra of decorated forests, which

is a decorated version of the coproduct introduced and studied in [7] (see

also [22]) and which corresponds to the operation of substitution in the

theory of B–series. This last coproduct involves suppression of edges on a

given tree and a notion of quotient tree which is the one that was to be

conveniently generalized to partial orders and finally to quasi–orders in the

present text.

In fact, as mentioned e.g. in the paper [11], the natural operations +, ×, ◦

on (ordinary) moulds and armoulds can be extended to moulds associ-

ated to sequences with a general partial order, the name ormoulds being

coined for such objects by J. Ecalle. An ormould M ♯, with values in the

commutative algebra A, and indexed by elements of a semi–group Ω, is a

collection of elements of A indexed by orsequences ω♯, namely sequences

ω = (ω1, . . . , ωr) of elements of Ω endowed with an order on the labelling

set [r]. It is indeed possible to give ([10]) quite natural definitions for the

product and composition product of ormoulds, involving the concept of

“orderable partition” of a poset and the general study of ormoulds with

Hopf algebraic techniques will be the object of a separate article.

All these definitions, constructions, symmetries and operations on moulds

can in fact be applied to quasi–posets, yielding very natural definitions of

a product and a composition product on sequences of elements with a

quasi order on the labelling sets ( “quasi–ormoulds”). Eventually, when the

quasi–ormoulds are interpreted as characters, the product corresponds to

the external coproduct on H and HT and the composition product yields

the internal coproduct that we introduce and describe in the present text.

This paper is organized as follows: after some background material on

finite topological spaces, we introduce the notion of quotient of a topology

T on a finite set X by another topology T ′ finer than T . The “quotient

topology” T /T ′ thus obtained lives on the same set. We introduce the re-

lation #≺ on the topologies on X defined by T ′
#≺ T if and only if T ′ is

finer than T and fulfills the technical condition of “T -admissibility” given

ANNALES DE L’INSTITUT FOURIER
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in Definition 2.2. This enables us to give in Section 3.1 the “internal” co-

product:

(1.1) Γ(T ) =
∑

T ′ #≺ T

T ′ ⊗ T /T ′.

and prove its coassociativity. Each TX , where T is the linear species of finite

topological spaces, is thus endowed with a structure of (finite-dimensional)

pointed counital coalgebra. The species T has also a Hopf monoid structure

which we account for in Sections 3.2 and 3.3. A key result is Theorem 3.6,

which states that the internal coproduct Γ and the external coproduct ∆

are compatible.

In Section 4, we obtain from this result an extra internal coproduct on

the two Hopf algebras H and HT introduced in [15, 16]. The Hopf algebra

H is commutative and the two coproducts are compatible in it, in the sense

that (H, ·, ∆) is comodule-coalgebra on the bialgebra (H, ·, Γ).

Finally we define in Section 5 the set LT of linear extensions of a topology

T on a finite set X. These are ordered partitions of the set X subject to nat-

ural compatibility conditions with respect to the topology. It is well-known

that the species SC of set compositions admits a Hopf monoid structure and

an internal coproduct, the latter being dual to the Tits product [1, 2, 5, 6].

We recall these facts in some detail and we show (Theorem 5.6) that the

surjective species map L : T →→ SC defined by:

L(T ) :=
∑

C∈LT

C

respects both Hopf monoid structures as well as the internal coproducts.

As an application we give two surjective Hopf algebra maps λ : H →

→ QSym and Λ : HT →→ WQSym which moreover respect the internal

coproducts. The maps L, λ and Λ are analogues of the arborification map

of J. Ecalle [9, 12] from the Connes-Kreimer Hopf algebra of rooted forests

to the shuffle or quasi-shuffle Hopf algebra.
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2. Refinement and quotient topologies

2.1. Finite topological spaces and quasi-orders

Recall (see e.g. [29, 30]) that a topology on a finite set X is given by the

family T of open subsets of X subject to the following three axioms:

• ∅ ∈ T , X ∈ T ,

• The union of open subsets is an open subset,

• The intersection of a finite number of open subsets is an open subset.

The finiteness of X allows to consider only finite unions in the second

axiom, so that axioms 2 and 3 become dual to each other. In particular the

dual topology is defined by

(2.1) T := {X\Y, Y ∈ T }.

In other words, open subsets in T are closed subsets in T and vice-versa.

Any topology T on X defines a quasi-order (i.e. a reflexive transitive rela-

tion) denoted by 6T on X:

(2.2) x 6T y ⇐⇒ any open subset containing x also contains y.

Conversely, any quasi-order 6 on X defines a topology T6 given by its

upper ideals, i.e. subsets Y ⊂ X such that (y ∈ Y and y 6 z) ⇒ z ∈ Y .

Both operations are inverse to each other:

6T6
=6, T6T

= T .

Hence there is a natural bijection between topologies and quasi-orders on

a finite set X.

Any quasi-order (hence any topology T ) on X gives rise to an equivalence

class:

(2.3) x ∼T y ⇐⇒ (x 6T y and y 6T x).

This equivalence relation is trivial if and only if the quasi-order is a (par-

tial) order, which is equivalent to the fact that the topology T is T0. Any

topology T on X defines a T0 topology on the quotient X/ ∼T , correspond-

ing to the partial order induced by the quasi-order 6T . Hence any finite

topological set can be represented by the Hasse diagram of its T0 quotient.

ANNALES DE L’INSTITUT FOURIER
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Figure 2.1. A finite topological space with 10 elements and 4 equiva-

lence classes

2.2. Refinements and quotient topologies

Let T and T ′ be two topologies on a finite set X. We say that T ′ is

finer than T , and we write T ′ ≺ T , when any open subset for T is an

open subset for T ′. This is equivalent to the fact that for any x, y ∈ X,

x 6T ′ y ⇒ x 6T y.

The quotient T /T ′ of two topologies T and T ′ with T ′ ≺ T is defined

as follows: the associated quasi-order 6T /T ′ is the transitive closure of the

relation R defined by:

(2.4) xRy ⇐⇒ (x 6T y or y 6T ′ x).

Note that, contrarily to what is usually meant by “quotient topology”,

T /T ′ is a topology on the same finite space X as the one on which T

and T ′ are given. The definitions immediately yield compatibility of the

quotient with the involution, i.e.

(2.5) T /T ′ = T
/

T ′.

Examples.

(1) If D is the discrete topology on X, for which any subset is open,

the quasi-order 6D is nothing but x 6D y ⇔ x = y, and then

T /D = T .

(2) For any topology T , the quotient T /T has the same connected

components than T , and the restriction of T /T to any connected

component is the coarse topology. In other words, for any x, y ∈ X,

x and y are in the same connected component for T if and only if

x 6T /T y, which is also equivalent to x ∼T /T y.

Lemma 2.1. — Let T ′′ ≺ T ′ ≺ T be three topologies on X. Then

T ′/T ′′ ≺ T /T ′′, and we have the following equality between topologies

TOME 67 (2017), FASCICULE 3



918 Frédéric FAUVET, Loïc FOISSY & Dominique MANCHON

on X:

(2.6) T /T ′ = (T /T ′′)
/

(T ′/T ′′)

Proof. — We compare the associated quasi-orders. The first assertion is

obvious. For x, y ∈ X we write xRy for (x 6T y or y 6T ′ x), and xQy for

(x 6T /T ′′ y or y 6T ′/T ′′ x). We have x 6T /T ′ y if and only if there exist

a1, . . . , ap ∈ X such that

xRa1R · · · RapRy.

On the other hand,

x 6
(T /T ′′)

/
(T ′/T ′′)

y ⇐⇒ ∃b1, . . . , bq ∈ X, xQb1Q · · · QbqQy

⇐⇒ ∃c1, . . . , cr ∈ X, xR̃c1R̃ · · · R̃crR̃y,

with

aR̃b ⇐⇒ (a 6T b or b 6T ′′ a) or (b 6T ′ a or a 6T ′′ b)

⇐⇒ a 6T b or b 6T ′ a

⇐⇒ aRb.

Hence,

x 6
(T /T ′′)

/
(T ′/T ′′)

y ⇐⇒ x 6T /T ′ y. �

Definition 2.2. — Let T ′ ≺ T be two topologies on X. We will say

that T ′ is T -admissible if

• T ′
|Y

= T |Y
for any subset Y ⊂ X connected for the topology T ′,

• For any x, y ∈ X, x ∼T /T ′ y ⇐⇒ x ∼T ′/T ′ y.

In particular, T is T -admissible. We write T ′
#≺ T when T ′ ≺ T and T ′

is T -admissible. Note that the reverse implication in the second axiom is

always true for T ′ ≺ T . It follows easily from (2.5) that T ′
#≺ T if and only

if T ′ #≺ T .

Lemma 2.3. — If T ′
#≺ T , then we have for any x, y ∈ X:

x ∼T ′ y ⇐⇒ x ∼T y.

Proof. — The direct implication is obvious. Conversely, if x ∼T y then

x ∼T /T ′ y, hence x ∼T ′/T ′ y, which means that x and y are in the same

T ′-connected component. The restrictions of T and T ′ on this component

coincide, hence x ∼T ′ y . �

Lemma 2.4. — If T ′ ≺ T , the connected components of T /T ′ are the

same as those of T .

ANNALES DE L’INSTITUT FOURIER
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Proof. — The connected components of T , resp. T /T ′, are nothing but

the equivalence classes for T /T , resp.(T /T ′)
/

(T /T ′). These two topologies

coincide according to Lemma 2.1. �

Proposition 2.5. — The relation #≺ is transitive.

Proof. — Let T ′′ ≺ T ′ ≺ T be three topologies on X. Suppose that T ′′

is T ′-admissible, and that T ′ is T -admissible. If Y ⊂ X is T ′′-connected,

it is also T ′-connected, hence T ′′
|Y

= T ′
|Y

= T |Y
. Now let x, y ∈ X with

x ∼T /T ′′ y. By definition of the transitive closure, there exist a1, . . . , ap

and b1, . . . , bp in X such that

x 6T a1, b1 6T a2, . . . , bp 6T y

and ai >T ′′ bi for i = 1, . . . , p. We also have ai >T ′ bi for i = 1, . . . , p

because T ′′ ≺ T ′. Hence,

x ∼T /T ′ a1 ∼T /T ′ b1 ∼T /T ′ · · · ∼T /T ′ ap ∼T /T ′ bp ∼T /T ′ y,

from which we get:

x ∼T ′/T ′ a1 ∼T ′/T ′ b1 ∼T ′/T ′ · · · ∼T ′/T ′ ap ∼T ′/T ′ bp ∼T ′/T ′ y,

hence x and y are in the same T ′-connected component. Using that the

restrictions of T and T ′ on this component coincide, we get x ∼T ′/T ′′ y.

From T ′
#≺ T we get then x ∼T ′′/T ′′ y. This ends up the proof of Proposi-

tion 2.5. �

Lemma 2.6. — If T ′′
#≺ T ′

#≺ T , then T ′/T ′′
#≺ T /T ′′.

Proof. — Let x, y ∈ X with x ∼(T /T ′′)/(T ′/T ′′) y. Then x ∼T /T ′ y ac-

cording to Lemma 2.1, hence x ∼T ′/T ′ y, hence x ∼(T ′/T ′′)/(T ′/T ′′) y

applying Lemma 2.1 again. �

Proposition 2.7. — Let T and T ′′ be two topologies on X. If T ′′
#≺ T ,

then T ′ 7→ T ′/T ′′ is a bijection from the set of topologies T ′ on X such

that T ′′
#≺ T ′

#≺ T , onto the set of topologies U on X such that U #≺ T /T ′′.

Proof. — Given U #≺ T /T ′′, we have to prove the existence of a unique

T ′ such that T ′′
#≺ T ′

#≺ T and U = T ′/T ′′. According to Lemma 2.4, the

connected components of T ′ must be those of U . The topologies T ′ and T

must coincide on each of these components, which uniquely defines T ′.

Let us now check T ′′
#≺ T ′

#≺ T : if x 6T ′ y, then x and y are in the same

T ′-connected component, on which T and T ′ coincide. Hence x 6T y,

which means T ′ ≺ T . Now suppose x 6T ′′ y. Then x 6T y, which implies

x 6T /T ′′ y, which in turn implies x 6(T /T ′′)/U y. The latter is equivalent

to x 6U/U y, as well as to x 6T ′/T ′ y. In other words, x and y are in

TOME 67 (2017), FASCICULE 3
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the same T ′-connected component. Moreover, since x 6T y we also have

x 6T ′ y by definition of T ′. This proves T ′′ ≺ T ′.

If x 6U y, it means that x and y are in the same U-connected component,

and moreover x 6T /T ′′ y, because U #≺ T /T ′′. By definition of the transitive

closure, there exist a1, . . . , ap and b1, . . . , bp in X such that

(2.7) x 6T a1, b1 6T a2, . . . , bp 6T y

and ai >T ′′ bi for i = 1, . . . , p. In particular, ai ∼T /T ′′ bi, hence:

x ∼T /T ′′ a1 ∼T /T ′′ b1 ∼T /T ′′ a2 ∼T /T ′′ · · · ∼T /T ′′ bp ∼T /T ′′ y

which immediately yields:

x ∼(T /T ′′)/U a1 ∼(T /T ′′)/U b1 ∼(T /T ′′)/U a2 ∼(T /T ′′)/U · · ·

∼(T /T ′′)/U bp ∼(T /T ′′)/U y

since T /T ′′ ≺ (T /T ′′)/U . Now using U #≺ T /T ′′ again, we get

x ∼U/U a1 ∼U/U b1 ∼U/U a2 ∼U/U · · · ∼U/U bp ∼U/U y.

Hence all the chain is included in the same U-connected component. By

definition of T ′ we can then rewrite (2.7) as:

(2.8) x 6T ′ a1, b1 6T ′ a2, . . . , bp 6T ′ y

with ai >T ′′ bi for i = 1, . . . , p, which means x 6T ′/T ′′ y.

Conversely, if x 6T ′/T ′′ y, then x and y are in the same U-component

according to the definition of T ′, and (2.8) implies (2.7). Hence x 6T /T ′′ y,

hence x 6U y. We have then:

(2.9) U = T /T ′.

To finish the proof, we have to show T ′
#≺ T and T ′′

#≺ T ′. Any T ′-connected

subset Y ⊂ X is also U-connected, hence the restrictions of T and T ′ on

Y coincide. Similarly, the restrictions of T ′ and T ′′ on any T ′′-connected

subset coincide. If x ∼T /T ′ y, then x ∼(T /T ′′)/(T ′/T ′′) y, which means

x ∼(T /T ′′)/U y, which in turn yields x ∼U/U y, i.e. x ∼T ′/T ′ y. Hence

T ′
#≺ T . Finally, if x ∼T ′/T ′′ y, then x ∼T /T ′′ y, hence x ∼T ′′/T ′′ y, which

yields T ′′
#≺ T ′. This ends up the proof of Proposition 2.7. �

3. Algebraic structures on finite topologies

The collection of all finite topological spaces shows very rich algebraic

features, best viewed in the linear species formalism. We describe a com-

mutative product, an“internal” coproduct and an “external” coproduct, as

well as the interactions between them.

ANNALES DE L’INSTITUT FOURIER
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3.1. The coalgebra species of finite topological spaces

Recall that a linear species is a contravariant functor from the category

of finite sets with bijections into the category of vector spaces(1) (on some

field K). The species T of topological spaces is defined as follows: TX is

the vector space freely generated by the topologies on X. For any bijection

ϕ : X −→ X ′, the isomorphism Tϕ : TX′ −→ TX is defined by the obvious

relabelling:

Tϕ(T ) := {ϕ−1(Y ), Y ∈ T }

for any topology T on X ′. For any finite set X, let us introduce the co-

product Γ on TX defined as follows:

(3.1) Γ(T ) =
∑

T ′ #≺ T

T ′ ⊗ T /T ′.

Example. — If X = E ⊔ F = A ⊔ A ⊔ C are two partitions of X:

Γ( qX ) = qX ⊗ qX ,

Γ( q
q

E
F

) = q

q

E
F ⊗ qX + qE qF ⊗ q

q

E
F

Γ( qE qF ) = qE qF ⊗ qE qF

Γ( q

qq

∨A

CB
) = q

qq

∨A

CB
⊗ qX + q

q

A
B
qC ⊗ q

q

A ⊔ B
C

+ q

q

A
C
qB ⊗ q

q

A ∪ C
B

+ qA qB qC ⊗ q

qq

∨A

CB

Γ( q
q

q

A
B
C

) = q

q

q

A
B
C

⊗ qX + q

q

A
B
qC ⊗ q

q

A ⊔ B
C

+ qA q

q

B
C ⊗ q

q

A
B ⊔ C

+ qA qB qC ⊗ q

q

q

A
B
C

Γ(
q

∧qq A

B C ) =
q

∧qq A

B C ⊗ qX + q

q

B
A
qC ⊗ q

q

C
A ⊔ B

+ q

q

C
A
qB ⊗ q

q

B
A ⊔ C

+ qA qB qC ⊗
q

∧qq A

B C

Γ( q
q

A
B
qC ) = q

q

A
B
qC ⊗ qA ⊔ B qC + qA qB qC ⊗ q

q

A
B
qC

Γ( qA qB qC ) = qA qB qC ⊗ qA qB qC

3.1.1. The coalgebra structure

Theorem 3.1. — The coproduct Γ is coassociative.

(1) Contravariance yields actions of the permutation groups on the right. It is a pure
matter of convention: [1] prefers the covariant setting.
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Proof. — For any topology T on X we have:

(3.2) (Γ ⊗ Id)Γ(T ) =
∑

T ′′ #≺ T ′ #≺ T

T ′′ ⊗ T ′/T ′′ ⊗ T /T ′,

whereas

(3.3) (Id ⊗Γ)Γ(T ) =
∑

T ′′ #≺ T ′

∑

U #≺ T ′/T ′′

T ′′ ⊗ U ⊗ (T /T ′′)
/

U .

The result then comes from Lemmas 2.5 and 2.1, and from Proposition 2.7.

�

3.1.2. Grading and counit

Let X be a finite set. Given any topology T on X, we introduce d(T )

as the number of equivalence classes minus the number of connected com-

ponents of T . It is easy to see that this grading makes (TX , Γ) a finite-

dimensional graded coalgebra. The degree zero topologies in TX are pre-

cisely the topologies TP where P is a partition of X, defined as the product

of the coarse topologies on each block of P. In other words, d(T ) = 0 if,

and only if, 6T is an equivalence. The maximum possible degree |X| − 1 is

reached for connected T0 topologies. For any topology T on X, there exists

a unique degree zero topology T ′
#≺ T , namely the topology T ′ such that

6T ′=∼T ; moreover, T /T ′ = T . The unique topology T ′′ such that T /T ′′

is of degree zero is T ′′ = T .

Lemma 3.2. — The group-like elements in (TX , Γ) are the degree zero

topologies.

Proof. — Any group-like element of TX is of degree zero, and it is easy

to check that any degree zero topology is group-like. A degree zero element

of TX is a finite linear combination T =
∑

λT T of degree zero topologies.

It is group-like if and only if λT λT ′ = 0 for T 6= T ′ and λ2
T = λT , and

T 6= 0. Hence there is a degree zero topology T such that λT ′ = 0 for

T ′ 6= T and λT = 1, hence T = T . �

The linear form εX on TX defined on the basis of topologies by εX(T ) = 1

if T is group-like and ε(T ) = 0 otherwise is a counit. The homogeneous

component of degree zero elements is the coradical of the coalgebra TX .

The involution T 7→ T obviously extends linearly to a coalgebra involution

on TX . Any relabelling induces an involutive coalgebra isomorphism in a

functorial way. To summarize:

Corollary 3.3. — T is a species in the category of counital pointed

coalgebras with involution.
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3.2. The monoid structure

A commutative monoid structure ([1, Chapter 8], [2, Paragraph 2.3]) on

the species of finite topologies is defined as follows: for any pair X1, X2 of

finite sets we introduce

m : TX1
⊗ TX2

−→ TX1⊔X2

T1 ⊗ T2 7−→ T1T2,

where T1T1 is characterized by Y ∈ T1T2 if and only if Y ∩ X1 ∈ T1 and

Y ∩X2 ∈ T2. The notation ⊔ stands for disjoint union, and the unit is given

by the unique topology on the empty set.

Proposition 3.4. — The species coproduct Γ and the product are com-

patible, i.e. for any pair X1, X2 of finite sets the following diagram com-

mutes:

TX1 ⊗ TX2

m //

Γ⊗Γ

��

TX1⊔X2

Γ

��
TX1

⊗ TX1
⊗ TX2

⊗ TX2

τ2,3

$$

TX1⊔X2
⊗ TX1⊔X2

TX1
⊗ TX2

⊗ TX1
⊗ TX2

m⊗m

<<

Proof. — Let T1, resp. T2 be a topology on X1, resp. X2. Let U1 #≺ T1 and

U2 #≺ T2. Then U1U2 #≺ T1T2. Conversely, any topology U on X1 ⊔ X2 such

that U #≺ T1T2 can be written U1U2 with Ui = U|Xi

for i = 1, 2, and we have

Ui #≺ Ti. We have then:

Γ(T1T2) =
∑

U #≺ T1T2

U ⊗ (T1T2)/U

=
∑

U1 #≺ T1
U2 #≺ T2

U1U2 ⊗ (T1/U1)(T2/U2)

= Γ(T1)Γ(T2). �
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3.3. The external coproduct

For any topology T on a finite set X and for any subset Y ⊂ X, we

denote by T |Y
the restriction of T to Y . It is defined by:

T |Y
= {Z ∩ Y, Z ∈ T }.

Restriction and taking quotients commute: for any subset Y ⊂ X and for

any T ′
#≺ T we have T ′

|Y
#≺ T |Y

and:

(3.4) (T /T ′)|Y
= T |Y

/
T ′

|Y
.

The external coproduct is defined on TX as follows:

∆ : TX −→
⊕

Y ⊂X

TX\Y ⊗ TY

T 7−→
∑

Y ∈T

T |X\Y
⊗ T |Y

.

Proposition 3.5. — The external coproduct is coassociative and mul-

tiplicative, i.e. the two following diagrams commute:

TX
∆ //

∆

��

⊕

Y ⊂X

TX\Y ⊗ TY

I⊗∆

��⊕

Z⊂X

TX\Z ⊗ TZ
∆⊗I

//
⊕

Z⊂Y ⊂X

TX\Y ⊗ TY \Z ⊗ TZ

and

TX1 ⊗ TX2

m //

∆⊗∆

��

TX1⊔X2

∆

��⊕

Y1⊂X1
Y2⊂X2

TX1\Y1
⊗ TY1 ⊗ TX2\Y2

⊗ TY2

τ2,3

%%

⊕

Y ⊂X1⊔X2

T(X1⊔X2)\Y ⊗ TY

⊕

Y1⊂X1
Y2⊂X2

TX1\Y1
⊗ TX2\Y2

⊗ TY1 ⊗ TY2

m⊗m

99
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Proof. — we have:

(3.5) (∆ ⊗ I)∆(T ) =
⊕

Z∈T , Ỹ ∈T |X\Z

T |X\Z⊔Ỹ
⊗ T |Ỹ

⊗ T |Z

and

(3.6) (I ⊗ ∆)∆(T ) =
⊕

Y,Z∈T , Z⊂Y

T |X\Y
⊗ T |Y \Z

⊗ T |Z

Coassociativity then comes from the obvious fact that (Ỹ , Z) 7→ Ỹ ⊔ Z is

a bijection from the set of pairs (Ỹ , Z) with Z ∈ T and Ỹ ∈ T |X\Z
, onto

the set of pairs (Y, Z) of elements of T subject to Z ⊂ Y . The inverse

map is given by (Y, Z) 7→ (Y ∩ X \ Z, Z). The multiplicativity property

∆(T1T2) = ∆(T1)∆(T2) comes straightforwardly from the very definition

of the topology T1T2 on the disjoint union X1 ⊔ X2. �

Theorem 3.6. — The internal and external coproducts are compatible,

in the sense that the following diagram commutes for any finite set X:

TX
Γ //

∆

��

TX ⊗ TX

I⊗∆

��⊕

Y ⊂X

TX\Y ⊗ TY

Γ⊗Γ
$$

⊕

Y ⊂X

TX ⊗ TX\Y ⊗ TY

⊕

Y ⊂X

TX\Y ⊗ TX\Y ⊗ TY ⊗ TY

m1,3

88

Proof. — For any T ∈ TX we have:

(I ⊗ ∆) ◦ Γ(T ) = (I ⊗ ∆)
∑

U #≺ T

T ⊗ T /U

=
∑

U #≺ T

∑

Y ∈T /U

U ⊗ (T /U)|X\Y
⊗ (T /U)|Y

=
∑

U #≺ T

∑

Y ∈T /U

U ⊗ T |X\Y

/
U|X\Y

⊗ T |Y

/
U|Y

,(3.7)
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whereas

m1,3 ◦ (Γ ⊗ Γ) ◦ ∆(T ) = m1,3 ◦ (Γ ⊗ Γ)
∑

Z∈T

T |X\Z
⊗ T |Z

=
∑

Z∈T

∑

U1 #≺ T |X\Z
U2 #≺ T |Z

U1U2 ⊗ T |X\Z

/
U1 ⊗ T |Z

/
U2.(3.8)

Now, Y ∈ T /U means that Y is a final segment for 6T /U , i.e. for any

y ∈ Y , if z 6T /U y, then z ∈ Y . A fortiori z ∈ Y if z 6U y or y 6U z. Then

Y is both a final and initial segment for 6U , i.e. both closed and open for

U , which yields U = U1U2, with U1 = U|X\Y
and U2 = U|Y

.

Conversely, if U = U|X\Y
U|Y

, then for y ∈ Y and any z ∈ X such that

y 6U z or z 6U y, we have z ∈ Y . By iteration we have y 6U/U z ⇒ z ∈ Y .

But U #≺ T , hence y 6T /U z ⇒ z ∈ Y , which means Y ∈ T /U . This proves

that (3.7) and (3.8) coincide. �

4. Two commutative bialgebra structures

Consider the graded vector space:

(4.1) H = K(T) =
⊕

n>0

Hn,

where H0 = k.1, and where Hn is the linear span of topologies on {1, . . . , n}

when n > 1, modulo the action of the symmetric group Sn. The vector

space H can be seen as the quotient of the species T by the “forget the

labels” equivalence relation: T ∼ T ′ if T (resp. T ′) is a topology on a finite

set X (resp. X ′), such that there is a bijection from X onto X ′ which is

a homeomorphism with respect to both topologies. This equivalence re-

lation is compatible with the product and both coproducts introduced in

Section 3, giving rise to a product · and two coproducts Γ and ∆ on H,

the first coproduct being internal to each Hn. The functor K from linear

species to graded vector spaces thus obtained is intensively studied in [1,

Chapter 15] under the name “bosonic Fock functor”. This naturally leads

to the following:

Theorem 4.1. — The graded vector space H is endowed with the fol-

lowing algebraic structures:

• (H, ·, ∆) is a commutative graded connected Hopf algebra.
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• (H, ·, Γ) is a commutative bialgebra, graded by the degree d intro-

duced at the end of § 3.1.

• (H, ·, ∆) is a comodule-coalgebra on (H, ·, Γ). More precisely the

following diagram of unital algebra morphisms commutes:

H
Γ //

∆

��

H ⊗ H

I⊗∆

��
H ⊗ H

Γ⊗Γ ''

H ⊗ H ⊗ H

H ⊗ H ⊗ H ⊗ H
m1,3

66

Remark 4.2. — The Hopf algebra of finite topologies HT of [15] can be

seen as K(T) where K is the “full Fock functor” of [1, Chapter 15]. It is

closely related to the Hopf algebra H above, but the product is noncom-

mutative due to renumbering. In fact, Tn stands for the set of topologies

on [n] = {1, . . . , n}, and T is the (disjoint) union of the Tn’s for n > 0.

For T ∈ Tn and T ′ ∈ Tn′ , the product T T ′ is the topology on [n + n′]

the open sets of which are Y ⊔ (Y ′ + n), where Y ∈ T and Y ′ ∈ T ′. The

two topologies T T ′ and T ′T are not equal, though homeomeorphic. The

“joint” product ↓, for which the open sets of T ↓ T ′ are the open sets Y ′

of T ′ and the sets Y ⊔ {n + 1, . . . , n + n′} with Y ∈ T , is also associative.

The empty set ∅ is the common unit for both products.

For any totally ordered finite set E of cardinality n, let us denote by

Std : E → [n] the standardization map, i.e. the unique increasing bijection

from E onto [n]. This map yields a bijection form P(E) onto P([n]) also

denoted by Std. The coproduct is defined by:

(4.2) ∆(T ) =
∑

Y ∈T

Std(T |[n]\Y
) ⊗ Std(T |Y

).

Proposition 4.3 ([15] Proposition 6). — Let HT be the graded vector

space freely generated by the Tn’s. Then

(1) (HT, ·, ∆) is a graded Hopf algebra,

(2) (HT, ↓, ∆) is a graded infinitesimal Hopf algebra,

(3) The involution T 7→ T is a morphism for the product · and an

antimorphism for the coproduct ∆.

The internal coproduct Γ on each homogeneous component of HT does

not interact so nicely with the external coproduct ∆ as it does in the
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commutative setting because of the shift and the standardization. Here is

an example:

m1,3 ◦ (Γ ⊗ Γ) ◦ ∆( q
q

3

1, 2 )

= q

q

3

1, 2 ⊗ q1, 2, 3 ⊗ 1 + q1, 2 q3 ⊗ q

q

3

1, 2 ⊗ 1 + q

q

3

1, 2 ⊗ 1 ⊗ q1, 2, 3

+ q1, 2 q3 ⊗ 1 ⊗ q

q

3

1, 2 + q1 q2, 3 ⊗ q1 ⊗ q1, 2 ,

(Id ⊗ ∆) ◦ Γ( q
q

3

1, 2 )

= q

q

3

1, 2 ⊗ q1, 2, 3 ⊗ 1 + q1, 2 q3 ⊗ q

q

3

1, 2 ⊗ 1 + q

q

3

1, 2 ⊗ 1 ⊗ q1, 2, 3

+ q1, 2 q3 ⊗ 1 ⊗ q

q

3

1, 2
+ q1, 2 q3 ⊗ q1 ⊗ q1, 2 .

Let us conclude this section with the description of the antipodes of

(H, ·, ∆) and (HT, ·, ∆). Note that both (H, ·, Γ) and (HT, ·, Γ) have non

invertible group-like elements, so are not Hopf algebras.

Proposition 4.4. — For all finite topology T on X, in (H, ·, ∆):

S(T ) =
n∑

k=0

(−1)k+1
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

.(4.3)

Proof. — We denote by S′ the endomorphism of H defined by the right

side of (4.3). Then S′(1) = 1, so Id ∗ S′(1) = 1. For any nonempty T :

(Id ∗ S′)(T )

= S′(T ) + T +
∑

∅(X1(X
X1∈T

T|X\X1
S(T|X)

= S′(T ) + T +

n∑

k=1

(−1)k
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

= S′(T ) +

n∑

k=0

(−1)k
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

= 0.

So Id ∗ S′(T ) = ε(T )1 for all T : S′ is indeed the antipode of H. �

Similarly, in (HT, ·, ∆), if T is a topology on [n] = {1, . . . , n}:

(4.4) S(T ) =

n∑

k=0

(−1)k+1
∑

∅(X1(...(Xk([n]
X1,...,Xk∈T

Std(T|[n]\Xk
) Std(T|Xk\Xk−1

)

. . . Std(T|X2\X1
) Std(T|X1

).
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For example:

S( q
q

q

1
2

3

) = − q

q

q

1
2

3

+ q1 q

q

2

3 + q

q

1

2
q3 − q1 q2 q3 ,

S( q
q

q

3
2

1

) = − q

q

q

3
2

1

+ q1 q

q

3

2
+ q

q

2

1
q3 − q1 q2 q3 .

5. Linear extensions and set compositions

5.1. Two Hopf algebras on words

We first recall some facts on two well-known Hopf algebras. Let us start

with the Hopf algebra of quasi-symmetric functions [19]. A presentation

close to ours, including the internal coproduct, can be found in [3, Para-

graph 11].

Let X be a denumerable well-ordered alphabet. A map ρ : x 7→ |x| from

X into N>0 = {1, 2, . . .} is a rank if |x + 1| > |x| for any x ∈ X (where

x + 1 stands for the successor of x, i.e. the smallest element bigger that x),

and if the preimage ρ−1(n) is finite for each n ∈ N>0. Let Q[[X]] be the

algebra of formal series generated by X, i.e. formal sums:

(5.1)
∑

P finite subset of X

∑

ν:P →N>0

λP,ν

∏

x∈P

xν(x),

where the coefficients λP,ν belong to the base field K. The algebra Q[[X]]

is complete for the topology induced by the decreasing filtration given by

the weighted valuation: to be precise, a monomial
∏

x∈P xν(x) is of degree∑
x∈P ν(x) and of weight

∑
x∈P |x|ν(x), and the weighted valuation of the

series (5.1) in Q[[X]] is the minimal weight of a monomial arising with a

nonvanishing coefficient. The topology on Q[[X]] is as usual given by the

distance:

d(f, g) = 2− val(f−g),

and one can easily show that it does not depend on the choice of the rank

map, due to the fact that for any sequence x1, x2, x3, . . . of distinct letters

of X, we have |xk| −→
k→+∞

+∞ for any choice of rank.

A formal series f ∈ Q[[X]] is quasi-symmetric if for any x1 < . . . < xk and

y1 < . . . < yk in X, for any a1, . . . , ak > 1, the coefficients of xa1
1 . . . xak

k and

of ya1
1 . . . yak

k in f are equal. The subalgebra of quasi-symmetric functions

on X will be denoted by QSym(X). For any composition (a1, . . . , ak), we

put:

M(a1,...,ak)(X) =
∑

x1<...<xk

xa1
1 . . . xak

k .
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The family (Mc(X)) indexed by compositions linearly spends QSym(X); if

X is infinite, this is a basis.

Let k, l, r be three nonnegative integers. We shall denote by QSh(k, l; r)

the set of surjections u : [k + l] −→−→ [k + l − r], such that u1 < · · · < uk and

uk+1 < · · · < uk+l−r. With this notation, for all compositions (c1, . . . , ck),

(ck+1, . . . , ck+l):

M(c1,...,ck)(X)M(ck+1,...,ck+l)(X) =
∑

r>0

∑

σ∈QSh(k,l;r)

M(cσ
1 ,...,cσ

k+l−r
)(X)

with cσ
j :=

∑

σi=j

ci (this sum contains one or two terms).

Let X and Y be two denumerable well-ordered alphabets. The alphabet

X ⊔ Y is also well-ordered, the elements of X being smaller than the ele-

ments of Y , and the alphabet X × Y is well-ordered by the lexicographic

order. If ρX and ρY are rank maps on X and Y respectively, we can define

rank maps on X ⊔ Y and on X × Y as follows:

ρX⊔Y (x) = ρX(x), ρX⊔Y (y) = ρY (y), ρX×Y (x, y) = ρX(x) + ρY (y)

for any x ∈ X and y ∈ Y . One can identify Q[[X ⊔ Y ]] with the completed

tensor product Q[[X]]⊗̂Q[[Y ]] by separation of variables: the unique unital

algebra morphism ι : Q[[X ⊔Y ]] → Q[[X]]⊗̂Q[[Y ]] such that ι(x) = x⊗1 and

ι(y) = 1 ⊗ y is an isomorphism.

Finally we embed Q[[X ×Y ]] into Q[[X]]⊗̂Q[[Y ]] also by separation of vari-

ables, by the unique unital algebra morphism  : Q[[X ×Y ]] → Q[[X]]⊗̂Q[[Y ]]

such that (x, y) = x ⊗ y. Now we have for any composition (c1, . . . , ck):

(1) ι
(
M(c1,...,ck)(X ⊔ Y )

)
= ι

(
k∑

i=0

M(c1,...,ci)(X)M(ci+1,...,ck)(Y )

)

=

k∑

i=0

M(c1,...,ci)(X) ⊗ M(ci+1,...,ck)(Y ),

(2) 
(
M(c1,...,ck)(X × Y )

)
T

= 

(
∑

i1+···+ip=k

M(c1,...,ci1 )(Y )

. . . M(ci1+···+ip−1+1,...,ci1+···+ip )(Y )MC1,...,Cp
(X)

)

=
∑

i1+···+ip=k

M(c1,...,ci1 )(Y )

. . . M(ci1+···+ip−1+1,...,ci1+···+ip )(Y ) ⊗ MC1,...,Cp
(X)

ANNALES DE L’INSTITUT FOURIER



QUASI-ORMOULDS 931

with C1 = c1 + · · · + ci1
, . . . , Cp = ci1+···+ip−1+1 + · · · + ci1+···+ip

. With

these identifications at hand, we define two coproducts on QSym(X) by:

∆ϕ := ϕ(X ⊔ Y ),

Γϕ := ϕ(X × Y ),

with the shorthand notations ϕ(X ⊔ Y ) := ι
(
ϕ(X ⊔ Y )

)
and ϕ(X × Y ) :=


(
ϕ(X × Y )

)
. We thus obtain a Hopf algebra (QSym, ·, ∆) together with

an extra internal coproduct Γ, with a basis (Mc) indexed by compositions:

M(c1,...,ck)M(ck+1,...,ck+l) =
∑

r>0

∑

σ∈QSh(k,l;r)

M(cσ
1 ,...,cσ

k+l−r
),

∆(M(c1,...,ck)) =

k∑

i=0

M(c1,...,ci) ⊗ M(ci+1,...,ck),

Γ(M(c1,...,ck))

=
∑

i1+···+ip=k

M(c1,...,ci1 ) . . . M(ci1+···+ip−1+1,...,ci1+···+ip ) ⊗ M(C1,...,Cp).

The construction of the Hopf algebra of packed words WQSym is simi-

lar. We now work in B = Q〈〈X〉〉, the algebra of noncommutative for-

mal series generated by X. Recall that a packed word is a surjective map

w : [k] ։ [max(w)], which we write as the word w = w1 . . . wk. Now let

w′ = x1 . . . xk be a monomial in B, i.e. a word of length k with letters in X,

and let supp w′ ⊂ X be the support of w′, i.e. the set of letters appearing in

w′. There is a unique bijective, increasing map f , from supp w′ to a set [m].

Then Pack(w′) is the packed word f(x1) . . . f(xk). For any packed word w,

we put:

Mw(X) =
∑

Pack(x1...xk)=w

x1 . . . xk ∈ B.

The subspace of B generated by these elements is a subalgebra of B, de-

noted by WQSym(X). Abstracting this, we obtain an algebra WQSym,

with a basis (Mw) indexed by the set of packed words. Its product is given

by:

MuMv =
∑

r>0

∑

w∈QSh(max(u),max(v);r)

Mw◦(uv[max(u)]),

where v[max(u)] is the word obtained from v by adding max(u) to each of

its letters. The disjoint union of alphabets makes it a Hopf algebra, with

the following coproduct:

∆(Mw) =

max(w)∑

k=0

Mw|{1,...,k}
⊗ MPack(w|{k+1,...,max(w)}),
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where for all set I, w|I is the word obtained by taking the letters of w be-

longing to I. The cartesian product of alphabets gives WQSym an internal

coproduct:

Γ(Mu) =
∑

i1+...+ip=max(u)

∑

r>0

∑

v∈QSh(i1,...,ip;r)

Mv◦u ⊗ M(1 . . . 1︸ ︷︷ ︸
i1

... p . . . p︸ ︷︷ ︸
ip

)◦u,

where QSh(i1, . . . , ip; r) stands for the set of surjective maps σ : [i1 + · · · +

ip] ։ [i1 + · · · + ip − r] which are increasing on each block {i1 + · · · + iq +

1, . . . , i1 + · · · + iq+1}. One can also write [5, Paragraph 5.2]:

Γ(Mu) =
∑

a∧b=u

Ma ⊗ Mb,

where ∧ is the Tits product of the surjections viewed as set compositions

of [n] ([6, Paragraph 2.3], see also [5, Remark 2] and Paragraph 5.2 below).

5.2. The coalgebra species of set compositions

We now give an account of the set composition species SC together with

its bimonoid structure in the category of coalgebra species. Applying the

functors K and K to SC will give QSym and WQSym respectively.

Definition 5.1. — [27] Let X be a finite set. A set composition or an

ordered partition of X is a finite sequence (X1, . . . , Xk) of finite sets such

that:

(1) For all 1 6 i 6 k, Xi 6= ∅.

(2) X = X1 ⊔ . . . ⊔ Xk.

For any finite space X, the space generated by the set of set compositions

of X will be denoted by SCX . This defines a species SC.

The Hilbert formal series of SC is given by Fubini numbers, sequence

A000670 of the OEIS.

We first give this species a structure of bialgebra in the category of

species.

Definition 5.2.

(1) Let Y ⊆ X be two finite sets and let C = (X1, . . . , Xk) be a set

composition on X. We put I = {i ∈ [k] | Xi ∩ Y 6= ∅} = {m1 <

. . . < ml}. The set composition C|Y of Y is:

C|Y = (Xm1 ∩ Y, . . . , Xml
∩ Y ).
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For any finite sets X, Y , recall the quasi-shuffle product [1, Para-

graph 10.1.6]:





SCX ⊗ SCY −→ SCX⊔Y

C ′ ⊗ C ′′ −→ C ′C ′′ =
∑

C, C|X =C′,C|Y =C′′

C.

(2) For any finite set X, we define a coproduct:

∆ :





SCX −→
⊕

Y ⊆X

SCX\Y ⊗ SCY

C = (X1, . . . , Xk) −→
k∑

i=0

(X1, . . . , Xi) ⊗ (Xi+1, . . . , Xk).

(3) For any finite set X, we define an internal coproduct Γ on SCX ,

making it a coassociative, counitary coalgebra by:

Γ((X1, . . . , Xk))

=
∑

i1+...+ip=k

(X1, . . . , Xi1
) . . . (Xi1+...+ip−1+1, . . . , Xi1+...+ip

)

⊗ (X1 ⊔ . . . ⊔ Xi1
, . . . , Xi1+...+ip−1+1 ⊔ . . . ⊔ Xi1+...+ip

).

Remark 5.3. — The Tits product ([6, Paragraph 2.3], [5, Paragraph 5.1],

[2, Paragraph 1.6]) of two set compositions C = (X1, . . . , Xk) and C ′ =

(X ′
1, . . . , X ′

l) of the same finite set X is defined by:

C∧C ′ = (X1∩X ′
1, ..., X1∩X ′

l , X2∩X ′
1, ..., X2∩X ′

l , . . . , Xk∩X ′
1, ..., Xk∩X ′

l).

The internal coproduct can then be written as:

Γ(C) =
∑

C1∧C2=C

C1 ⊗ C2.

Note that the Tits product is not commutative, although C ∧C ′ and C ′ ∧C

define the same underlying set partition. The Tits product of two packed

words v and w can also be defined as pack(v ×w) where v ×w is the biword

built up from v and w, and where the packing is taken with respect to the

lexicographic order. This is a particular case of the internal product on

parking functions, see [25, Section 4].
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Examples. — Let A, B, C be finite, nonempty sets.

(A)(B) = (A, B) + (B, A) + (A ⊔ B).

(A, B)(C) = (A, B, C)+(A, C, B)+(C, A, B)+(A, B ⊔ C)+(A ⊔ C, B).

(A)(B, C) = (A, B, C)+(B, A, C)+(B, C, A)+(A ⊔ B, C)+(B, A ⊔ C);

Γ((A)) = (A) ⊗ (A).

Γ((A, B)) = (A, B) ⊗ (A ⊔ B) + (A)(B) ⊗ (A, B)

= (A, B) ⊗ (A ⊔ B) + ((A, B) + (B, A) + (A ⊔ B)) ⊗ (A, B).

Γ((A, B, C)) = (A, B, C) ⊗ (A ⊔ B ⊔ C) + (A, B)(C) ⊗ (A ⊔ B, C)

+ (A)(B, C) ⊗ (A, B ⊔ C) + (A)(B)(C) ⊗ (A, B, C)

= (A, B, C) ⊗ (A ⊔ B ⊔ C)

+ ((A, B, C) + (A, C, B) + (C, A, B)

+ (A ⊔ C, B) + (A, B ⊔ C)) ⊗ (A ⊔ B, C)

+ ((A, B, C) + (B, A, C) + (B, C, A)

+ (A ⊔ B, C) + (B, A ⊔ C)) ⊗ (A, B ⊔ C)

+
(
(A, B, C) + (A, C, B) + (B, A, C) + (B, C, A)

+ (C, A, B) + (C, B, A) + (A ⊔ B, C) + (A ⊔ C, B)

+ (B ⊔ C, A) + (A, B ⊔ C) + (B, A ⊔ C) + (C, A ⊔ B)

+ (A ⊔ B ⊔ C)
)

⊗ (A, B, C).

Proposition 5.4. — SC is a Hopf monoid in the category of coalgebra

species.

This is already known: the Hopf monoid structure of SC appears in [2,

Paragraph 11.1], and the internal coproduct is dual to the Tits product.

We shall recover this result from Theorem 5.6 below, which will make the

coalgebra species Hopf monoid SC appear as a quotient of the coalgebra

species Hopf monoid T.

The counit of the coalgebra SCX is given by:

ε(C) =

{
1 if C = (X),

0 otherwise.

Applying the functors K and K, we obtain from SC two bialgebras with

an internal coproduct. First, it induces a bialgebra structure on the vector

space generated by the set compositions, up to a renumbering. For any set

composition C = (X1, . . . , Xk), we put type(C) = (|X1|, . . . , |Xk|). If C, C ′

are two set compositions, C and C ′ are equal up to a renumbering if, and
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only if, type(C) = type(C ′). So this bialgebra has a basis (Mc), indexed by

compositions, and direct computations shows this is QSym. Secondly, we

restrict ourselves to sets [n], n > 0; we identify any subset I ⊆ [n] with [|I|]

via the unique increasing bijection. Set compositions on [n] are identified

with packed words of length n, via the bijection:

{Packed words of length n} −→ SC[n]

u 7−→ (u−1(1), . . . , u−1(max(u))).

We obtain a bialgebra with a basis indexed by packed words, which is

precisely WQSym.

5.3. Linear extensions

Definition 5.5. — Let T ∈ TX and let C = (X1, . . . Xk) ∈ SCX . We

shall say that C is a linear extension of T if :

(1) For all i, j ∈ [k], for all x ∈ Xi, y ∈ Xj , x <T y =⇒ i < j.

(2) For all i, j ∈ [k], for all x ∈ Xi, y ∈ Xj , x ∼T y =⇒ i = j.

The set of linear extensions of T will be denoted by LT .

This notion of linear extension is used in [15], where it is related to

Stanley’s theory of P-partitions extended to finite topologies [26].

Theorem 5.6. — Let X be a finite set. We define:

L :
TX −→ SCX

T 7−→
∑

C∈LT

C.

Then L is a surjective morphism of bialgebras in the category of coalgebra

species, that is to say:

(1) For all finite sets X, Y , for all T ∈ TX , T ′ ∈ TY ,

L(T T ′) = L(T )L(T ′).

(2) For all finite set X, for all T ∈ TX ,

∆ ◦ L(T ) = (L ⊗ L) ◦ ∆(T ).

(3) For all finite set X, for all T ∈ TX ,

Γ ◦ L(T ) = (L ⊗ L) ◦ Γ(T ).
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Proof. —

First Step. — Let us prove the following lemma: if Y ⊆ X, T ∈ TX

and C ∈ LT , then C|Y ∈ LT|Y
.

We put C =(X1, . . . , Xk) and C|Y =(Xm1 ∩Y, . . . , Xml
∩Y )=(Y1, . . . , Yl).

Let i, j ∈ [l], x ∈ Yi, y ∈ Yj . If x <T |Y
y, then x <T y, so mi < mj , and

finally i < j. If x ∼T|Y
y, then x ∼T y, so mi = mj , and finally i = j.

Second Step. — We prove (1). Let T ∈ TX and T ′ ∈ TY . Let us prove

that:

LT T ′ = {C ∈ SCX⊔Y | C|X ∈ LT , C|Y ∈ LT ′}.

As T T ′
|X = T and T T ′

|Y = T ′, the first step implies that inclusion ⊆

holds. Moreover, if x <T T ′ y or x ∼T T ′ y in X ⊔ Y , then (x, y) ∈ X2 or

(x, y) ∈ Y 2, which implies the second inclusion. Consequently:

L(T T ′) =
∑

C, C|X ∈LT ,C|Y ∈LT ′

C

=
∑

C′∈LT

∑

C′′∈LT ′

∑

C, C|X =C′,C|Y =C′′

C

=
∑

C′∈LT

∑

C′′∈LT ′

C ′C ′′

= L(T )L(T ′).

Third Step. — We prove (2). Let T be a topology on a set X. We put:

A = {(Y, C1, C2) | Y ∈ T , C1 ∈ LT|X\Y
, C2 ∈ LT|Y

},

B = {(C, i) | C ∈ LT , 0 6 i 6 lg(C)},

which gives:

(L ⊗ L) ◦ ∆(T ) =
∑

(Y,C1,C2)∈A

C1 ⊗ C2,

∆ ◦ L(T ) =
∑

((X1,...,Xk),i)∈B

(X1, . . . , Xi) ⊗ (Xi+1, . . . , Xk).

We define two maps:

f :
A −→ B

(Y, (X1, . . . , Xk), (Xk+1, . . . , Xk+l)) 7−→ ((X1, . . . , Xk+l), k),

g :
B −→ A

((X1, . . . , Xk), i) 7−→ (Xi+1 ⊔ . . . ⊔ Xi, (X1, . . . , Xi), (Xi+1, . . . , Xk)).

Let us prove that f is well-defined. If (Y, C1, C2) ∈ A, we put C1 =

(X1, . . . , Xk), C2 = (Xk+1, . . . , Xk+l), and C = (X1, . . . , Xk+l). Let us
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prove that C ∈ LT T ′ . Let x ∈ Xi, y ∈ Xj . If x <T y, as Y is an open set

of T , there are only three possibilities:

• x, y ∈ Y . As C2 is a linear extension of T|Y , i < j.

• x, y ∈ X \ Y . As C1 is a linear extension of T|X\Y , i < j.

• x ∈ X \ Y and y ∈ Y . Then i 6 k < j.

If x ∼T y, as Y is an open set of T , so is a union of equivalence classes of

∼T , there are only two possibilities:

• x, y ∈ Y . As C2 is a linear extension of T|Y , i = j.

• x, y ∈ X \ Y . As C1 is a linear extension of T|X\Y , i = j.

So f(Y, C1, C2) ∈ B.

Let us prove that g is well-defined. If ((X1, . . . , Xk), i) ∈ B, we put

f((X1, . . . , Xk), i) = (Y, C1, C2). Y is an open set of T : let x ∈ Y , x ∈ X,

such that x 6T y. We assume that x ∈ Xj , with j > i, and y ∈ Xk.

If x ∼T y, then j = k > i and y ∈ Y . If x <T y, then i 6 j < k, so

y ∈ Y . Moreover, C1 = (X1, . . . , Xi) = C|X\Y and C2 = (Xi+1, . . . , Xk) =

C|Y . By the lemma of the first point, C1 ∈ LT|X\Y
and C2 ∈ LT|Y

. So

(Y, C1, C2) ∈ A.

Moreover:

f ◦ g((X1, . . . , Xk), i) = f(Xi+1 ⊔ . . . ⊔ Xk, (X1, . . . , Xi), (Xi+1, . . . , Xk))

= ((X1, . . . , Xk), i);

g ◦ f(Y, C1, C2) = g(C1.C2, lg(C1))

= (Y, C1, C2).

So f and g are bijections, inverse one from each other. Consequently:

(L ⊗ L) ◦ ∆(T ) =
∑

(Y,C1,C2)∈A

C1 ⊗ C2

=
∑

((X1,...,Xk),i)∈B

(X1, . . . , Xi) ⊗ (Xi+1, . . . , Xk)

= ∆ ◦ L(T ).

Fourth Step. — Let A be the set of triples (C, (i1, . . . , ip), C ′) such that:

(1) C = (X1, . . . , Xk) and C ′ = (X ′
1, . . . , X ′

p) are set compositions of

X, of respective length k and p.

(2) For all j, ij > 0 and i1 + . . . + ip = k.

(3) For all j,

C ′
|Xi1+...+ij−1+1⊔...⊔Xi1+...+ij

= (Xi1+...+ij−1+1, . . . , Xi1+...+ij
).
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Let B be the set of triples (T ′, C ′, C ′′) such that:

(1) T ′
#≺ T .

(2) C ′ is a linear extension of T ′.

(3) C ′′ is a linear extension of T /T ′.

Then:

Γ ◦ L(T ) =
∑

((X1,...,Xp),(i1,...,ip),C′)∈A

C ′ ⊗ (X1 ⊔ . . . ⊔ Xi1 , . . . ,

Xi1+...+ip−1+1 ⊔ . . . ⊔ Xi1+...+ip
),

(L ⊗ L) ◦ Γ(T ) =
∑

(T ,C,C′)∈B

C ′ ⊗ C ′′.

We now prove the following lemma: if (T , C ′, C ′′) ∈ B, with C ′′ =

(X ′′
1 , . . . , X ′′

q ), then:

T ′ = T|X′′
1

. . . T|X′′
q

.

We first show that for all i, T ′
|X′′

i

= T|X′′
i

. Let us assume that x, y ∈ X ′′
i ,

such that x 6T y. Then x 6T /T ′ y. If x <T /T ′ y, as C ′′ is a linear

extension of T /T ′, we would have x ∈ X ′′
a , y ∈ X ′′

b , with a < b: this is a

contradiction. So x ∼T /T ′ y. As T ′
#≺ T , x ∼T ′/T ′ y, so x and y are in the

same connected component Y of T ′. As T ′
#≺ T , x 6T|Y

y, so x 6T ′
|Y

y, so

x 6T ′ y. Conversely, if x 6T ′ y, as T ′ ≺ T , x 6T y.

Let x ∈ X ′′
i , y ∈ X ′′

j , with i < j. As C ′′ is a linear extension of T /T ′,

we do not have x ∼T /T ′ y, and, as T ′
#≺ T , we do not have x ∼T ′/T ′ y.

Consequently:

T ′ = T ′
|X′′

1
. . . T ′

|X′′
q

= T|X′′
1

. . . T|X′′
q

.

Fifth Step. — We prove (3). We define a map f : A −→ B by

f(C, (i1, . . . , ip), C ′) = (T ′, C ′, C ′′), where:

(1) C ′′ = (X1 ⊔ . . . ⊔ Xi1 , . . . , Xi1+...+ip−1+1 ⊔ . . . ⊔ Xi1+...+ip
).

(2) T ′ = T|X′′
1

. . . T|X′′
p

.

Let us prove that f is well-defined. First, T ′ ≺ T . If Y ⊆ X is connected

for T ′, then necessarily there exists a i, such that Y ⊆ X ′′
i . Then T ′

|Y =

(T ′
|X′′

i

)|Y = (T|X′′
i

)|Y = T|Y .

Let us assume that x ∼T /T ′ y. There exists a sequence of elements of x

such that:

x 6T x1 >T ′ y1 6T x2 >T ′ . . . 6T xr >T ′ y.
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If ya ∈ X ′′
j , as C is a linear extension of T , necessarily xa+1 ∈ X ′′

k ,

with k > j. If xa ∈ X ′′
j , as xa >T ′ ya, ya ∈ X ′′

j . Consequently, if

x ∈ X ′′
i , then x1, y1, . . . , xr, y ∈ X ′′

i ⊔ . . . X ′′
p . By symmetry of x and y,

x, x1, y1, . . . , xr, y ∈ X ′′
i . So, by restriction to X ′′

i :

x 6T ′ x1 >T ′ y1 6T ′ x2 >T ′ . . . 6T ′ xr >T ′ y.

This gives x ∼T ′/T ′ y: we finally obtain that T ′
#≺ T .

By the lemma of the first step, C|X′′
i

is a linear extension of T|X′′
i

, so, by

definition of A, C ′ is a linear extension of T|X′′
1

. . . T|X′′
p

= T ′.

Let us assume that x <T /T ′ y. Let i, j such that x ∈ X ′′
i , y ∈ X ′′

j . Up to

a change of x ∈ X ′′
i , y ∈ X ′′

j , we can assume that x <T y. If i = j, then by

restriction x <T ′ y, so x ∼T ′/T ′ y and finally x ∼T /T ′ y, as T ′
#≺ T : this is

a contradiction. Hence, i 6= j, and x <T y; as C is linear extension of T ,

necessarily i < j.

Let us assume that x 6T /T ′ y. Let i, j such that x ∈ X ′′
i , y ∈ X ′′

j . By

definition of 6T /T ′ , we can assume that x 6T y or x ∼T ′ y. In the first

case, as C is a linear extension of T , we have x ∈ Xa, y ∈ Xb, with a 6 b,

so i 6 j. In the second case, i = j. Consequently, if x ∼T /T ′ y, then i 6 j

and j 6 i, so i = j. We proved that C ′′ ∈ LT /T ′ .

We now consider the map g : B −→ A, defined by g(T ′, C ′, C ′′) =

(C, (i1, . . . , ip), C ′), with:

(1) C = C ′
|X′′

1
. . . C ′

|X′′
p

, if C ′′ = (X ′′
1 , . . . , X ′′

p ).

(2) For all j, ij = |X ′′
j |.

Let us prove that g is well-defined. Let us assume x <T y, with x ∈ X ′′
i ,

y ∈ X ′′
j . Let a, b such that x ∈ Xa, y ∈ Xb, if C = (X1, . . . , Xk). If i = j,

then by the lemma of the fourth step, x <T ′ y. As C ′ is a linear extension

of T ′, x ∈ C ′
c, y ∈ C ′

d, with c < d. By definition of C, a < b. If i 6= j,

then x 6T /T ′ y; as C ′′ is a linear extension of T /T ′, i < j, so a < b.

If x ∼T y, a similar argument proves that x, y ∈ Xa for a certain a. So

C ∈ LT . Moreover, for all j:

C ′
|Ci1+...+ij−1+1⊔...⊔Ci1+...+ij

= C ′
|C′′

j
= C|C′′

j

= (Ci1+...+ij−1+1, . . . , Ci1+...+ij
).

So g is well-defined. The lemma of the fourth step implies that f ◦g = IdB ,

and by definition of A, g ◦ f = IdA, so f and g are bijective, inverse one
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from each other. Finally:

(L ⊗ L) ◦ Γ(T ) =
∑

(T ′,C′,C′′)∈B

C ′ ⊗ C ′′

=
∑

((X1,...,Xp),(i1,...,ip),C′)∈A

C ′ ⊗ (X1 ⊔ . . . ⊔ Xi1 , . . . ,

Xi1+...+ip−1+1 ⊔ . . . ⊔ Xi1+...+ip
)

= Γ ◦ L(T ).

Last Step. — It remains to prove the surjectivity of L. Let (X1, . . . , Xk)

be a set composition of X. Let T be the topology whose open sets are

Xi ⊔ . . . Xk, for 1 6 i 6 k, and ∅. Then T has a unique linear extension,

which is C, so L(T ) = C. �

Examples. — If X = E ⊔ F = A ⊔ A ⊔ C are two partitions of X:

L( qX ) = (X),

L( q
q

E
F

) = (E, F ),

L( qE qF ) = (E, F ) + (F, E) + (E ⊔ F ),

L( q

qq

∨A

CB
) = (A, B, C) + (A, C, B) + (A, B ⊔ C),

L( q
q

q

A
B
C

) = (A, B, C),

L(
q

∧qq A

B C ) = (B, C, A) + (C, B, A) + (B ⊔ C, A),

L( q
q

A
B
qC ) = (A, B, C) + (A, C, B) + (C, A, B) + (A⊔C, B) + (A, B ⊔C),

L( qA qB qC ) = (A, B, C) + (A, C, B) + (B, A, C) + (B, C, A) + (C, A, B)

+ (C, B, A) + (A ⊔ B, C) + (A ⊔ C, B) + (B ⊔ C, A)

+ (A, B ⊔ C) + (B, A ⊔ C) + (C, A ⊔ B) + (A ⊔ B ⊔ C).

Now we consider isomorphism classes of finite topologies and set com-

positions. Let T be a topology on a finite set X, and let Z be an infinite,

totally ordered alphabet. A linear extension of T is map f : X −→ Z, such

that:

(1) x <T y in X =⇒ f(x) < f(y).

(2) w ∼T y in X =⇒ f(x) = f(y).

The set of linear extensions of T with values in Z is denoted by LT (Z).
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Theorem 5.7. — Let Z be an infinite, denumerable, totally ordered

alphabet. Identifying QSym(Z) and QSym, we define a map:

λ :

H −→ QSym

T ∈ TX 7−→
∑

f∈LT (Z)

∏

x∈X

f(x).

Then λ is a Hopf algebra morphism, compatible with the internal coprod-

ucts of H and QSym.

Examples.

λ( qa ) = M(a),

λ( q
q

a
b ) = M(a,b),

λ( qa qb ) = M(a,b) + M(b,a) + M(a+b),

λ( q

qq

∨a

cb
) = M(a,b,c) + M(a,c,b) + M(a,b+c),

λ( q
q

q

a
b
c

) = M(a,b,c),

λ(
q

∧qq a

b c ) = M(b,c,a) + M(c,b,a) + M(b+c,a),

λ( q
q

a
b
qc ) = M(a,b,c) + M(a,c,b) + M(c,a,b) + M(a+c,b) + M(a,b+c),

λ( qa qb qc ) = M(a,b,c) + M(a,c,b) + M(b,a,c) + M(b,c,a) + M(c,a,b) + M(c,b,a)

+ M(a+b,c) + M(a+c,b) + M(b+c,a) + M(a,b+c) + M(b,a+c)

+ M(c,a+b) + M(a+b+c).

Restricting to finite topologies and set compositions on sets [n], we obtain

the following theorem:

Theorem 5.8. — Let Z be a denumerable well-ordered alphabet. Iden-

tifying WQSym(Z) and WQSym, we define a map:

Λ :

HT −→ WQSym

T ∈ T[n] 7−→
∑

f∈LT (Z)

f(1) . . . f(n).

Then Λ is a Hopf algebra morphism, compatible with internal coproducts

of HT and WQSym.
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The situation is summarized by the commutative diagram below:

T
L // //

K

����
K

�� ��

SC

K

����
K

�� ��

HT

'' ''

Λ=K(L)
// // WQSym

)) ))
H

λ=K(L)
// // QSym

The triangle on the right of the diagram concerns algebraic structures well-

known by now. We have shown that it is the image of a similar triangle,

on the left of the diagram, which projects on the former by the explicit

morphisms L, λ and Λ.

Examples.

Λ( q1 ) = M(1),

Λ( q
q

1

2 ) = M(1,2),

Λ( q
q

2

1 ) = M(2,1),

Λ( q1 q2 ) = M(1,2) + M(2,1) + M(1,1),

Λ( q

qq

∨1

23

) = M(1,2,3) + M(1,3,2) + M(1,2,2),

Λ( q

qq

∨2

31

) = M(2,1,3) + M(3,1,2) + M(2,1,2),

Λ( q

qq

∨3

21

) = M(2,3,1) + M(3,2,1) + M(2,2,1),

Λ( q
q

q

1
2

3

) = M(1,2,3),

Λ( q
q

q

2
3

1

) = M(3,1,2),

Λ( q
q

q

3
1

2

) = M(2,3,1),

Λ(
q

∧qq 1

2 3 ) = M(3,1,2) + M(3,2,1) + M(2,1,1),

Λ(
q

∧qq 2

1 3 ) = M(1,3,2) + M(2,3,1) + M(1,2,1),

Λ(
q

∧qq 3

1 2 ) = M(1,2,3) + M(2,1,3) + M(1,1,2),
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Λ( q
q

1

2
q3 ) = M(1,2,3) + M(1,3,2) + M(2,3,1) + M(1,2,1) + M(1,2,2),

Λ( q1 q2 q3 ) = M(1,2,3) + M(1,3,2) + M(2,1,3) + M(2,3,1) + M(3,1,2)

+ M(3,2,1) + M(1,1,2) + M(1,2,1) + M(2,1,1) + M(1,2,2)

+ M(2,1,2) + M(2,2,1) + M(1,1,1).

Finally, as recalled in the text for QSym and WQSym, many interesting

combinatorial Hopf algebras have polynomial realizations, in which the

basis elements are realized as polynomials in an auxiliary set of commuting

or non commuting variables. Such presentations have many advantages,

beyond e.g. the very fast way of proving coassociativity by the doubling of

alphabet trick implemented above. Polynomial realizations were recently

obtained in [18] for the algebra of labelled forests and several related Hopf

algebras: the extensions of the ideas of [18] to the posets and quasi–posets

Hopf algebras remains to be done. The existence of a polynomial realization

would be expected, as the internal coproduct of WQSym is exactly the one

induced by the cartesian product of alphabets.
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