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Introduction 

The Hopf Bifurcation Theorem is the simplest result which guarantees the 
bifurcation of a family of time periodic solutions of an evolution equation from 
a family of equilibrium solutions. In this paper we will prove an infinite 
dimensional version of this theorem. Certain symmetry properties of the bifur- 
cating family of solutions will also be presented together with some new 
quantitative and qualitative results concerning their linearized stability. 

HOPF'S pioneering paper [12] giving the basic results on time periodic 
bifurcation, (i.e. existence and uniqueness, symmetry properties, and stability of 
the solutions), appeared in 1942. Since then a substantial literature on general- 
izations and related problems has developed. See e.g. [2, 7, 10, 13-16, 19, 26] and 
the references cited there. In recent years a considerable amount of work has 
gone into proving analogues of the Hopf theorem in the context of the Navier- 
Stokes equations or of abstract evolution equations. It is difficult to compare 
those papers since they are set in different technical frameworks and have 
related but differing hypotheses. Some authors [-e.g. 10, 13, 20, 23], following 
HOPF, have approached the bifurcation problem by trying to vary initial 
conditions and parameters so as to produce a nontrivial time periodic solution. 
Others [e.g. 7, 15, 19, 24] have introduced the unknown period explicitly as a 
new parameter in the equations and attempted to find solutions having a known 
period. We also take the latter approach. Moreover, as in most of these papers, 
our proof of the existence assertions uses the implicit function theorem. 

In earlier work, IUDOVICH [16] treated the Navier-Stokes equations as well 
as a more general family of evolution equations by working directly in a class of 
periodic functions. He used the Lyapunov-Schmidt method to reduce the 
infinite dimensional problem to a one (complex) dimensional problem, which he 
then solved via the implicit function theorem. He obtained the existence of a 
bifurcating family of solutions and studied its symmetry properties. Inde- 
pendently of IUDOVlCH, SATTINGER [24], and later JOSEPH & SATTINGER [19], 
studied the Navier-Stokes equations (with a more general class of nonlinearities 
than the usual one). They also worked directly in a class of periodic functions 
(but employ Schauder type spaces rather than Sobolev spaces) and use the 
implicit function theorem to get existence and some symmetry properties for 
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their case. Iooss [14] obtained an existence result in a Hilbert space setting for 
a class of equations having real analytic nonlinearities. He combined techniques 
of HOPE and IUDOVICH in setting up a mapping somewhat like HOPF, but using 
the Lyapunov-Schmidt procedure as did IUDOVICH. He required our condition 
(H/~) (see Section 1) as well as another condition for his work. HENRY [10] 
treated an abstract evolution equation in a Banach space under hypotheses 
somewhat like our (HL) (see Section 1) and gets existence of a bifurcating family 
of solutions using an infinite dimensional version of the center manifold theorem 
to reduce the problem to a two (real) dimensional one. 

Our existence results are clearly related to several previous works [-7, 10, 13, 
19, 24] but they are more general. We also feel our proofs are more transparent. 
The existence machinery has the added advantage of being immediately appli- 
cable to the linearized stability problem. The stability results given here are new 
and were motivated by recent work of JOSEPH [18] and our earlier work [4]. 
They show a precise relationship between the shape of the bifurcating curve and 
the critical Floquet exponents of the corresponding periodic solutions. 

The existence, uniqueness and symmetry results will be presented in Sec- 
tion 1. Linearized stability is studied in Section 2. 

This paper is a contracted version of [5], which also presents much sim- 
plified proofs of the main results in the finite dimensional case. A summary of 
our results ([6]) was presented at the International Symposium on Dynamical 
Systems, Gainsville, Florida, 1976. At that meeting we learned of H. WEIN- 
BERGER'S approach [27] to the stability material of Section 2, in which the 
condition (H/3) of Section 1 is relaxed. Also, subsequent to [5], a volume [21] on 
the Hopf Bifurcation Theorem has appeared. The invariant manifold approach 
emphasized in [21] (and also used in [10]) does not appear to be directly 
applicable in the current generality. 

Section 1. The Bifurcation Theorem 

We discuss the Hopf  bifurcation theorem in infinite dimensions for equations 
of the form 

du 
(1.1) - -  + Lu+ f(#, u)=0  

dt 

under assumptions on L and f detailed below. The reader unfamiliar with the 
finite dimensional case may find that the hypotheses below seem unmotivated. 
Some motivation can be found in [5], where a simple treatment of the classical 
Hopf theorem in the spirit of this paper is also given. The framework in which 
we treat (1.1) involves analytic semigroups and fractional powers of unbounded 
operators. Familiarity with these notions will be assumed below (see, for 
example, [8] for more details on the results we will use). 

Let X be a real Banach space with the complexification X C = X + i X. If L is 
a linear operator on X, L will also denote its extension to a linear operator on 
Xc, N(L) and R(L) will denote its null space and range in X, while Nc(L) and 
Rc(L ) stand for the null space and range in Xc. The spectrum, a(L), is computed 
with respect to Xc so 2sa(L)  if and only if Sea(L). 
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Let L be a densely defined linear operator on X which satisfies the con- 
ditions 
(HL) (i) - L  is the infinitesimal generator of a strongly continuous semi- 

group T(t) on X, 
(ii) T(t) is a holomorphic semigroup on Xc, 

(iii) (2 I -  L)- 1 is compact for 2 in the resolvent set of L, 
(iv) i is a simple eigenvalue of L, 
(v) nir for n = 0 , 2 , 3 , . . . .  

Remarks. By (HL)(iii), the condition (HL)(iv) is unambiguous and can also 
be expressed as 

dimNc(L- i I  ) = 1 =codimRc(L-i l )  and 
(1.2) xo~Nc(L-iI)',. {0} implies xo6Rc(L-iI) .  

Another useful equivalent form of (1.2) is 

(1.3) dimNc((L-iI)k)=l for k = l ,  2 . . . . .  

It follows from (i) and (ii) of (HL) that if r >  - R e 2  for all 2~a(L), then the 
fractional powers (L + r I) ~ are defined for a > 0. The Banach spaces X, c X with 
norms I]'ll~ are defined by 

X~=D((L +r ly) 
(1.4) Hxlp~=]](L+rl)~x[] for x~X~, 

where It" H is the norm in X. If a < 7 then X , _  X 7 with continuous injection. 
Let Ck(A,B) denote the set of k-times continuously Frech6t differentiable 

maps from A to B, where A and B are subsets of Banach spaces W and Z 
respectively. The requirements on f in (1.1) are stipulated by condition 

(Hf) There is an ~ [ 0 , 1 )  and a neighborhood f2 of (0,0) in lRxX~ such that 
f e  C2(f2, X). Moreover f (p ,  0) =0  and fx(0, 0) =0  if (/~, 0)~f2. 

Henceforth a is fixed at the value given by (Hf). Here f~(/~, x) denotes the Frechdt 
derivative of the mapping x- , f (p,x);  it is a bounded linear operator from X~ 
into X (and a fortiori from X 1 to X). By (HL)(iv) we see that i is an/ -s imple  (in 
the sense of [4]) eigenvalue of L regarded as a mapping of X1,. into Xc. Hence if 
xoeNc(L- i I ) \{O }, then there are continuously differentiable functions x(p), 
fl(p) defined for small I#1 such that 

(L + fx(p, 0)) x(/~) = fl(p) x(p) 
(1.5) 

x(0) = x0, fl(0) = i. 

Following Hopf, our final assumption is 

(Hfl) Re f l ' (0) ,  0. 

(Hi) implies that (1.1) has the trivial family of equilibrium solutions (p,0)~2; 
(HL) and (HI) imply that (1.1) linearized about u = 0  for # - -0  has nontrivial 2~- 
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periodic solutions. We now seek nontrivial 2n p-periodic solutions of (1.1) with p 
near 1 and (#,u) near (0, 0). With z =p-~ t  equation (1.1) can be rewritten 

(1.6) u' + p(Lu + f(#,  u)) = O. 

It remains to give a precise meaning to solutions of (1.6). To that end we have 

Lemma 1.7. Let r > O, suppose (HL) and (Hi') hold, and assume ur C([0, r], X~). 
Then the following statements are equivalent: 

(1.8) u'~C((O,r],X), u((O,r])~D(L), and (1.6) is satisfied on (O,r) 

(1.9) u(Q-T(pz)u(O)+p~ T(p(z-~))f(p,u(~))d~=O for O<_z<r. 
0 

For a proof of Lemma 1.7, see [8], [10]. In view of this lemma we shall say 
that u is a solution of (1.6) if u~C([O,r],X~) and satisfies (1.9). 

Let C2~(IR, X~) be the Banach space of continuous 2re-periodic functions 
from IR into X~ and let Co([0,2rc],X~) be the Banach space of continuous h: 
[0,2rc]~X~ such that h(0)=0. Define 

(1.10) H(p,# ,u) (r )=u(z) -T(pz)u(O)+pi  T(p(r-~))f(#,u(~))d~. 
0 

H is regarded as a mapping of that subset of lR x IR x C2~(IR, X~) for which 
(1.10) makes sense, into Co(J0, 2n], X,). The properties of f f  which we shall 
require are given in Lemma 1.12 below. 

An infinite dimensional version of the Hopf bifurcation theorem can now be 
stated. 

Theoreml . l l .  Let (HL), (HI), and (Hfl) be satisfied. Then there are positive 
numbers ~, t 1 and continuously differentiable functions (p,#,u): (-r/,r/)--.lR • 
• C2~(IR, X,) with the following properties: 

(a) J(p(s),  #(s), u(s)) = 0 for Is[ < ~l 
(b) p(0)=0, u(0)=0, p(0)= 1, and u(s)~:O if 0<Is] <t/ 

(c) I f  (#1,ul)~lR x C(IR, X~) is a solution of (1.1) of period 2rip1, where IPl 
- l [ < e ,  [#1[<e, and []ulH, <e, then there exist numbers s~[0, q) and 0~[0,2n) 
such that ul(p~ z)=u(s)(z +O) for z~IR. 

Moreover, if f~Ck+l(f2, X~) or if f is real analytic, then the functions 
(p(s), #(s), u(s)) are respectively of class C k or real analytic. 

The notation in Theorem 1.11 must be read with care, especially in (c). Since 
u: ( - r/, t/)~ C 2 ~(IR, X,), we see that u(s) ~ C2~(IR, X,) and u(s)(z)~ X ,  for s e( - r/, r/) 
and zelR. The proof divides naturally into two parts: First the existence 
assertions (a), (b) are established and then the uniqueness property (c). The 
proofs of (a), (b) are based on three lemmas and a simple application of the 
implicit function theorem. The first lemma details the regularity properties of H,  
the second characterizes N(~(1,  0, 0)) and R(~(1,  0, 0)), and the third supplies an 
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alternate characterization of (Hfl). We first state the lemmas, then prove parts 
(a), (b) and the lemmas, and finally prove part (c) of the theorem. 

Lemma 1.12. Let (HL) and (Hf) be satisfied. Then .~ is a twice continuously 
differentiable mapping from its domain into Co(J0, 27z], X~), and ~(p ,  it, O) = 0 for 
pe(O, o9) and tt near O. Moreover, for ve C2~(1R, X,), 

(i) (~(1, 0, 0)v)(z)= v(z)- T(z) v(O) 

(ii) (,~p,,(1, O, O) v)(r)=zLT(z) v(O) 

(iii) (~,(1, 0, 0)v)(z) = ~ T(z - r O) v(r162 
0 

Next we characterize N(~(1, 0, 0)) and R(~(1, 0, 0)). In the following A* 
denotes the adjoint of a linear operator A. 

Lemma 1.13. Let (HL) hold. Then 

(a) v belongs to N(~(1,0,0)); i.e. uf~C2~(]R,X~t ) and v(z)-T(z)v(O)=O for 
0_<z_<2~z, /f and only if v(z)= T(r)x for some x e N ( I -  T(2~)). 

(b) I f  he Co([0, 27c], X~), then the equation 

v(r) - T(z) v(O) = h(z) 

has a solution veC2=(IR, X,) if and only if h(27~)eR(I- T(27~)). 
(c) N(I  + L 2) = U(I - T(270) and N(I + L* 2) = N(I  - T(ZTr)*). 
(d) I f  x o e U ( I -  T(Z~z))'-, {0}, then {Xo,Xa =Lxo} is a basis for U ( I -  T(Z~z)). 

Moreover there exists an element x * e N ( I -  T(2~z)*) such that 

(xa, xo)=(xLx,)=l, (XLXo)=(xa, x,)=O, 

where -~1~*--*-'-- I*~*.~0 and (" , ") denotes the pairing between X* and X. 

(e) I f  x*6S(I+L*2)  ".. {0}, then 

R(I - T(2 rt)) = {xeXl(x*, x) = 0 = (x*, x)}, 

where xT =L'x*.  

Lemmal.14. Let (HL) hold and let LI: X ~ X  be bounded and linear. I f  
x o s N ( I -  T(2n))\ {0}, 2~C, (L 1 -21) ( x o - i L x o ) e R c ( L - i I ) ,  and x~, x~f are as in 
I_emma 2.13 (d), then 

x*, r(2rc-~)L1r(~)xod =2rrRe2, 

2~ 

(x*, ! T(2~z-~)L1T(~)xod~: -2nIm2.  

Proof of Theorem l . l l  (a), (b). By Lemmas 1.12 and 1.13(a), (b), (c), (d), we 
have 

dim N(J~(1, 0, 0)) = dim N(I - T(2 rt)) = dim N(I + L e) = 2. 



58 M.G. CRANDALL ~. P.H. RABINOWITZ 

Also if x o s N ( I + I 3 ) \ { O } ,  then {T(t)xo, T(t)x~} is a basis for N(~(1 ,  0, 0)). 
Moreover by (b), (d), (e) of Lemma 1.13, 

(1.15) R(~(1,O,O))={heCo([O, 2rc], X~)](x*, h(2rc))=(x*, h(2r0) = 0  }. 

Thus R(~(1 ,  0,0)) has codimension 2. Let V be a complement of N(~(1 ,  0,0))in 
C2~(IR, X~), and define 

g(p, + s , 0  
(1.16) ~(s 'P '# 'v)=[,~(p,# ,O)(T( . )Xo+V),  s = 0 .  

Then by Lemma 1.12, ff is a mapping of class C 1 from a neighborhood of 
(0, 1, 0, 0) in IR 3 x V to Co(J0, 27r], X~). Obviously if(0, 1, 0, 0) = 0, and the Frech6t 
derivative of the map (p,#, v)--.ff(s, p, g, v) at (0, 1,0, 0) is the linear map 

G(fi, fi, ~)(z) = ~(r) - T(z) ~(0) + fi~ LT(r)Xo + fi J T(z - ~) L~(O, O) T(~) x o d~. 
o 

We claim G is an isomorphism. Once this is shown, the fact that ~q(O, 1, O, O)=0 
and the implicit function theorem imply that the solutions (s, p,#, v) of ~ = 0  
near (0, 1, O, O) are given by continuously differentiable functions (p(s), #(s), v(s)). 
Then setting 

u(s)(z) = s(T(z) x o + v(s)(z)), 

we see that (p(s), g(s), u(s)) is the desired curve of solutions of Y = 0. 
Since 1)---,~- T(.)  ~(0) maps V isomorphically onto R(~(1 ,  0, 0)), which has 

codimension 2 (by the above), it is clear that G is an isomorphism if the relation 

(1.17) f izLT(z)Xo+fi~ T ( z -  r f~x(0, 0) T(~)xod~R(~,(1,O,O)) 
0 

implies f i=f i=0 .  By (1.15), the latter implication is equivalent to that the 
condition 

(1.18) x*,2rrfiLT(27r)Xo+fi ~ T(2n-~)f~x(0,0)T(~)xod~ =0,  
0 

i=1 ,2 ,  

implies fi = fi = 0. Applying Lemma 1.13 (d), this reduces to verifying that 

(1.19) 
0 

Differentiating (1.5) at #=0 ,  we see that the hypotheses of Lemma2.14 are 
satisfied with 2=/?'(0), L 1 =J~(0,0) .  Thus the left hand side of (1.19) is Refl'(0). 
Invoking (Hfl) completes the proof. 

Proof of Lemma 1.12. We treat the differentiability only, since computation 
of the derivatives is routine. First, by (Hf) the map (#, u)~ f (# ,  u) is of class C 2 
from 

{(#,u)~lR x C2~(IR; X~)l(#,u(r))~2 for r~IR} 
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into C2~(IR, X). We can thus deduce the lemma from the chain rule if enough 
regularity can be established for the maps 

(1.20) 

(1.23) 

and 

(p, x )~  T(pr)x; (0, ~v) x X ~ C ( [ 0 ,  2hi, X,) 

(p, g)---,~ T(p(r - ~)) g(~)d~; (0, oo) x C([0, 2~r], X)--* C([0, 2~r], X~). 
0 

HENRY [10] has noted that in fact the maps (1.20) are analytic. We sketch a 
proof of this. Due to the linearity in the second argument for each map, it 
suffices to examine the dependence on the first arguments. 

Since T(t) is a holomorphic semigroup, there is a constant C > 0 such that 

o~ 
r ( t  +~)=k~ ~ (--tL)k k ~  T(t) 

for t > 0  and ]~[ < Ct. Moreover, given r > 0  there is a constant M r such that 

(1.21) ]lgkr(t)xll~ g r  ~ x = tk ]lxll~ 

for x~X~, 0<t__<r, and k = l , 2  . . . . .  and also such that 

M~k k 
(1.22) IILkT(t)YlI= < tk+~ - [lYII 

for yeX,  O<t<r and k = l , 2  . . . . .  Thus if p > 0  and 0<~<2r~ we get 

T((p+~)z)x= ~ (--P'cL)k 
k=O k! T(pz)x 

0 k=O k ~ - . ~  o 

for Ifi[ sufficiently small (depending on p) where, by (1.21), (1.22). the series 
converge in L~((O, 2zcp),X~). By (1.22), each term of (1.24) is in C([-0,2~z],X~). 
Moreover, if x~X~ and k > 0 the functions r--~zkL k T(pOx, which are analytic for 

> 0, may be extended by continuity to have the value 0 at z = 0. This is obvious 
for x~D(Lk+I). Noting that D(L k+l) is dense in X~ and recalling (1.21) we see 
that the result extends from D(L k+ 1) to all of X~. Thus in fact each term of the 
series (1.23), (1.24) is in C([0,2z~],X~), and the analyticity of (1.20) therefore 
follows at once. 

Proof of Lemma 1.13. Statement (a) is obvious. For (b), if 

h(O = u ( O -  T(~) u(O) 

and u e  C2r t ( ]R  , X2) ,  then 

h(2z0 = u(2z0- r(2z0 u(0) = ( I -  r(2~)) u(0). 
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Conversely if h(2n)= (I - T(2n))x, then u(r)= T(z)x + h(z) satisfies u ( z ) -  T(z) u(O) 
= h(r) and u(2n)= u(0). Thus (b) holds. 

The proofs of (c)-(e) are more involved. For (c), if xEN(I+L2),  then u(z) 
= T(z)x satisfies 

u"('r) = T(z)L2x = - u(r). 

It follows that u(r)=(cosz)x-(sinz)Lx,  so u is 2n-periodic. Thus x e N ( I - T ( 2 n ) )  
and N(I + L 2) ~ N(I - T(2n)). For the converse, let x~N(I  - T(2n)) and u(z)= T(z)x. 
By (a), u is 2n-periodic and therefore has a Fourier expansion with coefficients 

1 2n 2n 

a , = -  ~ (cosn~) T(~)xd~, b ,= 1 ~ (sinn~) T(~)xd~ 
0 7~ 0 

for n=O, 1 . . . . .  Two integrations by parts show that 

(L 2+nzI )an=(L 2 +n2I )b ,=0 .  

By condition (HL)(iv), we have a, = b, =0  for n =0, 2, 3 . . . . .  Therefore 

T(z)x=(cosz)a l  +(sinr)bl  with a l ,b leN( I+L2) .  

But al =x,  so that N ( 1 - T ( 2 n ) ) c N ( l + I ~ ) .  This proves the first part of (c). 
Since the map x - - , x - i L x  is a linear isomorphism (over IR) of N ( I + I 3 )  onto 

No(L- i I )  and since dim N c ( L - i l ) =  1 by (HL)(iv), it follows that dim N(I + L  2) 
=2. 

For the analogous result for L*, observe first that by the above argument we 
have N(I + L * Z ) c N ( I  - T(2n)*). Furthermore, by the compactness of T(2n), 

dim N(I  - T(2 re)) = 2 = dim N(I  - T(Zn)*). 
Similarly 

dim N(I  + L 2) = 2 = d im( /+  L* 2) 

since L 2 has a compact resolvent. More precisely, the condition 2iCa(L) implies 
that the mapping ( 2 i - L ) ( - 2 i + L ) = 4 I + L  2 is invertible. Now x e N ( I + I 3 )  is 
equivalent to 3x=(4I+L2)x ,  which is the case if and only if x s N ( I - 3 - 1 ( 4 I  
+ L  2) 1). Therefore 

d i m N ( i + L 2 ) = d i m N ( i _ 3  - 1(4i +L2 )- 1 , ) = d i m N ( l _ 3  1(4I+L,2 )- 1) 
= d i m N ( I  + L*2). 

Thus N(I  + L* 2) = N(I  - T(2zt)*). 
Next consider part (d). Since d i m N ( I - T ( Z n ) ) = 2  and N ( I - T ( Z n ) )  

=N(I+L2),  it is clear that { X o , X l = - L x o }  is a basis for N ( I - T ( 2 n ) )  for 
any x o e N ( I -  T(2n))\  {0}. If (I+LZ)2x=0 and x~X,  then 

( L -  iI) 2 (L + iI) 2 x = O. 

By (HL)(iv) we have 

( L -  iI)(L + iI)2x = 0 = (L + iI)(L 2 + I)x. 
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But L + iI has no nontrivial real nullvectors. Hence (L 2 + I)x = 0. Thus N(I + L 2) 
= N((I + L2)2), or equivalently, 

(1.25) R(I + L2)nN(I + L2) = {0}. 

By (c), if ( I -  T(2~))2x=0 then 

0 = (I + L2)(I - T(2z0)x = (I - T(2=))(I + L2)x = (I + L2) 2 x. 

Thus we also have N ( I -  T(2=))= f ( ( I -  T(2=))2), or equivalently 

(1.25') f ( I -  T(2 =))r - T(2 ~))= {0}. 

Since T(2~) is compact by (HL)(ii), (iii), the set R(I-T(2~))  is closed. Con- 
sequently R ( I -  T(Z=))=N(I-  T(2~)*) • Thus if xoeU(I - T(2=))\  {0}, the re- 
lation (1.25') implies that we can find an element x*eN(I-T(2=)*) such that 
(x~, Xo)= 1 and (x}, xl)=0.  Note also that 

(xL x ,)=(x'~, - L2 xo)=(x'~, Xo)= 1 

and similarly (x*, Xo)= 0. Thus (d) is proved. 
Lastly, (e) follows from the relation R(I-T(Z=))=N(I-T(2=)*)  • and the 

fact that * * {Xo,Xl =L*xo} is a basis for N(I-T(27t)*) • as we see from (c) and 
what has gone before. 

Remark 1.26. In the course of proving (b), (c) above we have also established 
that 

(1.27) T(r)x=(cosz)x-(s in~)Lx for x~N(I+L2). 

Proof of Lemma 1.14. Let Xl = - L x o  and y = x o + i x  1. Choose zeD(L) such 
that 

(1.28) L1 y =),y + ( L -  iI)z. 

By Remark 1.26 we have T(~)xo=Re(e-iCy) (with the obvious meaning). Mul- 
tiplying (1.28) by e -ir we find 

(1.29) L1 T(~)Xo = Re(2 e-icy + (L - iI)e-iCz). 

From Remark 1.26 again, we see that T(r)y= e-~y. Hence (1.29) implies 

(1.30) T(2~-~)LiT(~)xo=Re(2e-iCe-~{2'~-r T(2=-~)(L- i I )e - i r  

But 
- i~  d (T(2=_r T(2=-4 ) (L - i I ) e  z = ~  

integrating this over 0 < ~ < 2= then yields 

2 n  

T ( 2 = -  ~)L 1 r(r = 2= Re(ay) + R e ( z -  r(2,r)~) 
(1.31) o 

= 2 =((Re )0 Xo - (I m 2)x 1) + (I - T(2 ~))(Re z). 
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The lemma now follows on applying x* to (1.31), using Lemma 1.13(d), and 
noting that x*(R(I  - T(2r0))=0, j =0,  1. 

Proof of Theorem 1.11 (e). The uniqueness will be established in two steps, 
the main one being based on the following. 

Lemma 1.32. Under the hypotheses of  Theorem 1.11, there is a neighborhood 
of  (1, 0, 0) in IR x IR x C2~(IR, X~) such that i f  selR, 'TE V, (/5,/2, s r ( "  )x  o + ~) )~ ,  and 
~ ( ~ ,  it, s T(" )Xo + '7) = 0, then ~ = p(s), /2 = II(s), and '7 = s v(s). 

Proof. Set r T(z)xo.  It suffices to show that  f2 can be chosen so that  
~(/5, fi, SCpo + '7) = 0  implies 

(1.33) II '711 c2,~, x=)+lsl 1/5 - l I+ Isl I/2l _-< sg(s) 

for some gE C(IR, IR) with g(0)= 0. For then s = 0  implies '7= 0, while if s 4:0 then 
if(s,/5,/1, s-1'7)=0. Choosing f) still smaller if necessary, we can then guarantee, 
via (1.33), that (s,/5,/2, s 1'7) is in the neighborhood of (0, 1, 0, 0), which by the 
implicit function theorem contains all the solutions of ff = 0. 

To verify (1.33), we argue as in the proof of Lemma 1.12 of [3]. Since Y e  C 2, 
there exists a function he C(IR, IR) such that h(0)= 0 and 

(1.34) IlY(p,p, SqOo +V)-,~(p,l~,Srpo)- 0%(p,l~,Srpo)Vll < IIvll h(llvll) 

Il Y (p, IJ, SCpo)- Y (p, t~, o ) -  0%(p, l~, O)scpoll <lsl h(s) 

tl 0%(p, ~, o)r - o%(1, o, o)r - o%.(1, o, o)(p - 1)~Oo - . .%.(1 ,  0, o)~r o II 

< ( ] P -  II + I/~D h(Ip - II + I~1) 

for (p,y, SCpo+V)e(2 and near (1,0,0). (At this point we cease to index the various 
norms involved, the spaces being defined by the context.) Now observe that  

(1.35) 0 = Y(/5,/2, S~0o +'7) 

= [o~(~,/2, s ~Oo + '7) - ~ ( ~ ,  5, s q, o ) -  0%03, 5, s q~ o)'7] 

+ [(0%(/5,/2, s r 0 ) -  0%(1, 0, 0))'7] 

+ [g(~, /2,  S~po)- g(/5, 5, o ) -  s0%(~, ~, o) q,o] 

+ s [0%(/5,/~, 0)q% -(/5 - 1 )~ , (1 ,  0, 0)qOo - / 2 ~ u ( 1 ,  0, 0) ~Oo] 

+ 0%(1, 0, 0)'7 + s /2~, (1 ,  0, 0)~Oo + s(~ - 1)~p,(1, 0, 0) ~P o. 

From the proof of Theorem 1.11, we know that 

Go(s~, sfi, '7) = 0%(1, 0, 0)'7 + s # ~ , ( 1 ,  0, 0)q)o + s~ ~ , ( 1 ,  0, 0)~Oo 

is an isomorphism. Hence (1.34)-(1.35) yields the existence of a positive constant  
c such that 

(1.36) c(ll'711 + Isl I ~ -  II + Is/21) 

< 11,711 h(ll'711)+ 110%(/5,~, scpo)-0%(1, 0, 0)1111'711 

+ Is[ h(s)+ Is] (1/5 - 11+ I/2[) h(l~5 - I I + I/~l). 
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If (~ is chosen so that (~, ~, sq~0+~)6(~ implies the inequalities: h(ll~ll)~4c -x, 
IIo~(~, ~t, S ( p o + ~ ) - ~ ( 1  , 0, 0)ll=<4c -~, and h([~-l[+l~l)=_<4c -~, then (1.36) 
gives (1.33) with g(s)=2c - t  h(s). The lemma is therefore proved. 

Proceeding further, any element ~6 C2~(IR, X~) may be uniquely expressed in 
the form qo + ~ with v6 V and q06N(o~(1, 0, 0)). Utilizing the proof of Lemma 1.13, 
we see that there exists an element x e N ( I + L  2) such that 

~o (r) = (cos r) x - (sin r) L x = Re (e- i, (x - i L x)) = Re (e- i~ y), 

where y = x - i L x e N , ( L - i l ) .  If a = x o - i L x o ,  there are constants r > 0  and 
06[0, 2~) such that e - i~  Thus 

M 0~0=Re(e-i~e i~ i~ra)=rT(r)Xo, 

where M 0 f ( r )  = f i r  + 0). 
Moreover (~,/~, fi) is a solution of ~ = 0 if and only if (fi,/~, M 0 fi) is also a 

solution. This may be deduced either from Lemma 1.7 using the translation 
invariance of the differential equation and the periodicity of ~, or directly from 
the identity 

(1.37) ~(p ,  It, M o u) (z) = M o ~(P,  #, u) (r) - T(r) ~ (p ,  I~, u) (0) 

which is valid for 0, r > 0. (Since u is periodic, M 0 u represents all translates of u 
as 0 varies over [0, 2~)). Choosing 

(1.38) V=@6C2~(IR, X~) ( x* , i~T(2~-~ )v (~ )d~)=O f o r i = 0 , 1 } ,  

we see that V is translation invariant since the functions 

T(2~ - 3)* x* = (cos ~) x* + (sin 4) L* x* 

span a translation invariant space. Thus 

M o~=M_o~o+M og=rT( ' )~oo+M o ~ 

is of the form required in Lemma 1.32. Therefore we have shown 

Lemma 1.39. Let V be given by (1.38). Then there is a neighborhood Q of 
(1, 0, 0) in IR x IR x C2~(IR , X~) with the property that if (~, fi, (t)6~ is a solution of 
o~=0,  then there exist constants s>O and 06[0, 2r 0 such that t3=p(s), /~=/~(s), 
and M o~=sT(.)Xo+SV(S ). 

This completes the proof of Theorem 1.11 (c). 

Remarks. (i) HOPF [12] proved Theorem 1.11 assuming that X=IR", that + i  
are simple eigenvalues of L and also the only purely imaginary eigenvalues of L, 
that f is real analytic, and that (Hfl) is satisfied. If X=IR", then X~=IR" for all 
e > 0 ,  so that the hypotheses of Theorem 1.11 are considerably weaker than 
Hopf's. Of course, other authors have also weakened these hypotheses (see, e.g., 
[2], [22], [23], [26]). 
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(ii) Theorem 1.11 is a local result, i.e. it assures the existence of periodic 
solutions of (1.1) near (#, u)=(1, 0, 0). Recently ALEXANDER & YORKE [1] have 
proved a global version of this result for X = IR". Their proof has been simplified 
by IZE [15]. As a nice application of the Hopf theorem, ALEXANDER and 
YORKE also gave a new proof of the Lyapunov center theorem (see also [26]). 

Our next result establishes the precise relationship between the functions 
(p(s), #(s), u(s)) for s > 0  and s<0.  First observe that t in (1.16) can be regarded 
as depending on x o e N ( I + L  2) as well as on (s, p, #, v), that is t = t ( s ,  p,/~, v, Xo). 
Given x o s N ( I + L 2 ) \  {0} and 0elR we define 

(1.40) x o =(cos 0) Xo - (s in  0) L x  o. 

The proof of Theorem 1.11 shows that the equations t (s ,  p,#, v, x0)=0 can be 
solved for (p(s, 0), #(s, 0), v(s, 0)) near (1, 0, 0) in a strip Is{ <So, 0elR. (Since (1.40) 
is periodic in 0, it is enough to restrict 0 to the compact set [0, 2~z].) 

Theorem 1.41. With the above notation, 

(1.42) p ( s ,O)=p( - s ,O+Tr) ,  # ( s ,O)=#( - s ,O+Tr ) ,  v ( s , O ) = - v ( - s , O + T r ) .  

Moreover, if V is given by (1.38), then p(s, 0), #(s, O) are even functions of  s and 
u ( - s, O) (z) = u (s, O) (z + ~), where u (s) (z) = s (T(z) Xo + v (s) (z)). 

Proof. By the definition of t and the fact that Xo+~ = -Xo ,  we have 

(1.43) t ( s ,  p, ~, v, Xo) = - t ( - s ,  p, ~, - v ,  Xo+,3. 

Thus 

(1.44) 0 = i ( s ,  p(s, 0), #(s, 0), v(s, 0), Xo) 

= - t (  - s, p (s, 0), ~ (s, 0), - v (s, 0), Xo +,3 

and (1.42) follows from the local uniqueness of solutions of t = 0. If V is given by 
(1.38), then it is invariant under the translations M q , f ( z ) = f ( z - t ) ) .  Noting that 
M q,T(.)Xo= T(.)  xq,+o, we have 

(1.45) M_q, if(s, p, #, v, Xo) = i ( s ,  p, #, M_q, v, xq,+o ) + T( ' )  t ( s ,  p, #, v, Xo)(t)). 

This implies that 

(1.46) p(s, O)=p(s, ~O +O), U(s, 0)= U(s, ~, + 0), M _ ,  v(s, O)=v(s ,  4, +0); 

in particular; 

(1.47) v(s, O)(~ + r = v(s, r + O)(~). 

Choosing ~ = ~z it follows that 

(1.48) p(s ,O)=p(s ,O+rO, #(s ,O)=u(s ,O+rO,  v(s,O)(z+rc)=v(s,O+rc)(z) .  
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Taken together, (1.43) and (1.48) show that p and/~ are even functions of s and 
that v(-s ,  0) ( r )=-v ( s ,  O)(r+rc). Since u(s, O)=s(T(')Xo+V(S, 0)), all of the asser- 
tions of the theorem are therefore proved. 

For the next result we assume that V is given by (1.38). 

Corollary 1.47. I f  f is real analytic and #(s)~O (respectively, p(s)~-1) then 
p(s) > 0 or p(s)< 0 (respectively p(s)> 1 or p(s)< 1)for s 4:0 but near O. 

This is an immediate consequence of the analyticity of ~t, p, and the fact that 
they are even functions of s. 

Remark 1.48. Corollary 1.47 was proved by HOPF by another argument. 
Also the one sided nature of the bifurcation with respect to/~ fails if analyticity 
is relaxed. Consider, for example, the system of two equations 

(1.49) 
d 0 

1 ~g(x, y ) / ]  ' 

If f, g, and their gradients vanish at (x, y)=(0, 0) the assumptions of Theorem 
1.11 are satisfied, as is easily verified. Choosing f (x ,y)=xK(r)  and g(x,y) 
=yK(r), where r=(xZ+yZ) ~, we find that (1.49) has the family of solutions 
p ( s ) - l ,  I~(S)=-K(ls[), x=scosr ,  y = s s i n r .  Now if, for example. K(r) 
= e x p ( - r  -2) sin(r-Z), then /~(s) takes on positive and negative values in every 
neighborhood of s =0. 

Section 2. Linearized Stability 

This section concerns the linearized stability of the periodic solutions found 
in Theorem 1.11. IUDOVICH [15], JOSEPH & SATTINGER [19], JOSEPH [18], and 
JOSEPH & N1ELD [18'] have also investigated the linearized stability question, 
while Iooss [14] and HENRY [10] have considered nonlinear stability as well. 

By way of motivation, and to explain what we mean by linearized stability, it 
may be helpful to give an informal review of the concepts involved. Suppose A(t) 
is a time-dependent linear operator which is p-periodic in t. The Floquet 
multipliers of the problem 

dw 
(2.1) dt ~-A(t) w = 0  

are the eigenvalues of U(p), where w(t)= U(t)x is the solution of (2.1) satisfying 
w(0)=x (see for example [9], [10]). We say that • is a Floquet exponent of (2.1) 
if e p~ is a Floquet multiplier. Equivalently, -~c is a Floquet exponent of (2.1) if 
and only if the problem 

dz 
(2.2) ~ +  A(t) z=~c z, z(p)=z(O) 

has a nontrivial solution. Observe that explicit knowledge of U(p) is not 
required for this alternate characterization of the Floquet exponents. Hence (2.2) 
may serve as a more convenient vehicle for their calculation than the definition. 
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If u is a p-periodic solution of the nonlinear problem 

du 
(2.3) dt t- g(u) =0 ,  

the Floquet exponents and multipliers for u are defined to be the multipliers and 
. du 

exponents of (2.1) with A(t)= g,(u(t)). If u = ~ - ~  0, differentiation (2.3) shows that 

- ~  + g,(u(t))t i=0, 

so 0 is a Floquet exponent and 1 is a Floquet multiplier for u. Under 
appropriate hypotheses it has been shown that the stability properties of a 
periodic solution of (2.3) are determined by the moduli of its Floquet multipliers 
(cf. [10, Thm. 8.2.3]), and references here and in the literature to the study of 
"linearized stability" of periodic solutions mean the study of their Floquet 
multipliers. In Section 1 we considered 27z-periodic solutions u(s) of (2.3), where 
g(u)=p(s)(Lu+f(#(s),u)). The Floquet exponents for u(s) are therefore (for- 
mally) numbers -~c such that the problem 

dw 
(2.4) d--~+p(s)(Lw+f,(#(s),u(s))w)=~cw, w(0)=w(2=) 

has a nontrivial solution. At s = 0, (2.4) becomes 

dw 
(2.5) d~- + L w = ~c w, w (0) = w(2~z); 

the set of values of ~c for which (2.5) has a nontrivial solution is {~(L)+inln 
=0,1 ,2 , . . .} ,  so the corresponding multipliers are e -2~(L~ Observe that 
l e e  -2~(L~, while the moduli of the numbers e 2~(L)\{1} are bounded away 
from 1. Moreover, 1 occurs as a multiplier with multiplicity 2 corresponding to 
the double eigenvalue ~c = 0 of (2.5). Therefore we expect the multipliers for the 
solution u(s) of (1.6) with p=p(s) and /~---#(s) to consist of a set of numbers 
uniformly bounded away from 1 in modulus, except for two of them which 
correspond to small perturbations of the double eigenvalue ~ = 0  of (2.5). Since 

fi(s)(~)=au(s)(~) is always an eigenvector for ~ = 0  corresponding to the 

multiplier 1, we seek a second small eigenvalue, which we shall denote by ~c(s). 
Of particular interest is the sign of Re ~c(s), which determines the modulus of the 
critical multiplier e 2~(s). We will show below that ~(s) is real, and that sign 
~c(s) is determined by sign #'(s) for small s. Such a qualitative fact was 
established in the finite dimensional analytic case by HoPe [12] under the 
assumption that /~"(0)~0 (see also POORE [22]). A more general result of the 
same type was presented recently in [18], still however in the analytic case. Here 
we make precise the result of [18] and extend it to a general class of nonanalytic 
equations. 
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To carry out the details of the above program we again work with the 
integrated form ~ =0  of (1.6), where ~ is given by (1.10). Defining the bounded 
linear operator K(r) from Cz~(IR, X) into Co([0, 27r], X,) by 

(K(r)u)(r)= i T(r(z-~.))u(~)d(, r>0, 
0 

the corresponding integrated form of (2.4) is 

(2.7) ~(s)  w = K(p(s)) lc w, we C2~(IR, X~), 

where ~(s)  = ~(p(s),  #(s), u(s)). 
In the following discussion x o, xl, x*, xi* are as in Lemma 1.13, and 

(2.8) ~Po(Z) = T(z) x0, 
d 

Cpl (Z)=  T(z )  x1 = - T(r )Lxo=~r  tpo. 

The hypotheses of Theorem 1.11 will be assumed to hold, and the notation of its 
proof will be used. After settling a minor technical point, we characterize ~c(s) in 
Lemma 2.10 below. 

Lemma 2.9. Under the above assumptions, the function s ~ s- lfi(s) = ~o I + b(s) 
is defined in a neighborhood of s = 0  and is continuous with values in C2~(IR , X). 

The proof of this lemma is sketched at the end of this section. 

Lemma 2.10. Under the above assumptions there exist unique continuous 
functions to(s), ~l(s), z(s) defined near s=0,  which have values in IR, IR and V 
respectively, which vanish at s = O, and which satisfy 

(2.11) + + 

where ~(s )  = o~(p(s), t~(s), u(s)). 

Proof. As noted in the proof of Lemma 1.12, the function r ~ K ( r )  defined in 
(2.6) is analytic in r > 0. Now consider the mapping 

(2.12) (s,K,q,z)-,~(s)(~oo+z)-K(p(s))(K(q~o+Z)+q(qh +b(s)), 

which takes a neighborhood of (0,0,0,0) in IR3x V into Co([0,2rr],X,) and 
vanishes at (0, 0, 0, 0). The derivative of (2.12) with respect to (x, t/, z) at (0, 0, 0) is 
the map 

(/~, O, Z) --~ ~ ~ -- K ( I )  (/~ (to 0 -F O (Pl), 

which is an isomorphism. As in the proof of Theorem 1.11, one need only show 
that K(1) (~%+t~qh)eg(~(0) )  implies ~=t~=0. This is immediate from the 
relation (K(1)q~i)(z)=z q~i(z), (1.15), and Lemma 1.13(d). The continuity of (2.12) 
and its derivative with respect to (•, ~/, z) follows from our general assumptions 
and Lemma 2.9. One can thus invoke the implicit function theorem (as stated, 
for example, in [3]) to obtain the desired conclusion. 
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Remark. That •(s) provides the desired continuation of the second zero 
eigenvalue of (2.7) can be seen as follows :' If ~(s)--0 for some s, then (2.11) and 
~(s)  (~o 1 + ~(s))= 0 imply that ~o o +z(s) and qh + b(s) are (obviously independent) 
null vectors of ~(s),  which therefore has 0 as a double eigenvalue. If to(s)~e 0, one 
rewrites (2.11) in the form 

~(s)  (~Oo + z(s) + ,  ~(s)- ' ( ~  + ~(s))) 
= K ( p ( s ) )  (~(s) (Co + z(s) + ~ (s) ~(s)- ' (e, + ~(s))) 

and we have (2.7) with w=~po+Z(S)+tl(S)~(s)-l(~ol+v(s)). Hence -K(s) is a 
Floquet exponent. 

In principle the proof of Lemma 2.10 furnishes a constructive means to 
determine ~(s) as well as t/(s) and z(s). In practice this may be cumbersome, and 
it is desirable to obtain as much qualitive information as possible about these 
functions, and in particular about ~, in terms of other data. The following 
theorem, which is our main linearized stability result, addresses these 
points. 

Theorem 2.13. Let the hypotheses of Lemma 2.10 be satisfied and let ~r 
tl(s), z(s) be as in that lemma. Then 

(2.14) IK(s)+(Refl'(O))s#'(s)l<ls#'(s)lo(1) as s-*O. 

In particular, there is a neighborhood of s=O in which to(s) and s#'(s) have the 
same zeroes, and in which ~c(s) and - ( R e  fl'(0))s#'(s) have the same sign ( i f  
they do not vanish). Moreover 

i t ( s ) -  ' s (2.15) (s((S~) +s#'(s) Imff(0)] <o(1)]s#'(s)] as s--O, 
\ pts) / I -  

and there is a constant c such that 

(2.16) ]lw'(s)- z(s)LI <c]s #'(s)l, 

for s near O, where w(s)=sv(s )=u(s) -s~o o. 

Proof. Let differentiation with respect to s be denoted by a prime, and set 

~@(s) = ~(p(s) ,  #(s), s(q~o + v(s))), ~ ( s )  = ~(p(s ) ,  #(s), u(s)), etc. 

Differentiating the relation i f ( s )=  0 gives 

(2.17) p' (s) ~ (s) + #' (s) ~ (s) + ~ (s) (q~ o + w' (s)) = 0. 

Subtracting (2.11) from (2.17) yields 

p'(s) ~ ( s )  + #'(s) ~%(s) 
(2.18) + K (p (s)) [K (s)(q~ o + z (s)) + r/(s)(qh + v (s))] + ~ (s) (w'(s) - z (s ) )=  O. 

A simple computation also shows that 

(2.19) ~ ( s )  = -p ( s ) -  1K(p(s)) fi(s)= - p(s)- IK(p(s))(q~l + b(s)). 
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Taken together, (2.18) and (2.19) imply 

(2.20) / ( ( . , )  (.,,o +z,s,)+ p(s) ! 
+ ~ ( s )  (w' ( s ) -  z(s)) + s ~'(s) (s- ~ ( s ) )  = o, 

where s-1-~(S) is assigned its limiting value K(1)L~ ~oo (L1 =fux(0, 0)) at s=0.  
The map of IR x lR x V given by 

(2.21) Oc, ~, v) ~ K(p(s)) [lc (~o o + z(s)) + ~ (~o, + b(s))] + J~(s) ve Co([O, 2~] ; X~) 

is an isomorphism when s=0,  by Lemmas 1.13 and 1.14. (Since z(0)=b(0)=0, 
this is the map already used in the proof of Lemma 2.10.) Moreover, by earlier 
results and Lemma 2.9 this linear mapping depends continuously on s. Thus 
there is a positive constant c such that (2.20) implies 

(2.22) 
I , .  sp'(s)l 

I~c(s)l + ~ts)- p(s~ + irw'(s)- z(s)lr ~ Cls K(s)l 

for small Isl. We have now established (2.16). In view of (2.22), the condition ~(0) 
=z (0 )=0  together with the continuity of K(p(s)), b(s), z(s), s-1 o~(s) in s, (2.20) 
implies that the function 

(2.23) 

satisfies 

Hence 

g(s)= K(1) [~c(s) q)o + (q(s) - s  p'(s)] ~Oo] p(s) I ~~ +s#'(s)L1 

IIg(s)-~(O)(w'(s)-z(s))ll <0(1)IsK(s)l as s ~ 0 .  

[(x*, g(s)(2 re))-(x*, ~..(0)(w'(s)-z(s))(2 re)) I 
=l(x*,g(s)(2rc))l<o(1)ls#(s)l as s ~ 0  

by (1.15). By (2.23), Lemmas 1.13 and 1.14, and the relation K(1)q~i(r)=r ~oi(r), 
upon choosing i = 0  we obtain (see the proof of (1.19)) 

12~c x(s) + 27c s #(s) Re fl'(0)[ < o(1)Is #'(s)r, 

which is (2.14). Similarly, choosing i=  1 we find (2.15). 

Remark 2.24. Theorem 2.13 provides useful information about the linearized 
stability problem. For example, if a (L ) \  { + i} is contained in the open right-half 
plane {~e~: Re ~ > 0}, if Re fl'(0) < 0, and if bifurcation is "supercritical" (i.e. 
s# ' (s)>0 when s+0), then K(s)>0. Hence by [10, Theorem 8.2.3] the bifurcating 
periodic solutions are stable. Similarly, if the bifurcation is "subcritical" (i.e. 
s It'(s)< 0 for s 4= 0), then ~c(s)< 0 and the bifurcating solutions are unstable. 

Remark 2.25. Equations (2.14)-(2.16) show that the left-hand sides of these 
expressions divided by s #(s) are bounded for s near 0. In fact these quotients are 
continuous at s = 0. This was already proved directly for some analytic equations 
in [18]. The corresponding theorem in the general case is 
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Theorem 2.25. Under the hypotheses of Theorem 2.13, there exist continuous 
functions A(s), B(s), C(s), with values in IR, lR, V respectively, which are defined 
and continuous near s = 0 and satisfy 

K(s)= s f f  (s) A(s) 

, .  sp '(s)  
(2.26) t/is ) = p ~ j -  + s if(s) B(s) 

z(s) = w ' ( s ) -  s ~'(s) C(s) 

and 

(2.27) 

~ ( 0 )  

A ( 0 ) =  - R e  f l ' (0)  

B ( 0 )  = - I m  y ( 0 )  

C(0) = K(1) (Im if(0) ~o, - L,  go o + (Re if(0)) (Po). 

Proofi Assuming that ~c, t/, z have the form (2.26), substitution into (2.20) gives 

(2.28) 
[A(s) K(p(s)) ((Po + w'(s) - s if(s) C(s)) + B(s) K(p(s)) (qh + (~(s)) 

+ s -  ' ~ ( s )  + G ( s )  C(s) p = o, 

with the understanding that s - l ~ ( s )  has its limiting value ~,(0)q~o = K(1)L 1 ~o o 
at s =0. Define a map of a neighborhood of 0 in IR • 1R 2 x V into Co([0, 2~], X~) 
by 

(S, A, B, C) --). AK(p(s)) ((~o -~ wt(s) - s ]~t(s) C) -~- B K(D (s)) (q)l -~ ~(s)) 
(2.29) 

Av s- l ~ (s ) -~  ~ ( s )  C. 

The value of the map at the values s = 0 and 

(A,/~, C) = ( - Re if(0), - Im if(0), C(0)) 

(as given (2.27)) is 0, while its derivative with respect to/],/~, C, at this point is 

(2.30) (A,/3, C)--*AK(1)~oo+BK(1)~ol + 4 ( 0 )  C, 

which is an isomorphism. Hence by the version of the implicit function theorem 
used in [3], the zeros of (2.29) near (0, - R e  if(0), - I m  if(0), C(0)) are given by 
continuous functions A(s), B(s), C(s) satisfying (2.27) and (2.28). Given (2.17), the 
equality (2.20) is equivalent to (2.11). Since ~c(s), #(s), z(s) are the unique 
solutions of (2.11), it follows from (2.28) and (2.11) that (2.26) holds near s=0.  

Remark 2.31. As the above argument shows, we could have obtained the 
more elegant Theorem 2.25 first and then Theorem 2.13 as a corollary. However, 
Theorem 2.13 already contains the important qualitative information and mo- 
tivates Theorem 2.25. A version of Theorem 2.25 for analytic nonlinearities in 
the context of the Navier-Stokes equations was studied in [18]. JOSEPH assumed 
(2.26) from the beginning and obtained A, B, C by a series expansion method. 
This motivated in part our Theorems 2.13 and 2.25. We further remark that an 
analogue of Theorem 2.25 can be given to improve Theorem 1.16 of [4]. 
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Sketch of the proof of Lemma 2.9. Define 

1 

g(s, w ) :  I f:,(l~(S), s r w) w dr, 
0 

so that  g(s, w)=s-xf(p(s) ,  sw) for sui table  w~X~. With  

w(s) = s -  i u(s) = q~o + v(s) 

the re la t ion  s-l~(p(s), t t(s) ,  sw(s))=0 can be rewri t ten in the form 

w(s)(O- T(p(s)r) x(s) + p(s) i T(p(s)(r-  r g(s, w(s)(r = 0, 
0 

where  x(s)=q)o(O)+v(s)(O). By the hypotheses  on f and  the def ini t ion of  g, it is 
clear  that  g(s, w) is con t inuous ly  different iable  in the pa i r  (s, w). A result  of  
HENRY [11] shows that  the so lu t ion  of  

t 

z (~) - T(p 3) x + p ~ T(p (~ - r g(s, Z(O) d ~ = 0, 
0 

we denote  by Z(p, s, x, r), has the p rope r ty  that  ~ Z(p, s, x, r) exists and  which 

(p , s , x ,O~--~Z(p , s , x , r )  is con t inuous  f rom (0, oc) x 1R x X,  x(0,  o9)) into X~ on 

the d o m a i n  of  def ini t ion of  Z. Since 

w ( s ) ( r  = Z(p(s), s, x(s), O,  

the m a p p i n g  (s,z)~8/Sz(w(s)z) exists and  is con t inuous  into X~ for r > 0  and Is[ 
small .  But w(s)(z) is 2n -pe r iod ic  in r. Thus the der ivat ive  exists and  is con- 
t inuous  for z___0. 

Note. This research was sponsored in part by the United States Army under Contract No. 
DAAG 29-75-C-0024, in part by the Office of Naval Research under Contract No. N 00014-76-C- 
0300, and in part by the National Science Foundation under grant No. MPS 73-8720. 
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