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The host-pathogen interaction between
wheat and yellow rust induces temporally
coordinated waves of gene expression
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Abstract

Background: Understanding how plants and pathogens modulate gene expression during the host-pathogen

interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in

sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this

study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat

yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection.

Results: We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with

PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved

the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression

for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing

on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST

infection on the expression of various defence components and host immune receptors.

Conclusions: Our data showed sequential, temporally coordinated activation and suppression of expression of a suite

of immune-response regulators that varied between compatible and incompatible interactions. These findings provide

the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the

expression of defence components in wheat to successfully colonize a susceptible host.

Background
For a pathogen to successfully infect a host plant, the

pathogen must overcome several layers of innate im-

munity and reprogram the plant cells; this reprogram-

ming allows the pathogen to evade host defences and

colonise the plant. Plant defence responses can act in

two waves. First, perception of pathogen-associated

molecular patterns by pattern recognition receptors at

the plant cell surface causes activation of basal defence

responses [1]. Pathogens suppress these basal defence

responses by secreting an array of effector proteins from

specialized feeding structures, called haustoria in fila-

mentous pathogens [2]. Effector proteins remodel the

plant cell’s circuitry for the benefit of the pathogen.

Second, in resistant plant genotypes, plant immune re-

ceptors (resistance proteins) recognize these effector

proteins and activate a second wave of defence re-

sponses. This second wave includes localised cell death,

known as the hypersensitive response.

Recent studies have characterised changes in gene

expression in plant pathogens during infection. For in-

stance, studies on Fusarium oxysporum [3, 4], Melamp-

sora larici-populina [5, 6], Phytophthora infestans [7, 8],

and Magnaporthe oryzae [9, 10] have addressed how

genes, particularly those involved in immunity, are regu-

lated at the host-pathogen interface. However, few stud-

ies have focused on the Pucciniaceae, a family of fungal

pathogens that constitutes the largest group of plant

pathogens characterised to date, as most transcriptomic

studies on this family have focused on effector identifica-

tion and characterisation [11].

The Pucciniaceae infect an array of food crops and

pose a substantial threat to global food security. For
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instance, yellow rust disease, caused by the fungus Pucci-

nia striiformis f. sp. tritici (PST), endangers wheat pro-

duction worldwide, leading to complete crop loss when left

untreated [12]. As an obligate biotroph, the PST pathogen

is dependent on its host for survival and propagation.

Yellow rust disease begins when aerial spores land on a leaf

and/or other green tissues of a susceptible wheat variety in

environmental conditions favorable for the establishment of

disease. The pathogen enters its host through stomata and

proliferates by generation of invasive hyphae in the meso-

phyll layer. These hyphae produce haustoria, which form

intimate connections with plant cells through invagination

of the host cell membranes [13]. In a susceptible host, the

pathogen can evade the plant’s innate immune system and

manipulate the plant cells to acquire nutrients and enable

colonization. The PST asexual reproduction cycle is then

completed by the production of urediniospores, which

burst through the leaf surface [14]. Although the asexual

infection cycle of yellow rust on wheat has been well docu-

mented morphologically, we know very little about the

cellular processes that occur in the pathogen and host dur-

ing infection.

In this study, we used a transcriptome-based approach

to characterise the rust-wheat interaction and uncover

pivotal events that may lead to parasitism. We used

RNA-seq [15], which provides a method for unbiased

quantification of expression levels. Since RNA-seq does

not require a genome sequence, it allows simultaneous

analysis of host and pathogen transcriptomes, thus enab-

ling us to assess how pathogens regulate the expression

of their molecular components for disease progression

and how they influence the host plant’s circuitry during

a susceptible reaction [16].

We defined the global gene expression profiles for

PST and its wheat host, identifying clusters of differen-

tially expressed host and pathogen genes to reveal sig-

nificant enrichment of genes associated with the defence

response, signaling, and metabolism of protein and fatty

acids. We were able to visualise the activation of these

defence components and the downstream host immune

receptors upon infection with PST. Our data showed

that the expression of these defence components per-

sisted in an incompatible interaction, but was rapidly

suppressed in a compatible interaction. Numerous stud-

ies have reported the suppression of individual immune

components during pathogen invasion and our results

establish that pathogen invasion also involves sequen-

tially and temporally coordinated activation and suppres-

sion of a suite of immune response regulators. Our work

thus describes the global expression levels and patterns

for these key defence components in compatible and

incompatible interactions, and provides insight into

pathogen suppression of host gene expression to enable

colonization of a susceptible host.

Results
Gene expression profiling of the host-pathogen interface

To characterise gene expression profiles in wheat and

PST during infection, we performed an RNA-seq time-

course. We inoculated a highly susceptible wheat variety

(Vuka) with PST strain 87/66 and harvested leaf samples

at 0, 1, 2, 3, 5, 7, 9, and 11 days post-inoculation (dpi).

Germinating PST spores were also collected as a control.

For each time point, three biological replicates were used

to generate a total of 27 poly(A) enriched cDNA librar-

ies, which were sequenced on the Illumina HiSeq 2000

platform. Following quality filtering and data trim-

ming, high-quality reads were aligned to both the

wheat and PST-130 reference genomes [17, 18]. The

percentage of reads that aligned to the wheat reference

decreased from a maximum of 77.35 % (S.D. ±2.02 %)

at 0 dpi to 34.37 % (S.D. ±1.30 %) at 11 dpi (Fig. 1a;

Additional file 1: Table S1). Less than 1 % of reads

mapped to the PST-130 reference genome at 1, 2, and

3 dpi, similar to the results observed in the uninocu-

lated plant control (Additional file 1: Table S1). Therefore,

these time points were not included in downstream ana-

lysis of the pathogen. At later time points, the proportion

of reads aligning to the PST-130 reference increased from

1.02 % (S.D. ±0.55 %) at 5 dpi to 38.80 % at 11 dpi (S.D.

±2.72 %; Fig. 1a).

Improving the PST gene models

When using the previously published PST-130 gene

models [11, 17] we found that a high percentage of reads

(27 ± 19 %) that mapped to the PST-130 genome did not

align to predicted exons (Additional file 1: Table S2).

Therefore, we used our transcriptome data to generate

an updated set of transcript annotations using the soft-

ware Cufflinks [19] and the reference annotation based

transcript (RABT) assembly pipeline [20], which gener-

ated a minimal set of predicted transcripts that best

explained the observed spliced RNA-seq alignments.

This significantly reduced the number of reads mapping

to intergenic regions (0.18 ± 0.09 %; Additional file 1:

Table S3). RNA-seq alignments with short intergenic

lengths indicate the presence of overlapping genes incor-

rectly characterised as distinct loci [21]. In accordance,

our updated PST transcripts have intergenic regions that

are 3.5 times longer than those in the original gene models

and consist of multiple domains that were previously de-

fined as separate genes (Additional file 1: Table S4).

Coding and untranslated regions (UTRs) were then

identified in the new set of PST transcripts using Trans-

Decoder and a predicted proteome was generated [22].

We identified a total of 9,675 distinct genomic loci that

encoded 17,582 expressed transcripts with significant

ORFs. This new proteome was then annotated using the

EBI Interproscan tool [23]. This approach led to the
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annotation of 7,290 out of the 9,675 putative protein-

coding genes (Additional file 2).

Identifying wheat transcripts expressed during infection

For the wheat host, the proteome was defined from a set

of 123,532 previously identified gene models [24] and

Interproscan annotated a total of 88,951 genes [23]. Pre-

dicted proteins were assigned to orthologous groups in

the KEGG database using the GhostKoala mapping tool

[25]. A total of 31.6 % of host proteins were assigned,

with 72.1 % of these showing similarity to proteins from

monocots (Additional file 1: Table S5).

We observed a drop in the percentage of reads map-

ping to the wheat reference genome specifically at 3 dpi

(Fig. 1a; Additional file 1: Table S1). As the wheat

genome is currently incomplete, we examined the un-

mapped reads to determine whether this drop was due

to the expression of transcripts currently not repre-

sented in the wheat genome assembly. We undertook a

de novo assembly of the unmapped reads and used se-

quence similarity searches against the National Center

for Biotechnology Information (NCBI) non-redundant

(nr) protein database to annotate the newly assembled

transcripts. Of the 2,019,326 total transcripts generated,

1,006,674 (49.85 %) could be annotated using this

method. Among these BLAST-annotated transcripts, we

selected transcripts for which hits matched a plant-related

protein (871,367 sequences), including sequences from 387

different species with 59.69 % being monocots. To avoid re-

dundancy, we removed ambiguous sequences using the

CD-HIT-EST programme [26] and combined the wheat

genome with these 657,021 new, non-redundant tran-

scripts. Aligning our RNA-seq data to the combined

wheat reference removed the decrease at 3 dpi in the

percentage of reads that mapped to the genome (Fig. 1b;

Additional file 1: Table S1).

Comparison of RNA-seq quantification methods

The next step was to quantify the expression of PST and

wheat transcripts during infection. Properly accounting

for the sampling process and inherent biases in RNA-

seq approaches requires sophisticated statistical infer-

ence techniques [19]. Raw read counts or simplistic

normalization such as counts per million (CPM) mapped

reads are insufficient, particularly when considering

alternative splicing and reads that map to multiple loca-

tions. To evaluate the performance of these statistical

inference techniques and select the most appropriate

method for our data, we first generated two test datasets

that consisted of triplets of homoeologous genes from

each of the A, B, and D genomes. These datasets in-

cluded 4,307 triplets mined from the Ensembl Plants

Triticum aestivum portal, and a subset of 239 triplets

identified as core eukaryotic genes (Additional file 1:

Tables S6 and S7). As a metric for comparison of the

methods, we considered both the mean pairwise co-

sine similarity, which measures the similarity in shape

of the temporal expression pattern independent of the

magnitude, and the mean pairwise Euclidean distance

between sets of homoeoloci, which depends on the

magnitude of expression. Although recent results have

suggested that sets of homoeologues have significantly

Fig. 1 An initial depression in the percentage of reads mapping to the

wheat genome early in infection could be restored by supplementing

the wheat genome with plant-derived de novo assembled transcripts.

a Alignment of RNA-seq data from the various time points during

infection to both the wheat host and PST-130 pathogen reference

genomes revealed a notable drop in the percentage of reads mapping

to the wheat reference genome specifically at 3 days post inoculation

(dpi). b The wheat reference genome, generated by the International

Wheat Genome Sequencing Consortium (IWGSC), was supplemented

with plant transcripts from a de novo assembly of the unmapped RNA-

seq reads. Alignment of the RNA-seq data to this combined reference

(“IWGSC + Plant”) restored the previous depression at 3 dpi
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biased expression levels between genomes in hexa-

ploid bread wheat [27], we hypothesise that the nor-

malised temporal expression profiles of homoeologous

genes should be comparable (cosine similarity ≈ 1), particu-

larly for triplets of core eukaryotic genes. Furthermore,

similar profiles of expression have been reported for the

Rht-A1, Rht-B1, and Rht-D1 homoeologous dwarfing genes

in tissues of different regions of the developing wheat stem

[28] and in wheat homoeologues of the defence-related

WRKY transcription factors [29].

We selected the programs Cufflinks [19], RSEM [30],

Salmon [31], and Kallisto [32] for comparison, with the

first two as examples of widely used programs and the

latter two being newly developed ultra-fast algorithms.

Cufflinks gave the overall highest similarity (0.996 ±

0.022, 92.8 % > 0.99) between homoeologues for both

datasets (Fig. 2). By contrast, RSEM, Salmon, and

Kallisto consistently gave lower levels of similarity

(0.978 ± 0.026, 0.927 ± 0.141, and 0.942 ± 0.144 re-

spectively). Strikingly, the quantification methods pro-

duced contradictory results when tested on individual

genes. By defining the relative difference between

genes as the magnitude of their difference divided by

their mean [32], we found that the average of the pair-

wise median relative differences for the same gene be-

tween the different programs was 1.08 and the mean

correlation of the expression vectors was 0.72

(Additional file 1: Table S8). This result is consistent

with a previous study, which reported that orthologous

genes between nematode species with cosine similarities >

0.95 had matching expression profiles during development

[33]. Based on this analysis, we decided to use Cufflinks to

determine the expression profiles of PST and wheat in all

downstream analyses.

Dynamic progression of PST infection in wheat

To understand the modulation of biological processes

and pathways throughout the infection process, we in-

vestigated the gene expression profiles for the host and

the pathogen. First, following the Cufflinks pipeline,

cDNA libraries were normalized to generate transcripts

per million (TPM) expression values and the significance

of differential expression was tested using the Cuffdiff

companion software with the 0 dpi or PST germinating

spores used as controls in the analysis. A total of 64,618

host genes and 4,855 pathogen genes were identified as

differentially expressed (FDR < 0.05) between at least one

pair of time points (Additional file 1: Tables S9-11). TPM

expression data for significantly differentially expressed

genes were normalized and clustered into sets of genes with

qualitatively similar expression profiles using the mini batch

k-means algorithm [34], resulting in seven clusters for the

host and eight for the pathogen (Additional files 3 and 4).

To elucidate the biological function for each cluster,

manually curated groups of related annotation acces-

sions, GO term annotations, and KEGG pathway mem-

berships were tested for significant enrichment in each

cluster relative to the entire proteome (Fig. 3; Additional

file 1: Tables S12-15). For the wheat host, we identified

(i) Cluster VII, which peaked in expression at 1 dpi

during initial penetration and was enriched for genes an-

notated as peptidase inhibitors, glycosyl hydrolases, and

peroxidases, (ii) Cluster V, which peaked in expression

at 3 dpi during haustorium proliferation and was

enriched for genes annotated as part of Photosystem II,

and genes coding for cytochromes, ATP synthases, and

RNA polymerases, and (iii) Cluster III, which peaked in

expression at 11 dpi during sporulation and was enriched

for genes involved in membrane transport and genes for

ABC transporters and chitinases. The biosynthetic and

downstream response pathways for the plant stress-

induced hormones salicylic acid (SA), jasmonic acid (JA),

ethylene (ET) and abscisic acid (ABA) were highly repre-

sented in Clusters I, III, and VII, which all had peaks of

expression at 1 and 11 dpi. MAPK signalling was enriched

in Clusters I, IV, and VI, and Ca2+ signalling and apoptosis

were enriched in Cluster I.

For the pathogen (Fig. 3b) we also identified several

clusters. Cluster I, which contained genes that peaked in

expression at 11 dpi, was enriched for genes involved in

Fig. 2 Cufflinks gave the overall highest similarity between

homoeologues for test datasets of triplets of homoeologous genes.

The programs Cufflinks, RSEM, Salmon, and Kallisto were compared,

using two datasets that consisted of: (i) 4,307 triplets mined from the

Ensembl Plants Triticum aestivum portal (“Ensembl”), and (ii) a subset of

239 triplets identified as core eukaryotic genes (“Core genes”)
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fatty acid synthesis GO terms and transmembrane pro-

teins. Cluster III, which peaked in expression at 7, 9, and

11 dpi, was enriched for genes encoding catalase en-

zymes and oxidoreductase GO terms. Cluster II, which

was upregulated from 7 dpi onwards, was enriched for

carbohydrate catabolism, including GO terms related to

glucan, glycogen, and polysaccharides. Cluster IV, which

peaked in expression at 7 dpi, was enriched in genes

related to nucleic acid metabolism, ubiquitination pro-

cesses, and peptidase activity GO terms. Cluster IV was

also enriched in histone transcripts. Cluster V peaked in

expression at 11 dpi and was enriched in putative tran-

scription factors containing the Zn(II)2Cys6 (Zn2C6) do-

main, which has only been identified in fungal proteins

to date [35]. Cluster VI peaked in expression at 5 dpi

and was enriched in HSP20 proteins, which are induced

during the development of infection in other fungal

organisms [36]. Clusters III, V, VII, and VIII were also

enriched in transcripts for proteins that contained a

secretion signal but were annotated with no particular

GO term (Additional file 1: Table S15).

Suppression of expression of host defence genes by PST

is alleviated in a resistant host

On average 25 % (S.D. ±4.07 %) of the reads at each time

point did not align to the wheat or PST reference ge-

nomes (Additional file 1: Table S1). Therefore, we inves-

tigated the de novo assembled transcripts from these

unmapped reads by annotating their potential biological

functions. We focused on identifying transcripts in-

volved in the defence response, as the modular nature of

immune receptors may have limited their assembly in

the current wheat genome. We annotated the assembled

transcripts that likely encode nucleotide-binding domain

leucine rich repeat proteins (NLRs) using the NLR-parser

tool [37]. We supplemented this set of NLR-encoding

genes with additional genes that encode proteins with

similarity to known or predicted disease resistance pro-

teins, as identified through BLAST searches, and com-

bined these two datasets (Fig. 4a). Through this analysis,

we revealed a peak in the number of defence-related genes

expressed at 2 dpi in the susceptible host, when compared

to other time points. This peak in expression of defence-

related genes at 2 dpi dropped sharply by 3 dpi; we

hypothesize that this could be due to active suppression

of the expression of these host genes by PST in the sus-

ceptible host.

To test this hypothesis, we generated a second RNA-

seq time-course by infecting a wheat variety resistant to

the PST 87/66 strain. For the resistant variety, we se-

lected an Avocet introgression line containing the resist-

ance gene Yr5 and harvested leaf samples at 0, 1, 2, 3,

and 5 dpi. For each time point, three biological replicates

Fig. 3 Clusters of genes with qualitatively similar expression profiles

were specifically enriched in particular GO term annotations and

KEGG pathway memberships for both the host (a) and pathogen

(b). Heat maps display the selection of clusters where related annotation

accessions, GO term annotations, and KEGG pathway memberships

showed significant enrichment in the cluster relative to the entire

proteome. dpi, days post inoculation

Fig. 4 The number of host defence-related genes expressed during

infection was specifically suppressed in a susceptible interaction with PST

by 3 days post inoculation (dpi). A de novo assembly of the reads that

did not align to the host or pathogen genomes from both a susceptible

(a) and resistant (b) interaction was interrogated for defence-related

genes. We highlighted transcripts that likely encode nucleotide-binding

domain leucine rich repeat proteins (NLRs) using the NLR-parser tool

(“NLR”) and genes that encode proteins with similarity to known or

predicted disease resistance proteins through BLAST searches (“BLAST”)
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were used to generate a total of 15 poly(A)-enriched

cDNA libraries, which were again sequenced on the Illu-

mina HiSeq 2000 platform. Following quality filtering

and data trimming, high-quality reads were aligned to

both the wheat and PST-130 reference genomes [17, 18]

(Additional file 1: Table S16). We carried out de novo

assembly of the unmapped reads and annotated the

assembled transcripts using the NLR-parser tool [37]

and similarity searches as above. When we assessed the

expression of host defence-related genes during the re-

sistant interaction, we determined that the number of

expressed genes increased steadily throughout the time-

course, without the suppression at 3 dpi that we ob-

served in the susceptible host (Fig. 4b). This is consistent

with the hypothesis that the pathogen suppresses

defence-related gene expression in a compatible inter-

action to enable successful colonization.

Wheat homologs of the rice defensome complex show

coordinate expression

To further explore the regulatory networks involved in

the plant innate defence response, we integrated tran-

scriptomic data with sequence similarity and protein

functional domain searches to identify likely orthologs of

interactors and complex partners of OsRac1, a central

regulator of defence responses in rice (Oryza sativa).

OsRac1 is a highly connected core component of the

innate immune response, connecting with chitin percep-

tion though OsCERK1/OsCEBiP, reactive oxygen species

generation through Rboh, phosphate signalling through

MAPK6, and hormone signalling through RACK1 [38].

Of the ten genes we identified in Fig. 5, at least five have

already been cloned in wheat and the interactions veri-

fied in wheat, rice, or barley [39–44]. We found that the

expression dynamics of all the genes in the predicted

defensome were significantly correlated compared to

Monte Carlo simulations drawn from the null model of

uniformly distributed gene vectors, strongly suggesting

that they are functionally linked (Additional file 5). We

were unable to confidently identify homologs of two

other defence-related OsRac1-interacting proteins, OsC

CR1 and OsMT2, which are involved in cell wall lignifi-

cation and H2O2 scavenging, respectively [45, 46].

We identified two groups (one on chromosome 5 and

one on chromosome 3) of three homologues of Rboh, the

NADPH oxidase required for immune-related accumula-

tion of reactive oxygen species (ROS); each group contains

two genes from the B genome and one from the D or A

genome (5D, 5B, 5B and 3A, 3B, 3B). For both groups, one

of the B genes had lower sequence similarity to other group

members (average 45 and 69 %) compared with the similar-

ity observed between the other genes (88 and 95 %). The

group from chromosome 5 was strongly induced at 1 dpi

and the group from chromosome 3 was strongly induced at

2 dpi (Fig. 5).

TaCERK1 and TaCEBiP (Ta for T. aestivum) encode

components of the chitin perception system and were

strongly induced at 1 dpi. Also, the expression of genes

for the other downstream proteins peaked at 2 dpi. This

was followed by a sharp decrease in expression of many

components that then steadily increased in expression

over the time course, with the exception of TaRac1,

which returned to its basal level from 3 dpi onwards.

TaRac1, despite being a central regulator of immunity,

was expressed at low levels (max 0.49 TPM). Of the

three Hsp90 variants, Hsp90.3 had the highest expres-

sion (max 40.3 TPM), then Hsp90.2 (max 26.2 TPM),

and finally Hsp90.1 had the lowest expression level

(max 1.41 TPM), which agrees with other studies con-

cluding that Hsp90.1 is less involved in disease resist-

ance to the yellow rust fungus compared with the other

Hsp90 genes [39].

The apparent rapid suppression in expression of genes

involved in chitin perception (at 2 dpi) and the defen-

some activation (at 3 dpi) was similar to the NLR

suppression noted above. This prompted us to investigate

the defensome further in the wheat variety resistant to PST

87/66. Overall, we found higher expression of many com-

ponents, including the receptor genes TaCERK1 and TaCE-

BiP, HOP, genes for the SGT1/RAR1/HSP90 complex, and

TaRAC1 and TaRACK1 (Fig. 5; Additional file 1: Table

S17). For the downstream gene TaRboh, the homologs from

chromosome 5 and one homolog from chromosome 3

were strongly induced at 1 dpi, whereas the other 2 homo-

logs from chromosome 3 peaked at day 3. In addition, in

the resistant host, MPK6 continued to rise above basal

levels after recovering from a small dip in expression at 2

dpi, whereas in the susceptible host it failed to recover from

this suppression and only marginally increased in expres-

sion until 11 dpi Fig. 5). Furthermore, although an initial

suppression of expression levels was observed, in particular

for TaCERK1 and TaCEBiP at 2 dpi, this was rapidly allevi-

ated by 3 dpi in the resistant host, but this alleviation did

not occur in the susceptible host.

Expression of PST genes related to vesicle trafficking

increases during germination and later during pathogen

proliferation

Transcriptional responses in the pathogen also showed

changes in gene induction over time. For instance, we

identified homologs of genes for fundamental vesicu-

lotubular carrier components that are central to mem-

brane trafficking and cargo delivery, including SNARE

proteins, GTPases, and clathrins (Fig. 6). These com-

ponents function in all five stages of vesicle traffick-

ing: sorting, uncoating, motility, tethering, and fusion

(Fig. 6a). Once we identified the sequences of these
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components, we combined homologs with similar ex-

pression profiles to create a minimal representative set

of each with at least one representative gene. The

genes were then grouped depending on their expres-

sion profile. This revealed two separate modes of

expression, namely during the germination stage at 0

dpi and during proliferation of the pathogen at 7 dpi

onwards (Fig. 6b).

Homologs of all vesicle trafficking components followed

the two modes of expression, with the exception of sec,

which was unique to the late expression mode. Rab

GTPase proteins cycle between activation, inactivation,

and cytosol-membrane translocation, regulating all five

stages in vesicle trafficking [47]. Their importance is

highlighted by their consistently high expression during

the active periods of both modes. The exocyst, which

includes several Sec proteins, is also involved in targeting

vesicles to the receptor membrane [47]. sec transcripts

were the most abundant component at all stages with a

mean expression of 662 TPM and a peak at 7 dpi of

1074 TPM (Additional file 1: Table S19). On average,

the constituents shared between both modes were more

highly expressed in the late mode due to a combination

of more homologs per gene and higher average expres-

sion per homolog, particularly arf and clathrin with

15.5 and 6.5 times higher expression in the late mode

compared to the early mode (Additional file 1: Table

S19). The identification of genes for a clathrin-coated

vesicle trafficking mechanism as highly expressed dur-

ing the germination stage (at 0 dpi) and during prolifer-

ation of the pathogen (at 7 dpi) indicates that this

trafficking likely plays a key role during PST nutrient

Fig. 5 Suppression in expression of components belonging to the predicted defensome in a susceptible interaction with PST was rapidly alleviated in a

resistant interaction. Ten genes were identified that are likely homologs of interactors and complex partners of the rice central defence regulator OsRac1.

Expression was rapidly suppressed for the genes involved in chitin perception (at 2 days post inoculation (dpi)) and defensome activation (at 3 dpi) in a

susceptible interaction, but this suppression was quickly alleviated in the resistant interaction. Yellow shading illustrates comparable time points between

resistant and susceptible responses
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acquisition early in infection and during effector deliv-

ery at later stages during infection.

Discussion
Global gene expression profiles at the plant-pathogen

interface

Exploring the plant host-pathogen interface is key to

uncovering the molecular mechanisms that regulate dis-

ease progression. Here, we used RNA-seq analysis to as-

sess the global expression profiles of wheat yellow rust

and its host at various time points during infection to

identify changes in gene expression that could be linked

to key aspects of the infection process. The first step

was to identify differential gene expression profiles

across time points for both wheat and yellow rust and

cluster these transcripts into sets of genes with qualita-

tively similar expression profiles. Within the seven clus-

ters identified for the host, we found overrepresentation

of components for biosynthesis and response pathways

related to the plant stress hormones SA, JA, ethylene,

and ABA (Clusters 1 to 4), whose balance is fine-tuned

to regulate plant innate immunity [48]. We also found

enrichment of genes encoding proteins with antimicro-

bial properties, like pathogenesis-related proteins, chiti-

nases, and cysteine-rich repeat proteins (Clusters 1 and

3). Moreover, the enrichment in membrane proteins in

all four of these clusters and the expression of proteins

related to vesicle trafficking in Clusters 2 and 4 indicates

a potential increase of uptake cargo vesicles in the host

plant cell as the fungus colonizes the plant cells.

In the pathogen, we identified specific enrichment of

genes encoding transcription factors containing Zn

(II)2Cys6 (Zn2C6), peaking at 5 dpi (Cluster V). These

transcription factors, which are unique to fungi, are re-

lated to the pathogenicity of the rice blast fungus M.

oryaze, affecting conidial germination and appressorium
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formation [49]. We also found enrichment of transcripts

related to fatty acid biosynthesis, transmembrane pro-

teins, catalases, carbohydrate catabolism, and nucleotide

metabolism, peaking specifically at 7 dpi (Clusters II, IV,

and VII). Finally, we identified a notable peak in expres-

sion at 11 dpi for HSP20 proteins (Cluster VI). In Usti-

lago maydis, HSP20 is upregulated at 11 dpi in infected

maize leaves and plays a key role in pathogenesis [36].

For instance, maize plants infected with a U. maydis

strain devoid of HSP20 have reduced disease symptoms

compared to the wild-type strain [36]. The conservation

of such vital pathogenesis-related elements among dis-

tantly related fungi and, in some cases, their exclusivity

to fungi, highlights these elements as candidate targets

for inhibition to restrain pathogen colonization.

Modulation of the host defence response by PST

In this study, we observed sequential, temporally coordi-

nated activation and suppression of a suite of immune

response regulators. This suppression occurred regard-

less of the susceptibility of the host, but was alleviated

specifically in the resistant interaction. This provides

important insight into how pathogens modulate expres-

sion of host defence components to enable successful

colonization. This correlation in expression patterns of

defence components with host susceptibility is consist-

ent with observations made on infections of susceptible

and resistant potato lines carrying the resistance gene

RB (Rpi-blb1) with P. infestans [50]. Although the P.

infestans infection induced the same suites of genes, the

temporal regulation patterns of these genes significantly

diverged, depending on the susceptibility of the host

plant. In that case, the suite of affected genes included

two specific hypersensitive response-associated genes

that were expressed only in the + RB line [50]. Further-

more, when M. oryzae was used to inoculate susceptible

and resistant rice varieties, after 24 hours the early in-

crease in expression of defence components clearly

differed between the two hosts, with very few defence

response genes detectable in the susceptible host [51].

The inclusion of further time-points would determine

whether this is also consistent with coordinated tem-

poral expression of defence response genes linked to

host susceptibility to M. oryzae.

Plants rely on complex surveillance systems to per-

ceive pathogens. For instance, receptors on the plant cell

surface can detect pathogen-derived molecules as signa-

tures of imminent invasion, as in the case of the wheat

receptor TaCERK1/TaCEBiP and the fungal molecule

chitin [52]. In addition, plant chitinases, which are part

of the plant defence response during infection, degrade

fungal chitin and release chitin oligomers [53]. In wheat,

specific chitinase activity is induced in compatible and

incompatible interactions with PST [54]. In accordance,

we detected an increase in expression of wheat chitinase

genes during infection (Clusters III and I). However,

following the rise in chitinase gene expression during

PST infection in our study, we observed a strong induc-

tion of TaCERK1/TaCEBiP receptors at 1 dpi in both

susceptible and resistant wheat varieties. Furthermore,

by 2 dpi many genes for components of the ROS signal

transduction pathway downstream of the TaCERK1/

TaCEBiP receptors were upregulated irrespective of the

host wheat variety. The proteins involved in ROS signal

transduction include HOP, RAC1, and the components

of the molecular chaperone complex RAR1/SGT1/HSP

90. Previous studies showed that many of the corre-

sponding genes (HOP, HSP90.1, HSP90.2, and RAR1)

were upregulated in barley at 5, 10, and 14 dpi when the

susceptible variety Morex was infected with the PST iso-

late CY32 [55]. Notably in our study, we observed that

the boost in transcript levels of these defence compo-

nents was subsequently suppressed from 3 dpi onwards

in the susceptible host. In the resistant host, the expres-

sion of these defence components was also suppressed

at 3 dpi, but the suppression was rapidly alleviated and

their expression levels steadily increased after 3 dpi.

Overall, at 1 dpi both resistant and susceptible wheat

varieties likely perceived the fungus through the

TaCERK/TaCEBiP receptors and triggered the signaling

pathway required for ROS accumulation. However, even

though the expression of the corresponding transcripts

after 2 dpi was detectable in the susceptible variety, only

the high levels achieved in the resistant variety appear

sufficient to provide an effective immune response. This

could be due to a minimum expression threshold re-

quired to adequately stabilize the host immune receptors

[56]. In accordance, the steady-state levels of the barley

MLA1 and MLA6 resistance proteins, which are effect-

ive against the powdery mildew fungus Blumeria grami-

nis, correlate with their requirement for RAR1, revealing

that triggering an effective resistance response requires a

threshold level of RAR1 [57].

To investigate this further, we characterised the ex-

pression pattern of wheat immune receptors. We used

the NLR-protein parser tool [37] and similarity searches

to identify transcripts that likely encode intracellular

immune receptors among the transcripts that could not

be mapped to the wheat reference genome. We discov-

ered a peak in immune receptor gene expression at 2

dpi, compared to the other time points during infec-

tion. However, the susceptible host showed a subse-

quent sharp drop in immune receptor expression levels

at 3 dpi, which was not observed in the resistant host

where immune receptor gene expression continued to

increase. This likely reflects active suppression or

modulation of upstream signaling resulting in sup-

pression of immune receptor expression by PST to
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inhibit the immune response and promote prolifera-

tion of the pathogen.

The role of vesicle transport in PST invasion

Among the differentially expressed genes in the PST

transcriptome, our study identified many homologs of

genes that encode proteins with fundamental roles in

vesicle trafficking, including SNARE proteins, GTPases,

clathrins, and the exocyst complex. Fungi use vesicular

transport for hyphal and septa growth [58] and likely

also for nutrient uptake and pathogenesis, although this

remains unclear. For instance, the P. sojae PsYKT6

SNARE protein is important in virulence [59], and the

U. maydis Yup1 endosomal t-SNARE is crucial for spore

formation and germination [60]. Moreover, in the rice

blast fungus M. oryzae, the t-SNARE proteins and the

exocyst components define a distinct effector secretion

system located in the fungal biotrophic interfacial com-

plex [61]. This newly described secretion system seems

to work independently of the endoplasmic reticulum-

Golgi secretion pathway for apoplastic effectors [61].

The recent discovery, using endosome-defective strains

of U. maydis, that endosome motility is essential and

required for virulence during early but not later plant

infection stages, could explain the two different modes

of expression of the vesicle trafficking complex that we

identified, one expressed at a very early stage (germinat-

ing spores) and the other at later stages (7 dpi and later).

The first mode may be a determinant of pathogenesis

and the second could have a role in nutrient uptake and

effector delivery.

Conclusions

Numerous studies have reported the suppression of ex-

pression of individual immune components during

pathogen invasion; here, we report sequential temporally

coordinated activation and suppression of a suite of

immune response regulators. This comprehensive study,

which included an array of time points throughout the

infection process, enabled us to document a peak in

expression of wheat cell surface immune receptors at 1

dpi, which was immediately followed by a peak in ex-

pression of highly connected core component of the

innate immune response (OsRac1 and many associated

defence regulators) at 2 dpi. Finally, a peak of expression

in immune receptors was detected at 2 dpi. In all cases,

these peaks in expression were suppressed in the follow-

ing time point (either 2 or 3 dpi), a suppression that was

specifically and rapidly alleviated in the resistant inter-

action. The inclusion of an array of early time points in

our study enabled us to thoroughly document the oscilla-

tion in expression of these defence regulators, which was

not possible in previous studies. The distinct expression

levels and patterns of expression of these key defence

components in compatible and incompatible interactions

provides novel insight into how pathogens may suppress

NLR expression and upstream signaling pathways to en-

able successful colonization in a susceptible host.

This study provides the framework for developing a bet-

ter understanding of how PST causes disease. It will now

be important to extend these results by examining a wider

range of PST-wheat interactions. For instance, how the

same host genotype responds to different PST isolates that

induce compatible or incompatible responses and how

isogenic wheat lines with NLR and adult-plant resistance

based mechanisms differ in this response are just two of

these questions. Likewise, as similar RNA-seq studies are

undertaken for other members of the Pucciniaceae family,

it will also be interesting to see if related pathosystems

show similar sequential temporally coordinated activation

and suppression of immune response regulators. Future

comparative studies could reveal conserved regulatory

elements that would be useful targets for inhibition to

limit pathogen colonization and improve the management

of rust diseases.

Methods

Plant material and PST inoculation

Hexaploid wheat (Triticum aestivum L.) winter cultivar

Vuka and an Avocet introgression line containing the

resistance gene Yr5 [62], were infected with Puccinia

striiformis f. sp. tritici (PST) isolate 87/66. Plants were

pre-germinated in Petri dishes, sown in pots (7 × 7 cm),

and placed in controlled-environment rooms under long-

day conditions (16 h light/8 h dark) and 19/14 °C cycle.

Plants were infected with urediniospores of PST at the

three-leaf stage, using 60 mg of spores from isolate 87/66

as inoculum. After infection, plants were kept in the dark

at 10 °C and high relative humidity for 24 h. Plants were

then moved back to the previous growth conditions. Plant

samples were taken from leaves at 0, 1, 2, 3, 5, 7, 9, and

11 days post-inoculation (dpi) for the susceptible variety

Vuka and 0, 1, 2, 3, and 5 dpi for the resistant Avocet-Yr5

line. Three biological replicates were prepared for each

time point. In addition, fresh spores of PST-87/66 were

germinated in the dark at 10 °C, 24 h, in petri dishes con-

taining distilled H2O and samples of germinating spores

were collected.

RNA isolation, purification, and sequencing

RNA was extracted from 10 mg leaf material and germinat-

ing spores using the Qiagen RNeasy Mini kit according to

the manufacturer’s instructions (Qiagen, Manchester, UK).

DNA was removed using TURBO DNA-free Kit (Ambion,

Loughborough, UK). The quantity and quality of RNA ex-

tracted was assessed using the Agilent 2100 Bioanalyzer

(Agilent Technologies, UK). The cDNA libraries were pre-

pared using the Illumina TruSeq RNA Sample preparation
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Kit (Illumina, US). Sequencing was carried out on the Illu-

mina HiSeq 2000 platform (100-bp, paired-end reads).

Alignment of reads to the reference genomes/

transcriptomes

Adapter and barcode trimming and quality filtering

were carried out using the FASTX-Toolkit [63]. For

the pathogen, reads were aligned to the PST-130

reference genome [17] using Tophat version 2.0.11

[64]. Since Tophat cannot handle reference genomes

larger than 4 Gb, for the host, predicted spliced

transcripts were extracted from the IWGSC refer-

ence genome to produce a reference transcriptome

that was used as a reference in the alignments using

Bowtie version 2.2.1 [64].

Transcriptome reconstruction and quantification

Novel transcripts and novel isoforms of transcripts from

the PST-130 annotation were identified using Cufflinks

version 2.2.1 in ‘reference annotation based transcript

assembly’ mode with sequence bias correction enabled

[65]. The inferred transcript abundances in fragments

per kilobase of transcript per million mapped reads

(FPKM) units were converted to transcripts per million

(TPM) units using the formula:

TMPi;g ¼ 106
FPKMi;gX

g 0∈G

FPKMi;g 0

Where “i” is the sample index and “g” the gene index

in the gene-set “G”.

For the host we followed a similar pipeline, except

Cufflinks was set to strictly follow the reference annota-

tion. TPM values for all genes across experiments are

presented in Additional file 1: Tables S20-S21.

Differential expression testing

The host and the pathogen transcriptomes were subjected

to differential expression analysis using the Cuffdiff tool in

the Cufflinks package [65], making all possible comparisons

between time points. For clustering and other downstream

analyses, a gene was declared differentially expressed if it

had a multiple testing corrected p-value < 0.05 for at least

one comparison.

Clustering of gene vectors

For the host and pathogen, genes identified as differen-

tially expressed were selected and the gene vectors nor-

malised to produce a matrix:

TP̂Mi;g ¼
TPMi;gX

i0∈C

TPM2
i;g

The matrix was then clustered using the MiniBatchKMeans

algorithm implemented in Sci-kit Learn version 0.16.1 [34].

GO term and KEGG pathway enrichment

Genes were annotated with gene ontology (GO) terms

using the Interpro to GO mapping, then tested for

enrichment in given subsets using goatools 0.5.7

(https://github.com/tanghaibao/goatools) with a cor-

rected p-value threshold of 0.05.

KEGG orthology identifiers were assigned to both the

host and pathogen proteomes using GhostKoala and

pathways reconstructed using the KEGG web services. C

clusters were tested for overrepresentation by assuming

a model such that for a pathway K = (n_1, n_2, … n_C),

where n_i = number of genes assigned to pathway K

from cluster i,

ni hypergeometric k;N i;Mð Þ

Where “k” is the number of genes annotated with “K”,

“Ni” is the number of genes in cluster “I” and “M” is the

total number of genes.

Identification of wheat orthologs in the defensome

pathway

The gene annotations for the various components of the

pathway were assigned based on BLAST sequence similarity

to rice orthologs and where available cloned sequences from

wheat and supported by protein functional domain annota-

tions. Where the previously identified sequence of a gene of

interest was spread across multiple IWGSC scaffolds, their

expression levels were averaged. The pairwise cosine similar-

ity matrix between the gene vectors was calculated and a

p value estimated by comparison to 10 million Monte Carlo

sample of pairwise similarities of points distributed

uniformly on a (D-1)-sphere, where D = 8. Data were visu-

alized with quadratic splines for smooth interpolation.

Vesicle trafficking

Genes were annotated based on protein functional do-

mains, then for each gene the homologs’ expression

patterns were clustered using Sci-kit Learn’s KMeans al-

gorithm, and the resulting representative cluster centres

organised by Scipy (0.13.0b1) hierarchical clustering.

Assessing unmapped reads

Reads from each time point that did not map to the PST-

130 and/or wheat reference genome were de novo assem-

bled using Trinity [22]. Sequence similarity searches of

unmapped reads from all time points were performed

against the National Center for Biotechnology
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Information non-redundant database using the

BLASTX algorithm with an E-value of 10−10. For NLR

prediction, all transcripts were first translated into

amino acid sequence in all three frames in both strands

with a customised Perl script. Then the new translated

sequences were run in Motif Alignment and Search

Tool (MAST) from The MEME suite with an E-val of

10000. The MAST output file was then used as an in-

put for the NLR-parser tool [37].

For PST, a total of 17,582 expressed transcripts with

significant ORFs were identified, belonging to 9,675

distinct genomic loci. The new PST proteome was

annotated using a combination of PROSITE, HAMAP,

Pfam, PRINTS, ProDom, SMART, TIGRFAM, PIRSF,

SUPERFAMILY, Gene3D, Phobius, SignalP, and PAN-

THER using the EBI Interproscan tool. Interpro map-

pings were used to identify proteins with corresponding

GO terms, KEGG entries, and EC numbers.

Additional files

Additional file 1: Contains supplementary Tables S1-S21. Microsoft

Excel Workbook containing twenty-one worksheets. Table S1: RNA-based

sequence alignments against wheat and PST-130 reference genomes,

using data from infection of wheat (Vuka) with PST 87/66. Table S2:

Depth of coverage when RNA-seq data aligned to previously published

PST-130 gene models. Table S3: Depth of coverage when RNA-seq data

aligned to PST gene models generated herein. Table S4: Comparison of

PST-130 gene models and those generated herein. Table S5: Wheat gene

annotations. Table S6: 4,307 wheat triplets mined from Ensembl Plants

Triticum aestivum portal. Table S7: 239 triplets identified as wheat core

eukaryotic genes. Table S8: Mean correlation of expression vectors and

mean relative difference comparing Cufflinks, RSEM, Salmon, and Kallisto.

Table S9: Gene expression analysis of susceptible wheat cultivar Vuka

infected with PST 87/66. Table S10: Gene expression analysis of a resistant

wheat line infected with PST 87/66. Table S11: Gene expression analysis of

PST on Vuka . Table S12: KEGG pathway memberships displaying significant

enrichment in each cluster for the 7 wheat clusters. Table S13: GO term

annotations displaying significant enrichment for the 7 wheat clusters.

Table S14: KEGG pathway memberships displaying significant enrichment

for the 8 PST clusters. Table S15: GO term annotations displaying significant

enrichment for the 8 PST clusters. Table S16: RNA-based sequence

alignments against wheat and PST-130, using data from infection of wheat

(Avocet line containing Yr5) with PST 87/66. Table S17: Transcripts per

million (TPM) values for homologs of the defensome in a susceptible

and resistant interaction with PST 87/66. Table S18: TPM values for

PST vesicle trafficking components. Table S19: Summary of TPM values for

PST vesicle trafficking components. Table S20: TPM values for host genes

from a susceptible interaction with PST 87/66. Table S21: TPM values for

host genes from a resistant interaction with PST 87/66. (XLSX 35.6 mb)

Additional file 2: Annotation of updated PST gene models generated

herein. (TSV 21048 kb)

Additional file 3: Expression data (Transcripts per million (TPM) values) for

significantly differentially expressed genes was normalized and clustered into

sets of genes with qualitatively similar expression profiles using the mini batch

k-means algorithm, resulting in 7 clusters for wheat. (EPS 1612 kb)

Additional file 4: Expression data (TPM values) for significantly differentially

expressed genes was normalized and clustered into sets of genes

with qualitatively similar expression profiles using the mini batch

k-means algorithm, resulting in 8 clusters for PST. (EPS 18763 kb)

Additional file 5: Expression dynamics of all the genes in the predicted

defensome compared using Monte Carlo simulations drawn from the

null model of uniformly distributed gene vectors. (EPS 1858 kb)
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