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It is principally at games of chance that a multitude of il-
lusions support hope and sustain it against unfavourable
chances. (Laplace, 1796/1951)

The idea that beliefs about probability show systematic
biases is somewhat older than experimental psychology.
Throughout his “Essai Philosophique sur les Probabil-
ités,” Laplace (1796) was concerned with errors of judg-
ment and even included a chapter concerning “illusions
in the estimation of probabilities.” It is here that we find
the first published account of what is now widely known
as the gambler’s fallacy—the belief that, for random
events, runs of a particular outcome (e.g., heads on the
toss of a coin) will be balanced by a tendency for the op-
posite outcome (e.g., tails). 

Early experiments in probability learning empirically
confirmed the reality of this bias in tasks where subjects

were asked to predict the next outcome in a series of ran-
dom binary alternatives. Although Jarvik (1951) found ev-
idence for a tendency to predict the same as the last event
(positive recency), the chance of predicting the same as
the past diminished after a run of two such events trans-
forming into a tendency to predict the opposite of the last
event (negative recency), for even longer runs, this ten-
dency intensified.

Numerous early studies confirmed this general pattern
of findings (for a review, see Lee, 1971, chapter 6). Several
studies found that, in experiments with 1,000 or more tri-
als, recency effects disappear (e.g., Derks, 1962, 1963; Ed-
wards, 1961). Witte (1964) showed that negative recency in
subjects’ responses could last for several days’ sessions,
including 900 trials, but that eventually it appeared to di-
minish. Negative recency is also commonly observed (al-
though not always, see Budescu, 1987) in the responses of
subjects who are asked to generate or identify random se-
quences (see, e.g., Bar-Hillel & Wagenaar, 1991).

Estes (1964) suggested that the negative recency ob-
served in these experiments was a habit learned from life
that was revealed in the laboratory and, in longer exper-
iments, was gradually extinguished. Yet, if the gambler’s
fallacy is a habit learned in everyday life, where might it
be learned? Plainly, it is an inappropriate response to sit-
uations where there is conditional independence between
the successive outcomes of a random process. Nonethe-
less, outside of gambling casinos and psychology labora-
tories, there are few—if any—circumstances where one
can safely assume conditional independence of a succes-
sion of events. Perhaps, then, the gambler’s fallacy reflects
adaptation to uncertain situations where negative recency
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The representativeness heuristic has been invoked to explain two opposing expectations—that ran-
dom sequences will exhibit positive recency (the hot hand fallacy) and that they will exhibit negative
recency (the gambler’s fallacy). We propose alternative accounts for these two expectations: (1) The
hot hand fallacy arises from the experience of characteristic positive recency in serial fluctuations in
human performance. (2) The gambler’s fallacy results from the experience of characteristic negative
recency in sequences of natural events, akin to sampling without replacement. Experiment 1 demon-
strates negative recency in subjects’ expectations for random binary outcomes from a roulette game,
simultaneously with positive recency in expectations for another statistically identical sequence—the
successes and failures of their predictions for the random outcomes. These findings fit our proposal but
are problematic for the representativeness account. Experiment 2 demonstrates that sequence recency
influences attributions that human performance or chance generated the sequence.
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is exhibited. One obvious candidate is where a finite
population of outcomes is sampled without replacement.
Under these circumstances, expectations with negative
recency have some validity because observing a particular
outcome lowers the chances of observing that outcome the
next time. Accordingly, a number of authors have sug-
gested that the experience of negative recency in life might
be responsible for the gambler’s fallacy in experimental
tasks where subjects are asked to generate or recognize
random sequences (Ayton, Hunt, & Wright, 1989, 1991;
Lopes, 1982; Lopes & Oden, 1987; Neuringer, 1989;
Triesman & Faulkner, 1990). For example, Pinker (1997)
is critical of the presumption of faulty reasoning typically
accompanying observations of the gambler’s fallacy:

It would not surprise me if a week of clouds really did pre-
dict that the trailing edge was near and the sun was about
to be unmasked, just as the hundredth rail road car on a
passing train portends the caboose with greater likelihood
than the third car. Many events work like that. . . . An as-
tute observer should commit the gambler’s fallacy. A gam-
bling device is by definition a machine designed to defeat
our intuitive predictions. It’s like calling our hands badly
designed because they fail to get out of handcuffs. (p. 346)

A rather different account of the gambler’s fallacy was
offered by Kahneman and Tversky (1972), who pre-
sented a cognitive explanation of the gambler’s fallacy in
terms of the operation of the representativeness heuris-
tic. They argued that people expect the essential charac-
teristics of a chance process to be represented not only
globally in an entire sequence of random outcomes but
also locally in each of its parts. Thus, despite their sta-
tistical inevitability, long runs of the same outcome lack
local representativeness and are thereby not perceived as
representative of the expected output of a random de-
vice. Consequently, subjects will expect runs of the same
outcome to be less likely than they are.

However, the idea that perceptions of randomness are
governed by representativeness has also been used to ex-
plain the exact opposite phenomenon—that in a random
sequence, people have an incorrect expectation that a run
of the same outcome will continue. The “hot hand” fal-
lacy was observed by Gilovich, Vallone, and Tversky
(1985), who noted that most people associated with the
game of basketball believe that a player who has just
scored several times in a row is now more likely to
score—because he or she is “hot.” However, when these
authors computed the sequential dependencies between
successive scoring attempts of players, they found that
there was no such dependency; indeed, if anything, play-
ers who have had a run of successful scoring attempts
are somewhat less likely to score next time. Gilovich
et al. explained that judgment by representativeness can
lead people to reject the randomness of sequences that
contain the expected number of runs because the ap-
pearance of long runs in short samples makes the se-
quence appear unrepresentative of randomness (see also
Gilovich, 1991; Tversky & Gilovich, 1989a). Thus, the
representativeness heuristic has been used to explain the

expectation that a random sequence will exhibit both
negative and positive recency.

Such an account for the hot hand fallacy raises a ques-
tion regarding the gambler’s fallacy: If observation of the
runs associated with conditional independence in bas-
ketball is reason for observers to reject the notion that
the sequence of success and failure is random, why do
people not come to a similar conclusion in situations
where the gambler’s fallacy has been observed? Why, for
example, do roulette players, on observing the distribu-
tion of runs of outcomes from the wheel, not reject the
hypothesis that the wheel is random and believe that the
wheel gets hot—in the sense that runs of red make it
more likely for red next time? Given that different ex-
pectations arise for essentially the same patterns of data,
one possibility is that differences in people’s prior ex-
pectations for different processes have some effect. 

It is fairly easy to imagine credible reasons to support
the expectation that successive attempts at scoring in
basketball will be positively autocorrelated. For exam-
ple, plausibly, a series of attempts at scoring might be af-
fected positively by success and resulting increases in
confidence and/or negatively by failure and resulting
decreases in confidence. Or there might be a fatigue and
recovery cycle underlying repeated responses. In either
case, positive recency would result. Indeed, Gilden and
Wilson (1995, 1996) have shown that for golf putting, dart
throwing, and auditory and visual signal detection, there
are streaks in performance; Adams (1995) reported
“momentum” in the performance of pocket billiards play-
ers, Dorsey-Palmateer and Smith (2004) found evidence
for streaks in ten pin bowlers, and Smith (2003) reported
that horseshoe pitchers have modest hot and cold spells.
Accordingly, belief in the hot hand is not always falla-
cious. Perhaps then, elaborating on Estes’s argument,
people have learned to expect the hot hand from observ-
ing human performances where it occurs. People seem to
believe that people can get “hot” (exhibit positive re-
cency), but that inanimate devices cannot. 

For chance events such as coin tosses or spins of a
roulette wheel, where concepts of fatigue, confidence,
or motivation do not pertain, it is harder to envisage rea-
sons why sequences should be positively autocorrelated.
For such events, people typically behave as if expecting
a process of sampling without replacement. Indeed, our
quote from Pinker (1997) gives two examples where se-
quences produced by inanimate processes would be ex-
pected to produce negative recency.

In our first experiment, we sought to investigate the
possibility that incorrect expectations of positive and
negative recency in random sequences arise as a function
of the category of event that subjects experienced. Where
subjects construe a sequence of outcomes as reflecting
human performance, we hypothesize positive recency.
But where subjects expect that outcomes are due to an
inanimate mechanism, we hypothesize negative recency. 

Our second experiment adopts a different strategy and
utilizes a different task to explore the same notion. In-



SUBJECTIVE RANDOMNESS 1371

stead of studying the expectations of recency that people
make when presented with sequences with different
sources of variance, we investigate the inferences that
people make about the sources of sequential variance
when presented with sequences with different properties.
We present sequences of outcomes with varying levels of
positive and negative recency and measure the attribu-
tions that are made about the likely source of the se-
quence. We hypothesize that sequences with positive re-
cency will be attributed to human skilled performance,
whereas those with negative recency will be attributed to
inanimate chance mechanisms.

EXPERIMENT 1

In our first study, we asked subjects to predict the next
outcome in a random series and then measured sequen-
tial dependencies in these responses and, separately, sub-
jects’ ex ante confidence in the success of each predic-
tion. We hypothesize that while their predictions will
show negative recency with respect to the outcomes (the
gambler’s fallacy), their beliefs in the success of their
predictions will show positive recency with respect to
the runs of success and failure of their predictions (the
hot hand fallacy). 

We explored these different expectations in an exper-
iment where subjects were either instructed to forecast
the next event in a binary time series (red or blue), or to
make bets in a simple binary version of roulette. We
studied this instructional variable because the probabil-
ity learning literature contains some (inconsistent) evi-
dence that it alters behavior (Lee, 1971). 

Having made their predictions or bets, all subjects ad-
justed a scale to indicate how confident they were in
their bets/predictions. They then played computer
roulette and received feedback. The outcomes on all tri-
als were randomly determined.

Method
Subjects. Thirty-two undergraduate students at City University

participated in the experiment. 
Stimuli and Materials. Computer software simulated the action

of a schematic roulette wheel and provided the tools to elicit confi-
dence measures and record subjects’ responses. A prediction panel—
initially colored white—could be changed to red or blue to indicate
predictions, which could be altered until f inally confirmed by
pressing the “enter” key.

A rectangular frame served to elicit confidence. The left end of
the frame was labeled with the words “no confidence,” and the right
end with the words “strong confidence.” No other labels or numer-
ical values were indicated. The subjects signaled higher levels of
confidence by pressing the right arrow key, causing the frame to
change color from black to yellow, starting at the “no confidence”
edge and moving toward the “high confidence” edge; the left arrow
key cleared the yellow color in the opposite direction. This enabled
a resolution of 21 units, mapped by the software along the range
0–100 (i.e., 0, 5, 10, . . . , 90, 95, 100). 

A simplified roulette wheel—the upper half of the wheel was
colored red and the lower half blue—was displayed. A black “clock-
hand” initially pointed left on the borderline between the red and
blue segments. When triggered, the hand spun around several times

and stopped to point at either the red or the blue color. Final stop-
ping locations were selected randomly by the computer with an
equal probability of .5 for each color. The computer’s random num-
ber generator was seeded with a new initial value (derived from the
computer’s clock) for each trial.

Procedure. The subjects were randomly assigned to either the
“gambling” or “forecasting” instructional condition; but because
not all recruited subjects attended, 15 were assigned to the fore-
casting condition and 17 to the gambling condition. The subjects in
the gambling condition were told that their task was to gamble on
the computerized roulette outcome, whereas the subjects in the
forecasting condition were asked to forecast the computer’s pro-
grammed algorithm outcome. The subjects in the latter group were
told that “there is a system which determines the outcome of the
wheel; it is possible to learn the system so as to do better than
chance”). For both groups, the actual roulette outcomes were
equally likely and randomly drawn. The subjects were promised a
bonus of 5 pennies for each correct prediction and a deduction of
5 pennies for each wrong prediction. They were guaranteed a min-
imum of 3 pounds for participation, even if they made a loss during
the experiment. 

On each trial, the subjects predicted red or blue and then indi-
cated their confidence in their prediction. The roulette wheel was
spun, and an outcome panel appeared red or blue, accordingly. Si-
multaneously, a tone sequence played to increase the salience of
winning and losing; successful predictions were followed by a tri-
umphant fanfare and failed predictions by a grim dirge.

After 200 trials, a summary of the accumulated wins and losses
appeared on the screen. The subjects were then debriefed and paid.

Results
Negative recency in expectations of outcomes (the

gambler’s fallacy). We collated the data so we could ex-
amine the extent to which responses in choosing red or
blue were sequentially dependent on previous outcomes
of red or blue. Figure 1 plots the probability of predict-
ing (for forecasters and gamblers) the same color as the
last outcome as a function of the number of consecutive
times that outcome had just occurred. A 2 (gambling/fore-
casting) � 5 (run length) analysis of variance (ANOVA)
revealed that run length of previous outcomes was a sig-
nificant determinant of the tendency to predict the same
outcome as before [F(4,120) � 5.11, MSe � 240.99, p �
.001] and that there was a significant linear trend by run
length [F(1,30) � 8.69, MSe � 518.38, p � .006]. The
longer the run of a particular color, the less likely sub-
jects were to predict that color the next time. Thus, neg-
ative recency—the gambler’s fallacy—is apparent in the
choices of the subjects. There was no effect of task (fore-
casting vs. gambling) [F(1,30) � 0.04, p � .844] and no
signif icant interaction between task and run length
[F(4,120) � 1.25, p � .29].

Positive recency in expectations of success and fail-
ure (the hot hand fallacy). To examine the data for the
presence of a hot hand effect, we collated subjects’ trial-
by-trial confidence ratings to see how they varied with
runs of success and failure in the betting/predicting task.
One subject (a gambler) did not experience any runs of
success 5 events long, so a value was estimated by cal-
culating the mean confidence the other 16 gamblers gave
to this event and substituted into the analysis. 
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A 2 (task) � 5 (run length) ANOVA on the confidence
ratings shows that run length (of successful past predic-
tions) was a signif icant factor affecting confidence
[F(4,120) � 20.25, MSe � 4.97, p � .001]. Figure 2 shows
that the confidence expressed by subjects increases ac-
cording to the runs of success that they obtained in the
task. There was a significant linear trend in confidence as
a function of run length of successes [F(1,30) � 14.70,
MSe � 12.98, p � .001]; subjects experiencing a run of
successful predictions increased their confidence in their
next prediction. The ANOVA also revealed that gamblers
were generally more confident than forecasters [F(1,30) �
65.83, MSe � 48.55, p � .001], perhaps because the fore-
casters, told that outcomes were somewhat predictable,

judged from a different standpoint: They may have been
dismayed by being unable to achieve higher expectations
of success. This may have reduced their confidence rela-
tive to the gamblers, who had no reason to expect better
than chance performance. 

There was also an interaction effect between run
length and task [F(4,120) � 12.82, MSe � 4.97, p �
.001]. Whereas both forecasters and gamblers showed an
increase in confidence over runs of success, the pattern
for each is somewhat different. Whereas there is a statis-
tically significant positive linear trend across run lengths
of 1–5 for gamblers [t(16) � 3.79, p � .01], the down-
turn in confidence for run lengths of 5 for forecasters
prevents the corresponding trend from achieving statis-
tical significance [t(14) � 1.60, p � .13]. Nevertheless,
across run lengths of 1–4 there is a significant positive
linear trend for both forecasters [t(14) � 6.46, p �
.0001] and gamblers [t(16) � 2.97, p � .01].

We also collated the data so as to examine the effects
on confidence in predictions as a function of runs of fail-
ure. Figure 3 shows that, as runs of failed predictions
were experienced, subjects’ confidence in their predic-
tions generally decreased.

A 2 (task) � 5 (run length) ANOVA confirmed that
these effects were statistically significant. Run length of
failed predictions had a significant effect on subjects’
confidence [F(4,120) � 28.23, MSe � 6.67, p � .0001].
There was also a signif icant negative linear trend
[F(1,30) � 29.76, MSe � 10.87, p � .0001] by run
length, confirming that the longer the run of failure, the
less confident subjects were in their predictions. Task
was also a significant factor; forecasters were again gen-
erally less confident than gamblers [F(1,30) � 13.82,
MSe � 95.57, p � .001]. The interaction between task
and run length was also significant [F(4,120) � 16.77,

Figure 1. Percent probability (±SE) of predicting the same color as the
last outcome.

Figure 2. Percent confidence (±SE) in predicting/gambling as
a function of runs of success.
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MSe � 6.67, p � .0001]. While both forecasters and
gamblers showed a decrease in confidence over the runs
of failure, the precise pattern for each is again somewhat
different. Whereas for run lengths of 1–5, there is a sta-
tistically significant negative linear trend for gamblers
[t(16) � �9.21, p � .001], for forecasters the upturn in
confidence after five failures renders the corresponding
linear trend not statistically significant [t(14) � �1.07,
p � .3]. Nevertheless, across run lengths of 1–4 there
is a significant negative linear trend for both forecast-
ers [t(14) � �6.52, p � .0001] and gamblers [t(16) �
�12.52, p � .0001]. 

The analysis of the link between confidence and runs
of success and failure reveals that subjects increase their
prospective confidence in their choices as a function of
runs of successful predictions and decrease confidence
as a function of failed predictions. This applies for both
forecasters and gamblers up to run lengths of 4. Thus, in
contrast to their predictions of the color of the outcome
of the roulette wheel, subjects’ changing confidence pre-
sumes that their sequence of winning and losing will ex-
hibit positive recency. Subjects apparently believed that
they got hot or cold, although there were no serial de-
pendencies in the outcomes that they were predicting.

Confidence in predictions with negative and posi-
tive recency. Further illustration of the two effects stud-
ied here was revealed when we compared subjects’ con-
fidence on the occasions when they chose to predict that
the wheel would repeat the last outcome of red or blue or
alternate from its last outcome. We collated the confi-
dence data according to whether subjects predicted that
the wheel would repeat or alternate its last response as a
function of the run lengths of red or blue that had oc-
curred. Treating the choice of alternate or repeat as two
levels of an independent variable, we performed a 2
(choice) � 2 (task) � 5 (run length) ANOVA on the con-
fidence data. This analysis revealed a significant inter-

action between choice and run length [F(4,120) � 2.61,
MSe � 111.26, p � .039] plotted in Figure 4.

The interaction reveals that when subjects chose to
predict that the wheel would repeat its last outcome, they
became less confident as the run became longer. How-
ever, if they predicted that the outcome of the wheel
would be different from the last time, they became more
confident as the run length increased, although there is
a noticeable decrease in confidence after 5 runs of the
same outcome. Linear trend analyses revealed that for pre-
dictions the same as the last outcome, there is a significant
negative linear trend in confidence by run length [t(31) �
�2.30, p � .05]. For predictions that the next outcome
would be different, the positive trend is statistically signif-
icant across run lengths of 1–4 [t(31) � 1.82, p � .05, one-
tailed test], although it is not statistically significant
across run lengths of 1–5 [t(31) � 1.03, p � .31]. Thus,
subjects’ confidence in their own predictions varies ac-
cording to whether they predict with negative or positive
recency; predictions consistent with the gambler’s fallacy
are more confident, and (at least up to run lengths of 4) in-
creasingly so with run length, whereas predictions incon-
sistent with the gambler’s fallacy are less confident and be-
come even less so with run length. 

Discussion
The results of the experiment confirm our hypotheses;

while subjects’ predictions show negative recency with
respect to the sequence of outcomes of the roulette wheel
(the gambler’s fallacy), their beliefs in the sequence of
success and failure of their predictions show positive re-
cency (the hot hand fallacy). Note that, in terms of their
statistical characteristics, the sequence of outcomes of
the roulette wheel (red and blue) and the sequence of
outcomes of the predictions of the subjects (win and
lose) are indistinguishable; they are each binary random
processes with a probability of .5 for each event. Nonethe-

Figure 3. Percent confidence (±SE) in predicting/gambling as
a function of runs of failure.

Figure 4. Percent confidence (±SE) as a function of predicting
repeating/alternating runs of red/blue.
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less, plainly the two sequences are psychologically per-
ceived quite differently; subjects simultaneously exhib-
ited both positive and negative recency—the hot hand
fallacy and the gambler’s fallacy—for two binary se-
quences with identical statistical properties.

This result highlights the incompleteness of the repre-
sentativeness account of misperceived randomness. As
both effects can occur in expectations for statistically in-
distinguishable random sequences—and at the same time
in the same head—some means is required to determine
which expectation occurs when. Our alternative to the
representativeness hypothesis—that both effects arise
because people refer to a biased concept of random-
ness—is that people have different expectations for se-
quences based on their experiences with different kinds
of events. More specifically, we propose that sequences
of outcomes reflecting human performance yield antici-
pations of positive recency, whereas outcomes due to
inanimate chance mechanisms yield anticipations of
negative recency. The results of Experiment 1 are con-
sistent with this notion but are limited in that we only in-

vestigated expectations to one of each type of process. In
our second experiment, we examined expectations for a
wider sample of sequence sources. The two tasks studied
in Experiment 1 differ in response format and modality
in that one task involves a binary choice, whereas the
other involves a quantitative confidence estimate. More-
over, one probability is computed frequentistically (as a
proportion of predictions across trials), whereas the
other probability is based on confidence estimates
within singular trials. In our second experiment, task de-
mands and response assessment for different expectan-
cies are matched.

EXPERIMENT 2

In this experiment, we presented the subjects with
three sets, each consisting of 28 binary sequences vary-
ing in recency. The subjects were told that each sequence
showed output from one of two specified processes. A
pair of processes—one representing human skilled per-
formance and one representing chance performance—

Figure 5. (A) Probability of attributing sequences to basketball player scoring or coin toss. (B) Probability of attributing sequences
to football team scoring or roulette. (C) Probability of attributing sequences to tennis player serving or throw of a die.
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was identified for each set of sequences: (1) a professional
basketball player’s scoring attempts during a game (hit and
miss) or successive tosses of a coin (heads and tails); (2) a
professional soccer team scoring in a series of matches
(score and no-score) or successive outcomes of a roulette
wheel (red and black); (3) a professional tennis player
getting a first serve in (success and fail), or successive
throws of a single die showing odd (1, 3, 5) and even (2,
4, 6) numbers. Their task was to identify which of the
two named sources they thought was more likely to be
responsible for each sequence. We hypothesized that se-
quences with positive recency would be attributed to
human performance, whereas those with negative recency
would be attributed to inanimate chance mechanisms.

Method
Subjects. Thirty-three students from Ben Gurion University,

Sapir and Achva colleges were recruited in return for credit points,
as a partial completion of the requirements of the introductory psy-
chology course.

Design and Materials. The 28 sequences in each set were
computer-generated binary sequences. Each set comprised 4 ex-
emplars of seven different alternation rates: 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, and 0.8. To avoid any possible confounding between the sym-
bols and the nature of the generating process (for instance, 1 could
be intuitively related to hit, and 0 to miss), all events were “dis-
guised” as @ and # symbols. Each series comprised 21 characters:
11 @ and 10 #. Thus the total number of each symbol across all se-
ries was kept constant.

There is a direct relation between the alternation rate of the 21
symbols and recency. If all 11 @ symbols were positioned in the
first 11 places of the series, followed by the 10 # symbols, the se-
ries would have a single alternation. Of the 20 symbols followed by
another symbol (all except the last symbol), 19 are followed by an
identical symbol implying positive recency and the lowest alterna-
tion rate. If the 21 symbols were arranged so that none had a neigh-
bor of the same type, this would result in negative recency and the
highest alternation rate. To prepare the various series for the exper-
iment, a computer program generated 21 random binary sequences
(composed of 10 “0” and 11 “1” symbols). After generating each
sequence, the software calculated the alternation rate and stored the
series. The program stopped after finding 4 exemplars of each al-
ternation rate.

Table 1 illustrates one exemplar of each of the 7 alternation rates
in the disguised form utilized in the experiment (alternation rates were
not identified or referred to). The same 28 sequences were pre-
sented in 3 different random orders for each set, and the order of
presentation of the process pairs was also random across subjects. 

Procedure. The subjects were invited to a regular lecture hall.
An instruction sheet explained that the experiment was to test the
human ability to recognize sequential patterns created by various

sources. An example explained that “a coin tossed four times in a
row may fall first on its Head, second on its Tail, next on its Tail
again and finally on its Head. Other sequences may result from a
basketball player either scoring or missing the basket, or from a
roulette wheel’s outcomes being either red or black.”

The subjects were briefed that they would see binary sequences
comprised of @ and # and that each sequence was a disguised out-
put from one of two specified processes. Their task was to decide
which of the two processes was most likely to account for the pat-
tern observed in the outcome sequence. As added motivation, the
subjects were promised an additional credit point if their number of
correct responses was above average.1 No feedback was given dur-
ing the experiment.

The subjects were then given a three-page questionnaire, each
page of which consisted of a short description of two processes, fol-
lowed by the 28 sequences, each of which contained 21 symbols.
Two empty response spaces next to each sequence were labeled to
identify the two processes. The subjects were asked to examine each
sequence individually and to use their intuition and best judgment to
identify the source of the series by placing a mark in one of the la-
beled response cells. Completion of the task took about 20 min.

Results and Discussion
We collated the data so as to be able to analyze how

subjects’ judgments of the source of sequences varied
with alternations (see Figures 5A–5C). Data from 2 sub-
jects were excluded from the analysis because both re-
sponded uniformly across all items. Missing data left us
with usable responses from 29 subjects for the first two
sets and 30 subjects for the third set.

We performed a one-way ANOVA on the decisions for
each set of process pairs, treating the probability of at-
tribution to chance process rather than human perfor-
mance (subjects encountered each alternation rate four
times within each set) as the dependent measure and the
seven levels of alternation rate as the independent variable.
These analyses confirmed a significant effect of alterna-
tion rate on probability of choosing skilled/chance perfor-
mance for all three sets [basketball–coin, F(6,168) � 14.26,
MSe � 0.09, p � .001; football–roulette, F(6,168) �
3.19, MSe � 0.11, p � .005; tennis–die, F(6,174) � 4.39,
MSe � 0.11, p � .001]. The linear trend across alternation
rate was also significant for each pair [basketball–coin,
F(1,28) � 23.95, MSe � 0.30, p � .001; football–roulette
F(1,28) � 2.94, MSe � 0.42, p � .05, one-tailed test;
tennis–die, F(1,29) � 4.39, MSe � 0.38, p � .02]. 

These results reveal that, as hypothesized, for all three
process pairs, subjects were more likely to attribute se-
quences with low rates of alternation (more “streaks”) to

Table 1
Example of Sequences for Experiment 2

Alternation
Series Rate

@ @ @ @ @ @ @ @ @ # @ # # # # # # # # # @ 0.2
@ # @ # # # # # # # # @ @ @ @ # @ @ @ @ @ 0.3
@ @ @ @ @ @ # # # # # @ @ # @ # # # @ # @ 0.4
@ # # @ # # @ # # # @ # # @ @ @ # @ @ @ @ 0.5
# @ # @ @ # @ @ # @ @ # # @ # @ @ @ # # # 0.6
# @ # @ @ # # @ # # @ # @ # @ @ @ @ # @ # 0.7
@ # # # @ @ # @ # @ @ # @ # @ # @ # @ # @ 0.8
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human skilled performance, whereas sequences with
high rates of alternation were attributed to inanimate
chance processes. Evidently, subjects had disparate ex-
pectations for sequences produced by the two types of
process we presented in the experiment. Moreover, in
this experiment we used the same measure for the two
forms of recency associated with different processes.
The recency expectations are not symmetrical; se-
quences with zero recency (alternation rate of .5) were
attributed to human skilled performance rather than
inanimate chance. Studies of perceived randomness
(e.g., Falk, 1975, 1981; Gilovich et al., 1985; Lopes &
Oden, 1987) also show that alternation rates of .5 are not
judged as random. The precise contribution of the dif-
fering expectations for each type of sequence to the
judgments studied here remains to be determined;
plainly though, and in keeping with our account of the
gambler’s fallacy and the hot hand fallacy, people have
distinct prior expectations for the characteristic recency
associated with different classes of processes generating
sequential outputs. 

GENERAL DISCUSSION

The representativeness accounts for the gambler’s
fallacy and the hot hand fallacy propose that a single
general—and erroneous—concept of randomness is the
reference for both of these effects. According to this ac-
count, in both cases, subjects reject the random sequences
they see as being unrepresentative of their faulty concept
of statistical randomness. By believing that chance mech-
anisms should not exhibit long runs, the gambler’s fal-
lacy is invoked, whereas observing long runs of success
refutes the notion that outcomes are random, and so the
hot hand fallacy is invoked. However, without clarifying
a mechanism to identify which of the two distinct and
opposing prior expectations arises, there is an incom-
plete explanation of both the hot hand and gambler’s fal-
lacies with a single heuristic. The findings from our first
experiment—simultaneous positive and negative re-
cency for two statistically identical sequences—bring
that difficulty into sharper focus. Without varying initial
expectations about random sequences, the representa-
tiveness heuristic cannot explain why, for example, we
do not fallaciously perceive runs of basketball scoring
success as prognostic of failure, or roulette wheels as
prone to getting hot. 

Aside from its incompleteness, an explanation that,
without specifying any conditions, predicts two opposite
reactions to randomness prompts concerns about its
testability. As Falk and Konold (1997) commented, “Al-
though some testable implications of the representative-
ness heuristic have been repeatedly confirmed by Kah-
neman and Tversky [1972], and the concept was fruitful
in inspiring a host of related studies, there is no estab-
lished procedure for deducing how the heuristic will be
implemented in a specific task”(p. 305). 

A related question for the representativeness account
is how people come to acquire their apparent miscon-

ception of randomness: Why do people believe that ran-
dom sequences should exhibit local representativeness
when in fact, of course, random sequences do not exhibit
this characteristic? Although experiments show that peo-
ple can learn about statistical randomness by observing
it (e.g., Neuringer, 1989; Treisman & Faulkner, 1990),
the representativeness heuristic explanation implies that
this does not happen; real randomness does not reliably
exhibit the local representativeness that the heuristic ac-
count assumes to underlie human expectations of ran-
dom outcomes. 

So what does prompt people’s inappropriate responses
to randomness? Our suggestion is that a biased concept
of “pure” statistical randomness is not primarily respon-
sible but separate (and somewhat valid) concepts of pos-
itive and negative recency that are cued when subjects de-
cide which sort of previous experience the data are most
likely to resemble. We speculate that the different appar-
ent biases regarding statistical randomness may be ac-
quired through life experience via sequences of events—
negative recency in the natural ecology of uncertain
events involving natural phenomena influenced by sam-
pling without replacement (e.g., Ayton et al., 1989, 1991;
Lopes, 1982) and the experience of positive recency in
repetitions of human skilled performance with varying
outcomes (Adams, 1995; Dorsey-Palmateer & Smith,
2004; Gilden & Wilson, 1995, 1996; Smith, 2003). Be-
cause it can hardly be reasonably denied that expecta-
tions are triggered by perceived similarity to previous
experience, in some very general sense a representative-
ness explanation is inevitable (see Kahneman & Freder-
ick, 2002, for discussion of a huge range of judgments
where one attribute substitutes for, or represents, an-
other). However, the experimental findings presented
here show that, when presented with random sequences,
people do not merely (or even) conclude that the se-
quences are not representative of statistical randomness.
Instead, they decide what the data are representative of—
namely, processes producing negative or positive recency. 

Recently, Falk and Konold (1994, 1997) presented ev-
idence that, when people are asked to explicitly judge the
randomness of sequences, they use a measure of encod-
ing the sequences’ difficulty. They found that ratings of
randomness were more strongly correlated with the dif-
ficulty of memorizing the sequences than with an en-
tropy measure of randomness, leading them to conclude
that subjects may base their judgments of randomness of
a sequence on an implicit attempt to encode it. Sequences
that alternate more than would be expected by chance are
more difficult to memorize than those with chance alter-
nations, which is consistent with people’s judgments of
randomness. These studies confirm that people have an
erroneous concept of randomness, and suggest a basis
for representativeness, but they do not address the issue
of which competing hypotheses people may invoke when
judging that a sequence is not random. 

Other research relevant to a consideration of the dif-
ference between the hot hand and gambler’s fallacies is
reported by Wagenaar (1988, Chapter 7). Wagenaar noted
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that in games of chance such as roulette, the outcomes of
the wheel are typically held by gamblers to be random
and governed by unpredictable chance. They may un-
derstand that the statistics of the wheel are against them,
yet they bet because the outcome of a gamble is seen as
the result of an interaction between two events: a player’s
choice of number and the outcome of a random device.
According to this perspective, although analysis of the
mathematics of the outcomes of the wheel may offer no
hope, this says nothing about peoples’ choices. Players
apparently believe that their choices of number to bet on
can be “lucky.” Consequently, the outcomes of betting
are commonly seen as governed by luck, which is not
thought of in the same way as chance (see Wagenaar &
Keren, 1988). Many gamblers see luck as something
“streaky” that can be recognized and exploited. For ex-
ample, if you notice it is your lucky day, you can take ad-
vantage of games of chance and win, or, if you notice
that your luck is out, you should quit. In games such as
roulette, such beliefs are, of course, nonnormative be-
cause runs of winning and losing show the same (zero)
sequential dependency as the runs of outcomes on the
wheel such as odd or even numbers. Others have noticed
the parallel between the concept of luck and the hot hand
(cf. Falk & Konold, 1997). Note that the distinction iden-
tified by Wagenaar and Keren is, like our account of the
two fallacies studied here, partitioned between (random)
outcomes for inanimate mechanisms and actions per-
formed by people. 

Other research is consistent with our empirical find-
ings. Burns and Corpus (2004) have shown that respon-
dents assume positive recency (akin to the hot hand) for
forecasting scenarios they judged as nonrandom and
negative recency (akin to the gambler’s fallacy) for sce-
narios they rated as random. Boynton (2003) has also
shown that success increases (and failure decreases) con-
fidence in predicting random series, while explicit in-
structions that the source generated random output in-
creased the likelihood of predicting alternations. Sundali,
Croson, and Gold (2000) observed that casino roulette
gamblers consistently bet more after winning than after
losing, whereas the gambler’s fallacy was less consistent:
About half preferred to choose numbers that had not pre-
viously appeared, and half preferred numbers that had
previously appeared.

A rather striking example of a similar dissociation re-
ported by Perruchet (1985) was discussed recently by
Clark, Manns, and Squire (2001). These authors experi-
mented with an eyeblink conditioning paradigm. Human
subjects were presented with a tone and, on 50% of tri-
als, an airpuff in one eye, which eventually resulted in a
conditioned eyeblink response to the tone. Whereas sub-
jects’ rated expectancy that a tone would be accompa-
nied by an airpuff resembled the gambler’s fallacy (de-
creasing expectancy after a run of airpuffs, increasing
expectancy after a run of no-airpuff trials) their frequency
of eyeblink responses showed the opposite pattern. Thus,
when the likelihood of a conditioned response increased,
the expectancy decreased and vice versa. Although the

cause of this dissociation is not understood, it is clear that
the anticipatory response to random sequences assessed
by two different means can simultaneously oppose each
other.

Finally, let us make clear that we are not disputing the
existence of the hot hand and gambler’s fallacies—only
their interpretation. The empirical case for the gambler’s
fallacy is strong and is not restricted to laboratory demon-
strations; for example, Clotfelter and Cook (1993) re-
vealed the effect in analyses of purchases of state lottery
numbers. Although Gilovich et al.’s (1985) claim that
there are no streaks in basketball has been greeted with
skepticism (e.g., Hooke, 1989; Wardrop, 1995, 1998) and
even disbelief (Larkey, Smith, & Kadane 1989), the sta-
tistical case has been robustly defended (Tversky &
Gilovich, 1989b). Camerer (1989) also reported field ev-
idence that betting on basketball games reflects a mis-
taken belief in winning streaks by teams, and Ayton
(1998) cited evidence of similar misconceptions regard-
ing soccer players’ scoring performances. 

Nonetheless, the consequences of such fallacious be-
liefs may not be so obvious as is often assumed. Burns
(2003, 2004) claims that the hot hand fallacy permits
successful “fast and frugal” judgments of the shooting
percentage of individual basketball players but does not
deny that belief in the hot hand is a fallacy. This distinc-
tion raises the deeper question of whether behavior
should be judged on the validity of the beliefs on which
it is based or on the adaptiveness of the resulting behav-
ior. As allocation decisions (who should take the next
shot?) based on observations of streaks would be better
than those made by ignoring this cue, an invalid belief
can lead to adaptive behavior. Studying beliefs by com-
parison with normative models and studying the adap-
tiveness of their associated behaviors can lead to disso-
ciable conclusions about the efficacy of cognition. 

English cricketer David Gower was once asked about
his chances of scoring at least 100 runs in his next test-
match, as he had in his previous two. He replied that the
odds of repeating his success must be lengthening but
then, on the other hand, because he was “on a roll,” perhaps
the odds should be shortened. His response illustrates
the opposing expectations that are cued depending on
how the event is categorized. Assuming that cricketers’
scores in successive innings are independent (cf. Bur-
rows & Talbot, 1985), Gower appears to have been suc-
cessively entertaining the two opposing biased expecta-
tions that we call the gambler’s fallacy and the hot hand
fallacy. Echoing Laplace, we suggest that it is principally
in situations involving conditionally independent events
that two different randomness illusions can deceive.
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NOTE

1. Because the sequences were artificially generated, there were no
correct answers, so we scored responses according to our hypothesis
about how recency would be associated with the sequences.
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