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THE “HOT SPOTS” CONJECTURE FOR DOMAINS
WITH TWO AXES OF SYMMETRY

DAVID JERISON AND NIKOLAI NADIRASHVILI

§1. Introduction

Consider a convex planar domain with two axes of symmetry. We show that the
maximum and minimum of a Neumann eigenfunction with lowest nonzero eigen-
value occur at points on the boundary only. We deduce J. Rauch’s “hot spots”
conjecture in the following form. If the initial temperature distribution is not or-
thogonal to the first nonzero eigenspace, then the point at which the temperature
achieves its maximum tends to the boundary. In fact the maximum point reaches
the boundary in finite time if the boundary has positive curvature.

Results of this type have already been proved by Bañuelos and Burdzy [BB]
using the heat equation and probabilistic methods to deform initial conditions to
eigenfunctions. We introduce here a new technique based on deformation of the
domain. An advantage of our method is that it works even in the case of multiple
eigenvalues. On the way toward our results, we prove monotonicity properties
for Neumann eigenfunctions for symmetric domains that need not be convex and
deduce a sharp comparison of eigenvalues with the Dirichlet problem of independent
interest.

Theorem 1.1. Let Ω be a bounded domain in the plane. Suppose that Ω is symmet-
ric with respect to both coordinate axes and that all vertical and horizontal cross sec-
tions of Ω are intervals. Let u be the Neumann eigenfunction with lowest eigenvalue
among functions that are odd with respect to the reflection (x1, x2) 7→ (x1,−x2).
After multiplication by ±1 we may assume that u > 0 in x2 > 0. Then

∂u/∂x2 > 0 in Ω.

Except in the case of a rectangle,

∂u/∂x1 < 0 for x1x2 > 0 in Ω,

∂u/∂x1 > 0 for x1x2 < 0 in Ω.

The maximum and minimum of u on Ω̄ are achieved1 at the points where the x2

axis meets ∂Ω and, except in the case of the rectangle, at no other points.
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1We show in Section 7 that u is continuous in Ω̄. This is only at issue at the points where the

axes meet the boundary at which the domain may fail to be Lipschitz.
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742 DAVID JERISON AND NIKOLAI NADIRASHVILI

In the case of the rectangle, the eigenfunction is u = sin(ax2). The maximum
and minimum are achieved on the whole top and bottom sides, x2 = ±π/2a, and
∂u/∂x1 ≡ 0.

Corollary 1.2. Let λ be the eigenvalue of u in Theorem 1.1. Then

λ ≤ µ(Ω),

where µ(Ω) is the lowest Dirichlet eigenvalue of Ω.

Corollary 1.2 should be compared to the following well-known theorem.

Theorem 1.3. The lowest Neumann nonzero eigenvalue of a planar domain is
strictly less than the lowest Dirichlet eigenvalue for any domain with the same
area.

Theorem 1.3 follows from the fact that the Neumann eigenvalue is increased and
the Dirichlet eigenvalue is decreased under radial symmetrization of the domain
preserving area. One can then compare the eigenvalues on the disk explicitly. The
rearrangement theorems are due to Szëgo and Faber-Krahn, respectively. (See
[P, (3.21)].) Thus Corollary 1.2 is a very modest special case of Theorem 1.3 if
λ is the lowest nonzero eigenvalue for the Neumann problem. But by symmetry
the inequality of Corollary 1.2 also applies to the eigenvalue corresponding to the
Neumann eigenfunction with lowest nonzero eigenvalue among functions that are
odd in the x1 variable. Thus unless the eigenvalue is multiple, Corollary 1.2 is
a stronger comparison among eigenvalues of a single domain. On the other hand
Theorem 1.3 applies to different domains with the same area.

Theorem 1.4. Let Ω be a bounded convex domain in the plane that is symmetric
with respect to both coordinate axes. Let u be any Neumann eigenfunction with
lowest nonzero eigenvalue. Then, except in the case of a rectangle, u achieves
its maximum over Ω̄ on the boundary at exactly one point, and likewise for its
minimum. Furthermore, if x0 ∈ ∂Ω and −x0 denote the places where u achieves its
maximum and minimum, then u is monotone along the two arcs of the boundary
from −x0 to x0. Let ν be any outer normal to ∂Ω at x0, that is, ν · (x − x0) < 0
for all x ∈ Ω. Then ν ·Ou(x) > 0 for all x ∈ Ω.

One axis of symmetry is not enough. A straightforward argument using reflection
shows that an equilateral triangle has an eigenfunction with a maximum at two
vertices and a local minimum at the midpoint of the side in between. The absolute
minimum is at the third vertex. (There are perturbations of this example that are
smooth domains and that have a simple eigenvalue.)

Corollary 1.5 (hot spots). Let Ω be a convex, bounded domain in the plane that
is symmetric with respect to both coordinate axes. Let h(x, t) be any solution to the
heat equation in C(Ω̄× [0,∞)) with Neumann boundary conditions and such that∫

Ω

h(x, 0)u(x)dx 6= 0

for some Neumann eigenfunction u with lowest nonzero eigenvalue. Let xt denote
any point of Ω̄ at which x 7→ h(x, t) achieves its maximum. Then xt tends to ∂Ω
as t→∞. If ∂Ω is smooth and positively curved, then there is T such that xt ∈ ∂Ω
for t ≥ T .
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The main idea of the proof of Theorems 1.1 and 1.4 is to keep track of the zero
set of the directional derivatives of u as the domain varies. This method has been
used very effectively by A. Melas [M] to prove that the nodal set of the second
Dirichlet eigenfunction touches the boundary. Theorem 1.3 plays an important
role. As pointed out by Pleijel [Pl], Theorem 1.3 implies that the nodal line of the
least nonconstant Neumann eigenfunction cannot enclose a subdomain. We note
that Pleijel’s proof applies to directional derivatives of u, since these satisfy the
same eigenvalue equation — the Neumann boundary conditions are not relevant.

Here is a sketch of the proofs of Theorems 1.1 and 1.4. Following the method of
continuity, consider a continuously varying family of domains Ωt such that Ω0 is a
domain for which one knows some monotonicity properties, and Ω1 is the domain
for which one aims to prove them. (For technical convenience, one approximates
the domains by piecewise smooth domains or polygons.) Suppose, by contradiction,
that monotonicity fails for Ω1, and let t0 be the infimum of times t for which mono-
tonicity fails. Observe that the functions wi = ∂u/∂xi satisfy the eigenfunction
equation. It follows that when wi is zero at a point, either it is identically zero or
its zero set has at least one branch through the point and it takes on values of both
signs in a neighborhood of the point. But by continuity from earlier times the func-
tions wi at time t0 cannot change sign in the interior of a quadrant, so what goes
wrong at t0 must occur on the boundary. If monotonicity fails on Ωτj for τj ↘ t0
at points tending to the boundary, then the eigenfunction on Ωt0 has a degenerate
critical point on the boundary at time t0. But the degeneracy of the critical point
implies that the zero set of w1 at that point has more than one branch pointing
into the domain Ωt0 . It then follows that every possible topological configuration of
this zero set leads to a nodal domain associated to the eigenvalue λ. A comparison
of Dirichlet with Neumann eigenvalues shows that this is impossible. (It is also
necessary to prove certain nondegeneracy conditions at the vertices of polygons.)

In Theorem 1.1, to prove monotonicity of odd eigenfunctions, one starts from a
diamond domain Ω0, that is, the square with sides of slope ±1. This domain has an
explicit odd eigenfunction, written as a sum of trigonometric functions. In Theorem
1.4, to prove monotonicity in convex domains with a multiple eigenvalue one starts
from the equilateral polygon, whose eigenfunctions are far from explicit. One must
first prove monotonicity for this special case. The monotonicity property satisfied
by the full family of eigenfunctions is monotonicity along the boundary between
the minimum and the maximum, or, equivalently, monotonicity in the direction
of the segment from the minimum to the maximum. The proof of monotonicity
for the equilateral polygon again follows the method of continuity applied to lin-
ear combinations of eigenfunctions starting from the the odd eigenfunction whose
monotonicity was already proved in Theorem 1.1. The contradiction is obtained
using the full strength of Theorem 1.3: in one topological configuration of the zero
set the comparison domain is not a subset of the equilateral polygon, but rather a
domain obtained by reflection across a side. (The comparisons in the earlier parts
of the proof are elementary and do not depend on this theorem at all.)

The organization of the paper is as follows. In the second section we prove contin-
uous dependence of the eigenvalue and odd eigenfunction under certain variations
of the domain. In the third section we prove the main monotonicity results for the
odd eigenfunctions. This is proved first for a special class of piecewise smooth do-
mains. We then pass to the limit to obtain a similar result for all Lipschitz domains.
(The passage to the limit needed to handle the case of cusps at the points where the
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domain meets the axes is deferred to the seventh section because the result is not
needed in the rest of the paper.) In the fourth section we prove strict monotonicity,
nondegeneracy at the maximum and minimum and a strict eigenvalue comparison
with the Dirichlet eigenvalue in the case of polygons. In the fifth section we deduce
that all the eigenfunctions of equilateral polygons have monotonicity. In the sixth
section we prove monotonicity in the case of multiple eigenvalues. This is done
first in the case of convex polygons and then more generally for convex domains by
passing to the limit. In Section 7 we prove Theorem 1.1 and Corollary 1.2 in full
generality including the case of domains with cusps. Finally, in Section 8 we add
some remarks about multiplicity and make some conjectures.

We thank Richard Laugesen and Krzysztof Burdzy for describing the “hot spots”
conjecture to us. The monograph by B. Kawohl [K] also played an important
role in calling attention to the problem. In 1974 Jeff Rauch [R, p. 359] made the
hypothesis that the first nonzero Neumann eigenfunction achieves its maximum and
minimum at isolated points on the boundary and suggested that it should be valid
in “unexceptional cases”. He deduced from it that the point where the temperature
attains its maximum tends to one of those boundary points. In [K], B. Kawohl made
the more explicit conjecture that for every convex domain in Rn, a first nonzero
Neumann eigenfunction achieves its maximum and minimum on the boundary only.
Positive results on this problem can be found in [BB] and [K], and there are a
number of counterexamples in multiply-connected planar domains. The present
authors have an argument (unpublished) proving the existence of a domain with
many holes for which a lowest Neumann eigenfunction has an interior maximum.
The argument is based on a homogenization method known as the Neumann sieve.
A domain with three holes was constructed by Burdzy and Werner [BW], and a
domain with many holes for which both the maximum and the minimum are in the
interior was constructed by Bass and Burdzy [BaB].

§2. Continuous dependence under variation of the domain

Our theorems concern domains Ω given in polar coordinates by

Ω = {(r cos θ, r sin θ) : r < φ(θ)},(2.1)

where φ is a continuous periodic function of period 2π. Symmetry of Ω with respect
to the axes can be written as

φ(θ) = φ(−θ), 0 ≤ θ ≤ π; φ(θ) = φ(π − θ), 0 ≤ θ ≤ π/2.(2.2)

In particular φ on [0, π/2] determines Ω. The assumption that the horizontal and
vertical cross sections are intervals can be written as

− cot θ ≤ (logφ(θ))′ ≤ tan θ, for a.e. θ, 0 ≤ θ ≤ π/2.(2.3)

We begin by imposing an extra Lipschitz condition on the domains to make it
easier to prove continuous dependence of the eigenvalue and eigenfunction when the
domain varies. Denote by LM the collection of domains Ω satisfying (2.2), (2.3)
and in addition the Lipschitz condition

| logφ|+ |(log φ)′| ≤M.(2.4)

Let u be the Neumann eigenfunction on Ω with lowest eigenvalue among functions
that are odd with respect to the reflection (x1, x2)→ (x1,−x2). This eigenfunction
u can also be characterized as the lowest eigenvalue for the mixed boundary value
problem on Ω+ = Ω ∩ {x : x2 > 0} with Neumann conditions on ∂Ω ∩ {x : x2 > 0}
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and Dirichlet conditions on Ω ∩ {x : x2 = 0}. It is well known that u is unique up
to a multiple and that one can choose the multiple so that u > 0 in Ω+ and so that∫

Ω

u2 = 1.

We refer to this eigenfunction as normalized.
For two domains Ωi given in polar coordinates by functions fi we define the

distance between the domains by

d(Ω1,Ω2) = ‖φ1 − φ2‖L∞.
Lemma 2.5. There is a constant C depending only on M such that if Ωi belong
to LM and λi are the corresponding lowest Neumann eigenvalues for functions odd
with respect to x2, then

|λ1 − λ2| ≤ Cd(Ω1,Ω2)1/2.

Proof. Let ui denote the lowest odd normalized eigenfunction for Ωi. By the reg-
ularity theorem of [JK], ui belongs uniformly to the Sobolev space H3/2(Ωi) with
bounds depending only on M . In particular, ui ∈ L∞ and Oui ∈ L4. By Calderón’s
extension theorem, ui can be extended to a function ũi defined on a domain Ω con-
taining both Ω1 and Ω2 with

‖ũi‖L∞(Ω) + ‖Oũi‖L4(Ω) ≤ C
and preserving oddness with respect to the x2 variable. It follows that∫

Ω1

ũ2
2 ≥ 1−O(|Ω1\Ω2|);

∫
Ω1

|Oũ2|2 ≤ λ2 +O(|Ω2\Ω1|1/2).

Hence, λ1 ≤ λ2 + O(d(Ω1,Ω2)1/2), and similarly for the inequality with 1 and 2
exchanged.

Lemma 2.6. Suppose that the domains Ωt belong to the class LM . Let ut denote
the normalized odd eigenfunction for Ωt with lowest eigenvalue. If d(Ωt,Ω0) → 0
as t→ 0, then ut tends to u0 in Ck on compact subsets of Ω0.

Proof. Denote by λt the eigenvalue of ut. The estimates of Lemma 2.5 imply∫
Ω0

|Oũt|2 ≤ λt +O(d(Ωt,Ω0)1/2) ≤ λ0 +O(d(Ωt,Ω0)1/2),∫
Ω0

ũ2
t ≥ 1−O(d(Ωt,Ω0)).

The uniqueness of the lowest odd eigenfunction u0 on Ω0 implies that the second
eigenvalue associated to odd eigenfunctions on Ω0 is strictly greater. Therefore, for
big-O constants depending on this spectral gap,∣∣∣∣∫

Ω0

ũtu0

∣∣∣∣ ≥ 1−O(d(Ωt,Ω0)1/2).

One also has ∫
Ω0

ũtu0 =
∫

Ω0∩Ωt
ũtu0 +O(d(Ωt,Ωt)).

Hence the normalization implies ∫
Ω0∩Ωt

ũtu0 > 0.
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Consequently ∫
Ω0

ũtu0 ≥ 1−O(d(Ωt,Ω0)1/2)

and ∫
Ω0

|ũt − u0|2 ≤ O(d(Ωt,Ω0)1/2).(2.7)

Now suppose that there is a compact subset K ⊂ Ω on which ut does not tend
to u in Ck(K) norm. By interior regularity, ut is uniformly bounded in Ck+1(K)
norm, so there must be a subsequence utj converging in Ck(K) to a function v, but
v 6= u0. But this contradicts (2.7).

Next define an even more special class of domains SM,ε as the collection of
domains Ω = {(r cos θ, r sin θ) : r < φ(θ)} belonging to LM , such that ∂Ω forms a
right angle in an ε-neighborhood of each of the four points where it meets the axes
and such that φ ∈ C∞([0, π/2]).

Lemma 2.8. Suppose that Ωt = {(r cos θ, r sin θ) : r < φt(θ)} belongs to SM,ε and
t 7→ ft is a continuous mapping into C∞([0, π/2]). Let ut denote the normalized
odd Neumann eigenfunction with least eigenvalue. There is an extension ũt of ut
to a C∞ function in a neighborhood Ω̃t of Ωt such that Ω̄t0 ⊂ Ω̃t for t near t0 and
ũt tends to ut0 in Ck(Ω̄t0) as t→ t0 for any k.

Proof. To extend ut near the right angle corners, use reflection, which gives a real-
analytic extension. Away from the corners use the fact that for every k, ut is
uniformly in Ck up to the boundary. It follows that for each k, ũt belongs to
Ck(Ω̃t) uniformly in t. Hence by compactness of Ck(Ω̄t0) in Ck−1(Ω̄t0) and (2.7),
ũt converges in Ck−1(Ω̄t0) to ut0 .

§3. Monotonicity of the odd eigenfunction

Denote by Ω0 the diamond region formed by |x1 + x2| < 1 and |x1 − x2| < 1.
Thus Ω0 = {(r cos θ, r sin θ) : r < φ0(θ)}, where

φ0(θ) =
1

cos θ + sin θ
.(3.1)

Here is the main step towards proving monotonicity of the lowest odd eigenfunc-
tion.

Proposition 3.2. Let Ω1 = {(r cos θ, r sin θ) : r < φ1(θ)} belong to SM,ε and
satisfy

− cot θ < (logφ1(θ))′ < tan θ

for all 0 ≤ θ ≤ π/2. Then the normalized odd eigenfunction u1 associated to Ω1

satisfies

∂u1/∂x2 ≥ 0 and x1x2∂u1/∂x1 ≤ 0.

Proof. Denote

φt(θ) = φ1(θ)tφ0(θ)1−t; Ωt = {(r cos θ, r sin θ) : r < φt(θ)}.
Each of the domains

Ωt = {(r cos θ, r sin θ) : r < φt(θ)}, 0 ≤ t ≤ 1,
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belongs to SM,ε. In particular, if ∂Ω1 meets the positive x1 and x2 axes at Q =
(q1, 0) and P = (0, p2), then Ωt has a right angle at the corners Qt = (qt1, 0) and
Pt = (0, pt2). Furthermore, φt inherits from φ1 and φ0 the property

− cot θ < (log φt(θ))′ < tan θ, 0 ≤ t ≤ 1.(3.3)

Denote by ut the lowest normalized Neumann eigenfunction of Ωt, let λt be the
corresponding eigenvalue and let ũt be the extension as defined in Lemma 2.8.
Denote the positive quadrant and upper half of Ωt by

Ω++
t = {x ∈ Ωt : x1 > 0, x2 > 0}, Ω+

t = {x ∈ Ωt : x2 > 0},
respectively.

Assume, by contradiction, that either ∂u1/∂x1 > 0 or ∂u1/∂x2 < 0 at some
point of Ω++

1 . Let t0 be the infimum of all values of t for which this is the case.
The formula for u0 is

u0 =
1√
2

[
sin
(π

2
(x1 + x2)

)
− sin

(π
2

(x1 − x2)
)]
.

Since initially ∂u0/∂x1 < 0 and ∂u0/∂x2 > 0 in Ω++
0 , it follows from continuous

dependence on t for t ≤ t0 that

∂ut0/∂x1 ≤ 0 and ∂ut0/∂x2 ≥ 0 on Ω++
t0 .(3.4)

Claim 1. For t sufficiently close to t0, ∂ut/∂x1 ≤ 0 and ∂ut/∂x2 ≥ 0 in Ω++
t in

a neighborhood of fixed size of each of the two corners Qt and Pt.

Proof. Consider coordinates

y1 = x1 − qt1, y2 = x2

centered at the corner Qt. Recall that ũt is real analytic in a neighborhood of y = 0.
It satisfies ũt = 0 on y2 = x2 = 0 and the equation ∆ut = −λtut. Moreover ũt is
even with respect to reflection across the axes y1 = ±y2. Hence

sign ũt = −sign y1y2.(3.5)

In particular, ũt vanishes on y1 = 0 and y2 = 0. Finally, the coefficients of the
power series of ũt are continuous with respect to t. Thus the Taylor series in y is

ũt(y) = cty1y2 + terms of degree at least 3

and ct tends to ct0 as t tends to t0. The main point is to show that ct < 0. In-
deed, the Taylor expansion of ut must begin with a nonzero harmonic homogeneous
polynomial of some degree k. But a harmonic polynomial of degree k has a zero
set consisting of k equally spaced lines through y = 0 and the sign alternates on
successive sectors. The only way this is consistent with (3.5) is if the harmonic
polynomial is a negative multiple of y1y2.

By continuity, ct ≤ −c < 0 uniformly for t sufficiently close to t0. It follows that
for y in a fixed neighborhood of y = 0, depending on c and uniform bounds on
higher derivatives,

sign
∂ut
∂y1

= sign cty2 = −sign y2,

sign
∂ut
∂y2

= sign cty1 = −sign y1.

Thus Claim 1 is proved near Qt.
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Next, near the corner Pt, consider coordinates

y1 = x1, y2 = x2 − pt2.
In a neighborhood of y = 0, ut is an analytic function that is even with respect to
reflection across the lines y2 = ±y1. The symmetry and the equation imply that
the Taylor series takes the form

ut = at −
1
2
atλt(y2

1 + y2
2) + bty1y2 + terms of degree at least 3.

The coefficients are continuous in t as t → t0. Since at > 0, at ≥ a > 0 uniformly
for all t near t0. The additional fact that ut is even with respect to x1 (or y1) implies
that bt = 0. It follows that for y in a fixed neighborhood of y = 0, depending on a
and uniform bounds on higher derivatives,

sign
∂ut
∂y1

= −signλtaty1 = −signy1,

sign
∂ut
∂y2

= −signλtaty2 = −signy2.

This concludes Claim 1.

Claim 2. There exists x0 ∈ (∂Ωt0) ∩ (∂Ω++
t0 ), x0 6= Pt0 and x0 6= Qt0 such that

Out0(x0) = 0.

Proof. Let µ(Ω) denote the lowest Dirichlet eigenvalue of a region. Because λt is
the lowest eigenvalue for the mixed problem on Ω+

t with Dirichlet data on the flat
bottom and Neumann data on the top,

λt < µ(Ω+
t ).(3.6)

Case 1. Suppose that the set in Ωt where wt = ∂ut/∂x2 < 0 is nonempty for a
sequence of values of t tending to t0.

Consider a connected component Ut of wt < 0. Since ut > 0 in x2 > 0, and
ut = 0 on x2 = 0, wt ≥ 0 on x2 = 0. It follows that Ut does not meet x2 = 0 and
we may assume by symmetry that Ut is a subset of Ω+

t . If (∂Ut) ∩ (∂Ωt) = ∅, then
wt = 0 on ∂Ut. But ∆wt = −λtwt on Ut, so µ(Ω+

t ) ≤ µ(Ut) ≤ λt. This contradicts
(3.6). In conclusion

(∂Ut) ∩ (∂Ωt) 6= ∅.(3.7)

Furthermore, Claim 1 implies that for t sufficiently close to t0, Ut does not meet a
fixed neighborhood of the corners. Thus if there is a sequence of values of t ↘ t0
for which the set wt < 0 is nonempty that set has limit points on ∂Ωt, and by the
continuity of wt with respect to t, we find in the limit x0 ∈ ∂Ωt0 , not at a corner
such that

∂ut0(x0)
∂x2

≤ 0.

By symmetry we may as well assume that x0 is in the first quadrant. By (3.4) we
have the opposite inequality, so the derivative of ut0 with respect to x2 vanishes at
x0. Since by (3.3) the normal derivative as x0 is not the x2 direction, we conclude
that the full gradient of ut0 is zero at x0.

Case 2. Ω++
t ∩ {x : (∂ut/∂x1)(x) > 0} is nonempty for a sequence of t↗ t0.

This case is similar and simpler than Case 1 because ∂ut/∂x1 = 0 on both of
the axes, so the domain on which a Dirichlet eigenfunction is produced is a subset
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of an even smaller domain Ω++
t . The same argument as in Case 1 shows that there

is a point of (∂Ωt0) ∩ ∂Ω++
t0 that is not a corner but at which

∂ut0(x0)
∂x1

≥ 0.

Then (3.4) implies that ∂ut0(x0)∂x1 = 0, and (3.3) says that the normal is not in
the x1 direction. Hence the Neumann condition implies that the full gradient of ut
vanishes at x0.

Claim 3. There exist points of Ωt0 near x0, the point defined in Claim 2, at which
∂ut0/∂x1 > 0. This is a contradiction since ∂ut0/∂x1 ≤ 0 for all points of Ω++

t0 .

Proof. Consider a rectangular coordinate system (y1, y2) with origin at x0 and so
that ∂/∂y2 is the outer normal at x0 and ∂/∂y1 is the tangential derivative in the
clockwise direction. Write

∂

∂x1
= A

∂

∂y1
+B

∂

∂y2
.

It follows from assumption (3.3) that A > 0 and B > 0.
Denote v = ut0 . The function v has the Taylor expansion

v = a− λt0
2
ay2

2 + αy1y2 + β(y2
1 − y2

2) + (terms of order ≥ 3).

The boundary is given by a Taylor series y2 = py2
1 + · · · . Substituting py2

1 for y2

one sees that, along the boundary,

v = a+ βy2
1 +O(y3

1).

But v is monotone decreasing along the boundary as y1 increases, so it must be
that β = 0. Next, the Neumann condition implies that, along the boundary,

∂v/∂y2 − 2py1∂v/∂y1 = O(y2
1).

But y1∂v/∂y1 = O(y2
1) and ∂v/∂y2 = αy1 +O(y2

1) and hence α = 0. In all,

v = a− λt0
2
ay2

2 + (terms of order ≥ 3).

Note also that a > 0 and λt0 > 0. It follows that in a neighborhood of y = 0,

∂v

∂y2
= −λt0ay2 +O(|y|2);

∂v

∂y1
= O(|y|2).

Therefore, for y2 < 0, y1 = 0, and |y| sufficiently small,

∂v

∂x1
= sign

(
A
∂v

∂y1
+B

∂v

∂y2

)
= −signBλt0ay2 > 0.

This concludes the proof of Claim 3 and of Proposition 3.2.

Corollary 3.8. Let Ω belong to LM . Then its normalized odd eigenfunction u
satisfies

∂u1/∂x2 ≥ 0 and x1x2∂u1/∂x1 ≤ 0.
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Proof. By Lemma 2.6, it suffices to approximate Ω in LM by domains for which
the hypotheses of Proposition 3.2 are satisfied. Take φ corresponding to Ω and let
aε = φ(ε)/φ0(ε) and bε = φ(π/2 − ε)/φ0(π/2− ε). Define

ηε(θ) = φ(θ), ε ≤ θ ≤ π/2− ε,
ηε(θ) = aεφ0(θ), 0 ≤ θ ≤ ε,
ηε(θ) = bεφ0(θ), π/2− ε ≤ θ ≤ π/2,

and extend ηε by symmetry to the other three quadrants. The function ηε is
continuous and belongs to LM ′ with M ′ = max(M, 2aε, 2bε). Furthermore, ηε tends
uniformly to φ as ε → 0 because φ0 and φ are continuous. Next, let 0 < δ < 1.
Since φ0 satisfies the strict inequality (3.3), η1−δ

ε φδ0 satisfies the corresponding strict
inequality uniformly in [0, π/2] with a bound depending on δ > 0. Such functions
tend uniformly to φ as ε → 0 and δ → 0. Moreover η1−δ

ε φδ0 is equal to a multiple
of φ0 near the corners. Finally, for each fixed δ > 0, take log(η1−δ

ε φδ0), and use
convolution to approximate by a C∞([0, π/2]) function (but leave the function
unchanged in a neighborhood of 0 and π/2). The constraints of Proposition 3.2 are
linear in the logarithm, so they are preserved. In this way one approximates the
original function φ uniformly by functions satisfying the hypotheses of Proposition
3.2, and which all belong to LM ′ .

§4. Strict monotonicity for polygons

We begin by stating the nondegeneracy conditions valid on polygons except at
the vertices.

Theorem 4.1. Suppose that Ω is a polygon that is symmetric with respect to both
axes and for which vertical and horizontal cross sections are intervals. Let u be the
lowest Neumann eigenfunction odd with respect to x2 as in Theorem 1.1. Unless Ω
is a rectangle, u has a unique maximum and minimum at the two points of ∂Ω on
the x2 axis and

(a) ∂u/∂x2 > 0 at every point of Ω.
(b) The tangential derivative along the boundary is nonzero except on the x2 axis

and at vertices (where it is zero or undefined).
(c) The second tangential derivative at the maximum (and minimum) is nonzero

if the maximum does not occur at a vertex.

In the exceptional case of the rectangle, the symmetry implies that the rectangle
has sides parallel to the axes. The domain has the form −L1 < x1 < L1, −L2 <
x2 < L2, and u = sin(πx2/2L2). The maximum and minimum are achieved on the
whole upper and lower sides, x2 = ±L2.

Proof. Corollary 3.8 implies that w = ∂u/∂x2 ≥ 0 in Ω. It follows from the
generalized mean value property (for small circles) that w > 0 in Ω or else w ≡ 0.
But w ≡ 0 and u = 0 on x2 = 0 implies u ≡ 0. This proves (a). In particular, the
maximum and minimum cannot be achieved in the interior.

To prove (b), consider coordinates centered at a boundary point on a side of
the polygon, not a vertex and not on the x2 axis. Choose a rectangular coordinate
system y1, y2 so that y = 0 is the boundary point and the y1 axis contains the
side of the polygon. We may assume, without loss of generality, that y = 0 is a
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boundary point in the second quadrant x2 ≥ 0, x1 < 0 and that
∂

∂y1
= A

∂

∂x1
+B

∂

∂x2
,

where A ≥ 0 andB ≥ 0. Corollary 3.8 says that in the second quadrant ∂u/∂xi ≥ 0,
i = 1, 2. Hence

v =
∂u

∂y1
≥ 0

near y = 0. Note that by the Neumann condition we may reflect u evenly across
y2 = 0, and v can thus also be considered an even analytic function in a full
neighborhood of y = 0.

We first show that if v ≡ 0, then Ω is a rectangle. By analytic continuation
∂u/∂y1 = 0 on all of Ω and u = f(y2). Let m be the smallest value of y2 for points
of Ω̄ and let M be the largest. Then for m < y2 < M , there exists an interior point
(of Ω) with that coordinate. Since ∂u/∂x2 is nonzero on the interior, f ′(y2) 6= 0
for all such y2. The Neumann condition now implies that the sides of the polygon
in the range m < y2 < M are normal to the y1 direction. It follows that the region
is a rectangle of the form m < y2 < M , c < y1 < C.

Thus, if the domain is not a rectangle, then v is not identically zero. We can
now show that a1 > 0, where

u = a0 + a1y1 +O(|y|2); v = a1 +O(|y|).
Both u and v are even functions of y2 and ∆v = −λv. But v ≥ 0 implies a1 ≥ 0. If
a1 = 0, then v = O(|y|). Therefore, since v is not identically zero, there is a nonzero
harmonic polynomial, homogeneous of degree k ≥ 1 such that v = hk +O(|y|k+1).
But this contradicts the fact that v ≥ 0 near y = 0. It follows that a1 > 0. This
concludes the proof of (b).

The function u is continuous up to the boundary.2 We have just shown that
if Ω is not a rectangle, then u is strictly increasing on each side, so it is strictly
increasing along the boundary on each arc starting from the bottom point on the x2

axis to the top point. Thus the maximum and minimum are unique and attained
on the boundary intersected with the x2 axis.

To prove (c), consider coordinates at the maximum point P = (0, p2), given by
y1 = x1 and y2 = x2 − p2. Then u is even with respect to y1, and the Neumann
condition implies that it can be extended across the top side to be even with respect
to y2. If u has zero second derivative in the x1 = y1 direction, then it has an
expansion of the form

u = a0 −
1
2
λa0y

2
2 + w(y),

where w = O(|y|4) and w is even with respect to both y1 and y2 and satisfies
(∆ + λ)w = λ2a0y

2
2/2. But then

w1 =
∂u

∂x1
=
∂w

∂y1

satisfies (∆+λ)w1 = 0. If w1 ≡ 0, then as we showed above, the region is a rectangle.
If not, then w1 = hk(y) +O(|y|k+1) for some nonzero harmonic polynomial hk that
is homogeneous of degree k for some k ≥ 3. But the pattern of signs in sectors of

2In two dimensions the Sobolev space H3/2(Ω̄) is a subset of a Hölder class.
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hk is inconsistent with the fact (from Corollary 3.8) that w1 is nonnegative in the
subset of Ω where x1x2 < 0 and nonpositive in the subset of Ω where x1x2 > 0.

Next we prove nondegeneracy at the vertices of the polygon. To formulate the
theorem, we describe the asymptotic expansion of u at vertices. Let Q be a vertex
of a polygon Ω with interior angle σ. Let γ = γ(x) be the angle that the segment
from x to Q makes with an edge with endpoint Q, ρ = |x−Q|, and α = π/σ. One
can expand u on the circular arc ρ = ρ0 and 0 < γ < σ in a Fourier cosine series

u(x) =
∞∑
n=0

cn cos(nαγ), |x−Q| = ρ0.(4.2)

The series converges and the coefficients cn are rapidly decreasing. It follows that
for ρ0 sufficiently small,

u(x) =
∞∑
n=0

cn(Jnα(
√
λρ)/Jnα(

√
λρ0)) cos(nαγ)(4.3)

for all x, |x−Q| = ρ ≤ ρ0. Recall that

Js(r) =
∞∑
m=0

(−1)m(r/2)s+2m/[m!Γ(m+ s+ 1)].

It follows in particular that if 0 < σ < π (i.e., α > 1), then

u(x) = a0 + a1ρ
α cos(αγ)− 1

2
a0λρ

2 +O(ρmin(2α,4)).(4.4)

On the other hand, if π < σ ≤ 3π/2 (i.e., 2/3 ≤ α < 1), then

u(x) = a0 + a1ρ
α cos(αγ) + a2ρ

2α cos(2αγ) + a3ρ
3α cos(3αγ)− 1

2
a0λρ

2 +O(ρα+2).

(4.5)

Theorem 4.6. With the hypothesis of Theorem 4.1,
(a) Let Q ∈ ∂Ω be a vertex of the polygon on the x2 axis. Then the expansion of

u has the form

u(x) = a0(1− 1
2
λρ2) + o(ρ2)

with a0 6= 0.
(b) If Q ∈ ∂Ω is a vertex not on the x2 axis, then u has an expansion of the

form

u(x) = a0 + a1ρ
α cos(αγ) + o(ρα)

with a1 6= 0.

Proof. For part (a), note that the interior angle at Q is convex, σ < π. The
expansion has the form (4.4), but because u is even, a1 = 0. Moreover, a0 =
u(Q) 6= 0.

To prove (b) consider first the case of a vertex Q on the x1 axis. Then 0 < σ < π
(α > 1). Furthermore, a0 = 0. Let ak denote the first nonzero coefficient. Then
the expansion takes the form

u(x) = akρ
kα cos(kαγ) + o(ρkα).
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But u > 0 for x2 > 0 and u < 0 for x2 < 0 in the domain, whereas for every k > 1,
the function akρkα cos(kαγ) changes sign more times in the sector in Ω. Therefore
a1 6= 0.

Consider next the case σ = 3π/2, α = 2/3. This only occurs if the sides of Ω
that meet at Q are horizontal and vertical. Because Q is not on the x1 axis, a0 6= 0
in expansion (4.5). Assume, by contradiction, that a1 = 0. Then monotonicity
along ∂Ω near Q implies a2 = 0. Since ρ2 = ρ3α, the sum of the a3 term and
the ρ2 term is a quadratic polynomial. The Neumann boundary conditions on the
horizontal and vertical sides imply that this quadratic polynomial has the form
α(x1 − q1)2 + β(x2 − q2)2 (Q = (q1, q2)). It follows that ∂u/∂x1 ≈ 2α(x1 − q1)
and ∂u/∂x2 ≈ 2β(x2 − q2). The coefficients α and β cannot both be zero because
a0 6= 0. Hence one of these linear approximations changes sign in the interior of the
domain. This contradicts the fact that ∂u/∂xi does not change sign in Ω near Q.

Next assume that Q is a vertex with σ < 3π/2, but not on either axis. Then
a0 6= 0. Assume by contradiction that a1 = 0 in (4.4) or (4.5). Either the ρ2α term
or the ρ2 term determines the behavior of u near Q, depending on whether α > 1 or
α < 1. They do not cancel each other because α 6= 1. But cos(2αγ) = 1 along both
sides that meet at Q. Thus both the functions ρ2 and ρ2α cos(2αγ) are decreasing
as ρ tends to zero along each side. But this contradicts monotonicity of u along the
boundary on both of the paths joining the minimum to the maximum.

Finally, we deduce Corollary 1.2 in the special case of polygons.

Proposition 4.7. Let λ be the eigenvalue of u in Theorem 1.1. Assume in addition
that Ω is a polygon. Then

λ < µ(Ω),

where µ(Ω) is the lowest Dirichlet eigenvalue of Ω.

Proof. Denote w = ∂u/∂x2. By Theorem 4.1 (a) and (b), w > 0 in Ω, w ≥ 0 on
∂Ω and w > 0 on any side of the polygon that is not horizontal. Let v > 0 be the
Dirichlet eigenfunction of Ω with eigenvalue µ = µ(Ω). By Green’s formula,∫

∂Ω

w
∂v

∂ν
dσ =

∫
∂Ω

(
w
∂v

∂ν
− v ∂w

∂ν

)
dσ

=
∫

Ω

(w∆v − v∆w)

= (λ− µ)
∫

Ω

vw.

(Green’s formula can be proved by passing to the limit from parallel boundaries
using the asymptotics at vertices of w and v: Okv = O(ρ2/3−k) and Okw =
O(ρ2/3−1−k).) Since ∂v/∂ν < 0 on ∂Ω except at the vertices, one has λ− µ < 0.

§5. Equilateral polygons

We begin now to deal with the case of a multiple eigenvalue.

Proposition 5.1. Let Ω be the equilateral polygon with 4k sides, k > 1. Then
every second eigenfunction u for the Neumann problem satisfies the following.

(a) u is strictly monotone increasing on both arcs of the boundary from the
minimum to the maximum.
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(b) The tangential derivative of u is nonzero except at the minimum and maxi-
mum and the vertices.

(c) The second tangential derivative of u is nonzero at the maximum and mini-
mum, assuming these occur on a side, not a vertex.

(d) If the maximum and minimum occur at vertices, then the expansion is non-
degenerate in the sense of Theorem 4.6 (a). At vertices other than the maximum
and minimum u has an expansion of the form (4.4) with a1 6= 0.

(e) u has no critical points on the interior of Ω.

Proof. The main point is to prove a weak form of (a), namely that u is monotone
along the two arcs of the boundary from the minimum to the maximum.

Orient the polygon so that there are horizontal and vertical sides. Let u0 be the
eigenfunction that is odd with respect to x2, positive in x2 > 0 and normalized to
have L2(Ω) norm 1. Denote rotation counterclockwise by the angle θ by

Aθ =
[
cos θ − sin θ
sin θ cos θ

]
.

Let v(x) = u0(Aπ/2x). Thus v > 0 in x1 < 0 and v is odd with respect to x1. Since
the eigenspace is two dimensional [N], the family of all normalized eigenfunctions
can be written as

uθ(x) = (cos θ)u0(x) + (sin θ)v(x).

Observe that

Ouθ(0) = (cos θ)Ou0(0) + (sin θ)Ov(0) = (− sin θ, cos θ)|Ou(0)|
and uθ is the unique normalized eigenfunction with gradient at 0 in this direction.
Let

Y1 = cos(π/4k)x1 + sin(π/4k)x2, Y2 = − sin(π/4k)x1 + cos(π/4k)x2.

Then Ω is also symmetric with respect to the Y1 and Y2 axes. In these coordinates
Ω has a corner at the maximum and minimum value of Y2. If w is positive in Y2 > 0
and odd with respect to Y2, then Ow at 0 is parallel to OY2 and nonzero and hence

w = uπ/4k.(5.2)

By similar reasoning, uπ/2k(x) = u(Aπ/2kx) is the unique normalized eigenfunction
with gradient at 0 in the direction Aπ/2ke2 and uπ/2+π/2k(x) = v(Aπ/2kx) is the
unique normalized eigenfunction with gradient at 0 in the direction Aπ/2+π/2ke2.
Hence, taking linear combinations,

uθ+π/2k(x) = uθ(Aπ/2kx)(5.3)

for all θ. Let R denote the reflection (x1, x2)→ (−x1, x2) across the x2 axis. Then
because u is even with respect to R and v is odd,

u−θ(x) = uθ(Rx).(5.4)

It follows from (5.3) that it suffices to prove monotonicity for uθ for−π/4kθ < π/4k.
From (5.4) it follows that it suffices to consider only 0 < θ < π/4k.

In the range 0 < θ < π/4k, uθ is a linear combination of u0 and w with positive
coefficients. We focus our attention on the segment S defined as the left half of the
top horizontal side. The left endpoint of S is the point Q ∈ ∂Ω at which Y1 = 0 and
Y2 > 0. The right endpoint of S is the point P ∈ ∂Ω at which x1 = 0, x2 > 0. Since
w is strictly monotone along the boundary between the two vertices on the Y2 axis
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and u is strictly monotone along the boundary from the two vertices on the x2 axis,
uθ is strictly monotone except possibly on S and its reflection through the origin
Aπ(S) (the right half of the bottom horizontal side). Since all the functions uθ

have odd symmetry under the rotation by π, uθ(x) = −uθ(Aπx), our monotonicity
property will be valid if we can prove that uθ has a unique maximum in S and is
monotone on both sides.

Assume (by contradiction) that for some θ, 0 < θ < π/4k, uθ is not monotone
along the boundary from its minimum to its maximum. Let φ be the infimum of
θ > 0 for which monotonicity fails. We show first that φ > 0 and that on the top
side of the boundary uφ has either an additional critical point or else the maximum
is degenerate. We will then rule out these two cases.

The expansion of u0 at Q is

u0(x) = a0 + a1ρ
α cos(αγ)− 1

2
a0λρ

2 +O(ρ2α)

with a0 > 0, α = 2k/(2k− 1), ρ = |x−Q|, and γ is the angle x−Q makes with the
horizonal side S. Moreover, Theorem 4.6 implies that a1 > 0. On the other hand,
w attains its maximum at Q and so its expansion at the vertex Q begins (w is even
with respect to Y1) with a term of size ρ2α. It follows that a linear combination of
u and w with nonzero factor on u is strictly monotone in a neighborhood of Q. In
other words, for 0 < θ < π/4k, ∂uθ/∂x1 > 0 in a set including a neighborhood of
Q along S. This set only increases as θ decreases to 0.

For any ε > 0 the exists τ > 0 such that for 0 < θ < τ ,

∂uθ/∂x1 > 0

on S except for an ε-neighborhood of P . This follows from the fact that ∂u/∂x1 > 0
on S except at the endpoints Q and P and the fact that we have already proved
this strict monotonicity near Q. But by Theorem 4.1 (c), ∂2u/∂x2

1(P ) = −c < 0.
Therefore, for θ > 0 sufficiently small, ∂2uθ/∂x2

1 = −c/2 < 0 in a fixed neighbor-
hood of P . It follows that for θ sufficiently small uθ has exactly one critical point,
a nondegenerate maximum. In particular, φ > 0.

Let Q1 be a limit point of the maximum points of uθ as θ ↗ φ. Because uφ is the
uniform limit on S of uθ, uφ is strictly increasing on ∂Ω from Q to Q1 and strictly
decreasing from Q1 to P . (The strict increasing and decreasing properties follow
from the fact that uφ is real analytic on the side of Ω containing S and because it
is strictly increasing on the right half of the side, it cannot be constant on S.) But
the perturbation of an analytic function with one nondegenerate critical point (a
maximum) has exactly one nondegenerate critical point (also a maximum). Since
uφ is the limit from θ > φ of functions that are not monotone on each side of a
maximum, it must be either that uφ has a degenerate maximum at Q1 or a critical
point at a point Q2 6= Q1. (Note also that as θ increases the proportion of u in uθ

decreases and the proportion of w increases, so that the maximum moves to the
left and a new critical point Q2 can only appear to the left of Q1.)

We will derive a contradiction using the behavior of the zero set of

V =
∂uφ

∂x1
.

Observe that
∂V

∂x2
= 0 on S.
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Thus we can extend V and uφ by reflection across S as even functions.

Claim. The function V is nonnegative along the open segment QQ1 and negative
along the segment Q1P . It is strictly positive in QQ1 except at a finite number of
points of type Q2 on this segment. Each of the points of type Q2 is a degenerate
critical point (i.e., the tangential first and second derivatives of uφ vanish there)
and there are at least two branches of V = 0 (or more generally an even number of
branches) pointing into Ω with the sign of V alternating in the sectors in between
consistent with the sign V ≥ 0 on the boundary near Q2. At Q1, the maximum
point for uφ, there are an odd number of branches of V = 0 pointing into the region,
consistent with the sign of V , namely, V > 0 on the left to V < 0 on the right of
Q1. The presence of only one branch at Q1 means that Q1 is a nondegenerate
maximum.

Proof. Choose coordinates y1 and y2 translated so that Q1 is the origin. Then
∂uφ/∂y1 = 0 at Q1 (y = 0). Consider the case in which Q1 is a degenerate
maximum. Then ∂2uφ/∂2y1 = 0 and the maximum property implies in addition
that ∂3uφ/∂3y1 = 0. The Taylor expansion of uφ has only even powers of y2.
Together with the eigenfunction equation these equations at Q1 imply an expansion
of the form

uφ = a0 −
1
2
λa0y

2
2 +O(|y|4).

Thus V = O(|y|3) and (∆ + λ)V = 0. Moreover, since uφ is not constant on S,
V is not identically zero. Hence V = hk + O(|y|k+1) for some nonzero harmonic
polynomial homogeneous of degree k ≥ 3. Since V is even in y2, hk is even in y2,
which specifies it uniquely in the two-dimensional space of homogeneous harmonic
polynomials of degree k. In particular, its zero set has k branches pointing into
Ω. The sign of V alternates between positive and negative between the branches.
Since V > 0 at all but finitely many points on the part of S to the left of Q1 and
V < 0 on the part of S to the right of Q1, it follows that k is odd. (This can also be
seen by other means directly from the expansion.) In the case of a nondegenerate
maximum at Q1, uφ has a term with y2

1 , and V has a linear term in y1 and there
is exactly one branch in Ω.

Next, suppose there is a critical point Q2 6= Q1. Translate the coordinates x1

and x2 to coordinates z1 and z2 centered at Q2. We have ∂uφ/∂z1 = 0 at Q2

(z = 0). Since uφ is monotone increasing at Q2, we also have ∂2uφ/∂z2
1 = 0 at

z = 0. In other words, the new critical point must be degenerate. The Neumann
condition and eigenfunction equation imply

uφ = a0 −
1
2
λa0z

2
2 + α(z3

1 − 3z1z
2
2) +O(|z|4).

Thus V = 3α(z2
1 − z2

2) + O(|z|3), and if α 6= 0, then the zero set of V has two
branches pointing into Ω. In the two sectors containing S, V > 0, so that there
is a sector strictly inside on which V < 0. (Equivalently, since uφ is monotone
increasing in z1, α ≥ 0. This determines the sign of V in each sector.) On the
other hand, if α = 0, then V = hk + O(|z|k+1) where hk is a nonzero harmonic
polynomial, homogeneous of degree k, even in z2. Thus there are k > 2 branches
of the zero set of V pointing into Ω. Furthermore, because V ≥ 0 on S on both
sides of Q2, k is even.
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Having proved the claim, our task now is to show that this pattern of the zero
set of V leads to a contradiction in all cases in which there is at least one degenerate
critical point.

The line Y2 = 0 has positive slope in x coordinates. Except at x = 0 it belongs to
the two quadrants satisfying x1x2 > 0 and hence ∂u/∂x1 ≤ 0 on this line. On the
other hand, ∂w/∂Y2 > 0 and ∂w/∂Y1 = 0 on this line, which implies ∂w/∂x1 < 0.
In all,

∂uθ

∂x1
< 0(5.5)

in Ω on the line Y2 = 0 for all θ, 0 < θ < π/4k. It is also true that this inequality is
true in the whole sector interior to Ω in a neighborhood of the points where Y2 = 0
meets ∂Ω. (This is because ∂(ρα cos(αγ))/∂x2 > 0 in the sector 0 < θ < σ with
α = π/σ and 0 < σ < π. And this is the main term in the expansion – sum of u
and w contributions which have the same sign here.)

Consider the region R = {x ∈ Ω : Y2 > 0}. Define A1 and A2 to be the left and
right endpoints, respectively, of the open interval {Y2 = 0}∩Ω, that is, A1 is in the
region x1 < 0 and A2 is in x1 > 0. Then V ≥ 0 on the arc of ∂R from A1 to Q1

traveling clockwise. (The places where V = 0 include the vertical side adjacent to
A1 and the degenerate critical points of type Q2.) Furthermore, V < 0 on the arc
of ∂R from Q1 to A1 traveling clockwise. (The arc from Q1 to A2 is on ∂Ω where
we already have this sign condition from monotonicity properties of u and w. The
sign on the segment Y2 = 0 from A2 to A1 is handled by (5.5).)

The most important special case is the one in which there is exactly one extra
degenerate critical point of type Q2 and a nondegenerate maximum Q1. Then, in
the simplest case, there are exactly two branches of V = 0 from Q2 and along any
segment S′ formed by the intersection with Ω̄ of a line parallel to S and slightly
below S, V changes sign exactly 3 times. The segment S′ will be fixed at some
sufficiently small distance from S for the remainder of the argument. Thus S′

is the union of four closed intervals Sk, k = 1, . . . , 4, ordered from left to right,
overlapping only at endpoints and such that V > 0 on the interior of S1 and S3

and V < 0 on the interior of S2 and S4.
Case 1. The component of R\{V = 0} that contains S1 also contains S3.
In this case, the component R1 of {x ∈ R : V (x) < 0} containing S2 cannot reach

the negative portion of the boundary (the arc of the boundary going clockwise from
Q1 to A1). Thus ∂R1 ∩ ∂R = {Q2}. Therefore, in particular, V = 0 on ∂R1. Since
we also have (∆ + λ)V = 0 it follows that the Dirichlet eigenvalue µ(R1) ≤ λ. But
R1 is a subset of Ω, so µ(Ω) ≤ λ. This contradicts Payne’s theorem (Theorem 1.3).

Case 2. The component of R\{V = 0} that contains S2 also contains S4.
In this case, the component of R2 of {x ∈ R : V (x) > 0} that contains S3 does

not meet ∂R except on a subset of the top side (the interval from Q2 to Q1). In
particular, V = 0 on ∂R2 except at the points of ∂R2 on the top side. But V
satisfies the Neumann condition ∂V/∂x2 = 0 on the top side. Define a region R∗2
as the double of R2 reflected across the top side. Extend V to an even function V ∗

with respect to this reflection. Then V ∗ = 0 on ∂R∗2 and (∆ + λ)V ∗ = 0 in R∗2.
Hence µ(R∗2) ≤ λ. On the other hand, since R2 ⊂ R, the area of R∗2 is less than
the area of Ω. This contradicts Payne’s theorem.

The other degenerate cases are similar, but easier. For example, if Q1 is a
degenerate maximum, then there are at least three branches of V = 0 from Q1 and
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a contradiction of the type of Case 1 can be obtained. In general, V changes sign
k times for some odd number k ≥ 3. Thus we have shown by contradiction that uθ

is monotone from its minimum to its maximum.
To see that uθ is strictly monotone along each arc of the boundary note that the

proof showed that uφ does not have any critical points other than a nondegenerate
maximum and minimum, using only the fact that uφ was monotone. The same now
applies to every uθ. Thus we have confirmed (a), (b), and (c) of Proposition 5.1.

To prove (d) note that the proof that a1 6= 0 is similar to the proof of Theorem
4.6 (b). If a0 6= 0 the proof is exactly the same. If it were true that a1 = 0,
then the nonzero second order terms in the expansion of uθ at the vertex violate
the monotonicity of uθ along the boundary near the vertex. If both a0 = 0 and
a1 = 0, then following the argument of Theorem 4.6 (b), monotonicity implies that
the expansion has a leading term of the form ρ3α cos(3αγ) (or even higher order)
which gives (at least) three branches of the zero set entering Ω. This contradicts
the fact that uθ has only two nodal domains [CH] combined with the fact that no
nodal domain can be closed, which is a consequence of Payne’s theorem.

Finally, to prove part (e), observe that for all θ, 0 ≤ θ ≤ π/4k, the monotonicity
of uθ in the tangential direction along the boundary implies that

∂uθ

∂x2
≥ 0 on ∂Ω.

But Proposition 4.7 implies that the lowest Dirichlet eigenvalue for Ω is strictly
larger than λ. Therefore, the generalized maximum principle implies that

∂uθ

∂x2
> 0 on Ω.

§6. Monotonicity for multiple eigenfunctions

Proposition 6.1. Let m > 1. Let Ω1 be a convex polygon with 4m sides, symmet-
ric with respect to both axes. Assume also that there is no vertex on an axis. Let
u be any Neumann eigenfunction with lowest nonzero eigenvalue. Then u achieves
its maximum (minimum) at exactly one point, that point is on the boundary and u
is monotone increasing along both arcs of the boundary from the minimum to the
maximum.

Proof. The only case that has not been covered by Theorem 4.1 is the case in which
Ω1 has a multiple eigenvalue.

Lemma 6.2. There is a family of convex polygons Ωt, 0 ≤ t ≤ 1, such that
(a) Ωt has two axes of symmetry.
(b) Ωt has 4m vertices, m > 1, such that not one of them is on an axis.
(c) Each vertex of Ωt depends continuously on t.
(d) Ωt has a multiple eigenvalue for all t.
(e) Ω0 is an equilateral polygon.

Proof. To begin with we ignore property (d), which we will enforce later. Deform
Ω1 by way of convex, symmetric polygons to a polygon with all its vertices on the
unit circle as follows. Consider

Ft(x) =
x

(1− t)|x|+ t
.
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Then F1(x) = x and F0(x) = x/|x|. If xk are the vertices of Ω1, define a new
polygon Ω̃t with vertices Ft(xk). We must confirm that these vertices define a
convex polygon. Let x = x1, y = x2 and z = x3. Then convexity and the fact that
the angles between successive rays to the vertices are less than right angles implies
that x and y are in the same half-plane. In particular they are independent and
there exists α, 0 < α < 1, and β > 1 such that

z = β((1 − α)x + αy).

There exist αt such that 0 < αt < 1 and βt > 0 such that

Ft(z) = βt((1− αt)Ft(x) + αtFt(y)).

We want to show that βt > 1 (strict convexity at the vertex Ft(z)). This is
a routine computation following from the triangle inequality. Denote ft(x) =
(1− t)|x|+ t. Then αtβt/ft(y) = αβ/ft(z) and (1− αt)βt/ft(x) = (1− α)β/ft(z).
Thus, eliminating αt,

βtft(z) = (1− α)βft(x) + αβft(y);

in other words,

(1− t)βt|z|+ βtt = (1− t)[(1 − α)β|x| + αβ|y|] + βt

and the triangle inequality implies |z| < (1 − α)β|x| + αβ|y|. So it must be that
βt > 1.

After deforming to a convex region with vertices on the circle, one can move
the vertices on the circle until they are equidistant. (Do this deformation in each
quadrant symmetrically.) Reparametrizing t to the range [0, 1], one obtains a con-
tinuous family Ω̃t with Ω̃1 = Ω1 and Ω̃0 = Ω0, an equilateral polygon with vertices
not on the axes.

It remains to modify the construction so that the multiplicity property (d) is
satisfied. Given a convex polygon Ω, symmetric with respect to both axes with
boundary points (a, 0) and (0, b), and given s ≥ 0, denote3

Ω(s) = {x ∈ Ω : |x1| < a− s}.

Let λ1(Ω) and λ2(Ω) denote the lowest Neumann eigenvalue of Ω among functions
that are odd with respect to x1 and x2, respectively. The case of multiplicity is
achieved whenever λ1(Ω) = λ2(Ω). The key observation is for s > s′, Ω(s) ⊂ Ω(s′),

λ1(Ω(s)) > λ1(Ω(s′)); λ2(Ω(s′)) ≤ λ2(Ω(s)).(6.3)

To prove this, denote by u1 and u2 the odd eigenfunctions with respect to x1 and
x2, respectively, on Ω(s), with eigenvalues λi = λi(Ω(s)). Define v1 and v2 similarly
on Ω(s′), with eigenvalues λ′i = λi(Ω(s′)). After multiplication of ui and vi by ±1

3We attribute the idea of cutting or extending a body to fit a constraint to Procrustes [Bl].
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we may assume that signxi = signui = sign vi. Let Γ = Ω(s′) ∩ ∂Ω(s). Then∫
Ω(s)

(−λi + λ′i)uivi =
∫

Ω(s)

(−λi + λ′i)uivi

=
∫

Ω(s)

(vi∆ui − ui∆vi)

=
∫
∂Ω(s)

(
vi
∂ui
∂ν
− ui

∂vi
∂ν

)
dσ

= −
∫

Γ

ui
∂vi
∂ν

dσ

= −
∫

Γ

ui(sign (x1))
∂vi
∂x1

dσ.

For i = 1, (sign (x1))u1 ≥ 0 and ∂v1/∂x1 > 0 implies that the last integral is
positive. With the minus sign in front we deduce −λ1 +λ′1 < 0. On the other hand,
for i = 2, signx2u2 ≥ 0 and sign (x1)sign (x2)∂v2/∂x1 ≤ 0 implies that the last
integral is negative. With the minus sign in front we obtain −λ2 + λ′2 ≥ 0 (with
strict inequality except in the case of the rectangle, for which ∂v2/∂x1 ≡ 0).

Because of this monotonicity, there is a unique choice of Ω̃t truncated either in
the x1 variable (as above) or in the x2 variable in such a way that λ1(Ω̃t) = λ2(Ω̃t).
There is a uniform lower bound on the height and width of Ω̃t. Indeed, it is easy
to show that Ω is as above; then there is an absolute constant C such that

C−1a−2 ≤ λ1(Ω) ≤ Ca−2; C−1b−2 ≤ λ2(Ω) ≤ Cb−2.

By continuity the vertical and horizontal sides of the family Ωt are bounded below
uniformly by a positive number. Therefore the same is true for Ω̃t. (Furthermore
the diameter of Ω̃t is bounded above uniformly in t.)

The difficulty with the family Ω̃t is that the number of vertices may change.
The vertices depend continuously on t, but two vertices can coalesce into one and
then split apart again. To avoid this we perturb the construction slightly. In order
to show that we can perturb without violating monotonicity, we must prove the
uniform version of (6.3),

λ1(Ω(s))− λ1(Ω(s′)) ≥ c(s− s′)(6.4)

for a constant c > 0 that depends only on an upper bound for the diameter of Ω
and a positive lower bound for length of the vertical side and horizontal sides.

Let S = {x1 > 0} ∩ Γ. On the middle half of S, we observe that

u1
∂v1

∂x1
≥ c(maxu1)(max v1)(s− s′).

Indeed, u1 can be extended by reflection across Γ. It satisfies the Harnack inequality
in a neighborhood of the maximum point at (a, 0), so u1 is comparable to the
maximum of u1 on half of the vertical side. Similarly one can find a lower bound
for v1. But v1 is zero on x1 = 0 and so ∂v1/∂x1 is comparable to the maximum of
v1 in a region of unit size at unit distance from the side S. Finally, ∂v1/∂x1 ≥ 0 on
all of Ω(s′) and the function vanishes on a segment x1 = a−s′ which is at a distance
s− s′ from S. It follows by a barrier argument that ∂v1/∂x1 ≥ c(s− s′) max v1 on
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S. Finally since u1
∂v1
∂x1
≥ 0 on all of S,∫
S

u1
∂v1

∂x1
dσ ≥ c(maxu1)(max v1)(s− s′)

with a constant c depending on a lower bound for the length of S. Since the
maximum majorizes the L2 norm for domains of bounded area, (6.4) follows.

We will fix a number ε > 0 sufficiently small in a way specified later depending
on a lower bound for the length of the vertical and horizontal sides of Ω̃t and on
the constant c in (6.4) on m and on the maximum diameter of the domains Ωt. To
modify a domain Ω = Ωt, assume that λ1(Ω) < λ2(Ω). Then define a family of
domains as

Ω′(s) = Ω(s)

for 0 < s ≤ s1 where s1 is the least value of s for which there are sides (four of
them by symmetry) of length ε. Let us number the sides in the positive quadrant
going counterclockwise. S0 is the vertical side, S1 the first side above it, S2 the
next side in counterclockwise order tending toward the line x1 = 0, etc. Let us
refer to the endpoints of a side as first if it is reached first in order going around
the boundary counterclockwise in the first quadrant, and second if it is encountered
second. For s > s1, Ω′(s) is defined so that there is a side S0 on the line x1 = (a−s)
of increasing length. The side S1 will have fixed length ε for all s ≥ s1 and fixed
orientation (fixed normal). It will be translated in the plane so that the second
endpoint follows the side S2. Thus the side S2 will be getting shorter as this vertex
moves along it and the side S0 will be getting longer in the way that is forced by the
fact that S1 has fixed orientation and length. We stop at s = s2 when the length
of S2 is ε. Now continue to move with the pair S1 and S2 being a rigid set at the
same orientation, with the second endpoint of S2 following S3 and S0 lengthening
as it is forced to do. As always, S0 is a segment of the line x1 = a− s.

The uniform strict lower bound (6.4) and monotonicity of λ2(Ω(s)) in s shows
that for sufficiently small ε, λ1(Ω′(s))−λ2(Ω′(s)) is a strictly increasing function of
s. This is because the difference between this domain variation from the one of the
form Ω(s) involves variation of sides of total length at most 4mε. The variational
formula for Neumann eigenvalues is given by

λ̇ =
∫
∂Ω

(u2
T − λu2)vdσ,

where u is the normalized eigenfunction, uT is the tangential derivative, λ is the
eigenvalue and v is the normal variation (see [Z]). For a Lipschitz domain (with
uniform bounds depending on the Lipschitz constant), uT belongs uniformly to
Lp(dσ) for some p > 2; u also belongs to this class (and even to L∞). It follows
that the square integral over a set of size 4mε tends to zero as some power of ε.
The variation v is bounded, so for ε sufficiently small the lower bound of (6.4)
dominates. Thus for each there is a unique value of s for which Ω′(s) satisfies
λ1(Ω′(s)) = λ2(Ω′(s)). The vertices of Ω(s) depend continously on s. Therefore,
given Ωt we can define the unique st such that Ω′t(st) has multiplicity. This family
satisfies assumption (d) as well as the others of Lemma 6.2.

Remark 6.5. The assumption in Proposition 6.1 that there is no vertex on the
axes already played a role in the proof of Lemma 6.2. But there is another easy
consequence, namely that Ωt has only obtuse angles. On the other hand, with the
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help of Proposition 6.1 we will show in Proposition 8.1 that if the eigenvalue is
multiple, then no angle can be acute.

Dilate also so that the multiple Neumann eigenvalue of Ωt is λ ≡ 1 for all t.
Let t0 be the infimum of t such that monotonicity along both arcs of the boundary
from the minimum to the maximum fails for some second eigenfunction ut on Ωt.
We may assume that ut has an extension ũt that tends to an eigenfunction ut0 of
Ωt0 uniformly on Ω̄t0 along some sequence t ↘ t0. In fact, because these domains
belong uniformly to LM for some fixed M , Out ∈ Lp for some p > 2 uniformly for all
t and we may choose an extension ũt such that ũt converges uniformly on Ω̄t0 and in
W 1,2(Ωt0) norm to a Neumann eigenfunction ut0 with eigenvalue 1. (First observe
by Lemmas 2.5 and 2.6 that there is convergence in Dirichlet integral and that the
W 1,2 norm distance to the family of all normalized eigenfunctions with eigenvalue
1 on Ωt0 tends to zero. But this collection of eigenfunctions is two dimensional, so
the normalized ones form a compact set — parametrized by a circle. So one can
take a subsequence of ut that is convergent.)

In a neighborhood of Ω̄t away from the vertices ut is real analytic and can be
extended by reflection so that ut tends to ut0 in Ck norm on compact subsets of
Ω̄t0 that do not contain the vertices. But then the Fourier series representation
of the solution in a neighborhood of the vertices shows that those coefficients also
depend continuously on t. See (4.2) and (4.3). (The angle α at each vertex depends
continuously on t.)

Step 1. Let Q be a point ∂Ωt0 at which ut0 attains its maximum. Then ν ·Out0 >
0 on Ωt0 , where ν is the outer normal to Ωt0 at Q.

Since ut0 is the uniform limit from t ≤ t0 of monotone eigenfunctions, it is
monotone along the boundary from its minimum to its maximum. Thus ν ·Out0 ≥
0 on ∂Ωt0 . Since the Dirichlet eigenvalue is strictly larger than the Neumann
eigenvalue and this directional derivative satisfies the Neumann eigenvalue equation,
ν · Out0 ≥ 0 on Ωt0 . By the generalized mean value property the inequality must
be strict unless the function is identically zero. But it cannot be identically zero
since the maximum and minimum values of ut0 are not equal.

Step 2. The coefficient a1 6= 0 in the expansion of ut0 near any vertex that is not
a maximum or minimum.

For every eigenfunction for Ωt one gets nondegeneracy of the a1 coefficient by a
similar argument to the one in the proof of Theorem 4.6. In fact if u(Q) 6= 0, then
a1 = 0 violates monotonicity on the boundary. If u(Q) = 0, then monotonicity plus
a1 = 0 implies that

u(x) = akρ
kα cos(kαγ) + o(ρkα)

with ak 6= 0 for some odd k > 1. This implies that there are at least three branches
of the nodal set that enter Ωt0 at Q. But this contradicts the fact that ut0 has only
two nodal domains.

Step 3. ut0 cannot have a degenerate maximum (or minimum) at a vertex or on
a side.4

4This is where we take advantage of the fact that we are working with polygons. On a flat
side a degenerate maximum creates three branches for the tangential derivative of ut0 . This is

not the case for a curved boundary. In that case, if we consider analytic boundaries, the zero set
is a pair of curves meeting at right angles. One branch is tangent to the region, but outside, and
a second branch is perpendicular to the boundary. We suspect that this kind of degeneracy never
happens, but cannot rule it out in advance.
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Since the vertices are not on an axis and the domain is not a rectangle, the angle
is necessarily obtuse. Thus α < 2 and the ρα cos(αγ) term is more important than
the ρ2 term. Thus at a maximum a1 = 0 and ut0 = a0 − (a0/2)ρ2 + o(ρ2). This
argument is different from the one in Theorem 4.6 (a). There we allowed interior
right angles and acute angles, but used the fact that the eigenfunction was even
across the axis at the vertex where the maximum occurs.

Suppose now that ut0 has a degenerate maximum on a side, i.e., the first and
second tangential derivatives vanish at the maximum. Let e be the tangential
direction at the maximum and V = e · Ou. Recall that we showed, using an even
reflection across the side, that the set V = 0 has at least three branches entering
Ωt0 . By Aπ symmetry the tangential direction at the minimum is also e and V = 0
has three branches at the minimum, diametrically opposite the maximum. There
are four components of {V 6= 0} of alternating signs near the minimum and the
maximum. By convexity, the boundary is divided into quadrants where the dot
product of the tangential vector alternates in sign. By weak monotonicity of u along
the boundary the sign of V alternates. But the configuration we have described in
all cases yields a component of either V > 0 or V < 0 that meets ∂Ω in at most
a points where V = 0. Thus V is an eigenfunction vanishing on the boundary of
a component that is a proper subset of Ω, and this violates the property that the
Dirichlet eigenvalue is greater than the Neumann eigenvalue.

Step 4. ut0 has a critical point on a side (tangential derivative zero) that is
neither the maximum nor the minimum.

Suppose that ut0 has no extra critical point. In other words its tangential de-
rivative along the boundary vanishes only at the maximum and the minimum and
the vertices. We have shown in Step 3 that if the maximum and minimum of ut0
occur on sides, then they are nondegenerate critical points. So by standard per-
turbation theory, for t sufficiently close to t0, ut has exactly one nondegenerate
maximum/minimum nearby and no other critical points.

Suppose that the maximum of ut0 is at a vertex. The first terms in the expansion
centered at that point are

a0(t)J0(ρ) + a1(t)Jα(t)(ρ) cos(α(t)γ)

with a0(0) > 0 and a1(0) = 0. If a1(t) = 0, then we are done; the ρ2α term is
negligible and the function is monotone increasing in a neighborhood going toward
the maximum which stays at the vertex.

If a1(t) 6= 0, we may as well assume a1(t) > 0. The other case is symmetric
because the cosine is just ±1 on the two edges. Divide by a0(t), which is nonzero.
Then the renormalized perturbation ut has the form

ut = (1− z2/2) + η|z|αsign (z) + f(z, t),

where α, η and f are continuous functions of t, η(t0) = 0 and 1 < α < 2. (Recall
that an obtuse angle implies α < 2. Convexity implies α > 1.) The letter z
represents the tangential length along the side of the polygon Ωt with z > 0 in one
direction and z < 0 in the other, i.e., z = ±ρ.

|∂zf | ≤ Cz2α−1; |∂zzf | ≤ Cz2α−2.

By symmetry, as noted earlier, we may as well assume η(t) > 0. Then

∂zut = −z + αη|z|α−1 + ∂zf > 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



764 DAVID JERISON AND NIKOLAI NADIRASHVILI

for z < 0 in a sufficiently small neighborhood. (The term from ∂zf is negligible
compared to z because α > 1.)

We want to show that ∂zut changes sign exactly once in 0 < z < A, where A is
independent of the size of η (as η tends to zero). Let v(z) = −z + αηzα−1. Let

z0 = (αη)1/(2−α)

(the unique positive root solution to v(z) = 0). For any β, 0 < β < 1, there exists
c > 0, depending only on β such that

v(z) > cz

for all z, 0 < z ≤ β1/(2−α)z0. Since fz is negligible compared to z,

∂zut > 0

for t − t0 sufficiently small depending on β, but not on z0. Now fix β sufficiently
close to 1 such that (α− 1)/β < 1. If z ≥ β1/(2−α)z0,

∂zv = −1 + α(α− 1)ηzα−2 ≤ −1 + (α− 1)/β < 0.

Moreover, |∂zzf | = O(z2α−2) is negligible compared to 1, so

∂zzut ≤ −c < 0

for all A ≥ z ≥ β1/(2−α)z0. Thus, ∂zut is decreasing and crosses zero exactly once
in this range.

We have now shown in all cases that the tangential derivative of ut changes sign
exactly once in a fixed neighborhood of the maximum of ut0 (and this point is a
local maximum). On the other hand, at each vertex for which a1 6= 0, every ut for
t near t0 is strictly monotone in a neighborhood. Similarly, in a neighborhood of
any point at which the tangential derivative of ut0 is nonzero on a side, ut has the
same property for t near t0. In all, ut is monotone increasing along the boundary
from the minimum to the maximum, contradicting the definition of t0.

Step 5. If ut0 has a critical point on a side other than the maximum and min-
imum, then there is another second eigenfunction vt0 for Ωt0 that violates mono-
tonicity.

Consider the odd and even eigenfunctions restricted to the side and call them f
and g as functions on the interval [0, a] so that

Cut0 = (1− s0)f(x) + s0g(x)

without loss of generality, f ′ > 0 and g′ < 0 on this side. We also have monotonicity
of ut0 in a neighborhood of the critical point x0, so that

(1− s0)f ′(x) + s0g
′(x) ≥ 0

for x near x0 and

(1− s0)f ′(x0) + s0g
′(x0) = 0.

But f ′(x0) > 0 and g′(x0) < 0. Also the analytic function (1 − s0)f ′(x) + s0g
′(x)

is not identically zero because that would say that both the normal and tangential
derivatives of ut0 vanish on an open subset of the boundary, which would imply ut0
is a function of one variable (the case of the rectangle). For any ε > 0, there exists
δ > 0 such that if s0 + δ > s > s0, then

(1− s)f ′(x) + sg′(x)
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changes sign twice in [x0−ε, x0+ε]. Therefore, Ωt0 has an eigenfunction that strictly
violates monotonicity and one can perturb to t < t0 with the same violation. This
contradicts the definition of t0 as the infimum of times for which monotonicity fails.
This concludes the proof of Proposition 6.1.

Proof of Theorem 1.4. Having proved monotonicity for polygons, we now deduce
monotonicity along the boundary from the minimum to the maximum for any
convex domain with two axes of symmetry by taking limits (uniformly in LM ).
This follows as above in Step 1 of the proof of Proposition 6.1. If the maximum is
achieved at x0, then the only other places where it can be achieved are boundary
points on a segment of the boundary of the tangent line at x0, x0 ·(x−x0) = 0. Thus,
if the maximum is achieved at more than one point, then ∂Ω contains a segment of
its tangent line at x0 and the tangential derivative of u is zero on an open subset of
that line. By reflection across this interval and analytic continuation, the derivative
of u with respect to that direction is identically zero and u is a function of a single
variable. As we have seen earlier in the proof of Theorem 4.1 (b), this only happens
in the case of a rectangle.

Proof of Corollary 1.5. Because h(·, 0) is not orthogonal to the first nonzero eigen-
space, there are c2 > 0 and u a Neumann eigenfunction with lowest nonzero eigen-
value λ such that h(x, t) = c1 + c2e

−λtu(x) + o(e−λt) uniformly in x ∈ Ω̄ as t→∞.
It follows from Theorem 1.4 that the location of any maximum point tends to the
boundary.

To show that the maximum hits the boundary in finite time in the smooth,
positively curved case, we need to prove nondegeneracy in the normal direction.

Lemma 6.6. If u is a Neumann eigenfunction with lowest nonzero eigenvalue in
a smoothly bounded domain Ω with positively curved boundary, and x0 ∈ ∂Ω is the
place where u attains its maximum and ν is the normal at x0, then

(ν ·O)2u(x0) < 0.

Proof. Choose rectangular coordinates y1 and y2 with y = 0 at x0, the tangent
at x0 is the y1 axis, and the y2 axis points outside the domain for y2 > 0. The
boundary is given by

y2 = −py2
1 +O(|y1|3)

for some p > 0. The expansion of u is

u = a0 + ay2
1 + by2

2 + α(y3
1 − 3y1y

2
2) + β(y3

2 − 3y2y
2
1) +O(|y|4)

with a+b = a0λ/2. (The term y1y2 has the coefficient zero because of the Neumann
condition.) To prove the lemma we need to show that b > 0.

Suppose not. If b < 0, then u > u(x0) on the axis y1 = 0 for small y2 < 0. So the
only case that remains to rule out is the case b = 0. If b = 0, then u = βy3

2 +O(|y|4)
on y1 = 0. But this leads to u > u(x0) for small y2 < 0 unless β ≥ 0. Now consider
the Neumann condition,(

∂

∂y2
+ (2py1 +O(y2

1))
∂

∂y1

)
u = 0

on y2 = −py2
1. Recalling b = 0 and a = −a0λ/2, this leads to

−6αy1y2 + 3β(y2
2 − y2

1)− 2pa0λy
2
1 = O(|y|3)
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for y2 = −py2
1 . In other words,

−3βy2
1 − 2pa0λy

2
1 = O(|y1|3).

But this contradicts a0 > 0, p > 0 and β ≥ 0. This concludes the proof of the
lemma.

Let h(x, t) be the solution to the heat equation with c2 > 0 as above. In the
smoothly bounded case,

‖h(·, t)− c1 + c2e
−λtu‖C2(Ω̄) = o(e−λt)).

Hence by Lemma 6.6 there is a neighborhood N of x0 in Ω̄ such that for all t > T

(ν′ · O)2h(x, t) < 0(6.7)

for all x ∈ N and all ν′ normal to ∂Ω at any point of N ∩ ∂Ω. Suppose that a
point xt where h(·, t) attains its maximum is not on the boundary. Let Dt be the
largest disk in Ω centered at xt. Choose zt ∈ (∂Ω) ∩ ∂Dt. Since xt tends to x0, for
T sufficiently large the segment from xt to zt is contained in N for all t > T . Let ν′

be the normal to ∂Dt at zt. Then ν′ is normal to ∂Ω and the Neumann condition
says ν′ · Oh(zt, t) = 0. By (6.7), (ν′ · O)2h(x, t) < 0 for all x on the segment from
zt to xt. Hence h(zt, t) > h(xt, t), a contradiction. It follows that xt cannot be on
the interior.

§7. Limiting cases

We have proved Theorem 1.1 for Ω in LM . Our next task is to pass to the limit
to handle cusps on the axes. Consider the general case of a domain Ω satisfying
the hypothesis of Theorem 1.1. Let a > 0 and b > 0 be such that (a, 0) ∈ ∂Ω and
(0, b) ∈ ∂Ω. Denote

Ωε = {x ∈ Ω : |x1| < a− ε, |x2| < b− ε}, ε > 0.(7.1)

Let uε denote the lowest Neumann eigenfunction for Ωε that is odd with respect
to x2 and let λε be the eigenvalue. Assume that uε is normalized to have L2(Ωε)
norm 1 and so that uε > 0 in x2 > 0. Note that Ωε belongs to LM for some M
depending on ε.

Lemma 7.2. |uε| ≤ C with C independent of ε.

Proof. Fix Λ > λε for all small ε. Denote

B(x) = cos(
√

Λ(x2 − b)).
Then (∆ + Λ)B = 0 and

∂B

∂x2
> 0, for b − π/2

√
Λ < x2 < b.

Fix h = min(a/4, b/4, π/4
√

Λ). For each fixed ε > 0 approximate Ωε by domains
Ωε,δ so that d(Ωε,Ωε,δ) → 0 and Ωε,δ is a C∞ domain with two axes of symmetry
whose normal satisfies

ν · e2 > 0

for all x ∈ ∂Ωε,δ such that x2 ≥ b − h. (The cross section hypothesis of Theo-
rem 1.1 implies that ν · e2 ≥ 0, and so to find this smooth approximation, one
perturbs by convolution of the logarithm of the function representing the graph of
the boundary in polar coordinates as in the approximation in Corollary 3.8.) Since
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∂Ωε is uniformly Lipschitz, independent of ε in the range b− 2h ≤ |x2| ≤ b − h/2,
we may assume that ∂Ωε,δ is uniformly Lipschitz, independent of both δ > 0 and
ε > 0, in the same range of x2. Let uε,δ be the normalized odd eigenfunction for
Ωε,δ. Let U = Ωε,δ ∩ {x : x2 > b − h}. Denote Γ1 = ∂U ∩ {x2 > b − h} and
Γ2 = ∂U ∩ {x2 = b− h}. It follows from uniform Hölder continuity estimates up to
the boundary in regions where the boundary is uniformly Lipschitz that there is a
constant independent of δ and ε such that

max
Γ2

uε,δ ≤ C.

Since ν · e2 > 0 on Γ1, ∂B/∂ν > 0 on Γ1. Furthermore, B > 0 on Ū and
(∆+λε,δ)B < 0 where λε,δ is the eigenvalue of uε,δ, provided δ is sufficiently small so
that λε,δ < Λ. In addition, ∂uε,δ/∂n = 0 and uε,δ > 0 on Ū , so (∂/∂ν)(uε,δ/B) < 0
on Γ1, and so the maximum of uε,δ/B over Ū cannot be attained on Γ1. By the
generalized maximum principle,

max
Ū

uε,δ/B ≤ max
Γ2

uε,δ/B.

This proves a uniform upper bound for uε,δ independent of ε and δ. For fixed ε,
we may extend uε,δ to a function ũε,δ defined in a neighborhood of Ωε so that ũε,δ
tends uniformly to uε as δ → 0. This proves the uniform upper bound for uε.

Corollary 3.8 implies that uε is monotone with respect to each variable in each
quadrant. Extend uε to a function ũε that is even across the vertical and horizontal
segments of the boundary coinciding with the lines |x1| = a−ε and |x2| = b−ε. Take
a subsequence, converging weakly in W 1,2(Ω) to a function u and also converging
in Ck on compact subsets of Ω and converging uniformly on compact subsets of Ω̄
that are disjoint from the four points where ∂Ω meets the axes. Then ∆u = λu
for λ = lim λε. Moreover, u is monotone with respect to both variables in each
quadrant in Ω. Furthermore, u is continuous up to the boundary except possibly
at the points where the boundary meets the axes. Since uε tends uniformly to u
on Ωε0 for each fixed ε0 > 0 and the area of Ω\Ωε0 tends to zero as ε0 → 0, Lemma
7.2 implies that uε tends to u in L2 and the L2(Ω) norm of u is 1.

Next we confirm that u is an eigenfunction. For every function ψ ∈ C∞(Ō) such
that ψ vanishes in a neighborhood of the four corners (±a, 0), (0,±b),

lim
ε→0

∫
Ω

Oũε · Oψ = lim
ε→0

∫
Ωε

Ouε · Oψ

= lim
ε→0

λε

∫
Ωε

uεψ

= λ

∫
Ω

uψ.

Since the set of ψ is dense in W 1,2(Ω), it follows that u is the unique odd Neumann
eigenfunction for Ω. Thus we have proved that the function u of Theorem 1.1 is
monotone with respect to each variable in each quadrant of Ω. It is also continuous
in Ω̄ except possibly at the boundary points on the axes.

Proposition 7.3. The odd Neumann eigenfunction u is continuous on Ω̄.
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Proof. Continuity at the boundary points on the x1 axis follows routinely from
monotonicity and continuity inside. In fact, if x2 > 0, then by monotonicity in x1,

max
x1

u(x1, x2) = u(0, x2).

But u is continuous on the interior, so u(0, x2)→ u(0, 0) = 0 as x2 ↘ 0. Therefore,

max
x1

u(x1, x2)→ 0

as x2 ↘ 0, uniformly in x1.
Note that by monotonicity and boundedness, u is continuous when restricted to

the x2 axis. We need to show that along the boundary to the topmost point u tends
to the same limit instead of something smaller. We introduce an integral operator
Γ due to Hans Lewy that is analogous to harmonic conjugation for eigenfunctions.
Let J(x) = J0(

√
λ|x|), the Bessel function satisfying (∆+λ)J = 0. For a rectifiable

curve γ in Ω with γ(0) = 0 and γ(T ) = x, define

v(x) = (Γu)(x)

=
∫ T

0

[u(γ(t))γ̇(t)⊥ ·OJ(x− γ(t))− J(x− γ(t))γ̇(t)⊥ ·Ou(γ(t))]dt.(7.4)

Lewy [L] has shown that this definition is path-independent, that the operator Γ
is analogous to the harmonic conjugation in the sense that (∆ + λ)v = 0, and that
Γv = −u.

Recall from [JK] that on Lipschitz domains Ou has nontangential maximal func-
tion in L2(∂Ω). It follows that the same is true here on compact subsets of the
boundary away from the cusps. Thus the integral formula (7.4) can be extended
to the boundary. In particular, by a limiting argument with parallel boundaries,
one can show that the formula is well defined for paths that follow the boundary,
provided one does not cross a cusp. Since the tangential and normal directions
are orthogonal, the Neumann condition implies that γ̇⊥ · Ou = 0 for curves along
the boundary. Hence v is bounded. Moreover, since u is bounded, v is Lipschitz
continuous when restricted to ∂Ω.

Since v is Lipschitz continuous on ∂Ω, a standard Dirichlet barrier argument
implies that

|v(x)− v(x′)| ≤ C|x− x′|1/2.
(In fact, Ω has exterior right angle sectors so there is Hölder continuity up to order
2/3.) Standard interior regularity, suitably scaled, then implies

|Ov| ≤ Cδ(x)−1/2,(7.5)

where δ(x) = dist (x, ∂Ω).
Now we make use of the represention u = Γv to prove continuity at the top

boundary point on the x2 axis, (0, a) ∈ ∂Ω; consider any Q = (z1, z2) ∈ ∂Ω in the
first quadrant with z2 > z1. Let γ be the path from 0 to Q that follows the x2 axis
from 0 to P = (0, z2 − z1) and then follows the segment of slope 1 from P to Q.
The formula u = −Γv along γ shows that

|u(P )− u(Q′)| ≤ C
∫ z1

0

s−1/2ds ≤ Cz1/2
1

for every Q′ on the segment between P and Q. Since u(P ) tends to u(0, a) as P
tends to (0, a), it follows that u(x) tends to u(0, a) as x2 tends to a.
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Having proved continuity of u, let us finish the remaining parts of the proof of
Theorem 1.1. By following piecewise horizontal and vertical paths we see that the
maximum and minimum of u are achieved at (0,±b). The strict inequality

∂u/∂x2 > 0 in Ω

follows from the fact that ∂u/∂x2 satisfies the eigenvalue equation and is nonnega-
tive on Ω. If it were zero, then the generalized mean value property would force it
to be strictly negative at some point nearby, unless it were identically zero. But it
is not identically zero. Similarly,

x1x2∂u/∂x1 < 0 in Ω for x1x2 6= 0

unless ∂u/∂x1 ≡ 0. In this last case one has u(x1, x2) = f(x2) with f ′(x2) > 0 for
all −b < x2 < b. The only way that this can satisfy the Neumann condition is if
the boundary is vertical for all −b < x2 < b. In other words, this only happens if
Ω is a rectangle.

All that remains to prove is the last assertion of Theorem 1.1 that unless Ω is
a rectangle, the maximum and minimum are achieved at (0,±b) only. The strict
monotonicity already proved shows that the maximum can only be achieved at
more than one point if the boundary contains a horizontal segment of the line
x2 = b and that u is constant on that segment. One also has ∂u∂x2 = 0 on the
segment because that is the Neumann condition there. Thus the power series of u
is uniquely determined and by analytic continuation u = c cos(

√
λ(x2− b)) in all of

Ω. Therefore, Ω is a rectangle. This concludes the proof of Theorem 1.1.
To deduce Corollary 1.2, consider the odd Neumann eigenfunction u with eigen-

value λ. Denote

w =
∂u

∂x2
.

Then w > 0 in Ω and satisfies ∆w = −λw. Let v be the lowest Dirichlet eigenfunc-
tion for any smooth domain Ω′ ⊂⊂ Ω with eigenvalue µ′. After multiplication by
±1, we may assume v > 0. Integrating by parts (see Proposition 4.7)

(µ′ − λ)
∫

Ω′
vw = −

∫
∂Ω′

w
∂v

∂ν
dσ > 0

since (∂/∂ν)v < 0 almost everywhere on ∂Ω′. Therefore, µ′ > λ. Furthermore,
µ′ = µ(Ω′)→ µ = µ(Ω) as Ω′ tends to Ω. Therefore, λ ≤ µ(Ω).

§8. Remarks and open problems

We observe that monotonicity of all eigenfunctions in the lowest eigenspace im-
plies in certain cases that the space is one dimensional.

Proposition 8.1. Let Ω be a convex polygon with two axes of symmetry. If Ω has
an acute angle, then the lowest nonzero Neumann eigenvalue is simple.

Proof. Suppose that Ω has an acute angle σ < π/2. Vertices not on the axes can
only have obtuse angles, so without loss of generality we may assume that the vertex
is (0, b) ∈ ∂Ω. If Ω has a two-dimensional family of eigenfunctions, then it has an
eigenfunction u0 that is odd with respect to the x2 axis and even with respect to
the x1 axis and another eigenfunction u1 that is odd with respect to the x1 axis
and even with respect to the x2 axis. After multiplication by ±1 we may assume
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that u0 attains its maximum at (0, b) and u1 attains its maximum at (a, 0) ∈ ∂Ω.
The convex combinations, 0 ≤ t ≤ 1,

ut = (1 − t)u0 + tu1

achieve their maximum at points xt in the first quadrant. Since Ω is not a rectangle,
Theorem 1.4 implies that the maximum point is unique. The first observation is
that the point xt depends continuously on t. (Indeed, every limit point of the points
xt as t → t0 is a maximum point of ut0 , which, by uniqueness, must be xt0 .) The
expansion of u0 at (0, b) has the form

u0 = a0(1 − λρ2/2) + o(ρ2)

with ρ the distance to (0, b). Let ρ be the distance to (0, b). Then

u1 = O(ρα)

with α = π/σ > 2. It follows that ut(x) increases to ut(0, b) = (1− t)a0 as x ∈ ∂Ω
tends to (0, b) from both sides. Since by Theorem 1.4 ut is monotone along both
arcs of ∂Ω from the minimum to the maximum, it must be that ut attains its
maximum at (0, b). But then xt = (0, b) for all 0 ≤ t < 1, whereas x1 = (a, 0),
contradicting continuous dependence. Thus Ω cannot have an acute angle.

Note that the main ingredient of Theorem 1.4 is Proposition 6.1, which was
proved using polygons with multiplicity and obtuse angles. The obtuse angles were
technically important in the proof. On the other hand, Theorem 1.4 applies to all
convex polygons and permits us to deduce Proposition 8.1, which shows, post facto,
that polygons with multiplicity cannot have acute angles. (See Remark 6.5.)

Conjecture 8.2. If Ω is a convex polygon with two axes of symmetry and a right
angle, then the only case in which the eigenvalue is multiple is the case when Ω is
a square (with sides of slopes ±1).

We can analyze the case of equality λ = µ(Ω) in Corollary 1.2 in the case
of smoothly bounded domains as follows. The proof of the corollary shows that if
equality holds, then w = ∂u/∂x2 vanishes on the boundary. This and the Neumann
condition show that Ou vanishes on an open subset of the boundary (all points
at which the boundary is not horizontal). After reflection u is the solution of an
elliptic divergence form equation with Lipschitz coefficients whose gradient vanishes
to infinite order at a point and hence u is constant. Note that λ = µ(Ω) is achieved
in the limit of rectangles as the length of the horizontal side tends to infinity, that
is, it is achieved in the case of an infinite horizontal strip. This is consistent with
the proof just given, which depends on the presence of a portion of the boundary
that is not horizontal. We conjecture that the inequality is strict for every domain
satisfying the hypotheses of Theorem 1.1. A proof may depend on some suitable
regularity of ∂u/∂x2 in the nonsmooth case.

We propose that the eigenvalue comparison of Corollary 1.2 is valid in much
greater generality.

Conjecture 8.3. Let Ω be any bounded, C∞ domain in Rn that is symmetric with
respect to the plane x1 = 0. Let λ be the least Neumann eigenvalue λ with an odd
eigenfunction with respect to the reflection x1 → −x1. Let µ be the least Dirichlet
eigenvalue. Then λ < µ.
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Note that, by uniqueness, the Dirichlet eigenfunction is even with respect to
reflection. Thus, another way of phrasing this problem is as a comparison between
the lowest eigenvalues of two mixed boundary problems on Ω+ = Ω ∩ {x1 > 0}.
The number λ is the least eigenvalue for the problem with Neumann conditions on
{x1 > 0} ∩ ∂Ω+ and Dirichlet conditions on {x1 = 0} ∩ ∂Ω+. The number µ is the
least eigenvalue for the problem with Dirichlet conditions on {x1 > 0} ∩ ∂Ω+ and
Neumann conditions on {x1 = 0} ∩ ∂Ω+.

To address the problem of extending the proof given here of the hot spots con-
jecture to general convex domains, it is important to note that the first noncon-
stant Neumann eigenfunction on a convex domain need not be increasing along the
boundary from a minimum to a maximum. In the case of a narrow circular sec-
tor the maximum is attained along the entire circular boundary and the minimum
at the vertex. It seems natural to expect that in the case of an isosceles triangle
the maximum occurs at the two symmetric vertices and the minimum at the third
vertex with a fourth critical point, a local minimum at the midpoint of the side
between the two global maxima. This can be confirmed for isosceles triangles that
are small perturbations of the equilateral triangle. (The eigenvalue is simple and
even with respect to the axis of symmetry provided the angle at the vertex on the
axis of symmetry is less than π/3.) The circular sector example alone tells us that
the eigenfunction need not be a Morse function on the boundary. Nevertheless we
can still hope that in general convex domains no eigenfunction has a critical point
on the interior.

While for general convex domains one must abandon monotonicity, a natural
hypothesis under which it may still hold is that the domain be convex and centrally
symmetric, that is, symmetric under (x1, x2) 7→ (−x1,−x2).

Conjecture 8.4. Let Ω be a centrally symmetric convex domain. Any Neumann
eigenfunction with the lowest nonzero eigenvalue is monotone increasing on the
boundary from the minimum to the maximum. Also the directional derivative in
the direction from the minimum to the maximum is strictly positive in Ω.

Conjecture 8.5. Let Ω be a convex, centrally symmetric domain contained in a
circular sector with vertex P and acute angle. If P ∈ ∂Ω, then the maximum or
minimum of the lowest Neumann eigenfunction is achieved at P . In particular, the
eigenfunction is simple.

We mention one final conjecture concerning higher eigenvalues.

Conjecture 8.6. Let Ω be a centrally symmetric convex domain. Let λ2 be the
lowest nonzero Neumann eigenvalue for an eigenfunction that is even with respect
to the central symmetry x 7→ −x and let µ2 be the lowest Dirichlet eigenvalue that
is odd with respect to this symmetry. Then λ2 < µ2.

Postscriptum. L. Friedlander has settled Conjecture 8.6 in a recent manuscript
[F]. He proved that λ2 < µ2 for C2 domains in Rn with nonnegative mean curva-
ture.
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