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Abstract-The household activity pattern problem of analyzing/predicting the optimal path of 

household members through time and space as they complete a prescribed agenda of out-of-home 

activities is posed as a variant of the pickup and delivery problem with time windows. The most 
general case of the model includes provision for vehicle transfer, selective activity participation, 
and ridesharing options. A series of examples are solved using generic algorithms. The model is 

purported to remove existing barriers to the operationalization of activity-based approaches in 
travel behavior analysis. 

INTRODUCTION 

There is general consensus that the demand for travel is derived from a need or desire to 

participate in activities that are spatially distributed over the geographical landscape. 

Recognition that conventional travel demand approaches that examine each trip in isola- 

tion at best provide only limited information regarding the particular trip (because they 

generally ignore both the history that precedes the trip as well as the future that follows) 

and virtually no information on the impact of decisions regarding the particular trip on 

other travel decisions (both prior and subsequent) has led to a roughly decade-long quest 

among a cadre of transportation researchers to develop and operationalize activity-based 

travel demand analyses. A history of these developments, with critical assessment of their 

limitations and potential, is provided in a special issue of Transportation (1988). In 

particular, Kitamura (1988) provides an extensive evaluation of the field, covering ap- 

proximately 120 studies. 

Goodwin (1983) capsulates the activity-based approach in simple terms as “the con- 

sideration of revealed travel patterns in the context of a structure of activities, of the 

individual or household, with a framework emphasizing the importance of time and space 

coordinates” (p. 71). It is derived principally from the early work of Hagerstrand (1970) 

in time-space geography, in which travel and activity participation are recorded as passage 

through time and space, with the individual’s location at any time represented by a 

continuous path in the spatial and temporal dimensions. 

As noted by Stopher et al. (1993), however, “despite its conceptual appeal and 

clarity, the time-space geography structure has proved quite difficult to implement opera- 

tionally” (p. 67). Commenting on challenges facing further development of activity-based 

approaches, Kitamura (1988) noted that, conceptually, Lancaster’s utility formulation 

(1966) neatly applies to the problem, but that 

if a utility function can be identified at all, an array of mathematical programming 

methods are available. However, the problem at hand is, at the simplest, a discrete 

choice-continuous allocation problem with correlated multiple alternatives, combined 

with the traveling salesman problem, problem of collective decision-making, and 

household coupling constraints which is in part a logistic problem. This is an over- 

whelming problem. In fact no model has been constructed that determines activity 

patterns on the sole basis of the utility maximization principle. (pp. 20-21) 
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In his review, Kitamura further notes that existing models are largely restricted to 

addressing questions of activity participation and time allocation at the level of total daily 

time expenditure, with a wide gap existing between these models and those modeling daily 

activity and travel patterns. Both Kitamura (1988) and Stopher et al. (1993) point to the 

STARCHILD MODEL (Reeker et al., 1986a, 1986b) as the only known operationalized 

model that predicts a set of activity patterns from household decision-making informa- 

tion. Although based loosely on mathematical programming principles, the STAR- 

CHILD model is several limited in that it (1) provides no mechanism for household 

interaction, modeling the activity/travel patterns of each household member separately; 

(2) relies on a heuristic solution procedure based on exhaustive enumeration and evalua- 

tion of feasible solutions; (3) discretizes the temporal dimension and relies on pattern 

recognition algorithms to distinguish simple temporal displacements of similar solutions 

and (4) has no provision for addressing either activity or vehicle allocation decisions or 

for considering complex modal choice decisions, such as carpooling. 

According to Koppelman (1988), in activity-based approaches “the research need is 

to develop a theoretical framework within which to relate the multiple themes of human/ 

social behavior to the generation of the need or desire to participate in activities and the 

derived demand for travel” (p. 57). This article attempts to provide one such framework 

that is believed to offer potential in the operationalization of activity-based travel demand 

methodologies. 

Specifically, the household activity pattern problem (HAPP) is posed as a variant of 

the pickup and delivery problem with time windows (PDPTW). In the most general 

case considered, the model addresses the optimization (relative to the household’s utility 

function) of the interrelated paths through the time/space continuum of a series of 

household members with a prescribed activity agenda and a stable of vehicles and ride- 

sharing options available. 

In the development of the model, a deliberate attempt has been made to maintain, to 

the extent possible, both the notation and structure of the well-known PDPTW in the 

hope that this would provide a conducive environment for future development and im- 

provement. In addition, little attention has been paid to issues of model efficiency or to 

the efficiency of solution algorithms; rather, reliance has been placed mainly on readily 

available “canned” software in an effort to demonstrate the practicality of the approach. 

MODEL FORMULATION 

To take advantage of previous work involving the PDPTW, the formulation of the 

general HAPP involving complex elements such as ridesharing and vehicle-switching 

options is developed from a progression of cases in which initial restrictions that result in 

an equivalence to the PDPTW are gradually removed. 

Case I: Each member of the household has exclusive, unrestricted use of a personal 

vehicle and any activity can be completed by any member of the household. 

In its most basic form, in which each member of the household has exclusive unrest- 

ricted use of a personal vehicle and any activity can be completed by any member of the 

household, the HAPP can be formulated as a variation of the well-known PDPTW 

within the class of vehicle routing problems with time windows (VRPTW). 

Following Soloman and Desrosiers (1988), we adopt the following notation: 

A = {1,2 ,..., i ,..., n}: The set of out-of-home activities sched- 

uled to be completed by travelers in the 

household. 

v= {1,2 ,..., u ,..., /VI}: 

P+‘= {1,2 ,..., i ,.., n): 

The set of vehicles used by travelers in 

the household to complete their sched- 

uled activities. 

The set designating location at which 

each activity is performed. 
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P- = {n + 1, n + 2,. . . , n + i, . . . , 2n } : The set designating the ultimate desti- 

nation of the return-to-home trip for 

each activity. (It is noted that the physi- 

cal location of each element of P- is 

home. ) 

[ai, b, I: The time window of available start 

times for activity i. (Note: bi must pre- 

cede the closing of the availability of 

activity i by an amount equal to or 

greater than the duration of the ac- 

tivity. ) 

[an+,, &+,I: The time windows for the return-home 

arrival from activity i. 

[a,, b. I: The departure window for the begin- 

ning of the travel day. 

la2n+ir b,+J: The arrival window by which time all 

members of the household must com- 

plete their travel. 

s, : The duration of activity i. 

t * “W. The travel time from the location of ac- 

tivity u to the location of activity w. 

c” * uw * Travel cost from location of activity u 

to the location of activity w by vehicle 

u. 

B,: The household travel cost budget. 

By: The travel time budget for the house- 

hold member using vehicle u. 

P = Pi u p-1 The set of nodes comprising completion 

of the household’s scheduled activities. 

N= {O,P,2n + l}: The set of all nodes, including those as- 

sociated with the initial departure and 

final return to home. 

As implied in the preceding list, different elements of P+ may correspond to the 

same physical location; all elements of P- correspond to the same physical location 

(home) and consequently tn+u,n+w = c,+,,,+, = 0, VU,W E P+. 

In the analogy to the PDPTW, activities are viewed as being picked up by a particular 

household member (who, in this basic case, is uniquely associated with a particular 

vehicle) at the location where performed and, once completed (requiring a service time 

s;), are logged in or delivered on the return trip home. Multiple pickups are synonymous 

with multiple sojourns on any given tour. The scheduling and routing protocol relative to 

some household objective produces the time-space diagram commonly referred to in 

travel/activity analysis. 

In the PDPTW, demand functions ( di ) and a vehicle capacity (D) are introduced to 

ensure that the schedule of pickups and deliveries does not violate the capacity constraint 

of any particular vehicle. This notion is extended to the HAPP by defining as constraints 

i 

Ds = maximum number of sojourns in any tour 

D= or 

DT = maximum time spent away from home on any tour 

with the corresponding demand 

d: = 1 

d,= or 

L d; = s, + t,.,; w’ = stop on tour immediately preceding i. 

Decision variables directly analogous to those of the PDPTW are defined as 
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X:) ,,I, u,w E N, v E V,u fw: Binary decision variable equal to unity if vehicle v trav- 

els from activity u to activity w, and zero otherwise. 
T,,ueP: The time at which participation in activity u begins. 

T;,T;,+,, v E V: The times at which vehicle v first departs from home 

and last returns to home, respectively. 

Y,, UEP: The total accumulation of either sojourns or time (de- 

pending on the selection of D and d,) on a particular 

tour immediately following completion of activity U. 

With these definitions, the basic HAP can be represented as 

Minimize 2 = Household travel disutility 

subject to 

c c x:, = l,uEP+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UCV WEN 

c x, - c XL, =OUEP,vE v 
WEN MN 

c -G, = 1,VE v 
WSP 

c Ln+, =l,veV 

USP - 

c xv,, - c X:,“+U = 0 u E p+, v E v 
WEN KN 

T, +s, + t -e Tn+U~~PC u.n+u - 

X:w = 1 * T, + s, + t,, s T,, u,w E P, v E V 

x;;, = 1 * T; + tow I T,, w E P+, v E V 

XL+ I = 1 * T, + s, + tu,2n+, I T;,+,, u E P-, v E V 

a,, I T, s b,,ueP 

a, 5 T; I bo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAve V 

a,,+, 5 Tin+, -( b,,,,, UC V 

xi, = 1 * Y, + d, = Y,uEP, WEP+VE V 

Xl, = I* Y, - d,_, = Y, u E P, w E P-v E V 

xi, = 1 * Y, + d, = Y,, WEPC, VE v 

Y. = 0,O I Y, 5 D,uEP+ 

U,WEN, VE V 

cc t,,X:, I B:, v E V 
UEN weN 

c xi,, = 0, v E v 

WEP - 

c x.0 =O,vEV 

UGN 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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c -Gn+l =O,uEV 

UCP+ 

c XL,,,, = 0, u E v. 

WCP - 

65 

(23) 

(24) 

Note that eqns (8), (9) and ( 10) may be rewritten as 

T, + s, + I,, - T, 5 ( 1 - xi, )M, U,W E P, v E V 

T; + t,, - T, I (1 -X;,)M, WEP+,VE V 

T, + s, + fu,zn+, - Tin,, 5 (1 - Xi,,,,, 04, u E P-3 u E V 

where M is a large positive number. 

(8’) 

(9’ ) 

(10’) 

Equations (2) through (20) are virtually identical to those specified by Solomon and 

Desrosiers (1988) for the PDPTW, with the addition of the budget constraints [i.e. eqns 

(19) and (20)] and subject to the redefinition of terms, and they have an analogous 

interpretation in the HAPP. Equations (21) through (24) explicitly state conditions im- 

plicit in the PDPTW. 

Examples of potential components of the disutility function of the household that 

may be easily specified in the objective function of eqn ( 1) include 

Total household travel cost. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v6V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusN w eN 

c c c LJYwu: Total travel time. 

x (Tu-4,): A measure of the risk of the inability to complete activi- 
uePf ties because of stochastic variations in travel times and/ 

or activity durations. 

c (T,-6,): A measure of the risk of not returning home in time 
UEP- due to stochastic variations in travel time or activity 

participation. 

c (T,+, - T,,): A measure of the delay in returning home incurred by 
UeP+ trip chaining. 

( T%+, - Tf; ), u E I4 The extent of the travel day for each household mem- 

ber. 

(la) 

(lb) 

(lc) 

(Id) 

(le) 

(10 

Although the assumptions used in formulating the base case model described by eqns 

( 1) through (24) (e.g. interchangeable activity participation among household members, 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori identification of the subset of travelers in the household and exclusive and 

unrestricted use of personal automobile) are too restrictive for practical application in 

travel activity analysis, the model nonetheless provides both a bridge to existing opera- 

tions research formulations as well as a point of departure in the development of more 

general models. 

As an example of the application of this basic HAPP formulation, we consider the 

case of a two-person household with three scheduled activities with durations 

S = [s,,sz,sJl = 18, 1, 21 

and time availability windows 

8, 8.5 

[ai,bi] = 10, 20 

i I 

, 

12, 13 

corresponding return-home windows 
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17, 

[ 10, 

19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[an+19bn+il = 21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ) 

12, 21 

and initial departure and end-of-travel day windows 

[a,,&, 1 = [6, 201 

I%+lJ+n+l ] = [6, 211. 

We additionally assume the travel time and cost matrixes shown in Table 1 (assumed 

constant for all vehicles) associated with the locations of the three activities. Moreover, 

we consider the budget and tour constraints 

B, = 8.00 

B: = B; = 3.50 

D, = 4. 

The household’s objective function is assumed to be comprised of terms from eqns (la), 

(le) and (If). That is, 

Min Z = c c c c,,,X:, + c (T,,, - T,,) + CC TL+, - Ti ). 
ueV ueN IEN UPP + USV 

The HAPP mixed-integer model specified by the preceding parameters and eqns ( 1) 

through (24) was solved using the ZOOM algorithm (Singhal et al., 1987) in the GAMS 

software package developed by the World Bank. The resulting solution for this base case 

(denoted as Case 1) is summarized in Fig. 1, which displays the optimal time/space paths 

taken by the individual household members and vehicles (in this case, synonymous) in 

the completion of the household’s scheduled activities. 

Case2: Each member of the household has a personal vehicle; a subset of activities can 

be performed by any member of the household, and the remainder must be 

performed by certain members (HAPPAA: the household activity pattern 

problem with assigned activities). 

As already emphasized, the Case 1 model has only limited practical application due 

to its restrictive assumptions. However, much more realistic models of the HAPP are 

Table 1. Time and cost matrixes 

To 0 1 2 3 

From 0.00 1.00 0.25 0.50 

1 1.00 0.00 1.00 0.50 

2 0.25 1.00 0.00 0.50 

3 0.50 0.50 O.‘O 0.00 

To 0 1 2 3 

From 0.00 0.00 2.00 1.00 

1 2.00 0.00 1.00 1.00 

2 I.00 1.00 0.00 0.50 

3 1.00 I.00 0.50 0.00 
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VEWCLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 VEHICLE 2 

ActMy 

Activity 1 

OPTIMAL ACTIVITY PATTERN 

I CASE 1 

Fig. 1. 

obtained from the base case with only slight modification. For example, the restriction 

that activity participation is interchangeable among household members is easily ad- 

dressed by the addition of a single set of constraints: 

c c x:, = 0, LJ E Y (25) 
Wo: u* 

where fl: E A is the subset of activities that cannot be performed by vehicle/person u. 

Figure 2 presents results for this case (labeled Case 2) in which 

n; = (1) 

at = (21 

-VEHICLE l VEHICLE 2 

Home zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHome 
OPTIMAL ACTIVITY PATTERN 

3_Acthdty 1 

+s 
PERSON 1 

m- 
PERSON 2 

CASE 2 

Fig. 2. 
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(i.e. either person in the household can perform activity 3, but person 1 must perform 

activity 2 and person 2 must perform activity 1) and all other parameters are as in the 

previous case. 

Case 3: Each member of the household has a personal vehicle; a subset of activities can 
be performed by any member of the household, and the remainder must be 
performed certain members. Some members may not perform any activities 
(i.e. stay at home); there is some cost to performing out-of-home activities 
(or, conversely, some benefit to staying home). 

The restriction of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori knowledge of the subset of household members who are 

travelers on any given day is removed by redefining the set A to include all household 

members with unrestricted exclusive access to a personal vehicle, revising eqns (4) and 

(5) as 

(4’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5’) 

and adding a term to the objective function to reflect the base disutility of performing 

any discretionary activities outside the home on a given day, say 

c c KXhv, (h3) 
UEV WFP+ 

where K = cost of performing out-of-home activities. These revisions, with those of Case 

2, then represent the optimal solution to the HAPP in which each member of the house- 

hold has exclusive use of a personal vehicle; a subset of activities can be performed by 

any member of the household, and the remainder must be performed by certain members; 

some members may not perform any activities (i.e. stay at home); there is some cost to 

performing out-of-home activities (or, conversely, some benefit to staying home). 

The solution to this version of the HAPP (labeled Case 3) for an arbitrarily selected 

value of K = 100, and where Q2 = { null } and where the windows of availability for the 

activities have been adjusted to 

8.5 

20 

22 
1 

to illustrate a solution in which one household member does not travel, is shown in 

Fig. 3. 

Case 4: Members of the household share a stable of vehicles; a subset of vehicles may 

be available for use by any member of the household, and the remainder may 

be reserved for use by certain members. A subset of activities can be performed 

by any member of the household, and the remainder must be performed by 

certain members. Some members may perform no activities; some vehicles may 

not be used. 

The decoupling of vehicles and household members can be accomplished simply 

by posing companion vehicle and person PDPTWs (with appropriate redefinitions and 

coupling constraints). Specifically, we introduce the new decision variables associated 

with the set of household members 71 = { 1,2, . . . , 17 1 }: 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVEHICLE 1 VEHICLE 2 

re  
OPTIMAL ACTIVITY PATTERN 

CASE 3 
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Fig. 3. 

HR, u,w E N,q,u # w: Binary decision variable equal to unity if household member 

a! travels from activity u to activity w, and zero otherwise. 

?3-L1, 01 E v: The times at which household member QI first departs from 

home and last returns to home, respectively. 

Associated with these new decision variables, we add the parameters 

-a. a,. The earliest possible departure time for household member Q. 
-a 
b ?n+1: The latest return home time for household member (11. 

The constraints on the household member decision variables are merely a subset of 

the equivalent relationships on the vehicle flows: 

c Hi,- c H;=O,UEP,CYE~ 
WGN 

c H&+, 5 1, o E 17 

c H”, I”c H&+, = 0, UEP+, CYE~ 
wa W-EN 

T,, + s, + t,,w - T, 5 (1 - H:,v)M,u,w~P,a~q 

c + tow - T,I (1 - H;w)M,w~P+,aq 

Tu + su + to,+, - En+, 5 ( 1 - Ht.,,, 1 M, u E P-9 0~ E 9 

c 2 a;,arq 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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c fG =OcreTj (37) 
UEN 

c H$,,+, = Oar~t (38) 
“EPp+ 

(39) 

where QG is the set of activities that cannot be performed by household member a. 

To these we add the coupling constraints, 

c Htw = c X:,,UEP+,WEP NW 
a-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUEV 

c H;,v = c X,, w E P, (40b) 

uq MY 

which ensure that only one household member may be assigned to travel between nodes u 

and w by vehicle u. 

Equations ( 1) through (40) constitute the HAPP formulation for the general case in 

which the only practical restriction is that of solo driving (i.e. excludes the potential to 

carpool). The optimal solution to this problem for 

ai = 

-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b 2n+1 = 

and all other parameter values as specified 

-2 
a, = 6 

b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 2n+l = 22 

in Case 3 (the previous example) is displayed 

in Fig. 4 (and labeled Case 4A). When the exclusionary sets 0 are revised to 

19 .: 

10 ,! 

f7 ‘E 

16 = 

16 = 

14 = 

13 z 

12 ? 

-___ 
VEHICLE 1 VEHICLE 2 

Actlvity 2 

OPTIMAL ACTIVITY PATTERN 

CASE 4A 

Fig. 4. 
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fl: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(193) 

0; = (21 

ny = (1) 

Q? = {2,3}, 

the solution of Fig. 5 (and labeled Case 4B) is obtained. It is noted that in this latter 

example, the optimal solution involves household member 1 using vehicle 1 to complete 

activity 2, and then using vehicle 2 to complete activity 3 after household member 2’s 

return to home in vehicle 2. 

Case 5: Same as Case 4, but with the addition of ridesharing option, representing the 

general HAPP with some assigned activities and vehicles and with ridesharing 

and nontraveler options. 

The inclusion of a ridesharing option significantly alters the basic formulation of the 

previous cases. While maintaining a similar structure to previous cases, the set of nodes is 

expanded to include drop-off passenger and pickup passenger activities at the locations 

of the prescribed household activities (the former is discretionary, however, whereas the 

latter remains compulsory). The elements of the set defining the vehicles available to the 

household are also expanded by designating driver seat and passenger seat(s) for each 

vehicle in the stable. Defining these new sets as 

P& ): Set of serve passenger drop-off activity locations 

P+ * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_PU. Set of serve passenger pickup activity locations 

P . +. P+ + P&  + Pp= 

P& , ,Ppu ,P-: Respective eventual home trips to unload 
V: Passenger seats 
V: V + V, 

with the corresponding elements 

A= 

V 

{1,2 ,..., i ,..., n) 

= {1,2,...,1V1} 

VEHICLE 1 VEHICLE 2 

I 

I 

cl 
OP 

CASE 48 

Fig. 5. 

TR(6) 29: 1-F 



72 W. W. RECUR 

P= {[VI + 1, IV1 +2,...,21VI} 

V= {l,... , [VI, IV1 + 1, * * * , 21VJ } 

P+ = {1,2 ,..., i ,..., n} 

P+ = {n + 1, n + 2,. . . , n + i, . . . ,2n} 

p” = ;2n + 1, 2n -t 2, . . . P+ ,2n + i, . . . , n}, G = 3n 

P- = (n + 1, n + 2,. . . , n + i,. . . , i + n} 

P& = {G + n + 1, n + n + 2, . . . , G + n + i, . . . , i + 2n) 

P& = (FI + 2n + 1, n + 2n + 2, . . . , n + 2n + i, . . . ,2n} 

Is+ = P+uP&uP,:, = (1,2, . . . , n} 

P- =p-UP&UP, = in+ 1j+2,...,2i} 

F = F+uF- = { 1,2, . . . ) 2n) 

N = {O,P,2n + l}, 

the constraints defining the HAPP with ridesharing options can be grouped into six broad 

categories: (1) temporal constraints on the vehicles, (2) temporal constraints on the 

household members performing the activities, (3) spatial connectivity constraints on the 

vehicles, (4) spatial connectivity constraints on the household members, (5) capacity, 

budget and participation constraints and (6) vehicle and household member coupling 

constraints. These constraints are presented in detail next. 

(1) Vehicle temporal constraints 

T,,+s,+t,,,+,- T;,,s 1 -c CX;, M,uEP+,LIE~ 
( mP LISP ) 

T, + s, + t,, - T,,, I ( 1 - Xi, )M, U, w E P+, u E v 

T;+tow- T,I (1 -X;,)M,WEP+,UEV 

T,+s,+Tu,2n+,-T~n+1~(1-X~,tn+,)M,~~lj-,u~I/ 

T u+n - T, - sutn I ( 1 - X;,u+n )M, u E P+, w E O,P, u E V 

T, + s,, - Tu+z, I ( 1 - X:,u+2n )M, u E P+, w E 0, P, v E V 

(41) 

Tu - bu I (1 - c c Xk,)Mz -T, + a,,uEp 
WEB “et 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

a,, 5 T; I bO, uE V (48) 

az;+l 5 TL,, 5 bz;+,, u E V (49) 

T; - T;+Iv’ = 0, LJ E V (50) 

T;,+] - T;;$ = 0, u E V (51) 

The constraints embodied in eqns (41) through (47) are roughly equivalent to the 

corresponding constraints for Case 4 of the HAPP and the associated PDPTW, the 

principal exceptions being the expansion of the activity and vehicle sets and the introduc- 

tion of discretionary serve-passenger activities. For example, eqn (41) ensures that the 

constraint that the return home be subsequent to activity participation is enforced on only 

those serve-passenger trips that are actually made; for u E P ’ the right side of eqn (41) is 

identically zero. The case is similar for eqn (45), which ensures that activities take place 

within their allotted time windows. Equations (42) through (44) ensure that travel be- 

tween any two activity locations can occur if and only if there is sufficient time to reach 

the destination prior to commencing the associated activity. Equations (45) and (46) 
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constrain activities that are accessed as a passenger to occur after the passenger is dropped 

off at the destination and to be completed prior to being picked up for the return home. 

Equations (47) and (48) ensure that the initial vehicle departure times and final return 

home times fall within the allotted time windows. Equations (49) and (50) require that 

these times be identical for the vehicle and its passenger seat. 

(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHousehold member temporal constraints 

T, + s, + t,, -  Tw 5 ( 1 - HE,,, )M, u,w E P, CY E q (52) 

Fg + t,,. -  T, s (1 - H;,)M, w~P+,cxq (53) 

- ( 1 - f&n+, )M I T,, -  En+, 5 ( 1 - H;,,,+,)M, u E is-, CY E 17 (54) 

a; 5 c I &crE’1 (55) 

-a 
a,;,, 5 TR,, 5 &+,, or E q (56) 

With the exception of the expansion of the activity and vehicle sets, eqns (52) 

through (56) are equivalent to eqns (31) through (35). 

(3) Spatial connectivity constraints on the vehicles 

cc XL, = 1, U E P+ 
“.V weR 

cc XI, 5 1, U E P&UP,+, 
“EP weR 

(57) 

(58) 

C Uw I C Xt;+,n,u.,uEP+,~E V,j = 1,2 x”+ I VI 

weP weij 

m”’ 5 x;,,,,, + c xv,,,+,, u E p+, v E v 

W SF - 
(60) 

x;, = 0, 2.4 E N, w E P&) UP,:, , v E P (61) 

c x:,5 1,“EV (63) 
weP + 

x;, 5 c x;;,, UE v, U,WEP (64) 
reij + 

c xi,,,., I 1, u E V (65) 
ueij - 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXv,, - c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN;,n+a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, u E is+, v E v 
w& WEE 

(66) 

c xiw =O,“EI/ (67) 
weP - 

c XL, = 0, v E v 
WIT 

(68) 

c x:,2;+, =O,“EF (69) 
usp+ 

5 x;n+,,w = 0, tJ E v (70) 

Equation (57) requires that all compulsory activities be accessed either by a vehicle 

driver or as a carpool passenger; eqn (58) is the stipulation that serve-passenger activities, 

if performed, must be by one and only one vehicle driver. Equations (59) and (60) ensure 

that activities accessed as a passenger are coupled to a corresponding serve-passenger trip. 

Equation (61) precludes passengers from serve-passenger activities. Equation (62) en- 

sures that there is a connected path for each vehicle and no activity location is revisited. 



74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. W. RECKER 

Equations (63) through (65) state that not all vehicles may be used in completing the 

household activity agenda, but if one is, its initial tour must begin at home. Equation 

(66) requires that the eventual return to home from an activity be assigned to the vehicle 

that was used to access the activity. Equations (67) through (70) prohibit linkages among 

illogical activities, regardless of the specification of the objective function. 

(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpatial connectivity constraints on the household members 

cc Hz, = l,u~P+ (71) 
LTE? W&J 

c HI, - 2 H”,, = 0, u E P, QL E r] _ _ (72) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 H”, -  c H:,,+, = O,u~P+,cxq (75) 
L&i waN 

2 H& = 0, Q E r] (76) 
weP - 

c HE0 = 0, cx E v (77) 
veR 

c K,z,+, = 0, Q! E 7 (78) 
& + 

Equations (71) and (72) require that all compulsory activities be completed by a 

member of the household and that the household members have a connected path, respec- 

tively. Equations (73) and (74) state that some members of the household may not travel. 

Equations (75) through (77) are similar in interpretation to eqns (67) through (70). 

(5) Capacity budget and participation constraints 

- ( 1 - X:, )A4 I Y, + d, -  Y, 5 ( 1 - Xi, )M, u E P, w E P’, u E v (79) 

-(I - Xi, )M 5 Y, + d,_, -  Y, I ( 1 - XL, )M, 

UEF,WEi+UEF (80) 

-(l -X;,)Ms Y,+d,- Y,I (1 -X;,)M,WE~+,UEV (81) 

Y, = 0,Os Y,ID,uEP+ (82) 

(83) 

Equations (79) through (81) specify the demand continuity relationships at each 

stop, whereas eqn (82) is the corresponding capacity constraint. Equation (83) is the 

household travel cost budget constraint; eqn (84) is the household member’s travel time 

constraints. Equations (85) and (86) represent the vehicle and member activity participa- 

tion exclusions. 

(6) Vehicle and household member coupling constraints 
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c Hf - c X:, =O,uE_ii+,WEP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=fl  VET 

CH’d,+C c H;w-h,-~vu~ X”,,=OA’E~ 
aY & - “EP -- 

=n 

75 

(87) 

(88) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-l(l -H& ))M- (1 -X:,)M< C-T,, 

I(1 - H;,)M+ (1 - X:,)M, WEF+,UE~S,~EV,~~E~ (89) 

Equation (87) ensures that only one household member is assigned to travel between 

any activity location and any other location by any particular vehicle seat. Equation (88) 

allows for transference of connectivity between vehicles and household members at the 

home location. Equation (89) requires that the time of the initial departure from home 

by any household member coincide with the departure time of the vehicle (initial or 

otherwise) that transports the individual to the activity. 

Equations (41) through (89), with an objective function comprised of a linear com- 

bination of activity/travel disutility components [e.g. drawn from eqn (l)], constitute 

the general case of the HAPP model with the provision of ridesharing options. An 

example of this formulation applied to the data and parameters used in Case 4B, with the 

exception that the duration of Activity 2 is increased to 7 hours to permit a viable 

ridesharing alternative, is shown in Fig. 6. The optimal solution involves household 

member 2 driving household member 1 to the location of Activity 2 using vehicle 2 

(vehicle 1 is not used in this solution) and then continuing on to Activity 1. Upon 

completion of Activity 1, household member 2 picks up household member 1 on the 

return to home. Household member 1 then drives to the location of Activity 3 while 

household member 2 remains home; upon completion of Activity 3, household member 1 

returns home. 

Because of the size of the model for this case with ridesharing options, it was not 

feasible to solve the model simply using the GAMS ZOOM module. Rather, a decomposi- 

tion procedure was devised in which the ZOOM solver first was employed to obtain a 

solution to the nonridesharing version of the problem. Then, using this as an initial 

feasible solution to the general problem with ridesharing, eqns (41) through (89) were 

decomposed into their integer (largely spatial) and noninteger (largely temporal) compo- 

nents. A heuristic was used to generate feasible ridesharing perturbations (branches) of 

the nonridesharing solution while satisfying the integer spatial constraints and the abso- 

lute temporal constraints embodied in the input data (e.g. travel time and cost matrixes, 

ActMty zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 __ 

Home Home H6me 

OPTIMAL ACTIVITY PATTERN 

CASE 5 

_ Activity 2 

Fig. 6. 
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activity durations and various time windows); the temporal portion of each branch was 

optimized using the GAMS LP solver and the overall optimal solution selected. For 

example discussed, the solution displayed in Fig. 6 required approximately 3.5 minutes 

on a 50-Mhz 486 PC. 

CONCLUSION 

Despite their conceptual clarity, theoretical consistency and purported unmatched 

potential for policy application, activity-based approaches to understanding and predict- 

ing travel behavior have not progressed much beyond the initial forays into the field over 

a decade ago. Principal among the contributing factors to this lack of progress has been 

the absence of an analytical framework that unified the complex interactions among the 

resource allocation decisions made by households in conducting their daily affairs outside 

the home while preserving the utility-maximizing principles presumed to guide such deci- 

sions. It is believed that the formulation presented in this article provides a promising 

approach toward removing this major obstacle to operationalizing activity-based behav- 

ioral travel analysis. 

As indicated in the development of this particular framework, the focus has been on 

the demonstration that some rather well-known network-based formulations in opera- 

tions research that have heretofore largely gone unnoticed in activity-based formulations 

in operations research that have heretofore largely gone unnoticed in activity-based travel 

research offer a potentially powerful technique for advancing the general development of 

this approach. Reliance on generic solvers for solution of a set of examples that in the 

realm of activity-based research have been perceived to be at least practically intractable 

demonstrates that such frameworks are not prohibitively computationally intensive; and, 

undoubtedly, the application of algorithms specifically tailored to the model formulation 

would be substantially more efficient than those employed here. 

In the PDPTW, as well as in the examples considered in this article to demonstrate 

the application of the mathematical framework, the specification of the objective func- 

tion is known to both the decision maker and the analyst. The typical problem in demand 

modeling (of which the HAPP is a subset) is focused on inferring the relative weights 

associated with potential components, such as those contained in eqn (l), that are deter- 

minants to a population’s revealed selection of the decision variables (in the model estima- 

tion phase) with subsequent forecasts made using these weights in conventional applica- 

tion of the model. In that sense, the modeling framework developed offers the first real 

analytical option for estimating the relative importances of factors associated with the 

spatial and temporal interrelationships among the out-of-home activities that motivate a 

household’s need or desire to travel. Such estimation could proceed in a manner similar 

to utility-maximizing estimation techniques used in conventional demand analysis (e.g. 

regression, logit, and probit analyses) in which the choice situation is presumed to be 

unconstrained; the proposed framework provides both the necessary constraint consider- 

ations on the household’s decision alternatives within a utility-maximizing structure as 

well as a convenient mechanism for generating the set of feasible alternatives that are 

likely to be considered. 

Finally, it is cautioned that initial mathematical programming formulations of this 

complexity notoriously are prone to contain redundancies as well as hidden inconsistenc- 

ies that may surface with their application to scenarios other than those tested in their 

development. The work presented here should be viewed as an initial attempt to provide 

direction to researchers with much more talent in operations research than the manifestly 

limited skills of the author. 
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