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Con@uring redundant disk arrays is a black art. To configure an array properly, a system

administrator must understand the details of both the array and the workload it will support.

Incorrect understanding of either, or changes in the workload over time, can lead to poor

performance, We present a solution to this problem: a two-level storage hierarchy implemented

inside a single disk-array controller. In the upper level of this hierarchy, two copies of active data

are stored to provide full redundancy and excellent performance. In the lower level, RAID 5

parity protection is used to provide excellent storage cost for inactive data, at somewhat lower

performance. The technology we describe in this article, known as HP AutoRAID, automatically

and transparently manages migration of data blocks between these two levels as access patterns

change. The result is a fully redundant storage system that is extremely easy to use, is suitable

for a wide variety of workloads, is largely insensitive to dynamic workload changes, and performs

much better than disk arrays with comparable numbers of spindles and much larger amounts of

front-end RAM cache, Because the implementation of the HP AutoRAID technology is almost

entirely in software, the additional hardware cost for these benefits is very small. We describe

the HP AutoRAID technology in detail, provide performance data for an embodiment of it in a

storage array, and summarize the results of simulation studies used to choose algorithms

implemented in the array.

Categories and Subject Descriptors B.4.2 [input/Output and Data Communication]: In-

put/Output Devices-channels and controllers; B.4.5 [Input/Output and Data Communica-

tions]: Reliability, Testing, and Fault-Tolerance—redundant design; D.4.2 [Operating Sys-

tems]: Storage Management—secondary storage

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Disk array, RAID, storage hierarchy

1. INTRODUCTION

Modern businesses and an increasing number of individuals depend on the

information stared in the computer systems they use. Even though modern

disk drives have mean-time-to-failure (MITF) values measured in hundreds

of years, storage needs have increased at an enormous rate, and a sufficiently

large collection of such devices can still experience inconveniently frequent
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failures. Worse, completely reloading a large storage system from backup

tapes can take hours or even days, resulting in very costly downtime.

For small numbers of disks, the preferred method of providing fault protec-

tion is to duplicate ( mirror) data on two disks with independent failure

modes. This solution is simple, and it performs well.

However, once the total number of disks gets large, it becomes more cost

effective to employ an array controller that uses some form of partial redun-

dancy (such as parity) to protect the data it stores. Such RAIDs (for Redun-

dant Arrays of Independent Disks) were first described in the early 1980s

[Lawlor 1981; Park and Balasubramanian 1986] and popularized by the work

of a group at UC Berkeley [Patterson et al. 1988; 1989]. By storing only

partial redundancy for the data, the incremental cost of the desired high

availability is reduced to as little as l/N of the total storage-capacity cost

(where N is the number of disks in the array), plus the cost of the array

controller itself.

The UC Berkeley RAID terminology has a number of different RAID levels,

each one representing a different amount of redundancy and a placement

rule for the redundant data. Most disk array products implement RAID level

3 or 5. In RAID level 3, host data blocks are bit- or byte-interleaved across a

set of data disks, and parity is stored on a dedicated data disk (see Figure

l(a)). In RAID level 5, host data blocks are block-interleaved across the disks,

and the disk on which the parity block is stored rotates in round-robin

fashion for different stripes (see Figure l(b)). Both hardware and software

RAID products are available from many vendors.

Unfortunately, current disk arrays are often difficult to use [Chen and Lee

1993]: the different RAID levels have different performance characteristics

and perform well only for a relatively narrow range of workloads. To accom-

modate this, RAID systems typically offer a great many configuration param-

eters: data- and parity-layout choice, stripe depth, stripe width, cache sizes

and write-back policies, and so on. Setting these correctly is difficult: it

requires knowledge of workload characteristics that most people are unable

(and unwilling) to acquire. As a result, setting up a RAID array is often a

daunting task that requires skilled, expensive people and—in too many cases

—a painful process of trial and error.

Making the wrong choice has two costs: the resulting system may perform

poorly; and changing from one layout to another almost inevitably requires

copying data off to a second device, reformatting the array, and then reload-

ing it. Each step of this process can take hours; it is also an opportunity for

inadvertent data loss through operator error-one of the commonest sources

of problems in modern computer systems [Gray 1990].

Adding capacity to an existing array is essentially the same problem:

taking full advantage of a new disk usually requires a reformat and data

reload.

Since RAID 5 arrays suffer reduced performance in “degraded mode’’—when

one of the drives has failed—many include a provision for one or more spare

disks that can be pressed into service as soon as an active disk fails. This

allows redundancy reconstruction to commence immediately, thereby reduc-
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Fig. 1. Data and parity layout for two different RAID levels.

ing the window of vulnerability to data loss from a second device failure and

minimizing the duration of the performance degradation. In the normal case,

however, these spare disks are not used and contribute nothing to the

performance of the system. (There is also the secondary problem of assuming

that a spare disk is still working: because the spare is idle, the array

controller may not find out that it has failed until it is too late.)

1.1 The Solution: A Managed Storage Hierarchy

Fortunately, there is a solution to these problems for a great many applica-

tions of disk arrays: a redundancy-level storage hierarchy. The basic idea is to

combine the performance advantages of mirroring with the cost-capacity

benefits of RAID 5 by mirroring active data and storing relatively inactive or

read-only data in RAID 5.

To make this solution work, part of the data must be active and part

inactive (else the cost performance would reduce to that of mirrored data),

and the active subset must change relatively slowly over time (to allow the

array to do useful work, rather than just move data between the two levels).

Fortunately, studies on 1/0 access patterns, disk shuffling, and file system

restructuring have shown that these conditions are often met in practice

[Akyurek and Salem 1993; Deshpandee and Bunt 1988; Floyd and Schlattir

Ellis 1989; Geist et al. 1994; Majumdar 1984; McDonald and Bunt 1989;

McNutt 1994; Ruemmler and Wilkes 1991; 1993; Smith 1981].

Such a storage hierarchy could be implemented in a number of different

ways:

—Manually, by the system administrator. (This is how large mainframes

have been run for decades. Gelb [1989] discusses a slightly refined version

of this basic idea.) The advantage of this approach is that human intelli-

gence can be brought to bear on the problem, and perhaps knowledge that

is not available to the lower levels of the 1/0 and operating systems.

However, it is obviously error prone (the wrong choices can be made, and

mistakes can be made in moving data from one level to another); it cannot

adapt to rapidly changing access patterns; it requires highly skilled people;

and it does not allow new resources (such as disk drives) to be added to the

system easily.

—In the file system, perhaps on a per-file basis. This might well be the best

possible place in terms of a good balance of knowledge (the file system can

track access patterns on a per-file basis) and implementation freedom.
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Unfortunately, there are many different file system implementations in

customers’ hands, so deployment is a major problem.

—In a smart array controller, behind a block-level device interface such as

the Small Systems Computer Interface (SCSI) standard [SCSI 1991].

Although this level has the disadvantage that knowledge about files has

been lost, it has the enormous compensating advantage of being easily

deployable—strict adherence to the standard means that an array using

this approach can look just like a regular disk array, or even just a set of

plain disk drives.

Not surprisingly, we are describing an array-controller-based solution here.

We use the name “HP Auto~D” to refer both to the collection of technology

developed to make this possible and to its embodiment in an array controller.

1.2 Summary of the Features of HP AutoRAID

We can summarize the features of HP AutoRAID as follows:

Mapping. Host block addresses are internally mapped to their physical

locations in a way that allows transparent migration of individual blocks.

Mirroring. Write-active data are mirrored for best performance and to

provide single-disk failure redundancy.

RAID 5. Write-inactive data are stored in RAID 5 for best cost capacity

while retaining good read performance and single-disk failure redundancy. In

addition, large sequential writes go directly to RAID 5 to take advantage of

its high bandwidth for this access pattern.

Adaptation to Changes in the Amount of Data Stored. Initially, the array

starts out empty. As data are added, internal space is allocated to mirrored

storage until no more data can be stored this way. When this happens, some

of the storage space is automatically reallocated to the RAID 5 storage class,

and data are migrated down into it from the mirrored storage class. Since the

RAID 5 layout is a more compact data representation, more data can now be

stored in the array. This reapportionment is allowed to proceed until the

capacity of the mirrored storage has shrunk to about 10% of the total usable

space. (The exact number is a policy choice made by the implementors of the

HP AutoRAID firmware to maintain good performance.) Space is apportioned

in coarse-granularity lMB units.

Adaptation to Workload Changes. As the active set of data changes, newly

active data are promoted to mirrored storage, and data that have become less

active are demoted to RAID 5 in order to keep the amount of mirrored data

roughly constant. Because these data movements can usually be done in the

background, they do not affect the performance of the array. Promotions and

demotions occur completely automatically, in relatively fine-granularity 64KB

units.

Hot-Pluggable Disks, Fans, Power Supplies, and Controllers. These allow

a failed component to be removed and a new one inserted while the system

continues to operate. Although these are relatively commonplace features in
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higher-end disk arrays, they are important in enabling the next three fea-

tures.

On-Line Storage Capacity Expansion. A disk can be added tQ the array at

any time, up to the maximum allowed by the physical packaging-currently

12 disks. The system automatically takes advantage of the additional space

by allocating more mirrored storage. As time and the workload permit, the

active data are rebalanced across the available drives to even out the work-

load between the newcomer and the previous disks—thereby getting maxi-

mum performance from the system.

Easy Disk Upgrades. Unlike conventional arrays, the disks do not all

need to have the same capacity. This has two advantages: first, each new

drive can be purchased at the optimal capacity/cost/performance point,

without regard to prior selections. Second, the entire array can be upgraded

to a new disk type (perhaps with twice the capacity) without interrupting its

operation by removing one old disk at a time, inserting a replacement disk,

and then waiting for the automatic data reconstruction and rebalancing to

complete. To eliminate the reconstruction, data could first be “drained” from

the disk being replaced: this would have the advantage of retaining continu-

ous protection against disk failures during this process, but would require

enough spare capacity in the system.

Controller Fail-Over. A single array can have two controllers, each one

capable of running the entire subsystem. On failure of the primary, the

operations are rolled over to the other. A failed controller can be replaced

while the system is active. Concurrently active controllers are also supported.

Active Hot Spare. The spare space needed to perform a reconstruction can

be spread across all of the disks and used to increase the amount of space for

mirrored data—and thus the array’s performance-rather than simply being

left idle.

If a disk fails, mirrored data are demoted to RAID 5 to provide the space to

reconstruct the desired redundancy. Once this process is complete, a second

disk failure can be tolerated-and so on, until the physical capacity is

entirely filled with data in the RAID 5 storage class.

Simple Administration and Setup. A system administrator can divide the

storage space of the array into one or more logical units (LUNS in SCSI

terminology) to correspond to the logical groupings of the data to be stored.

Creating a new LUN or changing the size of an existing LUN is trivial: it

takes about 10 seconds to go through the front-panel menus, select a size, and

confirm the request. Since the array does not need to be formatted in the

traditional sense, the creation of the LUN does not require a pass over all the

newly allocated space ta zero it and initialize its parity, an operation that can

take hours in a regular array. Instead, all that is needed is for the controller’s

data structures to be updated.

Log-Structured RAID 5 Writes. A well-known problem of RAID 5 disk

arrays is the so-called small-write problem. Doing an update-in-place of part

of a stripe takes 4 1/0s: old data and parity have to be read, new parity

calculated, and then new data and new parity written back. HP AutoRAID
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avoids this overhead in most cases by writing to its RAID 5 storage in a

log-structured fashion—that is, only empty areas of disk are written to, so no

old-data or old-parity reads are required.

1.3 Related Work

Many papers have been published on RAID reliability, performance, and

design variations for parity placement and recovery schemes (see Chen et al.

[1994] for an annotated bibliography). The HP AutoRAID work builds on

many of these studies: we concentrate here on the architectural issues of

using multiple RAID levels (specifically 1 and 5) in a single array controller.

Storage Technology Corporation’s Iceberg [Ewing 1993; STK 1995] uses a

similar indirection scheme to map logical IBM mainframe disks (count-key-

data format) onto an array of 5.25-inch SCSI disk drives (Art Rudeseal,

private communication, Nov., 1994). Iceberg has to handle variable-sized

records; HP AutoRAID has a SCSI interface and can handle the indirection

using fixed-size blocks. The emphasis in the Iceberg project seems to have

been on achieving extraordinarily high levels of availability; the emphasis in

HP AutoRAID has been on performance once the single-component failure

model of regular RAID arrays had been achieved. Iceberg does not include

multiple RAID storage levels: it simply uses a single-level modified RAID 6

storage class [Dunphy et al. 1991; Ewing 1993].

A team at IBM Almaden has done extensive work in improving RAID array

controller performance and reliability, and several of their ideas have seen

application in IBM mainframe storage controllers. Their floating-parity

scheme [Menon and Kasson 1989; 1992] uses an indirection table to allow

parity data to be written in a nearby slot, not necessarily its original location.

This can help to reduce the small-write penalty of RAID 5 arrays. Their

distributed sparing concept [Menon and Mattson 1992] spreads the spare

space across all the disks in the array, allowing all the spindles to be used to

hold data. HP AutoR.AID goes further than either of these: it allows both data

and parity to be relocated, and it uses the distributed spare capacity to

increase the fraction of data held in mirrored form, thereby improving

performance still further. Some of the schemes described in Menon and

Courtney [1993] are also used in the dual-controller version of the HP

AutoRAID array to handle controller failures.

The Loge disk drive controller [English and Stepanov 1992] and its follow-

ons Mime [Chao et al. 1992] and Logical Disk [de Jonge et al. 1993] all used a

scheme of keeping an indirection table to fixed-sized blocks held on secondary

storage. None of these supported multiple storage levels, and none was

targeted at RAID arrays. Work on an Extended Function Controller at HP’s

disk divisions in the 1980s looked at several of these issues, but progress

awaited development of suitable controller technologies to make the approach

adopted in HP AutoRAID cost effective.

The log-structured writing scheme used in HP AutoRAID owes an intellec-

tual debt to the body of work on log-structured file systems (LFS) [Carson

and Setia 1992; Ousterhout and Douglis 1989; Rosenblum and Ousterhout
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1992; Seltzer et al. 1993; 1995] and cleaning (garbage collection) policies for

them [Blackwell et al. 1995; McNutt 1994; Mogi and Kiteuregawa 1994].

There is a large body of literature on hierarchical storage systems and the

many commercial products in this domain (for example, Chen [1973], Cohen

et al. [1989], DEC [1993], Deshpandee and Bunt [1988], Epoch Systems

[1988], Gelb [1989], Henderson and Poston [1989], Katz et al. [1991], Miller

[1991], Misra [19811, Sienknecht et al. [19941, and Smith [1981], together
with much of the Proceedings of the IEEE Symposia on Mass Storage

Systems). Most of this work has been concerned with wider performance

disparities between the levels than exist in HP AutoRAID. For example, such

systems often use disk and robotic tertiary storage (tape or magneto-optical

disk) as the two levels.

Several hierarchical storage systems have used front-end dieks to act as a

cache for data on tertiary storage. In HP AutoRAID, however, the mirrored

storage is not a cache: instead data are moved between the storage classes,

residing in precisely one class at a time. This method maximizes the overall

storage capacity of a given number of disks.

The Highlight system [Kohl et al. 1993] extended LFS to two-level storage

hierarchies (disk and tape) and used fixed-size segments. Highlight’s seg-

ments were around lMB in size, however, and therefore were much better

suited for tertiary-storage mappings than for two secondary-etorage levels.

Schemes in which inactive data are compressed [Burrows et al. 1992; Cate

1990; Taunton 1991] exhibit some similarities to the storage-hierarchy com-

ponent of HP AutoRAID, but operate at the file system level rather than at

the block-based device interface.

Finally, like most modern array controllers, HP AutoRAID takes advantage

of the kind of optimization noted in Baker et al. [1991] and Ruemmler and

Wilkes [1993] that become possible with nonvolatile memory.

1.4 Roadmap to Remainder of Article

The remainder of the article ie organized as follows. We begin with an

overview of the technology: how an HP AutoRAID array controller works.

Next come two sets of performance studies. The first is a set of measurements

of a product prototype; the second is a set of simulation studies used to

evaluate algorithm choices for HP AutoRAID. Finally, we conclude the article

with a summary of the benefits of the technology.

2. THE TECHNOLOGY

This section introduces the basic technologies used in HP AutoRAID. It etarts

with an overview of the hardware, then discusses the layout of data on the

disks of the array, including the structures ueed for mapping data blocks to

their locations on disk. This is followed by an overview of normal read and

write operations to illustrate the flow of data through the system, and then

by descriptions of a series of operations that are usually performed in the

background to eneure that the performance of the system remaine high over

long periods of time.
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Fig. 2. Overview of HP AutoRAID hardware

2,1 The HP AutoRAID Array Controller Hardware

An HP AutoR41D array is fundamentally similar to a regular RAID array.

That is, it has a set of disks, an intelligent controller that incorporates a

microprocessor, mechanisms for calculating parity, caches for staging data

(some of which are nonvolatile), a connection to one or more host computers,

and appropriate speed-matching buffers. Figure 2 is an overview of this

hardware.

The hardware prototype for which we provide performance data uses four

back-end SCSI buses to connect to its disks and one or two fast-wide SCSI

buses for its front-end host connection. Many other alternatives exist for

packaging this technology, but are outside the scope of this article.

The array presents one or more SCSI logical units (LUNS) to its hosts. Each

of these is treated as a virtual device inside the array controller: their storage

is freely intermingled. A LUN’S size may be increased at any time (subject to

capacity constraints). Not every block in a LUN must contain valid data—if

nothing has been stored at an address, the array controller need not allocate

any physical space to it.

2.2 Data Layout

Much of the intelligence in an HP AutoRAID controller is devoted to manag-

ing data placement on the disks. A two-level allocation scheme is used.

2.2.1 Physical Data Layout: PEGs, PEXes, and Segments. First, the data

space on the disks is broken up into large-granularity objects called Physical

EXtents (PEXes), as shown in Figure 3. PEXes are typically lMB in size.
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Fig. 3, Mapping of PEGs and PEXes onto disks (adapted from Burkes et al. [ 1995]).

Table 1. A Summary of HP AutQRAID Data Layout Terminology

Term Meaning Size

PEX (physical extent) Unit of@ sicaiapaceallocation.
!

lMB
PEG (physical extent group) A group o PEXSS, assigned to *

one storage class.
Stripe One row of parity and dats *

segments in a RAID 5 storage
class.

Segment Stripe unit (RAID 5) or half of 128KB
a mirroring unit.

RE (relocation block) Unit of data migration. 64KB
LUN (logical unit) Host-visible virtual disk. User settable

* Depends on the number of disks.

Several PEXes can be combined to make a Physical Extent Group (PEG). In

order to provide enough redundancy to make it usable by either the mirrored

or the RAID 5 storage class, a PEG includes at least three PEXes on different

disks. At any given time, a PEG may be assigned to the mirrored storage

class or the RAID 5 storage class, or may be unassigned, so we speak of

mirrored, RAID 5, and free PEGS. (Our terminology is summarized in Table

I.)

PEXes are allocated to PEGs in a manner that balances the amount of data

on the disks (and thereby, hopefhlly, the load on the disks) while retaining

the redundancy guarantees (no two PEXes from one disk can be used in the

same stripe, for example). Beeause the diska in an HP AutoRAID array can
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Fig, 4. Layout of two PEGs: one mirrored and one RAID 5, Each PEG is spread out across five

disks. The RAID 5 PEG uses segments from all five disks to assemble each of its strip-es; the

mirrored PEG uses segments from two disks to form mirrored pairs.

be of different sizes, this allocation process may leave uneven amounts of free

space on different disks.

Segments are the units of contiguous space on a disk that are included in a

stripe or mirrored pair; each PEX is divided into a set of 128KB segments. As

Figure 4 shows, mirrored and RAID 5 PEGS are divided into segments in

exactly the same way, but the segments are logically grouped and used by the

storage classes in different ways: in RAID 5, a segment is the stripe unit; in

the mirrored storage class, a segment is the unit of duplication.

2.2.2 Logical Data Layout: RBs. ‘I’he logical space provided by the array

—that visible to its clients—is divided into relatively small 64KB units called

Relocation Blocks (RBs). These are the basic units of migration in the system.

When a LUN is created or is increased in size, its address space is mapped

onto a set of RBs. An RB is not assigned space in a particular PEG until the

host issues a write to a LUN address that maps to the RB.

The size of an RB is a compromise between data layout, data migration,

and data access costs. Smaller RBs require more mapping information to

record where they have been put and increase the time spent on disk seek

and rotational delays. Larger RBs will increase migration costs if only small

amounts of data are updated in each RB. We report on our exploration of the

relationship between RB size and performance in Section 4.1.2.
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Fig. 5. Structure of the tables that map from addresses in virtual volumes to PEGs, PEXes, and
physical disk addresses (simplified).

Each PEG can hold many RBs, the exact number being a fimction of the

PEG’s size and its storage class. Unused RB slots in a PEG are marked free

until they have an RB (i.e., data) allocated to them.

2.2.3 Mapping Structures. A subset of the overall mapping structures is

shown in Figure 5. These data structures are optimized for looking up the

physical disk address of an RB, given its logical (LUN-relative) address, since

that is the most common operation. In addition, data are held about access

times and history, the amount of free space in each PEG (for cleaning and

garbage collection purposes), and various other statistics. Not shown are

various back pointers that allow additional scans.

2.3 Normal Operations

To start a host-initiated read or write operation, the host sends an SCSI

Command Descriptor Block (CDB) to the HP AutoRAID array, where it is

parsed by the controller. Up to 32 CDBS may be active at a time. An

additional 2048 CDBS may be held in a FIFO queue waiting to be serviced;

above this limit, requesta are queued in the host. Long requests are broken

up into 64KB pieces, which are handled sequentially; this method limits the

amount of controller resources a single 1/0 can consume at minimal perfor-

mance cost.

If the request is a read, and the data are completely in the controller’s

cache memories, the data are transferred to the host via the speed-matching

btier, and the command then completes once various statistics have been
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updated. Otherwise, space is allocated in the front-end buffer cache, and one

or more read requests are dispatched to the back-end storage classes.

Writes are handled slightly differently, because the nonvolatile front-end

write buffer (NVRAM) allows the host to consider the request complete as

soon as a copy of the data has been made in this memory. First a check is

made to see if any cached data need invalidating, and then space is allocated

in the NVRAM. This allocation may have to wait until space is available; in

doing so, it will usually trigger a flush of existing dirty data to a back-end

storage class. The data are transferred into the NVRAM from the host, and

the host is then told that the request is complete. Depending on the NVRAM

cache-flushing policy, a back-end write may be initiated at this point. More

often, nothing is done, in the hope that another subsequent write can be

coalesced with this one to increase efllciency.

Flushing data to a back-end storage class simply causes a back-end write of

the data if they are already in the mirrored storage class. Otherwise, the

flush will usually trigger a promotion of the RB from RAID 5 to mirrored.

(There are a few exceptions that we describe later.) This promotion is done by

calling the migration code, which allocates space in the mirrored storage class

and copies the RB from RAID 5. If there is no space in the mirrored storage

class (because the background daemons have not had a chance to run, for

example), this may in turn provoke a demotion of some mirrored data down

to RAID 5. There are some tricky details involved in ensuring that this

cannot in turn fail—in brief, the free-space management policies must antici-

pate the worst-case sequence of such events that can arise in practice.

2.3.1 Mirrored Reads and Writes. Reads and writes to the mirrored stor-

age class are straightforward: a read call picks one of the copies and issues a

request to the associated disk. A write call causes writes to two disks; it

returns only when both copies have been updated. Note that this is a

back-end write call that is issued to flush data from the NVRAM and is not

synchronous with the host write.

2.3.2 RAID 5 Reads and Writes. Back-end reads to the RAID 5 storage

class are as simple as for the mirrored storage class: in the normal case, a

read is issued to the disk that holds the data. In the recovery case, the data

may have to be reconstructed from the other blocks in the same stripe. (The

usual RAID 5 recovery algorithms are followed in this case, so we will not

discuss the failure case more in this article. Although they are not imple-

mented in the current system, techniques such as parity declustering [Hol-

land and Gibson 1992] could be used to improve recovery-mode performance.)

Back-end RAID 5 writes are rather more complicated, however. RAID 5

storage is laid out as a log: that is, freshly demoted RBs are appended to the

end of a “current RAID 5 write PEG,” overwriting virgin storage there. Such

writes can be done in one of two ways: per-RB writes or batched writes. The

former are simpler, the latter more efficient.

—For per-RB writes, as soon as an RB is ready to be written, it is flushed

to disk. Doing so causes a copy of its contents to flow past the parity-
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calculation logic, which XORS it with its previous contents-the parity for

this stripe. Once the data have been written, the parity can also be written.

The prior contents of the parity block are stored in nonvolatile memory

during this process to protect against power failure. With this scheme, each

data-RB write causes two disk writes: one for the data and one for the

parity RB. This scheme has the advantage of simplicity, at the cost of

slightly worse performance.

—For batched writes, the parity is written only after all the data RBs in a

stripe have been written, or at the end of a batch. If, at the beginning of a

batched write, there are already valid data in the PEG being written, the

prior contents of the parity block are copied to nonvolatile memory along

with the index of the highest-numbered RB in the PEG that contains valid

data. (The panty was calculated by XORing only RBs with indices less

than or equal to this value.) RBs are then written to the data portion of the

stripe until the end of the stripe is reached or until the batch completes; at

that point the parity is written. The new parity is computed on-the-fly by

the parity-calculation logic as each data RB is being written. If the batched

write fails to complete for any reason, the system is returned to its

prebatch state by restoring the old parity and RB index, and the write is

retried using the per-RB method.

Batched writes require a bit more coordination than per-RB writes, but

require only one additional parity write for each full stripe of data that is

written. Most RAID 5 writes are batched writes.

ln addition to these logging write methods, the method typically used in

nonlogging RAID 5 implementations (read-modify-write) is also used in some

caees. This method, which reads old data and parity, modifies them, and

rewrites them to disk, is used to allow forward progress in rare cases when no

PEG is available for use by the logging write processes. It is also used when it

is better to update data (or holes—see Section 2.4.1 ) in place in RAID 5 than

to migrate an RB into mirrored storage, such as in background migrations

when the array is idle.

2.4 Background Operations

In addition to the foreground activities described above, the HP AutoRAID

array controller executes many background activities such as garbage collec-

tion and layout balancing. These background algorithms attempt to provide

“slack” in the resources needed by foreground operations so that the fore-

ground never has to trigger a synchronous version of these background tasks,

which can dramatically reduce performance.

The background operations are triggered when the array has been “idle”

for a period of time. “Idleness” is defined by an algorithm that looks at

current and past device activity-the array does not have to be completely

devoid of activity. When an idle period is detected, the array performs one set

of background operations. Each subsequent idle period, or continuation of the

current one, triggers another set of operations.
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After a long period of array activity, the current algorithm may need a

moderate amount of time to detect that the array is idle. We hope to apply

some of the results from Gelding et al. [1995] to improve idle-period detection

and prediction accuracy, which will in turn allow us to be more aggressive

about executing background algorithms.

2.4.1 Compaction: Cleaning and Hole-Plugging. The mirrored storage

class acquires holes, or empty RB slots, when RBs are demoted to the RAID 5

storage class. (Since updates to mirrored RBs are written in place, they

generate no holes.) These holes are added to a free list in the mirrored

storage class and may subsequently be used to contain promoted or newly

created RBs. If a new PEG is needed for the RAID 5 storage class, and no free

PEXes are available, a mirrored PEG may be chosen for cleaning: all the

data are migrated out to fill holes in other mirrored PEGs, after which the

PEG can be reclaimed and reallocated to the RAID 5 storage class.

Similarly, the RAID 5 storage class acquires holes when RBs are promoted

to the mirrored storage class, usually because the RBs have been updated.

Because the normal RAID 5 write process uses logging, the holes cannot be

reused directly; we call them garbage, and the array needs to perform a

periodic garbage collection to eliminate them.

If the RAID 5 PEG containing the holes is almost full, the array performs

hole-plugging garbage collection, RBs are copied from a PEG with a small

number of RBs and used to fill in the holes of an almost full PEG. This

minimizes data movement if there is a spread of fullness across the PEGs,

which is often the case.

If the PEG containing the holes is almost empty, and there are no other

holes to be plugged, the array does PEG cleaning: that is, it appends the

remaining valid RBs to the current end of the RAID 5 write log and reclaims

the complete PEG as a unit.

2.4.2 Migration: Moving RBs Between Levels. A background migration

policy is run to move RBs from mirrored storage to RAID 5. This is done

primarily to provide enough empty RB slots in the mirrored storage class to

handle a future write burst. As Ruemmler and Wilkes [1993] showed, such

bursts are quite common.

RBs are selected for migration by an approximate Least Recently Written

algorithm. Migrations are performed in the background until the number of

free RB slots in the mirrored storage class or free PEGs exceeds a high-water

mark that is chosen to allow the system to handle a burst of incoming data.

This threshold can be set to provide better burst-handling at the cost of

slightly lower out-of-burst performance. The current AutoRAID firmware

uses a fixed value, but the value could also be determined dynamically.

2.4.3 Balancing: Adjusting Data Layout Across Drives. When new drives

are added to an array, they contain no data and therefore do not contribute to

the system’s performance. Balancing is the process of migrating PEXes

between disks to equalize the amount of data stored on each disk, and

thereby also the request load imposed on each disk. Access histories could be
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used to balance the disk load more precisely, but this is not currently done.

Balancing is a background activity, performed when the system has little else

to do.

Another type of imbalance results when a new drive is added to an array:

newly created RAID 5 PEGs will use all of the drives in the system to provide

maximum performance, but previously created RAID 5 PEGs will continue to

use only the original disks. This imbalance is corrected by another low-prior-

ity background process that copies the valid data from the old PEGs to new,

full-width PEGs.

2.5 Workload Logging

One of the uncertainties we faced while developing the HP AutoRAID design

was the lack of a broad range of real system workloads at the disk 1/0 level

that had been measured accurately enough for us to use in evaluating its

performance.

To help remedy this in the future, the HP Aut&AID array incorporates an

1/0 workload logging tool. When the system is presented with a specially

formatted disk, the tool records the start and stop times of every externally

issued 1/0 request. Other events can also be recorded, if desired. The

overhead of doing this is very small: the event logs are first buffered in the

controller’s RAM and then written out in large blocks. The result is a faithfid

record of everything the particular unit was asked to do, which can be used to

drive simulation design studies of the kind we describe later in this article.

2.6 Management Tool

The HP Aut.dlAID controller maintains a set of internal statistics, such as

cache utilization, 1/0 times, and disk utilizations. These statistics are rela-

tively cheap to acquire and store, and yet can provide significant insight into

the operation of the system.

The product team developed an off-line, inference-based management tool

that uses these statistics to suggest possible configuration choices. For exam-

ple, the tool is able to determine that for a particular period of high load,

performance could have been improved by adding cache memory because the

array controller was short of read cache. Such information allows administra-

tors to maximize the array’s performance in their environment.

3. HP AUTORAID PERFORMANCE RESULTS

A combination of prototyping and event-driven simulation was used in the

development of HP AutoRAID. Most of the novel technology for HP Au-

toRAID is embedded in the algorithms and policies used to manage the

storage hierarchy. Aa a result, hardware and firmware prototypes were

developed concurrently with event-driven simulations that studied design

choices for algorithms, policies, and parameters to those algorithms.

The primary development team was based at the product division that

designed, built, and tested the prototype hardware and firmware. They were

supported by a group at HP Laboratories that built a detailed simulator of
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the hardware and firmware and used it to model alternative algorithm and

policy choices in some depth. This organization allowed the two teams to

incorporate new technology into products in the least possible time while still

fully investigating alternative design choices.

In this section we present measured results from a laboratory prototype of

a disk array product that embodies the HP AutoRAID technology. In Section

4 we present a set of comparative performance analyses of different algorithm

and policy choices that were used to help guide the implementation of the

real thing.

3.1 Experimental Setup

The baseline HP AutoRAID configuration on which we report was a 12-disk

system with one controller and 24MB of controller data cache. It was con-

nected via two fast-wide, differential SCSI adapters to an HP 9000/K400

system with one processor and 512MB of main memory running release 10.0

of the HP-1-111 operating system [Clegg et al. 1986]. All the drives used were

2.OGB 7200RPM Seagate ST32550 Barracudas with immediate write report-

ing turned off.

To calibrate the HP AutoRAID results against external systems, we also

took measurements on two other disk subsystems. These measurements were

taken on the same host hardware, on the same days, with the same host

configurations, number of disks, and type of disks:

—A Data General CLARiiON 8’ Series 2000 Disk-Array Storage System Desk-

side Model 2300 with 64MB front-end cache. (We refer to this system as

“RAID array.”) This array was chosen because it is the recommended

third-party RAID array solution for one of the primary customers of the

HP AutoRAID product.

Because the CLARiiON supports only one connection to its host, only one

of the K400’s fast-wide, differential SCSI channels was used. The single

channel was not, however, the bottleneck of the system. The array was

configured to use RAID 5. (Results for RAID 3 were never better than for

RAID 5.)

—A set of directly connected individual disk drives. This solution provides

no data redundancy at all. The HP-UX Logical Volume Manager (LVM)

was used to stripe data across these disks in 4MB chunks. Unlike HP

AutoRAID and the RAID array, the disks had no central controller and

therefore no controller-level cache. We refer to this configuration as

“JBOD-LVM” (Just a Bunch Of Disks).

3.2 Performance Results

We begin by presenting some database macrobenchmarks in order to demon-

strate that HP AutoRAID provides excellent performance for real-world

workloads. Such workloads often exhibit behaviors such as burstiness that

are not present in simple 1/0 rate tests; relying only on the latter can

provide a misleading impression of how a system will behave in real use.
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3.2.1 Macrobenchmarks. An OLTP database workload made up of medi-

um-weight transactions was run against the HP AutoRAID array, the regular

RAID array, and JBOD-LVM. The database used in this test was 6.7GB,

which allowed it to fit entirely in mirrored storage in the HP AutoRAID;

working-set sizes larger than available mirrored space are discussed below.

For this benchmark, (1) the RAID array’s 12 disks were spread evenly across

its 5 SCSI channels, (2) the 64MB cache was enabled, (3) the cache page size

was set to 2KB (the optimal value for this workload), and (4) the default

64KB stripe-unit size was used. Figure 6(a) shows the result: HP AutoRAID

significantly outperforms the RAID array and has performance about three-

fourths that of JBOD-LVM. These results suggest that the HP AutoRAID is

performing much as expected: keeping the data in mirrored storage means

that writes are faster than the RAID array, but not as fast as JBOD-LVM.

Presumably, reads are being handled about equally well by all the cases.

Figure 6(b) shows HP AutoRAID’s performance when data must be mi-

grated between mirrored storage and RAID 5 because the working set is too

large to be contained entirely in the mirrored storage class. The same type of

OLTP database workload as described above was used, but the database size

was set to 8. lGB. This would not fit in a 5-drive HP AutoRAID system, so we

started with a 6-drive system as the baseline, Mirrored storage was able to

accommodate one-third of the database in this case, two-thirds in the 7-drive

system, almost all in the 8-drive system, and all of it in larger systems.

The differences in performance between the 6-, 7-, and 8-drive systems

were due primarily to differences in the number of migrations performed,

while the differences in the larger systems result from having more spindles

across which to spread the same amount of mirrored data. The 12-drive

configuration was limited by the host K400’s CPU speed and performed about

the same as the n-drive system. From these data we see that even for this

database workload, which has a fairly random access pattern across a large

data set, HP AutoRAID performs within a factor of two of its optimum when

only one-third of the data is held in mirrored storage and at about three-

fourths of its optimum when two-thirds of the data are mirrored.

3.2.2 Microbenchmarks. In addition to the database macrobenchmark, we

also ran some microbenchmarks that used a synthetic workload generation

program known as DB to drive the arrays to saturation; the working-set size

for the random tests was 2GB. These measurements were taken under

slightly different conditions from the ones reported in Section 3.1:

—The HP AutoRAID contained 16MB of controller data cache.

—An HP 9000/897 was the host for all the tests.

—A single fast-wide, differential SCSI channel was used for the HP Auto-

RAID and RAID array tests.

—The JBOD case did not use LVM, so it did not do any striping. (Given the

nature of the workload, this was probably immaterial.) In addition, 11

JBOD disks were used rather than 12 to match the amount of space

available for data in the other configurations. Finally, the JBOD test used
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a fast-wide, single-ended SCSI card that required more host CPU cycles

per 1/0. We believe that this did not affect the microbenchmarks because

they were not CPU limited.

—The RAID array used 8KB cache pages and cache on or off as noted.

Data from the microbenchmarks are provided in Figure 7. This shows the

relative performance of the two arrays and JBOD for random and sequential

reads and writes.

The random 8KB read-throughput testis primarily a measure of controller

overheads. HP AutoRAID performance is roughly midway between the RAID

array with its cache disabled and JBOD. It would seem that the cache-

searching algorithm of the RAID array is significantly limiting its perfor-

mance, given that the cache hit rate would have been close to zero in these

tests.

The random 8KB write-throughput test is primarily a test of the low-level

storage system used, since the systems are being driven into a disk-limited
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behavior by the benchmark. As expected, there is about a 1:2:4 ratio in 1/0s

per second for RAID 5 (4 1/0s for a small update): HP AutoRAID (2 1/0s to

mirrored storage): JBOD (1 write in place).

The sequential 64KB read-bandwidth test shows that the use of mirrored

storage in HP AutoRAID can largely compensate for controller overhead and

deliver performance comparable to that of JBOD.

Finally, the sequential 64KB write-bandwidth test illustrates HP Auto-

R.AID’s ability to stream data to disk through its NVRAM cache: its perfor-

mance is better than the pure JBOD solution.

We do not have a good explanation for the relatively poor performance of

the RAID array in the last two cases; the results shown are the best obtained
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from a number of different array configurations. Indeed, the results demon-

strated the difficulties involved in properly conf@ring a RAID array: many

parameters were adjusted (caching on or off, cache granularity, stripe depth,

and data layout), and no single combination performed well across the range

of workloads examined.

3.2.3 Thrashing. As we noted in Section 1.1, the performance of HP

AutoRAID depends on the working-set size of the applied workload. With the

working set within the size of the mirrored space, performance is very good,

as shown by Figure 6(a) and Figure 7. And as Figure 6(b) shows, good

performance can also be obtained when the entire working set does not fit in

mirrored storage.

If the active write working set exceeds the size of mirrored storage for long

periods of time, however, it is possible to drive the HP AutoRAID array into a

thrashing mode in which each update causes the target RB to be promoted

up to the mirrored storage class and a second one demoted to RAID 5. An HP

AutoRAID array can usually be configured to avoid this by adding enough

disks to keep all the write-active data in mirrored storage. If ail the data

were write active, the cost-performance advantages of the technology would,

of course, be reduced. Fortunately, it is fairly easy to predict or detect the

environments that have a large write working set and to avoid them if

necessary. If thrashing does occur, HP AutoRAID detects it and reverts tQ a

mode in which it writes directly to RAID 5—that is, it automatically adjusts

its behavior so that performance is no worse than that of RAID 5.

4. SIMULATION STUDIES

In this section, we will illustrate several design choices that were made inside

the HP AutoRAID implementation using a trace-driven simulation study.

Our simulator is built on the Pantheon [Cao et al. 1994; Gelding et al.

1994] simulation framework,l which is a detailed, trace-driven simulation

environment written in C ++. Individual simulations are configured from the

set of available C++ simulation objects using scripts written in the Tcl

language [Ousterhout 1994] and configuration techniques described in Geld-

ing et al. [1994]. The disk models used in the simulation are improved

versions of the detailed, calibrated models described in Ruemmler and Wilkes

[ 1994].

The traces used to drive the simulations are from a variety of systems,

including: cello, a time-sharing HP 9000 Series 800 HP-UX system; snake, an

HP 9000 Series 700 HP-UX cluster file server; OLTP, an HP 9000 Series 800

HP-UX system running a database benchmark made up of medium-weight

transactions (not the system described in Section 3.1); hplajw, a personal

workstation; and a Netware server. We also used subsets of these traces, such

as the /usr disk from cello, a subset of the database disks from OLTP, and the

OLTP log disk. Some of them were for long time periods (up to three months),

LThe simulator was formerly called TickerTAIP, but we have changed its name to avoid

confusion with the parallel RAID array project of the same name [Cao et al. 1994].
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although most of our simulation runs used two-day subsets of the traces. All

but the Netware trace contained detailed timing information to 1WS resolu-

tion. Several of them are described in considerable detail in Ruemmler and

Wilkes [1993].

We modeled the hardware of HP AutoRAID using Pantheon components

(caches, buses, disks, etc.) and wrote detailed models of the basic firmware

and of several alternative algorithms or policies for each of about 40 design

experiments. The Pantheon simulation core comprises about 46k lines of

C++ and 8k lines of Tel, and the HP-AutoRAID-specific portions of the

simulator added another 16k lines of C ++ and 3k lines of Tel.

Because of the complexity of the model and the number of parameters,

algorithms, and policies that we were examining, it was impossible to explore

all combinations of the experimental variables in a reasonable amount of

time. We chose instead to organize our experiments into baseline runs and

runs with one or a few related changes to the baseline. This allowed us to

observe the performance effects of individual or closely related changee and

to perform a wide range of experiments reasonably quickly. (We used a

cluster of 12 high-performance workstations to run the simulations; even so,

executing all of our experiments took about a week of elapsed time.)

We performed additional experiments to combine individual changes that

we suspected might strongly interact (either positively or negatively) and to

test the aggregate effect of a set of algorithms that we were proposing to the

product development team.

No hardware implementation of HP Aut@.AID was available early in the

simulation study, so we were initially unable to calibrate our simulator

(except for the disk models). Because of the high level of detail of the

simulation, however, we were confident that relative performance differences

predicted by the simulator would be valid even if absolute performance

numbers were not yet calibrated. We therefore used the relative performance

differences we observed in simulation experiments to suggest improvements

to the team implementing the product firmware, and these are what we

present here. In turn, we updated our baseline model to correspond to the

changes they made to their implementation.

Since there are far too many individual results to report here, we have

chosen to describe a few that highlight some of the particular behaviors of the

HP AutoR.AID system.

4.1 Disk Speed

Several experiments measured the sensitivity of the design to the size or

performance of various components. For example, we wanted to understand

whether faster disks would be cost effective. The baseline disks held 2GB and

spun at 5400 RPM. We evaluated four variations of this disk: spinning at

6400 RPM and 7200 RPM, keeping either the data density (bite per inch) or

transfer rate (bits per second) constant. As expected, increasing the back-end

disk performance generally improves overall performance, as shown in Figure

8(a). The results suggest that improving transfer rate is more important than

improving rotational latency.
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4.2 RB Size

The standard AutoRAID system uses 64KB RBs as the basic storage unit. We

looked at the effect of using smaller and larger sizes. For most of the

workloads (see Figure 8(b)), the 64KB size was the best of the ones we tried:

the balance between seek and rotational overheads versus data movement

costs is about right. (This is perhaps not too surprising the disks we are

using have track sizes of around 64KB, and transfer sizes in this range will

tend to get much of the benefit from fewer mechanical delays.)

4.3 Data Layout

Since the system allows blocks to be remapped, blocks that the host system

has tried to lay out sequentially will often be physically discontinuous. To see

how bad this problem could get, we compared the performance of the system

when host LUN address spaces were initially laid out completely linearly on

disk (as a best case) and completely randomly (as a worst case). Figure 9(a)

shows the difference between the two layouts: there is a modest improvement

in performance in the linear case compared with the random one. This

suggests that the RB size is large enough to limit the impact of seek delays

for sequential accesses.

4.4 Mirrored Storage Class Read Selection Algorithm

When the front-end read cache misses on an RB that is stored in the mirrored

storage class, the array can choose to read either of the stored copies. The

baseline system selects the copy at random in an attempt to avoid making

one disk a bottleneck. However, there are several other possibilities:

—strictly alternating between disks (alternate);

—attempting to keep the heads on some disks near the outer edge while

keeping others near the inside (inner/outer);

—using the disk with the shortest queue (shortest queue);

—using the disk that can reach the block first, as determined by a shortest-

positioning-time algorithm [Jacobson and Wilkes 1991; Seltzer et al. 1990]

(shortest seek).

Further, the policies can be “stacked,” using first the most aggressive policy

but falling back to another to break a tie. In our experiments, random was

always the final fallback policy.

Figure 9(b) shows the results of our investigations into the possibilities. By

using shortest queue as a simple load-balancing heuristic, performance is

improved by an average of 3.3% over random for these workloads. Shortest

seek performed 3.49Z0better than random on the average, but it is much more

complex to implement because it requires detailed knowledge of disk head

position and seek timing.

Static algorithms such as alternate and innertouter sometimes perform

better than random, but sometimes interact unfavorably with patterns in the

workload and decrease system performance.
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We note in passing that these differences do not show up under mi-

crobenchmarks (of the type reported in Figure 7) because the disks are

typically always driven to saturation and do not allow such effects to show

through.

4.5 Write Cache Overwrites

We investigated several policy choices for managing the NVRAM write cache.

The baseline system, for instance, did not allow one write operation to

overwrite dirty data already in cache; instead, the second write would block

until the previous dirty data in the cache had been flushed to disk. As Figure

10 shows, allowing overwrites had a noticeable impact on most of the

workloads. It had a huge impact on the OLTP-log workload, improving its

performance by a factor of 5.3. We omitted this workload from the graph for

scaling reasons.

4.6 Hole-Plugging During RB Demotion

RBs are typically written to RAID 5 for one of two reasons: demotion from

mirrored storage or for garbage collection. During normal operation, the

system creates holes in RAID 5 by promoting RBs to the mirrored storage

class. In order to keep space consumption constant, the system later demotes

(other) RBs ta RAID 5. In the default configuration, HP AutdtAID uses

logging writes to demote RBs to RAID 5 quickly, even if the demotion is done

during idle time; these demotions do not fill the holes left by the promoted

RBs. To reduce the work done by the RAID 5 cleaner, we allowed RBs

demoted during idle periods to be written to RAID 5 using hole-plugging. This

optimization reduced the number of RBs moved by the RAID 5 cleaner by
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937c for the cello-usr workload and by 98?Z0 for snake, and improved mean

1/0 time for user 1/0s by 8.4% and 3.29o.

5. SUMMARY

The HP AutoRAID technology works extremely well, providing performance

close to that of a nonredundant disk array across many workloads. At the

same time, it provides full data redundancy and can tolerate failures of any

single array component.

It is very easy to use: one of the authors of this article was delivered a

system without manuals a day before a demonstration and had it running a

trial benchmark five minutes afl,er getting it connected to his completely

unmodified workstation. The product team has had several such experiences

in demonstrating the system to potential customers.

The HP AutoRAID technology is not a panacea for all storage problems:

there are workloads that do not suit its algorithms well and environments

where the variability in response time is unacceptable. Nonetheless, it is able

to adapt to a great many of the environments that are encountered in real

life, and it provides an outstanding general-purpose storage solution where

availability matters.

The first product based on the technology, the HP XLR1200 Advanced Disk

Array, is now available.
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