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Abstract

Configuring redundant disk arrays is a black art. To properly

configure an array, a system administrator must understand the

details of both the array and the workload it will support; incorrect

understanding of eithec or changes in the workload over time, can

lead to poor performance.

Wepresent a solution to this problem: a two-level storage hierarchy

implemented inside a single disk-array controller In theupper level

of this hierarchy, two copies of active data are stored to provide full

redundancy and excellent performance. In the lower level, RAID 5

parity protection is used to provide excel[ent storage cost for

inactive data, at somewhat lower performance.

The technology we describe in this pape< known as HP AutoRAID,

automatically and transparently manages migration of data blocks

between these two levels as access patterns change. The result is a

fully-redundant storage system that is extremely easy to use,

suitable for a wide variety of workloads, largely insensitive to

dynamic workload changes, and that performs much better than

disk arrays with comparable numbers of spindles and much larger

amounts offront-end ~~ cache. Because the implementation of the

I-W AUtORAID technology is almost entirely in embedded software,

the additional hardware cost for these benejits is very small.

We describe the HP AUtORAID technology in detail, and provide

performance data for an embodiment of it in a prototype storage

array, together with the results of simulation studies used to choose

algorithms used in the array.

1 Introduction

Modern businesses and an increasing number of individuals depend

on the information stored in the computer systems they use. Even

though modern disk drives have mean-time-to-failure (M’ITF)

values measured in hundreds of years, storage needs have increased

at an enormous rate, and a sufficiently-large collection of such

devices can still experience inconveniently frequent failures.

Worse, such failures can be extremely costly to repair: it may take

hours, or even days, to completely reload a large storage system

from backup tapes, and this can result in very costly downtime for

a business that relies on its computer systems being continuously

on-line.

For small numbers of disks, the preferred method to provide fault

protection is to duplicate (mirror) data on two disks with

independent failure modes. This solution is simple, and it performs

well.
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However, once the total number of disks gets large, it becomes

more cost-effective to employ an array controller that uses some

form of partial redundancy (such as parity) to protect the data it

stores. Such RAIDS (for Redundant Arrays of Independent Disks)

were first described in the early 1980s [Lawlor81, Park86], and

popularized by the work of a group at UC Berkeley [Patterson88,

Patterson89]. By storing only partial redundancy for the data, the

incremental cost of the desired high availability is reduced to as

little as l/N of the total storage-capacity cost (where N is the

number of disks in the array), plus the cost of the array controller

itself.

The UC Berkeley RAID terminology has a number of different RAID

levels, each one representing a different amount of redundancy and

a placement rule for the redundant data. Most disk array products

implement RAID level 3 or 5. In RAID level 3, host data blocks are

bit- or byte-interleaved across a set of data disks, and parity is

stored on a dedicated data disk (see Figure 1). In RAID level 5, host

data blocks are block-interleaved across the disks, and the disk on

which the parity block is stored rotates in round-robin fashion for

different stripes. Both hardware and software RAID products are

available from many vendors.

Unfortunately, current RAID arrays are often difficult to use

[Chen93]: the different RAID levels have different performance

characteristics, and perform well only for a relatively narrow range

of workloads. To accommodate this, RAID systems typically offer a

great many configuration parameters: data- and parity-layout

choice, stripe depth, stripe width, cache sizes and write-back

policies, etc. Setting these correctly is difficult, and requires

knowledge of workload characteristics that most people are unable

(and unwilling) to acquire. As a result, setting up a RAID array is

often a daunting task, that requires skilled, expensive people and—

in too many cases—a painful process of trial and error.

Making the wrong choice has two costs: the resulting system may

perform poorly; and changing from one layout to another almost

inevitably requires copying data off to a second device,

a. RAID 3.
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b. RAID 5.
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Figure 1.Data and parity layout for two different RAID levels.
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reformatting the array, and then reloading it. Each step of this

process can take hours; it is also an opportunity for inadvertent data

loss through operator error-one of the commonest source of

problems in modern computer systems [Gray90].

Adding capacity to an existing array is essentially the same

problem: taking full advantage of a new disk usually requires a

reformat and data reload.

Since RAID 5 arrays suffer reduced performance in “degraded

mode’’—when one of the drives has failed—many include a

provision for one or more spare disks that can be pressed into

service as soon as an active disk fails. This allows redundancy

reconstruction to commence immediately, thereby reducing the

window of vulnerability to data loss from a second device failure

and also mini mizing the duration of the performance degradation.

In the normal case, however, these spare disks are not used, and

contribute nothing to the performance of the system. (There’s also

the secondary problem of being convinced that a spare disk is in

fact still working: because it is idle, the array controller may not

find out that it has failed until it is needed—by which time it is too

late.)

1.1 The solution: a managed storage hierarchy

Fortunately, there’s a solution to these problems for a great many

applications of disk arrays: a redundancy-level storage hierarchy.

The basic idea is to combine the performance advantages of

mirroring with the cost-capacity benefits of RAID 5 by mirroring

active data and storing relatively inactive data (or data that are just

read, not written) in RAID 5.

To make this work, only part of the data must be active (else the

cost-performance would reduce to that of mirrored data), and the

active subset must change relatively slowly over time (to allow tbe

array to do useful work. rather than just move data between the two

levels). Fortunately, studies on 1/0 access patterns, disk shuffling

and file-system restructuring have shown that these conditions are

often met in practice [Akyurek93, Deshpande88, Floyd89, Geist94,

Majumdar84, McDonald89, McNutt94, Ruemmler91,

Ruemmler93, Smith81 ].

Sttch a storage hierarchy could be implemented in a number of

different ways:

● Manually, by the system administrator. (This is how large

mainframes have been run for decades. [Gelb89] discusses a

slightly refined version of this basic idea.) The advantage of

this approach is that human intelligence can be brought to bear

on the problem—and perhaps globally-better solutions can be

developed, using knowledge that is simply not available to the

lower levels of the 1/0 and operating systems. However, it is

obviously error-prone (the wrong choices can be made, and

mistakes can be made in moving data from one level to

another); it cannot adapt to rapidly-changing access patterns;

it requires highly skilled people; and it does not allow new

resources (such as disk drives) to be added to the system

easily.

* in the jile system, perhaps on a per-tile basis. This might well

be the best possible place in terms of there being a good

balance of knowledge (the file system can track access

patterns on a per-file basis) and implementation freedom.

Unfortunately, there are many file system implementations in

customers’ hands, so deployment is a major problem.

● In a smart array controller, behind a block-level device

interface such as the Small Systems Computer Interface (SCSI)

standard [SCS191]. Although this level has the disadvantage

that knowledge about files has been lost, it has the enormous

compensating advantage of being easily deployable—strict

adherence to the standard means that an array using this

approach can look just like a regular disk array, or even just a

set of plain disk drives. As we will show, the performance that

can be attained by operating at this level is outstanding in

aimost all cases.

Not surprisingly, we are describing an array-controller-based

solution here. We use the name “HP AutoRAID” to refer both to the

collection of technology developed to make this possible, and its

embodiment in an array controller.

1.2 Summary of the features of HP AutoRAID

We can summarize the features of HP AutoRAID as follows:

Mapping. Metadata are maintained to map host block addresses to

physical locations, allowing transparent migration of individual

blocks.

Mwrorirrg. Write-active data are mirrored for best absolute

performance and to provide single-disk failure redundancy.

RAID 5. Write-inactive data are stored in RAID 5 for good cost-

capacity while retaining single-disk failure redundancy.

Adaptation to changes in the amount of data stored. Space is

allocated to mirrored storage until there is more data than can be

stored in the array this way. When this happens, storage space is

automatically allocated to the RAID 5 storage class. and data

migrated down into it. Since this is a more compact data

representation, more data can now be stored in the array. This re-

apportionment is allowed to proceed until the capacity of the

mirrored storage has shrunk to about 10% of the total usable space.

(The exact number is a policy choice made by the implementors of

the HP AutoRAID firmware to maintain good performance.) Space

is apportioned in coarse-granularity units (1 MB in the prototype),

Adaptation to workload changes. As the active set of data changes,

newly-active data are promoted to mirrored storage, and relatively

inactive data are demoted to RAID 5 in order to keep the amount of

mirrored data roughly constant. With care, this can be done in the

background, and need not impact the performance of the array. This

movement occurs completely automatically, in relatively fine

granularity units (64KB in the prototype).

Hot-pluggable disks, fans, power supplies, and controllers. These

allow a failed component to be removed and a new one inserted

while the system continues to operate. Although these are relatively

commonplace features in higher-end disk arrays, they are important

in enabling the next three features.

On-line storage capacity expansion. A disk can be added to the

array at any time, up to the maximum allowed by the physical

packaging (currently 12 disks in the prototype). The system

automatically takes advantage of the additional space by allocating

mirrored storage. As time and the workload permits, the active data

will be rebalanced across the available drives to even out the

workload between the newcomer and the previous set—thereby

getting maximum performance from the system.

Easy upgrade to new disks. Unlike conventional arrays, the disks

do not all need to have the same capacity. This has two advantages:

when a new drive is added, it can be purchased at the optimal

capacity/cost/performance point, without regard to prior purchases.

In addition, the automatic data reconstruction and rebalancing

facilities can be used to completely upgrade an array to a new disk-

capacity point by simply removing each old disk, inserting a

replacement disk, and then waiting for the reconstruction to

complete. (To eliminate the reconstruction, data could first be

“drained’ from the disk being replaced if there is sufficient spare

capacity in the system.)

Controller fail-over A single array can have two controllers, each

capable of running the entire subsystem. On failure of the primary,
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the operations are rolled over to the other. (A future imp~ementation

could allow concurrently active control lers.) A failed controller can

be replaced while the system is active.

Active hot spare. Thanks to the way in which data are allocated to

the disks (more on this below), the spare space needed to perform a

reconstruction can be spread across all of the disks, and used for

storing mirrored data. This means that tbe disk spindle that would

have been idle in a regular RAID array can contribute to the normal

operation of an HP AutoRAID array, thereby improving its

performance.

If a disk fails, mirrored data are demoted to RAID 5 to provide the

space to reconstruct the desired redundancy. Once this has

happened, a second disk failure can be tolerated—and so on, until

the physical capacity is entirely tilled with data in the RAID 5

storage class.

Simple administration and setup. The array presents one or more

logical units (LUNS in SCSI terminology) to the host. Creating a new

LUN is a trivial matter from the front panel: it takes about 10

seconds to go through the menus, select a size, and confirm the

request. Since the array does not need to be formatted in the

traditional sense, the creation of the LUN doesn’t require a pass over

all the newly-allocated space to zero it and initialize its parity. (This

operation can take hours in a regular array.) Instead, all that is

needed is for the controller’s data structures to be updated.

Log-structured RAID 5 writes. A well-known problem of RAID 5

disk arrays is the so-called small-write problem. Doing an update-

in-place of part of a stripe takes 4 1/0s: old data and parity have to

be read, new parity calculated, and then new data and new parity

written back. HP .htoRAID avoids this overhead (in most cases; see

section 2.3.2) by writing to its RAID 5 storage in a log-structured

fashion: that is, only empty areas of disk are written. (The

indirection mechanism used to find whether data are mirrored or in

RAID 5 provides the empty/full information for free. )

1.3 Related work

Many papers have been published on RAID reliability, performance,

and on design variations for parity placement and recovery schemes

(see [Chen94] for an annotated bibliography). The HP AutoRAID

work builds on many of these studies: we concentrate here on the

architectural issues of using multiple RAID levels (specifically 1 and

5) in a single array controller.

Storage Technology Corporation’s Iceberg [Ewing93, STK95] uses

a similar indirection scheme to map logical IBM mainframe disks

(count-key-data format) onto an array of 5.25” SCSIdisk drives [Art

Rudeseal, private communication, Nov. 1994]. IceBerg has to

handle variable-sized records; HP fmtoRAID has a SCSI interface,

and can handle the indirection using fixed-size blocks. The

emphasis in the IceBerg project seems to have been on achieving

extraordinarily high levels of availability; the emphasis in HP

,ktoRAID has been on performance once tbe single-component

failure model of regular RAID arrays had been achieved. IceBerg

does not include multiple RAID storage levels: it simply uses a

single level modified RAID 6 storage class [Dunphy91, Ewing93].

A team at IBM Almaden has done extensive work in improving

RAID array controller performance and reliability, and several of

their ideas have seen application in IBM mainframe storage

controllers. Their floating parity scheme [Menon89, Menon92]

uses an indirection table to allow parity data to be written in a

nearby slot, not necessarily its original location. This can help to

reduce the small-write penalty of RAID 5 arrays. Their distributed

sparing concept [Menon92a] spreads the spare space across all the

disks in the array, allowing all the spindles to be used to hold data.

HP AutoRAID goes further than either of these: it allows both data

and parity to be relocated, and it uses the distributed spare capacity

to increase the fraction of data held in mirrored form, thereby

improving performance still further. Some of the schemes

described in [Menon93] are also used in the dual-controller version

of the HP AutoRAID array to handle controller failures.

The Loge disk drive controller [English92], and its follow-ons

Mime [Chao92] and Logical Disk [deJonge93], all used a scheme

of keeping an indirection table to fixed-sized blocks held on

secondary storage. None of these supported multiple storage levels,

and none were targeted at RAID arrays. Work on an Extended

Function Controller at HP’s disk divisions in the 1980s looked at

several of these issues, but awaited development of suitable

controller technologies to make the approach adopted in

HP .krtoRAID cost effective.

The log-structured writing scheme used in HP ,hrtoRAID owes an

intellectual debt to the body of work on log-structured tile systems

(LFS) [Carson92, 0usterhout89, Rosenblum92, Sehzer93,

Seltzer95], and cleaning (garbage-collection) policies for them

[McNutt94, Blackwel195].

There is a large literature on hierarchical storage systems and the

many commercial products in this domain (for example [Chen73,

Cohen89, DEC93, Deshpande88, Epoch88, Gelb89, Henderson89,

Katz91,Miller91,Misra81, Sienknecht94, Smith81], together with

much of the proceedings of the IEEE Symposia on Mass Storage

Systems). Most of this work has been concerned with wider

performance disparities between the levels than exist in HP

AutoRAID. For example, they often use disk and robotic tertiary

storage (tape or magneto-optical disk) as the two levels.

Several hierarchical storage systems have used front-end disks to

act as a cache for data on tertiary storage. In HP AutoRAID,

however, the mirrored storage is not a cache: instead data move

between the storage classes, residing in precisely one of them at a

time.

The Highlight system [Koh193] extended LFS to two-level storage

hierarchies (disk and tape) and also used fixed-size segments.

Highlight’s segments were around 1MB in size, however, and

therefore were much better suited for tertiary-storage mappings

than for two secondary-storage levels.

Schemes in which inactive data are compressed [Burrows92,

Cate90, Taunton91 ] exhibit some similarities to the storage-

hierarchy component of HP AutoRAID, but operate at the file system

level rather than at the block-based device interface.

Finally, like most modern array controllers, HP AutoRAID takes

advantage of the kind of optimization noted in [Baker91,

Ruemmler93] that become possible with non-volatile memory.

1.4 Roadmap to remainder of paper

The remainder of the paper is organized as follows. We begin with

an overview of the technology: how an HP AutoRAID array

controller works. Next come two sets of performance studies. The

first is a set of measurements of a laboratory prototype; the second

a set of simulation studies used to evaluate algorithm choices for

HP AutoRAID. Finally, we summarize what we have learned from

this project and identify a few areas for possible future work.

2 The technology

This section of the paper introduces the basic technologies used m

HP 4httORAID. It starts with an overview of the hardware, then

discusses the layout of data on the disks of the array, including the

structures used for mapping data to their locations on disk. This is

followed by brief descriptions of normal read and write operations

to illustrate the flow of data through the system, and then by a series
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of operations that are (usually) performed in the background, to

ensure that the performance of the system remains high over long

periods of time.

2.1 The HP AutoR41D array controller hardware

As far as its hardware goes, an HP ,httoRAID array is fundamentally

similar to a regular RAID array, That is, it has a set of disks, managed

by an intelligent controller that incorporates a microprocessor,

mechanisms for calculating parity, caches for staging data (some of

which are non-volatile), a connection to one or more host

computers, and appropriate speed-matching buffers. Figure 2 is an

overview of this hardware.

I I.s!EEd —1
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20 MB]s
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Figure 2. Overview of HP AutoRAID hardware.

The hardware prototype for which we provide performance data

uses four back-end SCSI buses to connect to its disks, and a fast-

wide SCSI bus for its front-end host connection. Many other

alternatives exist for packaging this technology, but are outside the

scope of this paper.

The array presents one or more SCSI logicai units (LUNS) to its hosts.

Each of these is treated as a virtual device inside the array

controller: their storage is freely intermingled. A LUN’S size may be

increased at any time (subject to capacity constraints). Not every

block in a LUN must contain valid data—if nothing has been stored

at an address, the array controller need not allocate any physical

space to it.

2.2 Data layout

Much of the intelligence in an HP AutoRAID controller is devoted

to managing data placement on the disks. A two-level allocation

scheme is used.

2.2.1 Physical data layout: PEGs, PEXes, and segments

First, the data space on the disks is broken up into large-granularity

objects called Physical EXtents (PEXes), as shown in Figure 3.

PEXes are typically 1MB in size. Several PEXeS can be combined to

make a Physical Extent Group (PEG). In order to provide enough

redundancy to make it usable by either the mirrored or the RAID 5

storage class, a PEG includes at least three PEXeS on different disks.

At any given time, a PEG may be assigned to the mirrored storage

class or the RAID 5 storage class, or may be unassigned—thus, we

speak of mirrored, RAID 5, and free PEGS.

PExes are allocated to PEGS in a manner that balances the amount of

data on the disks (and thereby, hopefully, the load on the disks),

while retaining the redundancy guarantees (no two PEXeS from one

disk can be used in the same stripe, for example). Because the disks

in an HP &rtoRAID array can be of different sizes, this allocation

process may leave uneven amounts of free space on different disks.

Segments are the units of contiguous space on a disk that are

included in a stripe or mirrored pair; each PEX k divided into a set

of segments. In the prototype, segments are 128KB in size. As

Figure 4 shows, mirrored and RAID 5 pegs are divided into

segments in exactly the same way, but the segments are logically

grouped and used by the storage classes in different ways.

2.2.2 Logical data layout: RBS

The logical space provided by the array-that visible to its

clients—is divided into relatively small units called Relocation

Blocks (RBS). These are the basic units of migration in the system.

When a LUN is created or is increased in size, its address space is

mapped onto a set of RBS. An RB is not assigned space in a particular

PEG until the host issues a write to a LUN address that maps to the

RB.

In tbe prototype, RBS are 64KB in size. This size is a compromise

over the following pressures. Decreasing the size of an RB requires

more mapping information to record where the RBS have been put.

It also means that a larger fraction of the time spent moving whole-

RB units is spent on disk-arm seek and rotational delays. On the

other hand, a larger RB may increase migration costs if only small

amounts of data are being updated in each RB. We describe the

relationship between RB size and performance in section 4.1.2.

Each PEG holds a predetermined number of RBS, as a function of its

size and its storage class; unused RB slots are marked as “free” until

they have an RB (data) allocated to them.

2.2.3 Mapping structures

A subset of the overall mapping structures are shown in Figure 5.

These data structures are optimized for looking up the physical disk

address of an RB, given its logical (LUN-relative) address, since that

is the most common operation. In addition, data are held about

access times and history; the amount of free space in each PEG (for
—
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HHHHH
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Figure 3. Mapping of PEGS and wxes onto disks. Figure is

taken from [Burkes95].
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disk O disk 1 disk 2 disk 3 disk 4

RAID 5 PEG

Figure 4. Layout of mirrored and RAID 5 PEGS spread out

across five disks. The PEGS are physically the same (both

contain a PEX from each disk), but the mirrored and RAID 5

storage classes logically group the segments differently. The

RAID 5 PEG uses segments from all five disks to make its

stripes; the mirrored PEG uses segments from two disks to

form mirrored pairs.

cleaning and garbage-collection purposes), and various other

statistics. Not shown are various back pointers that allow additional

scans.

2.3 Normal operations

This section describes what happens to a host-initiated read or write

operation.

To start a request, the host sends a SCSICommand Descriptor Block

(CDB) to the HP .htoRAID array, where it is parsed by the controller.

Up to 32 CDBS may be active at a time. An additional 2048 CDBS

may be held in a FIFO queue waiting to be serviced; above this limit,

requests are queued in the host. (Delays can be caused by controller

resource limits, or if a request’s addresses overlap with any of those

akeady active. ) Long requests are broken up into 64KB segments,

which are handled sequentially: this limits the amount of controller

resources a single 1/0 can consume, at minimal performance cost.

If the request is a Read, a test is made to see if the data being read

are already in the controller’s cache: either in the read cache, or

(completely) in the non-volatile write cache. If the data are

completely in memory, they are transferred to the host via the

speed-matching buffer, and the command then completes, once

various statistics have been updated. Otherwise, space is allocated

in the front-end buffer cache, and one or more requests are

dispatched to the back-end storage classes.

Writes are handled slightly differently, because the non-volatile

front-end write buffer (NVRAM) allows the host to consider the

request complete as soon as a copy of the data has been made in this

memory. First a check is made to see if any cached data need

Virtual device tab~es:

One per Lurt List of RBs

and pointers to the PEGS

in which they reside.

PEG tables: one per

PEG. Holds list of RBS

in PEGand list of

pExes used to store

them.

PEX tables: one per physical disk drive

Figure 5. Structure of the tables that map from addresses in

virtual volumes to PEGS, pExes, and physical disk addresses

(simplified).

invalidating, and then space is allocated in the NVRAM. (This may

have to wait until space is available; in doing so, it will usually

trigger a flush of existing dirty data to a back-end storage class.)

The data are copied into the NVRAM, and the host told that the

request is complete. Depending on the NVRAM cache-flushing

policy, a back-end write maybe initiated at this point. More often,

nothing is done, in the hope that another subsequent write can be

coalesced with this one to increase efficiency.

Flushing data to a back-end storage class simply causes a back-end

write of the data if they are already in the mirrored storage class.

Otherwise, it will usually trigger a promotion of the RB from RAID 5

to mirrored. (There are a few exceptions, which we will discuss

later.)

This promotion is done by calling the migration code, which

allocates space in the mirrored storage class and copies the RB from

RAID 5. If there is no space in the mirrored storage class (because

the background daemons have not had a chance to run, for

example), this may in turn provoke a demotion of some mirrored

data down to RAID 5. There are some tricky details involved in

ensuring that this cannot in turn fail—in brief, the free-space

management policies must anticipate the worst-case sequence of

such events that can arise in practice.

2.3.1 Mirrored reads and writes

Reads and writes to the mirrored storage class are straightforward:

a read call picks one of the copies, and issues a request to the

associated disk. (More on this below.) A write call causes writes to

two disks; it returns only when both copies have bczn updated. Note

that this is a back-end write call that is issued to flush data from the

NVRAM, and is not synchronous with the host write.

2.3.2 RAID 5 reads and writes

Back-end reads to the RAID 5 storage class are as simple as for the

mirrored storage class: in the normal case, a read is issued to the

disk that holds the data. In the recovery case, the data may have to

be reconstructed from the other blocks in the same stripe. (The

usual RAID 5 recovery algorithms are followed in this case, so we

will not discuss the failure case more in this paper.)
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Back-end RAID 5 writes are rather more complicated, however.

RAID 5 storage is laid out as a log: that is, freshly-demoted RBS are

appended to the end of a “current RAID 5 write PEG”, overwriting

virgin storage there. Such writes can be done in one of two ways:

per-RB writes or batched writes. The former are simpler; the latter

more efficient.

● For per-RB writes, as soon as an RB k ready to be written, it is

flushed to disk. Doing so causes a copy of its contents to flow

past the parity-calculation logic, which XORS it with its

previous contents—the parity for this stripe. (To protect

against power failure during this process, the prior contents of

the parity block are first copied into a piece of non-volatile

memory. ) Once the data have been written, the parity can also

be written. With this scheme, each data-RB write causes two

disk writes: one for the data, one for the parity RB. This scheme

has the advantage of simplicity, at the cost of slightly worse

performance.

● For batched writes, the parity is only written once all the data-

RBS in a stripe have been written, or at the end of a batch. If, at

the beginning of a batched write, there is already valid data in

the PEG being written, the prior contents of the parity block are

copied to non-volatile memory along with the index of the

PEG’S highest-numbered RB that contains valid data. (The

parity was calculated by XORing only RBS with indices less

than or equal to this value.) RBS are then written to the data

portion of the stripe until the end of the stripe is reached or the

batch completes; at that point, the parity is written. (The parity

has been computed by then because as each data RB was being

written, the parity calculation logic incorporated it into the

parity.) If the batched write fails to complete for any reason,

the old parity and valid RB index that were stored in non-

volatile memory are restored, returning the system to its pre-

batch state, and the write is retried using the per-RB method.

Batched writes require a bit more coordination than per-R6

writes, but require only one additional parity write for each

full stripe of data that is written. Most RAID 5 writes are

arranged to be batched writes.

In addition to these logging write methods, the method typically

used in non-logging RAID 5 implementations (read-tnod@write) is

also used in some cases. This method, which reads old data and

parity, modifies them, and rewrites them to disk, is used to allow

forward progress in rare cases when no PEG k available for use by

the logging write processes. It is also used when it is better to

update data (or holes; see section 2.4. 1) in place in RAID 5 than to

migrate an RB into mirrored storage, such as in background

migrations when the array is idle.

2.4 Background operations

In addition to the foreground activities described above, the

HP AutoRAID array controller executes many background activities

like garbage collection and layout balancing. These background

algorithms attempt to provide “slack” in the resources needed by

foreground operations so that the foreground never has to trigger a

synchronous version of these background tasks; such synchronous

invocations can dramatically reduce performance.

The background operations are triggered when the array has been

“idle” for a period of time. When an idle period is detected (using

an algorithm based on current and past device activity—the array

does not have to be completely devoid of activity to be declared

‘“idle”), the array performs one set of background operations. Each

subsequent (or continuation of the current) idle period triggers

another set of operations.

After a long period of activity. it may mke a moderate amount of

time to detect that the array is idle. We hope to apply some of the

results from [Golding95] to improve the idle period detection and

prediction accuracy, which will in turn allow us to be more

aggressive about executing the background algorithms.

2.4.1 Compaction: cleaning and hole-plugging

The mirrored storage class acquires holes, empty RB slots, when

RBS are demoted to the RAID 5 storage class. (Updates to mirrored

RBS are written in place, so they generate no holes.) These holes are

added to a free list in the mirrored storage class, and may

subsequently be used to contain promoted or newly-created RBS. If

a new PEG k needed for the RAID 5 storage class, and no free PExes

are available, a mirrored PEG may be chosen for cleaning: all the

data are migrated out to fill holes in other mirrored PEGS, after

which the PEG can be reclaimed and reallocated to the RAID 5

storage class.

Similarly, the RAID 5 storage class acquires holes when RBS are

promoted to the mirrored storage class, usually because the RBS

have been updated. Because the normal RAID 5 write process uses

logging, the holes cannot be reused directly; we call them garbage.

If the RAID 5 PEG containing the holes is almost full, the array

performs hole-plugging garbage collection. RBS are copied from a

PEG with a small number of RBS, and used to fill in the holes of an

almost-full PEG. ‘Ilk minimizes data movement if there is a spread

of fullness across the PEGS, which is often the case.

If the PEG containing the holes is almost empty and there are no

other holes to be plugged, the array does PEG-cleaning: that is, it

appends the remaining valid RBS to the current end of the RAID 5

write log, and reclaims the complete PEG as a unit.

2,4.2 Migration: moving RBs between levels

A background migration policy is run to move RBS from mirrored

storage to RAID 5. This is done primarily to provide enough empty

RB slots in the mirrored storage class to handle a future write burst.

As [Ruemmler93] showed, such bursts are the common manner in

which current UNIX 1 systems emit updates.

RBS are selected for migration by an approximate Least-Recently-

Written algorithm. Migrations are performed in the background

until the number of free RB slots in the mirrored storage class or free

PEGS exceeds a high water mark that is chosen to allow the system

to handle a burst of incoming data. This threshold can be set to

provide better burst-handling at the cost of slightly lower out-of-

burst performance; its value is currently fixed in the AutoRAID

firmware, but it could also be determined dynamically.

2.4.3 Balancing: adjusting data layout across drives

When new drives are added to an array, they contain no data and

therefore do not contribute to the system’s performance. Balancing

is the process of migrating PEXes between disks to equalize the

amount of data stored on each disk, and thereby also the request

load imposed on each disk. (Access histories could be used to

balance the disk load more precisely, but this is not done in the

current prototype.) Balancing is also a background activity,

performed when the system has little else to do.

2.5 Workload logging

The performance delivered by a secondary storage system depends

to a certain degree on the workload it is presented. This is true of

HP AutoRAID, and doubly so of regular RAID arrays. Part of the

uncertainty we faced while doing our performance work was the

lack of a broad range of real. measured system workloads at the

1 UNIX is a registered trademark in the United States and other

countries, licensed exclusively through X/Open Company

Limited.
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disk 1/0 level that had been measured accurately enough. The

number of such traces that have been gathered is relatively small;

the number that are available to research groups other than those

that acquired them is smaller still.

To help remedy this in the future, the HP .htoRAID array

incorporates an 1/0 workload logging tool. When presented with a

specially-formatted disk, the start and stop times of every

externally-issued 1/0 request are recorded on it. Other events can

also be recorded, if desired. The overhead of doing this is very

small: the event logs are first buffered in the controller’s RAM, and

then written out in large blocks. The result is a faithful record of

everything the particular unit was asked to do; it can be analyzed

after the event, and used to drive simulation studies such as the kind

we describe here.

2.6 Management too]

The product team also developed a management tool that can be

used to analyze the performance of an HP AkutoRAID array over a

period of time. It operates off a set of internal statistics kept by the

firmware in the controller, such as cache utilization, 1/0 times, disk

utilizations, and so on. These statistics are relatively cheap to

acquire and store, and yet can provide significant insight into the

operation of the system. By doing an off-line analysis using a log

of the values of these statistics, tbe tool can use a set of rule-based

inferences to determine (for example) that for a particular period of

high load, performance could have been improved by adding cache

memory because the array controller was short of read cache.

3 HP AutoRAID performance results

A combination of prototyping and event-driven simulation was

used in the development of HP AutoRAID. Most of the novel

technology for HP fUstoRAID is in the algorithms and policies used

to manage the storage hierarchy, As a result, hardware and

firmware prototypes were developed concurrently with event-

driven simulations that studied design choices for algorithms,

policies, and parameters to those algorithms.

The primary development team was based at the product division

that designed, built, and tested the prototype hardware and

firmware. They were supported by a group at HP Laboratories that

built a detailed simulator of the hardware and firmware and used it

to model alternative algorithm and policy choices in some depth.

This organization allowed the two teams to incorporate the

technology into products in the least possible time while still fully

investigating alternative design choices.

In this section, we present measured results from a laboratory

prototype of a controller embodying the HP &rtoRAID technology.

In the next, we present a set of comparative performance analyses

of different algorithm and policy choices that were used to help

guide the implementation of the real thing.

3.1 Experimental setup

The baseline HP AutoRAID configuration on which the data we

report were measured is a 12-disk system with 16MB of controller

data cache, connected to an HP 9000/897 system running release

10.0 of the HP-UX operating system [Clegg86]. The HP .htORAID

array was configured with 12 2.OGB 7200RPM Seagate ST32550

(Barracuda) disk drives.

To calibrate the HP .%toRAID results against external systems, we

also include measurements taken (on the same host hardware, on

the same days, with the same host configurations, number of disks,

and type of disks, except as noted below) on two other disk

subsystems:
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Figure 6. OLTP benchmark comparison of HP AUtORAID and

non-RAID drives to a regular RAID array (percent improvement

in transaction rate versus the RAID array result). Our estimate

of the performance of the non-RAID drives (JBOD) using the

same SCSI adapter as the other tests is shown in grey.
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●

3.2

A Data General CLARiiON@ Series 2000 Disk-Array Storage

System Deskside Model 2300 with 64MB front-end cache. (We

use the term “RAID array” to refer to this system in what

follows), This array was chosen because it is the

recommended third-party RAID array solution for one of the

primary customers of the HP AutoRAID product.

A set of directly-connected individual disk drives, referred to

here as “JBOD” (Just a Bunch Of Disks). This allows us to offer

a comparison with a solution that provides no data redundancy

at all. There were two configuration differences between the

JBOD tests and the other tests:

- Because no space is used for parity in JBOD, 11 disks were

used rather than 12 to approximately match the amount of

space available for data in the other configurations.

– The SCSI adapter used was a single-ended card that also

requires more host CPU cycles per LIO than the differential

card used in the HP .!wtoRAID and RAID array tests. We

estimate that this reduced the performance of JBOD by 10’%

on the OLTP test described below, but did not affect the

‘micro-benchmarks because they were not CPU limited.

Performance results

Although we present mostly micro-benchmark results because they

isolate individual performance characteristics, we begin with a

macro-benchmark: running an OLTP database workload made up of

medium-weight transactions against the HP AutoRAID array, the

regular RAID array, and JBOD. The database used in this test was

only 6.7GB, which allowed it to fit entirely in mirrored storage in the

HP AutoRAID; working set sizes larger than available mirrored

space are discussed below. For this benchmark, the RAID array’s 12

disks were spread evenly across its 5 SCSIchannels, the 64MB cache

was enabled, and the default 2KB stripe-unit size was used, Figure 6

shows the result: HP ,hrtoRAID significantly outperforms the RAID

array, and has performance comparable to JBOD.

Data from the micro benchmarks are provided in Figure 7, This

shows the relative performance of the two arrays for random and

sequential reads and writes. (The workloads were provided by a

single-process version of an internal benchmark known as DB; the

working-set size for the random tests was 2GB,) We hypothesize

that the poor showing of the cached RAID array on the random loads

is due to the cost of searching the cache: the cache hit rate should

be close to zero in these tests,

The HP kstoRAID array significantly outperforms the regular RAID

array. The results shown for the RAID array are the best results

obtained after trying a number of different array configurations: this

was always RAID 5, 8KB cache page, cache on or off as noted.
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Figure 7. Micro-benchmark comparisons of HP kItoRAID, a

regular RAID array, and non-RAID drives,

Results for RAID 3 were never better than the results shown. Indeed,

this demonstrated the difficulties involved in properly configuring

a RAID array: many parameters were adjusted (caching on or off,

cache granularity, stripe depth and data layout), and no single

combination performed well across the range of workloads

examined.

With the working set within the size of the mirrored space

performance is very good, as shown by Figure 6 and Figure 7. But

if the working-set constraint is exceeded for long periods of time, it

is possible to drive the HP ,htoRAID array into a mode in which

each update causes the target RB to be promoted up to the mirrored

storage class, and a second one demoted to RAID 5. This behavior is

obviously undesirable if the dominant workload pattern does not

meet the working-set constraint. If the behavior occurs in practice,

however, an HP ,hrtoRAID device can be configured to avoid it by

adding enough disks to keep all the active data in mirrored storage.

If all the data were active, the cost-performance advantages of the

technology would, of course, be reduced. Fortunately, it is fairly

easy to predictor detect the environments that have a large working

set and many updates, and to avoid them if necessary.

4 Simulation studies

The previous section provided insight into the overall, absolute

performance of an HP AutoRAID, as measured on real hardware. In

this section, we will illustrate several design choices that were

made inside the HP ,&rtoRAID implementation. To do so, we used

trace-driven simulation.

Our simulator is built on the Pantheon2 [Golding94, Cao94]

simulation framework, which is a detailed, trace-driven simulation

environment written in C++ using an enhanced version of the

L The simulator used to be ca]~ed TickerTAIP, but we have changed

its name to avoid confusion with the parallel RAID array project of

the same name [Cao94].

AT&T tasking package. Individual simulations are configured from

the set of available C++ simulation objects using scripts written in

the Tcl language [Ousterhout94], and configuration techniques

described in [Golding94]. The disk models used in the simulation

are improved versions of the detailed, calibrated models described

in [RuemmIer94].

The traces used to drive the simulations are from a variety of

systems, including: cello, a timesharing HP 9000 Series 800 HP-UX

system; snake, an HP 9000 Series 700 HP-ux cluster file serve~

OLTP, an HP 9000 Series 800 HP-UX system running a database

benchmark made up of medium-weight transactions (not the

system described in section 3.2); a personal workstation; and a

Netware server. We also used subsets of these traces, such as the

/usr disk from cello, a subset of the database disks from OLTP, and

the OLTP log disk. Some of them are for long time periods (up to

three months), although most of our simulations used two-day

subsets of the traces. Almost all contain detailed timing information

to 1us resolution. Several of them are described in considerable

detail in [RuemmIer93].

We modelled the hardware of HP AutoRAID using Pantheon

components (caches, buses, disks, etc. ), and wrote detailed models

of the basic firmware and of several alternative algorithms or

policies for each of about 40 design experiments. The Pantheon

simulation core comprises about 46K lines of C++ and 8K lines of

Tel, and the HP ,%ttoRAID specific portions of the simulator added

another 16K lines of C++ and 3K lines of Tel.

Because of the complexity of the model and the number of

parameters, algorithms, and policies that we were examining, it was

impossible to explore all combinations of the experimental

variables in a reasonable amount of time. We chose instead to

organize our experiments into baseline runs and runs with one or a

few related changes to the baseline. This allowed us to observe the

performance effects of individual or closely-related changes, and to

perform a wide range of experiments reasonably quickly. (We used

a cluster of 12 workstations to perform the simulations; even so, a

full run of all our experiments takes about a week of elapsed time.)

We performed additional experiments to combine individual

changes that we suspected might strongly interact (either positively

or negatively) and to test the aggregate effect of a set of algorithms

that we were proposing to the product development team.

No hardware implementation of HP AutoRAID was available early

in the simulation study, so we were initially unable to calibrate our

simulator (except for the disk models). Because of the high level of

detail of the simulation, however, we were confident that relative

performance differences predicted by the simulator would be valid

even if absolute performance numbers were not yet calibrated. We

therefore used the relative performance differences we observed in

simulation experiments to suggest improvements to the team

implementing the prototype firmware, and these are what we

present here. In turn, we updated our baseline model to correspond

to the changes they made to their implementation.

Since there are far too many individual results to report here, we

have chosen to describe a few that highlight some of the particular

behaviors of the HP &ttoRAID system. Please note that the

measured data from the real hardware provide information about

absolute performance, while the results in this section compare the

relative performance of different simulated system configurations.

4.1 Relative performance results

4.1.1 Disk speed

Several experiments measured the sensitivity of the design to the

size or performance of various components. For example, the
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Figure 8. Effect of disk spin speed on overall performance.

system uses standard SCSI disks, so we wanted to understand the

effects of buying more expensive, faster disks. The baseline disks

held 2GB and spun at 5400 RPM. We evaluated four variations of

this disk: spinning at 6400 RPM and 7200 RPM, keeping either the

data density (bits per inch) or transfer rate (bits per second)

constant. As expected, increasing the back-end disk performance

generally improves overall performance, as shown in Figure 8. The

results suggest that improving transfer rate is more important than

improving rotational latency.

4.1.2 RB size

The standard i%.rtoRAID system uses 64KB RBS as the basic storage

unit. We looked at the effect of using smaller and larger sizes. For

most of the workloads (see Figure 9) the 64KB size the best of the

ones we tried: obviously the balance between seek and rotational

overheads versus data movement costs is about right. (This is

perhaps not too surprising: the disks we are using have track sizes

of around 64KB, and transfer sizes in this range will tend to get

much of the benefit from better mechanical delay s.)

4.1.3 Data layout

Since the system allows blocks to be remapped, blocks that the host

system has tried to lay out sequentially will often be physically

discontinuous. To see how bad this could get, we compared the

performance of the system when host LUN address spaces are

initially laid out completely linearly on disk (as a best case) and

completely randomly (as a worst case). Figure 10 shows the

difference between the two layouts: there is a modest degradation

in performance in the random case compared to the linear one. This
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suggests that the choice of RB size is large enough to limit the

impact of seek delays for sequential accesses.

4.1.4 Mirrored storage class read selection algorithm

When the front-end read cache misses on an RB that is stored in the

mirrored storage class, the array can choose to read either of the

stored copies. The baseline system selects the copy at random in an

attempt to avoid making one disk a bottleneck. However, there are

several other possibilities:

.

●

✎

✎

strictly alternating between disks (alternate);

attempting to keep the heads on some disks near the outer edge

while keeping others near the inside (inner/outer);

using the disk with the shortest queue (shortest queue);

using the disk that can reach the block first, as determined by

a sh~rtest-positioning-time algorithm [Seltzer90, Jacobson9 i]

(shortest seek).

Further, the policies can be “stacked”, first using the most

aggressive policy but falling back to another to break a tie. In our

experiments, random is always the final fallback policy.

Figure 11 shows the results of our investigations into the

possibilities. By using shortest queue as a simple load-balancing

heuristic, performance is improved by an average of 3.3% over

random for these workloads. Shortest seek performed 3.A~o better

than random, but is much more complex to implement because it

requires detailed knowledge of disk head position and seek timing.

Static algorithms such as alternate and inner/outer sometimes

perform better than random, but sometimes interact unfavorably

with patterns in the workload and decrease system performance.
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We note in passing that these differences do not show up under

micro-benchmarks (of the type reported in Figure 7) because the

disks are typically always driven to saturation, and do not allow

such effects to show through.

4.1.5 Write cache overwrites

We investigated several policy choices for managing the NVRAM

write cache. The baseline system, for instance, did not allow one

write operation to overwrite dirty data already in cache; instead, the

second write would be blocked until the previous dirty data in the

cache had been flushed to disk. As Figure 12 shows, allowing

overwrites had a noticeable impact on most of the workloads. It had

a huge impact on the OLTP-10gworkload, improving its performance

by 432%! We omitted this workload from the graph for scaling

reasons.

4.1.6 Hole-plugging during RB demotion

RBs are typically written to RAID 5 for one of two reasons:

demotion from mirrored storage, or garbage collection. During

normal operation, the system creates holes in RAID 5 by promoting

RBS to the mirrored storage class. In order to keep space

consumption constant, the system later demotes (other) RBS to

RAID 5. In the default configuration, HP ArrtoRAID uses logging

writes to demote RBS to RAID 5 quickly, even if the demotion is done

during idle time; these demotions do not fill the holes left by the

promoted RBS, giving the RAID 5 cleaner additional work. To reduce

the work done by the RAID 5 cleaner, we allowed RBS demoted

during idle periods to be written to RAID 5 using hole-plugging.

This optimization reduced the number of RBS moved by the RAID 5

cleaner by 93?k for the cello-usr workload and by 96% for snake,

and improved mean I/O time for user I/OS by 8.4% and 3.2~0

respectively.

5 Summary

HP AutoRAID works extremely well, providing close to the

performance of a non-redundant disk array across a range of

workloads. At the same time, it provides full data redundancy, and

can tolerate failures of any single array component,

It is very easy to use: one of the authors of this paper was delivered

a system without manuals a day before a demonstration, and had it

running a trial benchmark five minutes after getting it connected to

his (completely unmodified) workstation. The product team has had

several such experiences in demonstrating the system to potential

customers.

The first product based on the technology, the HP XLR1200

Advanced Disk Array, is now available.

5.1 Principles and lessons learned

In the course of doing this work, we (re)leamed several things.

Some of them were obvious in hindsight (that’s what hindsight is

for), but others were slightly less so. Here’s a short list of the second

kind.

Ease of use is surprisingly important. New technology is taken up

only slowly if it is difficult to use—and the performance sensitivity

of traditional RAID arrays means that they suffer from this

drawback. As we have shown, this need not be the case.

Dynamic adaptation to the incoming workload is a big win. It

removes a considerable burden from the user, and provides much

smoother degradation in performance as the workload changes over

time. In fact, it is often a good idea not to ask users to specify their

storage needs: most people don’t know and don’t care. (Even the

highly-trained evahrators of the RAID array had considerable

difficulty in configuring it to get maximum performance.)

The HP AutoRAID technology is not a panacea for all storage

problems: there are workloads that do not suit its algorithms well,

and environments where the variability in response time is

unacceptable. Nonetheless, it is able to adapt to a great many of the

environments that are encountered in real life, and it provides an

outstanding general purpose solution to storage needs where

availability matters.

The isolation barriers that result from standardized interfaces make

it possible to deploy technology such as HP AutoRAID widely with

little effort. The freedom to innovate provided by the SCSI

command set interface is quite remarkable, given its genesis.

Software is the differentiator in the HP AutoRAID technology, not

hardware. This may seem obvious, but remember that most people

think of a disk array as hardware.

There were several instances where using real-life workloads gave

different results than micro-benchmarks. For example, the

differences we report for the mirrored storage class read algorithm

were undetectable in the micro-benchmarks; because these

benchmarks always saturated the physical disk mechanisms, they

left no differences in queue length or seek distances to exploit.

Furthermore, the burstiness that is common in real workloads, but

not in micro-benchmarks, allows HP ,&rtoRAID to do so well in

adapting itself in the background—without periods of low activity,

all rearrangements would have to be done in the foreground, which

would contribute to lower performance and much higher

performance variability.

HP AutoRAID invalidates the common mechanisms for

benchmarks: as it is tested, its performance will tend to improve, so

runs will not be repeatable in the normal sense.

There were several cases early on where the simulation team

attempted a “fancier” resource usage model than the production

system they were trying to model. (The most egregious of these was

an attempt to use the same physical resources for data caching and

back-end data movement.) Although this approach might perhaps

have resulted in a small improvement in performance, it also

resulted in horrendous deadlock problems. We re-learned that the

virtues of simplicity often outweigh the cost of throwing a few

additional hardware resources, such as extra memory, at a problem.

There were a few cases where our early simulations demonstrated

classic convoy phenomena in the algorithms: a write that caused a

migration, which slowed down writes, which bunched up and

demanded a whole slew of migrations, which Fixing these

required careful attention to reserving sufficient free resources. In
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addition, were reminded that it is sub-optimal to revert to a slower-

than-normal write scheme when the number of outstanding writes

exceeds some threshold, because this will simply exacerbate the

problem. We still see proposals for new disk scheduling algorithms

that have not yet understood this point.

Despite our growing range of real workload traces, we are painfully

aware that we do not yet have a fu IIy representative set. Also, traces

are point measurements taken on today’s systems—and so are only

an approximation to the access patterns that will become prevalent

tomorrow. Nonetheless, we believe strongly that measured traces

exhibit properties that no synthetic stream is likely to. Despite their

drawbacks, traces are much better tests of system behavior than

synthetic loads or benchmarks for a controller as complex as

HP AutoRAID.

5.2 Future work

What we have described in this paper is a subset of the complete

HP AutoRAID design. The technology will continue to be enhanced

by adding new functionality to it: given the implementation base

established by the first development, this is an incremental task

rather than a revolutionary one, so we hope for rapid deployment of

several of these new features. In addition to the normal product-

development performance tuning that takes place, two particular

areas are likely to be idle-period detection and prediction, and

front-end cache-management algorithms.

In addition, we have areas where we have plans to improve our

processes. For example, we are pursuing better techniques for

synthesizing traces with much greater fidelity to real life than is the

current norm, and looking into the issues involved in replaying the

current ones we have in a manner that allows us to experiment

better with workload variations.

Finally, we are also considering how best to extend some of the

HP .htoRAID ideas into tertiary storage systems (perhaps in the

style of [Koh193]).
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