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This aggressive, four-

way, superscalar

microprocessor

combines speculative

execution with on-the-

fly instruction

reordering. 

The PA-8000 RISC CPU is the first of a
new generation of Hewlett-Packard
microprocessors. Designed for high-

end systems, it is among the world’s most
powerful and fastest microprocessors. It fea-
tures an aggressive, four-way, superscalar
implementation, combining speculative exe-
cution with on-the-fly instruction reordering.
The heart of the machine, the instruction
reorder buffer, provides out-of-order execu-
tion capability.

Our primary design objective for the PA-
8000 was to attain industry-leading perfor-
mance in a broad range of applications. In
addition, we wanted to provide full support
for 64-bit applications. To make the PA-8000
truly useful, we needed to ensure that the
processor would not only achieve high bench-
mark performance but would sustain such
performance in large, real-world applications.
To achieve this goal, we designed large, exter-
nal primary caches with the ability to hide
memory latency in hardware. We also imple-
mented dynamic instruction reordering in
hardware to maximize instruction-level par-
allelism available to the execution units.

The PA-8000 connects to a high-bandwidth
Runway system bus, a 768-Mbyte/s split-
transaction bus that allows each processor to
generate multiple outstanding memory
requests. The processor also provides glue-
less support for up to four-way multipro-
cessing via the Runway bus. The PA-8000
implements the new PA (Precision Architec-
ture) 2.0, a binary-compatible extension of
the previous PA-RISC architecture. All previ-
ous code executes on the PA-8000 without
recompilation or translation.

Architecture enhancements
PA 2.0 incorporates a number of advanced

microarchitectural enhancements, most sup-
porting 64-bit computing. We widened the
integer registers and functional units, includ-
ing the shift/merge unit, to 64 bits. PA 2.0
supports flat virtual addressing up to 64 bits,
as well as physical addresses greater than 32

bits (40 bits on the PA-8000). A new mode
bit governs address formation, creating
increased flexibility. In 32-bit addressing
mode, the processor can take advantage of
64-bit computing instructions for faster
throughput. In 64-bit addressing mode, 32-
bit instructions and conditions are available
for backward compatibility.

In addition, the following extensions help
optimize performance for virtual memory
and cache management, branching, and
floating-point operations:

• fast TLB (translation look-aside buffer)
insertion instructions,

• load and store instructions with 16-bit
displacement,

• memory prefetch instructions,
• support for variable-size pages,
• halfword instructions for multimedia

support,
• branches with 22-bit displacements,
• branches with short pointers,
• branch prediction hinting,
• floating-point multiply-and-accumulate

instructions, and
• multiple floating-point compare-result

bits.

Key hardware features
Since the PA-8000’s completely redesigned

core uses no circuitry from previous-
generation processors, we could design the
new processor with any microarchitectural
features necessary to attain high performance.
Figure 1 (next page) shows a functional-block
diagram of the PA-8000’s basic control and
data paths.

The chip’s most notable feature is the 56-
entry instruction reorder buffer, to our
knowledge the industry’s largest, which
serves as the central control unit. It supports
full register renaming for all instructions in
the buffer and tracks instruction inter-
dependencies to allow dataflow execution
through the entire 56-instruction window.
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The PA-8000 executes at a peak rate of four instructions
per cycle, enabled by a large complement of computational
units, shown at the left side of Figure 1. For integer opera-
tion, it includes two 64-bit integer ALUs and two 64-bit
shift/merge units. All integer functional units have a single-
cycle latency. For floating-point applications, the chip
includes dual floating-point multiply-and-accumulate (FMAC)
units and dual divide/square root units. We optimized the
FMAC units for performing the common operation A times
B plus C. By fusing an add to a multiply, each FMAC can
execute two floating-point operations in just three cycles. In
addition to providing low latency for floating-point opera-
tions, the FMAC units are fully pipelined so that the PA-8000’s
peak throughput is four floating-point operations per cycle.
The two divide/square root units are not pipelined, but other
floating-point operations can execute on the FMAC units
while the divide/square root units are busy. A single-
precision divide or square root operation requires 17 cycles;
a double-precision operation requires 31 cycles.

Such a large array of computational units would be point-
less if they could not obtain enough data to operate on. To
that end, the PA-8000 incorporates two complete load/store
pipes, including two address adders, a 96-entry dual-ported
TLB, and a dual-ported cache. The right side of Figure 1
shows the dual load/store units and the memory system
interface. The symmetry of dual functional units throughout
the processor allows a number of simplifications in data
paths, control logic, and signal routing. In effect, this duali-
ty provides separate even and odd machines.

As pipelines get deeper and a processor’s parallelism
increases, instruction fetch bandwidth and branch predic-
tion become increasingly important. To increase fetch band-
width and mitigate the effect of pipeline stalls for
predicted-taken branches, the PA-8000 incorporates a 32-
entry branch target address cache. The BTAC is a fully asso-
ciative structure that associates a branch instruction’s address
with its target’s address. Whenever the processor encoun-
ters a predicted-taken branch in the instruction stream, it cre-
ates a BTAC entry for that branch. The next time the fetch
unit fetches from the branch’s address, the BTAC signals a hit
and supplies the branch target’s address. The fetch unit can
then immediately fetch the branch’s target without incurring
a penalty, resulting in a zero-state taken-branch penalty for
branches that hit in the BTAC. To improve the hit rate, the
BTAC holds only predicted-taken branches. If a predicted-
untaken branch hits in the BTAC, the entry is deleted.

To reduce the number of mispredicted branches, the PA-
8000 implements two modes of branch prediction: dynamic
and static. Each TLB entry contains a bit to indicate which
mode the branch prediction hardware should use; therefore,
the software can select the mode on a page-by-page basis. In
dynamic mode, the instruction fetch unit consults a 256-entry
branch history table, which stores the results of each branch’s
last three iterations (either taken or untaken). The instruction
fetch unit predicts that a given branch’s outcome will be the
same as the majority of the last three outcomes. In static pre-
diction mode, the processor predicts that most conditional
forward branches will be untaken and that most conditional
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backward branches will be taken. For the common compare-
and-branch instruction, the PA 2.0 architecture defines a
branch predict bit that indicates whether the processor should
follow this normal prediction convention or the opposite con-
vention. Compilers using either heuristic methods or profile-
based optimization can use the static prediction mode to
effectively communicate branch probabilities to the hardware.

Cache design
The PA-8000 uses separate, large, single-level, off-chip,

direct-mapped caches for instructions and data. It supports
up to 4 Mbytes for instructions and 4 Mbytes for data, using
industry-standard synchronous SRAMs. We provided two
complete copies of the data cache tags so that the processor
can accommodate two independent accesses, which need
not be to the same cache line.

Why did we design the processor without on-chip caches?
The main reason is performance. Competing designs incor-
porate small on-chip caches to enable higher clock fre-
quencies. Small on-chip caches support benchmark
performance but fade in large applications, so we decided
to make better use of the die area. The sophisticated instruc-
tion reorder buffer allowed us to hide the effects of a
pipelined two-state cache latency. In fact, our simulations
demonstrated only a 5% performance improvement if the
cache was on chip and had a single-cycle latency. A flat
cache hierarchy also eliminates the design complexity asso-
ciated with a two-level cache.

Physical chip characteristics
We fabricated the PA-8000 in HP’s 0.5-micron, 3.3-V CMOS

process. Although the drawn geometries are not very aggres-
sive, we still obtain a respectable 0.28-micron effective tran-
sistor-channel length. In addition, we invested heavily in the
design process to ensure that both layout and circuits would
scale easily into more advanced technologies with smaller
geometries. The chip contains five metal layers: two for tight

pitch routing and local interconnections, two for low-RC
(resistance-capacitance) global routing, and a final layer for
clock and power supply routing.

The processor design includes a three-level clock network,
organized as a modified H-tree. The clock syncs serve as pri-
mary inputs, received by a central buffer and driven to 12
secondary clock buffers located at strategic spots around the
chip. These buffers then drive the clock to the major circuit
areas, where it is received by clock “gaters” (third-level clock
buffers) featuring high gain and a very short in-to-out delay.
The approximately 7,000 gaters can generate many clock
“flavors”: two-phase overlapping or nonoverlapping, invert-
ing or noninverting, qualified or nonqualified. The clock
qualification is useful for synchronous register sets and
dumps, as well as for powering down sections of logic not
in use. To minimize clock skew and improve edge rates, we
simulated and tuned the clock network extensively. The sim-
ulated final clock skew for this design was no greater than
170 ps between any points on the die.

Under nominal operating conditions of 20°C room tem-
perature and 3.3-V power supplies, the chip can run at up
to 250 MHz. The die measures 17.68 mm × 19.1 mm and con-
tains 3.8 million transistors. Approximately 75% of the chip
is either full- or semicustom. Figure 2 shows a photograph
of the die with all major areas labeled. The instruction reorder
buffer in the center of the chip provides convenient access
to all functional units. The left side of the chip contains the
integer data path; the right side, the floating-point data path.

Flip-chip packaging technology enables the chip to sup-
port a large number of I/Os—704 in all. In addition to the I/O
signals, 1,200 power and ground bumps connect to the
1,085-pin package via a land grid array. There are fewer pins
than total I/Os and bumps because each power and ground
pin can connect to multiple bumps. Figure 3 shows the pack-
aged part. Solder bump interconnections attach the chip to
the ceramic carrier, which is mounted on a conventional PC
board. This packaging has several advantages. Obviously,
the high pin count enables wide off-chip caches. The abili-
ty to place I/Os anywhere on the die improves area utiliza-
tion and reduces on-chip RC delays. Finally, the low
inductance of the signal and power supply paths reduces
noise and propagation delays.
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Performance
At 180 MHz with 1-Mbyte instruction and data caches, the

PA-8000 achieves benchmark performance of over 11.8
SPECint95 and over 20.2 SPECfp95, and thus was the world’s
fastest processor when system shipments began in January
1996. A four-way PA-8000 multiprocessor system available
in June 1997 has produced 14,739.03 tpmC (the Transaction
Processing Performance Council’s benchmark C) at a price
of $132.25 per tpmC.

Several distinguishing features enable the PA-8000 to
achieve this level of performance:

• First, the processor includes a large number of func-
tional units—10. However, sustaining greater than two-
way superscalar operation demands advanced
instruction-scheduling methods to supply a steady
stream of independent tasks to the functional units. To
achieve this, we incorporated an aggressive out-of-order
execution capability. The instruction reorder buffer pro-
vides a large window of available instructions combined
with a robust dependency-tracking system.

• Next, explicit compiler options that generate hints to
the processor help performance a great deal. The
processor uses these special instructions to prefetch data
and to communicate statically predicted branch behav-
ior to the branch history table.

• Finally, the system bus interface can track up to 10
pending data cache misses plus an instruction cache
miss and an instruction cache prefetch. Servicing mul-
tiple misses in parallel reduces the average performance
penalty caused by each miss.

Instruction reorder buffer
Because of restrictions on compiler scheduling, a key deci-

sion in our design was to have the PA-8000 perform its own
instruction scheduling. It was for this task that we equipped it
with the 56-entry instruction reorder buffer. The IRB consists of
the ALU buffer, which can store up to 28 computation instruc-

tions, and the memory buffer, which can hold up to 28 load
and store instructions. These buffers track the interdependen-
cies of the instructions they contain and allow instructions any-
where in the window to execute as soon as they are ready.

As a special feature, the IRB tracks branch prediction out-
comes, and when it identifies a misprediction, flash-invalidates
all incorrectly fetched instructions. Fetching then resumes down
the correct path without further wasted cycles.

The IRB serves as the central control logic for the entire
chip, yet it consists of only 850,000 transistors and consumes
less than 20% of the die area. Because today’s compilers lack
the visibility of runtime information useful for optimal sched-
uling, the IRB is of paramount importance to microprocessor
performance. The graph in Figure 4 correlates microproces-
sor efficiency, based on SPECint per MHz, with instruction
reorder window depth. As should come as no surprise, the
larger the buffer, the better the performance. The PA-8000’s
IRB is 40% larger than that of the nearest competitor.

Instruction reordering also breaks through another bot-
tleneck: memory latency. Although the dual load/store pipes
keep the computation units busy as long as the data is cache-
resident, a data cache miss might still cause a disruption. But
with instruction reordering, execution can continue for many
cycles on instructions that do not depend on the data cache
miss. Because the IRB can hold so many instructions, the PA-
8000 can execute instructions well past the missed load or
store. This ability to accomplish useful work during a data
cache miss significantly reduces its impact on performance.

The large window of available instructions also allows the
overlap of multiple data cache misses. If the processor
detects a second data cache miss while an earlier miss is still
being serviced by main memory, it issues the second miss to
the system bus as well.

The life of an instruction
Figure 5 diagrams the PA-8000’s IRB. Instructions enter

through the sort block, which, on the basis of instruction
type, routes them to the appropriate IRB section, where they
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remain until they retire. Functional units are connected to
the IRB sections appropriate to the types of instructions they
execute. After instructions execute, the retire block removes
them from the system.

Instruction insertion. To maximize the IRB’s chances
of finding four instructions that are all ready to execute on
a given cycle, it always must be as full as possible. Therefore,
we built a high-performance fetch unit for the PA-8000. This
unit fetches, in program order, up to four instructions per
cycle from the single-level, off-chip instruction cache.

The fetch unit performs limited predecoding and inserts
the instructions round-robin into the appropriate IRB sec-
tion. Each IRB section must be able to handle four incoming
instructions per cycle, since there are no restrictions on the
mix of instructions inserted.

In two special cases, a single instruction is not associated
with a single IRB entry: 1) Although the processor executes
branches from the ALU buffer, it also stores them in the mem-
ory buffer as placeholders to indicate which entries to inval-
idate after a mispredicted branch. 2) Instructions with both
a computation and a memory component and two targets,
such as the load-word-and-modify (LDWM) instruction, split
into two pieces and occupy an entry in both IRB sections.

Instruction launch. The IRB allows instructions to exe-
cute out of order. During every cycle, both IRB buffers allow
the oldest even and the oldest odd instruction for which all
operands are available to execute on the functional units.
Thus, up to four instructions can execute at once: two com-
putation and two memory reference instructions. Once an
instruction has executed, a temporary rename register holds
its result and makes it available to subsequent instructions.

Instruction retire. Instructions retire from the IRB in pro-
gram order once they have executed and any exceptions
have been detected. This gives software a precise exception
model. As instructions retire, the contents of the rename reg-
isters transfer to the general registers, stores enter a queue
to be written to cache, and instruction results commit to the
architecturally specified state. The retire unit can handle up
to two ALU or floating-point instructions and up to two mem-
ory instructions each cycle.

Dependency tracking
The IRB solves many scheduling problems usually encoun-

tered in a superscalar machine. It matches instructions to
available functional units by scanning a sufficiently large num-
ber of instructions at once to find those that are ready to exe-
cute. Tracking dependencies among these instructions and
determining which may execute are complications inherent
to an out-of-order machine. The PA-8000 manages over a
dozen types of dependencies for as many as 56 instructions,
identifying all possible instruction dependencies at insertion.

Operand dependencies. Operand dependencies occur
when an instruction’s source data is the result of an earlier
instruction. Because of their high frequency, the IRB tracks
operand dependencies using a high-performance broadcast
mechanism for maximum performance. Upon insertion, a
two-pass mechanism determines the most recent writers for
each incoming instruction’s source operands. Each instruc-
tion then records whether it should obtain a given operand

from a specific rename register or from the general registers
(no dependency). When an instruction receives permission
to execute (launch), it broadcasts its rename register number
to all other IRB entries. If a later instruction has a source
operand tag that matches one driven on the launch bus, it
can clear that dependency. All of this takes place in a single
cycle, enabling a dependent instruction to execute in the
very next cycle after a producer instruction executes.

The IRB sends the functional units appropriate information
about the launching instructions. This ensures that source
operands are routed from the correct location (bypassed
from the functional units or delivered by the rename or gen-
eral registers) and that results are stored in the appropriate
rename register. By the time an instruction launches, the
result of a producing instruction may have moved from the
rename registers to the general registers. The IRB, however,
does not track this information; the execution units detect it
on the fly through a color bit comparison of the rename reg-
ister. (A color bit is a special bit for detecting a match
between valid and invalid data.) Every time an instruction
retires, the color bit of the associated rename register flips.

Carry borrow dependencies. The PA-8000 uses a dif-
ferent tracking method for CB dependencies, embodied in
the circuitry shown in Figure 6. An instruction that uses the
CB bits of the processor status word has a CB dependency.
Most arithmetic operations set these bits. Like operand
dependencies, all CB dependencies are identified at insertion
time. The difference is that although an instruction knows it
has a dependency, it does not know which instruction it
depends on. Rather, it receives information that some pre-
vious instruction affects the portion of the processor status
word that concerns it. The last valid IRB entry maintains the
information, for use by incoming instructions, that the IRB
still contains a valid CB-setting instruction. During instruction
insertion, this information passes through up to four con-
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secutive IRB entries, the maximum number of instructions
that can enter during one cycle. Although this method is con-
ceptually simple, it requires complex control logic for many
anomalous cases—for example, the last valid IRB entry’s
retiring just as new instructions enter.

Once an instruction that sets the CB bits receives permis-
sion to execute, the launching IRB entry sends a signal to
the entries below it that its data is now available. The launch-
ing instruction’s slot number also passes along on buses that
indicate the most recent writer of the CB bits. While an
instruction that sets the CB bits (most arithmetic instructions)
is waiting to execute, it blocks these buses. An instruction
that does not change these bits simply passes on the infor-
mation that it received from the entry above it. This infor-
mation usually propagates at the rate of two IRB entries per
cycle. Once a dependent instruction receives an indication
that the last instruction that writes the bits it uses has exe-
cuted, it can clear its dependency. When it gets permission
to launch, it drives out the information it has stored about the
most recent writer of the CB bits. Then, either a rename reg-
ister or the processor status word dumps the correct infor-
mation to the execution unit.

In contrast to the full broadcast mechanism for clearing
operand dependencies, this propagation system sacrifices
performance to save area in certain cases. CB dependent
instructions occur comparatively infrequently, and the
dependency-clearing mechanism requires only about one-
third the area of the broadcast method. Most important, no
performance implication results from the common case in
which an instruction that uses CB information follows imme-
diately an instruction that sets it.

Address dependencies. The address reorder buffer sched-
ules accesses to the dual-ported data cache much as the IRB
schedules instructions for the functional units. After one of the
address adders calculates an address, it enters a corresponding
slot in the ARB, which contains one slot for each slot in the
memory buffer. The ARB then launches the oldest even double-
word address and the oldest odd double-word address to the
data cache each cycle. The ARB unit also contains comparators
that detect store-to-load dependencies. They also detect that a
load or store has missed a cache line for which a request has
already been sent to main memory, thus avoiding a second
request.

THE PA-8000 RISC CPU incorporates aggressive
out-of-order execution, intelligent performance and area
trade-offs, and balanced hardware utilization. Dual load/store
pipes ensure an adequate supply of data to the multiple com-
putation units. Instruction reordering ensures that data
dependencies do not become a bottleneck. The high-
performance system bus supports multiple cache misses,
thus reducing the effects of data cache miss penalties. The
branch target address cache and branch history table counter-
act branch penalties. These features add up to an innovative
microprocessor suitable for both technical and commercial
applications. The chip is currently in production, and sys-
tems have been shipping since January 1996.

Hewlett-Packard is developing two follow-on chips, the

PA-8200 and the PA-8500. The PA-8200 will have a higher
frequency, a 120-entry TLB, a 1,024-entry branch prediction
cache, and instruction and data caches of 2 Mbytes each. We
expect technical and commercial applications to experience
a 35% to 75% performance improvement, and projected rat-
ings are 15.5 SPECint95 and 25 SPECfp95. We are also devel-
oping a number of memory system enhancements. Systems
should be shipping by June 1997. Plans for the PA-8500
processor include an improved microarchitecture, a much
higher clock speed, and a 0.25-micron process.
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