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w 1. Introduction 

This paper is a study of a class of uniform algebras and of the associated Hardy spaces 

of generalized analytic functions. I t  is a natural continuation of a number of similar studies 

which have appeared in recent years; see Bochner [7], Helson and Lowdenslager [15], 

Hoffman [17], Hoffman and Rossi [18], KSnig [19], Lumer [20], [21], Srinivasan [29], 

Srinivasan and Wang [30], and Wermer [35]. All of these previous studies are based on 

premises that  force the generalized analytic functions to behave, roughly speaking, like 

analytic functions in a simply connected domain. In  the algebras to be investigated here, 

the condition of simple connectivity is replaced by one of finite connectivity. 

We begin by stating our basic hypotheses. The notations about to be introduced will 

be retained throughout. Let  X be a compact Hausdorff space and A a uniform algebra 

on X, that  is, a uniformly closed subalgebra of C(X) that  contains the constants and 

separates points of X. We shall employ the current notations and terminology pertaining 

to uniform algebras, for which see [5]. In particular, we denote the space of real parts of 

functions in A by Re A, the set of invertible elements of A by A - i ,  and the set of logarithms 

of moduli of functions in A -1 by log IA-11 . 

Le~ ~ be a multiplicative linear functional on A. Our hypotheses pertain only to the 

functional ~. We denote by ~ ( ~ )  the set of representing measures for ~ and by  S the 

real linear span of the set of all differences between pairs of measures in ~(~0). Our basic 

hypotheses are these: 

(I) No non-zero measure in S annihilates log ]A-11; 

(II) S has finite dimension (T. 

(~) Supported by  Nat ional  Science Foundat ion  Postdoctoral  Fellowships during the  academic 

years 1963-64 and  1964-65. 

(3) Supported b y  a Nat ional  Science Foundat ion  Postdoctoral  Fellowship during the  academic 

year  1963-64, and  by  Nat ional  Science Foundat ion Gran t  GP-3980 during the  summer of 1965. 
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Conditions (I) and  (II)  are local versions of, and  are implied by,  the  following global  

conditions on A: 

(I ')  The real l inear span of log [A-I [  is uni formly  dense in Cn(X) (the space of 

real continuous functions on X); 

( I I ' )  The  uni form closure of Re A has finite codimension in Cu(X). 

A uniform algebra sat isfying (I ')  and  ( I I ' )  is called a hypo-Dirichlet algebra; such algebras  

were first  s tudied b y  Wermer  [37]. Before any th ing  else we wan t  to ment ion  two concrete 

examples.  

Example 1. Let  R be a finite open R icmann  surface, t h a t  is, a domain  on a R i emann  

surface whose closure is compac t  and  whose boundary  X is the  union of f ini tely m a n y  

non-intersect ing analyt ic  J o r d a n  curves, wi th  R lying on one side of X.  Le t  A be the  

algebra of all funct ions on X tha t  are restrictions of functions continuous on R U X and 

analyt ic  in R. Then,  as W e r m e r  [37] has proved,  A is a hypo-Dir iehle t  algebra. 

Example 2. Le t  X be the  bounda ry  of a compac  t subset  Y of the  plane whose comple- 

m e n t  has only finitely m a n y  components .  Le t  A be the  algebra of all funct ions on X 

t h a t  can be uni formly  a p p r o x i m a t e d  b y  ra t ional  funct ions with poles off Y. Then,  b y  a 

theorem of Walsh  [34], A is a hypo-Dir ich le t  algebra.  

Before describing the contents  of the  paper  irL greater  detail,  i t  will be convenient  to 

introduce a few nota t ions  and  to point  out  a few immedia te  consequences of our hypo-  

theses. F r o m  (I) and  (II) i t  follows tha t  there  are a functions Z 1 . . . .  , Zr in A -1 and  a meas- 

ures h . . . . .  v~ in S such t h a t  

f l o g  ]Z~] dvk = 6j~. 

We assume tha t  such funct ions and  measures  have  been chosen once and  for all. We 

denote  the  a- tuple  of measures  (h  . . . .  , v~) by  ~. For  u a funct ion on X we let flu dv s tand  

for  th~ a-tuPle 

provided  all the  re levant  integrals exist. The  set  of all ~-tuples .[ log ] h I dv with  h in A -~ 

will be  denoted  b y  12; it  is obviously a subgroup of E ~ (a dimensional  Eucl idean space). 

B y  a theorem of Arens and  Singer [3, Theorem 5.2] there  is a measure  m in 7~'l(q)) 

such t ha t  

log =flog 
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for all h in A -1, and our assumption (I) implies that  there is only one such measure. The 

measure m is called the Arens-Singer measure for T. A further result of Arens and Singer 

[3, Corollary 6.41] states that for any / in A one has the inequality 

log I (1) I <f log III din, 

which is called Jensen's inequality. 

We now describe briefly the main contents of the paper. In  w 2 we prove a useful 

lemma, special cases of which have appeared in the literature several times before. The 

lemma is used in w 3 to prove that if # is any annihilating measure of A, then the absolutely 

continuous and singular components of # with respect to m are also annihilating measures 

of A. This is a version of the classical theorem of F. and M. Riesz on analytic measures; 

the idea of the proof stems from F. Forelli. An immediate consequence is that  the measures 

in S are absolutely continuous with respect to m. In  w 4 the spaces H p (1 ~<p~<oo) are 

introduced as the closures of A in LP(m) (weak-star closure for p = oo), and the lemma of 

w 2 is employed to obtain information about them. w167 5 and 6 are devoted to analogues 

of two classical theorems of SzegS, the theorem on mean-square approximation by poly- 

nomials [16, p. 48] and the theorem on the moduli of H ~ functions on the unit circle [16, 

p. 53]. w 7 contains the analogue of a theorem of Beurling on generators of H p on the unit 

circle [16, p. 101]. In  w 8 we prove the crucial fact that  the group s is discrete. In  w 9 we 

show that, not only are the measures in S absolutely continuous with respect to m (as is 

proved in w 3), they are in fact boundedly absolutely continuous with respect to m. This 

result seems to lie fairly deep, and it occupies an important place in the theory. (For the 

algebras of Example 1 above, it is fairly easy to prove directly that the measures in S 

are bounded, but we know of no such direct proof for the algebras of Example 2.) In  

w 10 we obtain more precise forms of SzegS's two theorems. w 11 contains information on 

the annihilators of A in the spaces LP(m). In  w 12 we show that  when a =~0 the Gleason 

part containing ~ is non-trivial. w 13 pertains to invariant subspaces. We have not been 

able to prove here as strong a result as we suspect is true. However, the information we 

do obtain enables us in w 14 to characterize completely the invariant subspaces of the 

algebras of Example 1. This has already been accomplished independently by Voichick 

[32], [33], Hasumi [13], and Forelli [private communication]. The methods of these three, 

although differing technically from one another, all depend on the same device, namely 

the transplantation of the situation to the unit disk by means of a uniformizer followed 

by the application of known theorems from the classical H ~ theory. The quite different 

and more direct treatment we give may therefore be of interest. The concluding w 15 

contains some remarks on the algebras of Example 2. 
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In  w 13 we offer a conjecture about  invariant subspaces. To prove or disprove this 

conjecture is, we feel, the most important  open problem in ~he theory. A proof would 

yield improvements in the results of Wermer [37] and O'Neill [24] on the embedding of 

analytic structures in the maximal  ideal space of a hypo-Diriehlet algebra. 

We should like to record explicitly our indebtedness to the papers of Helson and 

Lowdenslager [15], Hoffman [17], and Lumer [20]. I t  is in these papers that  the pat tern 

of the present s tudy is largely laid out. 

A few notational conventions: For / in A we shall wr i te / (m)  in place of S/dm. For 

= (~1 ..... ~ )  a a-tuple of real numbers, we define 

i z (m)  i = i z , (m) i  IZ (m) I 

~-log [ZI = log (IZI=), 

�9 log IZ(m) l = log 

For ~ = (~1 .. . .  ,7~) a a-tuple of integers, we let 

Z y = Z~' ... Z~.  

To conclude this introduction we state the following known lemma, which will be 

used several times below. For its proof, see [4, Satz 3]. 

LEM~A 1.1. Let the real continuous/unction u on X be annihilated by S. Then 

~eg(m) = [ u d m =  inf ~eg(m). s u p  
o~A , J  gEA 

w 2. A preliminary lemma 

The lemma we prove in this section, which will play a crucial role, combines ideas 

of Forelli [9], t toffman and Warmer  [36, Lemma 5], and O'Neill [24, Lemma A]. Forelli 

was interested in the F. and IV[. Riesz theorem for certain Dirichlet algebras, Hoffman 

and Warmer in the Diriehlet algebra case of Theorem 4.1 below, and O'Neill in a theorem 

about  Arens-Singer measures for hypo-Dirichlet algebras. By  extracting the basic idea 

from their proofs, we arrive at  

L]~MMA 2.1. Let (v~}~ be a sequence o/non-negative continuous/unctions on X such 

that ~vndm-+O. Then there exists a 8ubsequence {u~} o/ {v~} and a sequence {/n} in A -1 

such that I/n I ~e-U" and/~-~1 almost everywhere with respect to m. 
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Pro@ Let 9 denote the lattice of points in E ~ wi th  integral coordinates. For fi in 

E ~ we let ]fll stand for the maximum of the moduli of the components of ft. Choose {Un} 

such that S~ndm <n-~-~, and such that the sequence of ~-tuples {Su.~} r modulo 

Y to a point ~, with ]~-[u , ,dv  I <n-~-~(mod y). By Dirichlet's theorem on Diophantine 

approximation [12, p. 170], there is a sequence of positive integers {q~}, wi th  q~,4n ~, 

such that  each component of q~ e lies within 1In of an integer. Let Wn = qnu,~ and fl~ = Sw,,d~,. 

Then Sw~dm--,0, and there is a sequence {7~} in ~ such that  Ifl~-Y~t --0. Let en =fin-Y~ 

and c = ~ [  {{loglZ~l II~" By Lemma 1.1, there are functions gn in A such that  

~eg= >! w.-#. . logIZ [ + [e=lc, 

a/n+ I .lc. Reg.(m) <~ 

Define/n ~ e-g~Z-V~- Then 

loglA I = - R e  g,,--7'n'lOglZ I < - w .  +e . . log lZ  l -]e~lc  < -w= < - u . ,  

and so ]/~ t < e-~" Also 

f log [/~ I clm = - Re g~ (m) -},~. loglZ(m) J 

>~ - 1/n-- f w n d m  + en" log IZ(m) ] - l en I c 

-a/n- fw.dm-21 .lc. 

I t  renews that I log lL I dm ~0 .  Because m is an Arens-Singer measure this implies that 

t l / ~ d m  ]-+1. Therefore, multiplying each/n by the appropriate constant of unit modulus, 

we may assume that  S / n d m ~ l .  Because also I/hi ~<1, the latter implies that  /n-+l in 

measure modulo m (or, by an easy computation, that  Jn-~l in LZ(m)). Hence a suitable 

subsequence of {/~} will converge to 1 almost everywhere with respect to m. The proof 

is complete. 

w 3. The F. and M. Riesz theorem 

We now apply the method of Forelli [9] to obtain 

T ~ o ~ M  3.1. Let # be an annihilating measure o / A  with absolutely continuous and 

singular components #a and #8 (with respect to m). Then la~ and tt~ annihilate A. 
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Pro@ Let  e be a positive real number,  and choose a compact  m-null set K such t h a t  

I/xs] ( X - K ) < e .  Let  {un} be a sequence of non-negat ive continuous functions on X such 

tha t  u=-~oo uniformly on K and  ~ u~dm-+O. Because of L e m m a  2.1, we m a y  b y  passing 

to a subsequence assume tha t  there are funct ions /=  in A -1 such tha t  ]/~] ~<e -=" a n d / n - + l  

almost  everywhere modulo m. We then h a v e / = - +  0 uniformly on K. I f  g is any  function 

in A, then  

o=f/~176 /.gd s+fj gd#  
For  n-+ oo the first te rm on the  r ight  converges to ~ g d#a and the last te rm converges to 0. 

As the middle term never exceeds s Jig [[ o0 in absolute value, it follows tha t  ] ]  g d~ta [ ~< e ]] g H ~" 

As e is a rb i t ra ry  we have j" gd/x~=O for all g in A, and the proof is complete. 

The following two corollaries are immediate.  

C O r O L L A r Y  1. The measures in S are absolutely continuous with respect to m. 

COROLLARY 2. I /  A is hypo-Dirichlet, then the evaluation ]unctionals on A at points 

o/ X have unique representing measures. 

We know of no essentially simpler way  of proving Corollary 2. 

w 4. The spaces H v 

Hencefor th  such phrases as "almost  everywhere"  will refer to the measure m. We 

denote the space /2 (m)  simply b y / 2 .  For  1 ~<p < ~ let H ~ be the closure of A i n / 2 ,  and  

let H ~ be the weak-star  closure of A in L% The space H ~~ is an algebra, i.e. it is closed 

under  multiplication. For  / in H p we shall wr i t e / (m)  in place of ~/din.  

The first two theorems in this section establish the equalities H q f) /2  = H ~, 1 ~< q --<p ~< ~ .  

The last theorem is a result about  exponentiat ion which will be useful later. For  the case 

of Diriehlet algebras, the following theorem is due to Hof fman  and Wermer  [36, Lemma 5]. 

Being in possession of Lemma 2.1, we are able to use their proof. 

THEOREM 4.1. I /  h is a bounded/unction in H 1, then there is a sequence {h~} in A 

that llhnll  < Ilhll  and h  Imost  v rywh r . 

Proo/. Assume without  loss of generality that  Ilhll  = 1. Let {g.} be a sequence in A 

converging to h in L 1 and almost everywhere. Define E(n)= {x:  Ig.(x) l > 1}. Then 

lim fE (]g"l-1) dm=O' 
n..--> ~ ( n )  
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lim f log ]gn] dm=O. 
n--+~ d E(n) 
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Hence, by  Lemma 2.1, we can by  passing to a subsequence assume tha t  there are func- 

tions /= in A such that  logl/~l ~< - m a x  (logig~], 0) and /~-~1 almost everywhere. The 

functions h= =/ngn then form a sequence with the required properties. 

COROLLARY. H ~ = L  ~ n H ~, 1 <~p< ~ .  

T H E O R ~  4.2. H V = H  ~ NL v, 1 < p <  oo. 

Proo/. Let h be a function in H 1 n L v (1 < p  < ~ ) .  Take a sequence {gn} in A converging 

to h in L 1 and almost everywhere. Take also a sequence {us} in C(X) converging to h in 

L v and almost everywhere. Le t  E(n) = {x: ] g~(x) - u~(x)] >~ 1}. Then because ~ I g= - u ~  I dm 

O, we have 

lira j l o g i g = - u s i d m = O .  
n-->~ d E(n)  

Hence, by  Lemma 2.1, we may  by  passing to a subsequence suppose tha t  there are func- 

tions /s in A -1 such tha t  log[/~[ ~< - m a x  ( log[g~-u~[,  0) and/~-+1  almost everywhere. 

We have 

As n - > ~ ,  the first term on the right goes to 0 by  the bounded convergence theorem, 

the second term goes to 0 by  the choice of the Un, and the last term goes to 0 by  the domi- 

nated convergence theorem. Thus /~g~-~h in L v, and we have proved the inclusion 

L;  N H 1~ H p. As the reverse inclusion is trivial, the proof is complete. 

C O R O L L A R Y .  H P = H  q fiL ", 1 < p < q <  ~ .  

A function / in H ~ is called an outer/unction if log I/(m) I = S log  l / l d m  > - ~ .  

T ~ E O R E ~  4.3. I / h  is in H 1 and ~ e h  is bounded above, then e h is an outer/unction in H ~'. 

Pro@ Assume without loss of generality tha t  Re h ~< 0. Take a sequence {g~} in A con- 

verging to h in L 1 and almost everywhere. Let  E ( n ) =  {x: ~egn(x)>0}.  Then 

lira f E ~r gn dm = O. 
n-..~:~ (n) 

Therefore, by  Lemma 2.1, we may  by  passing to a subsequence suppose tha t  there are 

9 - 662903. A c t a  m a t h e m a t i c a .  117.  I m p r i m 6  le 9 f d v r i e r  1967  
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functions/n in A -1 such tha t  log]/=] ~< - m a x  (Rr 0) and/~-+1 almost everywhere. We 

then have I/neg~ I ~<1 and/~eg~--->e h almost everywhere, and so e h is in H ~. Moreover, 

( e h dm I = lim log I/.(m)eg"(a)l = lim [~e g . (m)+  log I/ .(m)l] = ~ h ( m )  log 
J I 

because I/=(m) l ~1 .  Hence log I ~ e~dm I = S ]~ din, i.e.. e ~ is an outer function. 

w 5. Szegii's first t h e o r e m  

Let A o be the kernel of the functional ~. For w a non-negative function in L 1 and p 

a positive number, we define 

A~(w) = inf t l l - / l ~ w d m .  
f~A~ d �9 

I t  is our purpose in the present section to prove the following result. 

T~zno~v.~ 5.1..Let w be a non-negative /unction in L 1 such that 

log w is integrable with respect to all the measures in 7~@), ( ~- ) 

and such that p-1 ] log w dv is in s Then 

A,(w) =exp [flog wdm]. (5.1) 

The main par t  of the proof will be broken up iato three lemmas. The crucial step is 

Lemma 5.2. For the remainder of this section we let w stand for a non-negative function 

in.L1. We first obtain, as an easy consequence of Jensen's inequality, the following estimate. 

L ~ A  5.1. An(w ) >~exp [] log w din/. 

Proo/. Let / be in A 0. By the arithmetic-geometric mean value inequality, 

f ]l-/,'%dm>.lexp[flog(]l /,"w) dm]=exp[pflog 1-/,dm]exp[flogwdm]. 
By Jensen's inequality 

flog I 1 -/Idm >1 log I 1 - / (m )  l = 0, 

and the lemma follows. 

L ~ M ~ A  5.2. Assume w satis/ies (~r 

Then (5.1) holds. 

is bounded/rom O, and ~ log wdv = (0 ..... 0). 
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Proof. Choose a sequence (vn} in C~(X) such tha t  v~ ->log w in LI(Q) for  all ~ in ~ ( ~ ) ,  

and  such t h a t  also v~ ~ log w a lmost  everywhere.  Assume also, as we may ,  t h a t  the  se- 

quence {Vn} is uni formly  bounded  below. For  n = 1, 2 . . . .  define 

lim Iv~dv=flogwdv=(O .... ,0), Since 
n - - ->  ~ . d J 

the  sequence {u~} is bounded  below and converges to log w in L 1 and  a lmost  everywhere .  

Fu r the rmore  ~ u~dv=(O .. . . .  0) for all n. Thus,  b y  L e m m a  1.1, there is for each n a func- 

t ion g~ in A such t h a t  Re g~ >1 u~/p and 

'Reg.(m) <1 Iu,~dm +l.  
p j  n 

Hence  we have  

lim Regn(m)=liml fu~dm=l flogwdm. (5.2) 
n-~oo n-~or p J 

For  each n define the  funct ion f~ in A 0 b y  

)on = 1 - e-g"+g"(m). 

Then  A,(w)<<-f]l-fn[Vwdm=e"~"'"(m)fe-~"~.wdm<<.e'~'~g.(r")fe-U"wdm. (5.3) 

Now the sequence {e -u'} is bounded  in absolute  value and  converges to 1/w a lmost  every-  

where. Therefore,  b y  the  domina ted  convergence theorem,  

li2~ f e-U"wdm = 1. 

This together  with (5.2) implies t h a t  the r ight  side of (5.3) converges to exp [~ log wdm] 

as n ->oo. Hence  An(w ) ~<exp [~ log wdm]. The reverse inequal i ty  is given b y  the  preceding  

lemma,  and  so the proof  is complete.  

LwMMA 5.3. Formula (5.1) holds provided w satisfies ( ~ ) and ~ log wdv=(0 ,  ..., 0). 

Proo/. Let  w be as described. For  n = 1, 2, 3, .., define 

~ , ~ = f l o g ( w + l / n ) d v ,  w.=]zl-=.(w+l/n), s , =  sup lZ(~) l~-, 
d x e X  

(where ]Z(x)[ ~- s tands for the  value of the  funct ion IS[ ~- a t  x). B y  monotone  convergence 

we have  log (w + 1/n) -+log w in L ~, and  therefore 
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lim a~ = [ l o g  w dv = (0, . . . ,  0). 
n---> ~o J 

This implies in par t icular  t h a t  sn~l. Because S log w~dv=(O . . . . .  0) for all n, it follows 

b y  L e m m a  5.2 t h a t  each wn satisfies (5.1). Hence  for each n there  is a f u n c t i o n / n  in A o 

such t h a t  

f , l - /~ ,Vw~dm<~exp[ f logwjm]+l /n=l /n+,Z(m)]-~exp[ f log(w+l /n)dm] .  (5.4) 

On the  o ther  hand,  

f ,l-/=[nwdm < f [1-/~lV(w+ l/n)dm <~s~ f ll-/=l'w~dm. (5.5) 

Combining (5.4) and  (5.5) we obta in  

f 'l-/~'nwdm<'< l----+ l~ 'z(m) ' -~"exp[f l~  s~ 

As n - + ~  the  r ight  side of the  preceding inequal i ty  converges to exp [Slog wdm]. Hence  

An(w ) ~<exp [j" log w din]. and  the  proof  is complete.  

I n  order now to complete  the  proof  of Theorem 5.1. assume w satisfies ( ~ )  and  t h a t  

~D -1 y log W dv is in s  Then there  is a funct ion h in A -~ such t h a t  the  funct ion w~ = I h[P w 

satisfies y log wldv = (0 . . . .  ,0) .  Hence  (5.1) holds for Wl, and  so 

An(w~) =exp [flog (]h'nw)dm] = ]h(m),n exp [flog w dm] . 

This together  wi th  the  t r ivial  equal i ty  An(wx)= ]h(m)/hA n (w) implies t h a t  w satisfies (5.1). 

One question t h a t  arises is: if w satisfies ( ~ )  and  (5.1), mus t  io -1 S log w dv belong to 

s Al though we have  been unable  to answer this, some informatiorr  will be ob ta ined  in 

w 10. 

w 6. Szegi~'s second theorem 

Our goal in the  present  section is to prove  the following result. 

T I~ .OR~M 6.1. Let v be a non-negative/unction in L 1 satis/ying (-~) such that S log vdv 

is in s Then there is an outer/unction / in H 1 such that ]/I = v almost everywhere. 

Remarks. 1) Outer  funct ions are defined in w 4. 
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2) The function / is uniquely determined by v to within ~ multiplieative constant of 

unit modulus. This follows from results to be obtained in the next section (see the reason- 

ing at  the end of the proof of Lemma 7.3). 

3) I f v i s i n L  ~for a p > l t h e n ] i s i n H  v, by the results of w 

The proof of Theorem 6.1 will be accomplished in a series of lemmas. We firs~ need 

to know that  functions in H p satisfy Jensen's inequality. This is proved by an argument 

which, although well-known, we have been unable to locate in the literature. We therefore 

include the details here. 

LEM~A 6.1. I1 / is in HP(1 ~<p< oo) then 

]og ll(~) i ~< flog ili~m. 

Proo/. Let {/.}~r be a sequence of functions in A converging to / in L p. Then each/n 

satisfies Jensen's inequality, and so for any s > 0 we have 

logll.(~)l < flog (ll.I +~)dm. 

As n - + ~  the left side goes to loglt(m) l and the right side to ~ log (I/I + s) dm (because 

log ([/,I +e)-+log ([/[ +e) in L1). Thus log I/(m) l ~< ~ log (1/1 +e)dm. The desired in- 

equality is now obtained by letting e-~ 0 monotonically. 

The next lemma is purely measure theoretic. 

LEMlVtA 6.2. Assume l < p < o o ,  and let {/n}~ be a sequence o/ /unctions converging 

we~k~y in L~ to the/unaion/.  Then I/I <l im sup [/. [ almost everywhere. 

Proo/. I t  will suffice to show that  ]'E l l/rim <~.[E lim sup [/n [din for every Borel set E. 

By weak convergence we have 

f '/'dm=fj d' =limL/.';--ldm limsu, f l/.l m 
Hence it only remains to show that  

lira supf~ ]1,,] dm 4 fElim sup/In/din. (6.1) 

For this, let s be a positive real number, and for each positive integer k let 

E(e, k) = {x e E : ]]~(x)[ <~ s + lira supl/n(Z) l for all i ~> k}. 
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Then likE(e,/c) = E .  For ]~>/c we have 

yEl/jl dm= f~(~.k)t/j[ dm + fE_~(~.k) [/j[ dm 

where q=p/(p-1) .  But 

<~s+ fElimsup[/,~[dm+[[f,[l~[m(E lc 1/q - W ( ~ ,  ))] , 

lim m(E - E(s, lc)) = O, 
k --> oo 

and sup, ll/,ll < ~ by  weak convergence. Inequal i ty  (6.1) now follows, and the proof of 

the lemma is complete. 

Although it is superfluous to our needs, we mention tha t  Lemma 6.2 is also true 

when p = 1. To show this, the only modification one must  make in the above proof is 

the use, in place of tISlder's inequality, of the fact that  when a sequence {/,} converges 

weakly in Ll(m), the sequence of measures { I/n [dm} is uniformly absolutely continuous 

with respect to m [8, p. 294]. 

The next  lemma is the crucial step in the proof of our theorem. As with the crucial 

lemma of the preceding section, its proof depends on an application of Lemma 1.1. For  

the rest of this section we let v denote a non-negative function in L 1 satisfying (~ ) .  

LEM~A 6:3. Assume v is in L ~176 and satisfies ~ log vd~ = (0 ..... 0). Then the conclusion 

o] Theorem 6.1 holds. 

Proo/. Take a sequence {un} in Cg(X) such that  u~-->log v in Lt(0) for every 0 in ~1(~0), 

and also almost everywhere. Assume also, as we may,  tha t  the sequence {us} is uniformly 

bounded above. Define 

Because S u~dv-+ ~ log vat= (O, ..., 0), the sequence {u~} is uniformly bounded above and 

converges to log v in L 1 and almost everywhere'. Also ~ u~ d r -  (0 ..... 0) for every n. There- 

fore, by  Lemma 1.1, there are functions g~ in A such tha t  ~egn~<log u~ and 

lira ~egn(m)= lim fun dm= f l ogvdm.  (6.2) 
n - ~ o o  n--~ oo.j 

Let [~=exp  (gn). Then ]/,~1 ~<exp (u~), and so the sequence {/,} is uniformly bounded. 

We may  therefore assume that  it converges weakly in L 2 to some funct ion/ .  B y  the pre- 

ceding lemma, 
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111 < lira sup l/n I K lim exp (u~) = v (6.3) 

almost everywhere. Therefore, by Jensen's inequality (Lemma 6.1), 

logl/(m)] 

On the other hand, 

I](m)] = lim log I/n(m)l = lim ~eg~(m)= ( log  vdm log 
n --> co n --> r J 

by (6.2). This together with (6.3) and (6.4)implies that  log]/(m)] =S log I/]din and that  

1/1 = v almost everywhere. The proof is complete. 

LEM~A 6.4. Assume v is in L 2 and ~ log vdr = (0, ..., 0). Then the conclusion o/Theorem 

6.1 holds. 

Pro@ For n = 1, 2, ... define 

vn = r a i n  (v, n ) ,  

By the monotone convergence theorem we have an-+ (0 ..... 0). Therefore v~, ~ v pointwise, 

and the sequence {v~} is  bounded in L 2. Furthermore, the Vn satisfy the hypotheses of 

the preceding lemma. Therefore there is for each n an outer function ]~ in H ~ such that  

I/~] =v'~ a.e. The sequence {/n} is bounded in H 2 and so has a subsequence converging 

weakly in H 2 to a funct ion/ .  By Lemma 6.2 

l il < lim suP ltnl = l i r a  = 

almost everywhere. Hence by  Jensen's inequality 

log,/(m), < f logl/Idm <. flog vdm. 

On the other hand, since log ]/n I =leg Vn --~ log V in L 1, and since each/n  is an outer func- 

tion, we have 

I t  follows that  log l/(m)] = S log l]ldm and that  Ill =v  almost everywhere. The proof is 

complete. 

LEM~A 6.5. The conclusion o[ Theorem 6.1 holds i] S log vdv=(O ..... 0). 
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Proo]. In  this case there is by  Lemma 6.4 an outer function g in H 2 such that  [g[ = v �89 

almost everywhere. Let /=g2. Then / is in H 1 and [/I = v  almost everywhere. Moreover, 

because/(m) =g(m) 2, it is a triviality to verify tha t  / is an outer function. 

We can now complete the proof of Theorem 6.1 in a few words. Namely, suppose. 

only of v tha t  ~ log v dv belongs to s and choose an h in A -~ such that  j~ Iog vdv = ~ log [ h/dr. 

Then by  Lemma 6.5 there is an outer function g in H 1 such that  ]g] = v/hi -1 almost every- 

where, and the function / = g h  meets the requirements of the theorem. 

For the purpose of proving the discreteness of s we need the following (apparent) 

extension of Theorem 6.1. 

LEM~A 6.6. Assume v is in L 2. Then the conclusion el Theorem 1 is still true even i/ 

log vdv only belongs to the closure el F~. 

Proof. Under the hypotheses there is a sequence of a-tuples {~n}[ r and a sequence 

of outer function {/n}~ in H 2 such tha t  an->(0 .. . .  ,0) and 

=vlZJ 

almost everywhere. The sequence (/n} is then bounded in L 2 and so we m a y  assume tha t  

it converges weakly to a funct ion/ .  That  / is an outer function and I/I =v almost every- 

where can now be proved by  the same argument used in the proof of Lemma 6.4. 

I f  / is an outer function, must  j" log l/Idu belong to t:? I t  is not difficult to show that  

the answer is affirmative for the algebras on Riemann surfaces cited in the introduction. 

In  w 10 we shall see tha t  this question is equivalent to the one raised at  the end of w 5. 

w 7. Generators of  H ~ 

A function ] in H'(1  ~<p< oo) is called a generator of H p if the linear manifold A / i s  

dense in H ". In  the present section we prove the following result. 

T ~ ~ o R ~ M 7.1. I] / is an outer/unction in H p and i / ]  / ] satis/ies (~) ,  then / is a gen. 

crater o] H p. 

As usual, the proof will be chopped up into a series of lemmas. We denote by  H~ 

the set of functions / in H p such t h a t / ( m )  =0.  A non-negative function w in L z will be 

called a Szeg5 /unction /or the exponent p if An(w ) = e x p  [f  log wdm] >0.  

LEM~A 7.1. J[// is a generator o / H  ~ then / is an outer/unction and [/[~ is a Szeg5 

/unction/or the exponent p. 
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Pro@ Assume / is a generator of H p. Then obviously/(m) 40 ,  and so log//] v is in L 1 

(by Jensen's inequality). Furthermore A o / i s  dense in Hg, and so the LV-distanee of / from 

A o / i s  not greater than ]/(m)], the distance of / from the fu n c t i o n / - / (m ) .  I t  follows that  

I/(m)l  fll-g/I a m  = 

But 

by Jensen's inequality, and so 

]/(m)J" <exp [f log[/J'dm] (7.1) 

AAl/l~) << exp [ flog ]/[V ttm] . (7.2) 

Hence, by Lemma 5.1, inequality (7.2) must be an equality, and therefore inequality 

(7.1) is also an equality. This completes the proof. 

LEMMA 7.2. Assume that 1 < p  < ~ ,  and let / be an outer/unction in H v such that [ / I  T 

is a Szeg5 /unction /or the exponent p.  Then / is a generator el H v. 

Pro@ If g is in H p then by HSlder's inequality 

(;,, 
Furthermore equality is achieved here by the function g = / - / ( m ) .  I t  follows that  the 

/_2~ of / from Hg is equal to I/(m) l. Since L ~ is uniformly convex, the function 

/ - / ( m )  is the unique function in H~ for which this distance is achieved. 

Now let M be the closure in L ~ of Ao/.  Then by our hypotheses on / we have 

i2 of l/-'al d =exp [flog l/l dm] 
In  other words, the LP-distanee of / from M is equal to ]/(m) [. Since L v is uniformly con- 

vex, this distance is achieved by a unique function in M. This together with the observa- 

tions of the preceding paragraph and the inclusion M c H ~  enables us to conclude that  

l - / ( m )  belongs to M. Hence the constant function/(m) belongs to the LV-closure of A/. 

Therefore the/2-closure  of A/ ,  being invariant under multiplication by A, must contain 

A and consequently is all of H v, as desired. 

C o R o L L A R V. I / /  is an outer /unction in H ~(1 < p < cr ) such that ] / ] satis/ies ( -)r ) and 

j" log l/[dv belongs to s then / is a generator el H p. 
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Proof. This is an immediate  consequence of the preceding lemma and Theorem 5.1. 

L ]~ MMi 7.3. Let / be an outer/unction in H 1 such that Ill satisfies (-)r and S log]/J d ~ -  

(0 ..... 0). Then there is an outer/unction g in H 2 such that ]=g2, and / is a generator of H 1. 

Proof. B y  Theorem 6.1 there is an outer funct ion g in H ~ such t h a t  [g ]2=  ]f[ a lmost  

everywhere. L e t / 1  =g2. Then /1  is an outer  funct ion in H 1. The function g is a generator  

of H ~ by  the preceding corollary, and it is a t r ivial i ty  to show from this tha t  fl is a gener- 

a tor  of H 1. Thus there is a sequence (h~}~ in A such tha t  h ~ / l ~ l  in L 1. I f  we let h=///1 , 

then we have [h[ =1  almost  everywhere, and the sequence {hn/} converges in L 1 to h. 

Hence h is in H 1. B e c a u s e / = h f l  we h a v e / ( m )  =h(m)/l(m). But  [/(m)l = [/l(m)[ because 

/ and  /1 are outer  and [][ = [/1[ almost  everywhere. Hence [h(m)] =1 ,  which together  

with [h I = 1 implies tha t  h is a constant.  Therefore ] is a constant  multiple of/1,  and  the 

proof is complete. 

Before completing the proof of Theorem 7.1 we prove a factorization theorem. We 

shall call a funct ion h in H" an inner function if for some a-tuple a we have Ihl = ]Z]5 

(Thus our notion of inner funct ion depends on the choice of Z 1 ..... Z~.) 

TH]~OlC}~M 7.2. Let / be a/unction in H'(1  ~<p< oo) such that ]/] satisfies (-n). Then 

there are in H" an outer function g and an inner function h such that /=  gh and ~ log lg[dv = 

(0 . . . . .  0). The functions g and h are uniquely determined by / to Within multiplicative con- 

stants o/unit  modulus. 

Proof. Let  ~ = ~ log[/[dv.  By  Theorem 6.1 there is an outer funct ion g in H p such 

tha t  [gl = If[ IZ] - 5  Let  h=//g. B y  what  we have proved above, the funct ion g is a gen- 

erator  of H ", and  so there is a sequence {hn}~ r in A such tha t  h~g-->l i n L  ". Because h is  

bounded,  it follows t h a t  hn/=hnhg~h in IF.  Thus  h is in H p and so is an  inner function. 

This proves the existence of the desired factorization. The uniqueness follows by  the 

reasoning at  the end of the proof of Lemma 7.3. 

We are now able to complete the proof of Theorem 7.1. Let  f be an  outer funct ion 

in H p such tha t  I/[ satisfies (~ ) ,  and  let ]=gh be the factorizat ion of the preceding theo- 

rem, where g is outer  with ~log[g[dv=(O . . . .  ,0)  and h is inner with [h[ =[Z[ ~, o~= 

log[fld~. Because /(m)=g(m)h(m), it is clear f rom Jensen 's  inequali ty tha t  h mus t  be 

an  outer  function. As we already know from Lemma 7.3 tha t  g is a generator  of H p, the 

funct ion h belongs to the /2 -c losure  of A], and so all we need show is t ha t  h is a generator  

of H p. 

B y  the Dirichlet approximat ion  theorem [12, p. 170], there exist a sequence of posi- 

tive integers (lcn} ~ and a sequence {Vn)~r of a-tuples with integral coordinates such tha t  
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lim Ik~oc-y,~] = 0  

(where 1/31 denotes the supremum norm of the a-tuple fi). Let  e,~=kno~-y~, and define 

h -hknZ-r~ 

The functions h,  are then outer functions in H v and belong to the LV-closure of Ah. Because 

Ihn] = I z I  ~n w e  have [hn[-+1 uniformly. Because h n is outer we have 

Ih=(m)l=exp[floglh.ldm] = exp /flog IZl "dm] = 1. 

Thus we m a y  assume tha t  lim hn(m) exists, say lira hn(m) =2.  We then  have 

f ]2-h~]2dm= 1 + f ]h~]~dm-2~e[~h=(m)]-+l + 1 - 2 1 4 1 2 = 0 ,  

i.e. h n -+4 in Z ~. Therefore a subsequence of {h~} converges to 2 almost  everywhere. Because 

the h n are uniformly bounded  in supremum norm, this subsequence converges to 2 in L v, 

and so the constant  funct ion 2 belongs to the LV-closure of Ah. The proof is complete. 

F r o m  Theorem 7.1 and  Lemma 7.1 it follows tha t  if / is an  outer funct ion in H p such 

tha t  I/[ satisfies (-~), then  []l v is a Szeg5 funct ion for the exponent  p. Once we have in 

our possession a more precise form of Szegh's first theorem, we shall be able to prove a 

converse of this. Namely,  we shall show tha t  if v is a non-negat ive funct ion in L v such 

tha t  5 log vdm > - c~ and  v v is a Szeg5 function for the exponent  p,  then v is the modulus 

of an outer  funct ion in H p. The following lemma is a prel iminary result in this direction. 

L ~ M A  7.4. Assume l < p <  c~. Let the positive ]unction v in L p be bounded /tom 0, 

and assume that v p is a Szeg5 ]unction/or the exponent p. Then there is an outer ]unction ] 

in H ~ such that I/I = v-1 almost everywhere. 

Proo]. B y  the uniform convexi ty  of the space LV(vVdm), there is a funct ion g in the 

LV(vVdm)-elosure of A 0 such tha t  

f ll -gpvVdm = A~(vV). (7.3) 

Because v is bounded  f rom 0 the funct ion g is in H~. Le t  / = 1 - g .  By  the ari thmetic.  

geometric mean value inequali ty and  Jeasen ' s  inequality,  

fl]l'vvdm> exp[flogl]pdm]e p[flogv'dm] 
o x o  = 
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Therefore, by (7.3), both of the preceding inequalities are equalities. That the arithmetic- 

geometric mean value inequality is an equality implies that ]/lVv v is constant almost 

everywhere, and that Jensen's inequality for / is an equality implies that  / is outer. Hence 

some constant multiple of / meets the requirements of the lemma. 

w 8. The discreteness of s 

Let X denote the space of multiplicative linear functionals on L ~~ with the Gelfand 

topology. Under the Gelfand representation the algebra L ~ is transformed into the algebra 

C(X), and the subalgebra H ~ is transformed into a certain uniformly closed subalgebra 

of C(~), which we denote b y / ~ r  I t  is not hard to show t h a t / ~ r  separates points of X, 

and so is actually a uniform algebra on J;; the proof is essentially the same as that  of the 

corresponding fact for H ~176 of the disk [16, p. 174]. 

The measure m induces a bounded linear functional on L ~~ which is transformed by 

the Gelfand representation into a bounded linear functional on C(X). The latter is repre- 

sented by a probability measure ~ on X. The measure ~ is multiplicative on/~oo and is 

a Jensen measure f o r / t ~  (by Lemma 6.1). Therefore ~h is also an Arens-Singer measure 

for/~oo. We denote by r the functional o n / ~  induced by ~ .  Let ~ be the real linear span 

of the set of all Betel measures on X of the fo rm/~-~h  with/~ a representing meas- 

ure for r 

In  the same way as we lifted m to obtain a measure ~h on X, we can lift each vk to 

obtain a measure ~k on X. The measures ~k belong to ~, and so the dimension of $ is at 

least a. We shall let ~ stand for the a-tuple of measures (~1 .... , ~,) and adopt the same 

notational conventions with respect to ~ that we have been using up to now with re- 

spect to v. 

After these definitions we are ready to prove the main result of this section. 

THEOI~]~ 8.1. The set F~ is discrete. 

Proo/. The proof is merely an adaptation of Hoffman's proof that  the multiplicative 

linear functional s on a logmodular algebra have unique representing measures [17, Theo- 

rem 4.2]. 

Assume that  s is not discrete. Then because s is a subgroup of E ~, its closure contains 

a linear manifold B 0 of dimension a0, 0 <a0 ~<a. Let B be the set of all functions 4 in C~ (X) 

such that  the a-tuple ~ dd~ belongs to B 0. Then B is a subspace of C~(X) of codimension 

a - n o .  We now assert: 

All representing measures for ~ agree on B. (8.1) 
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Once this has been proved the theorem will follow by contradiction. For (8.1) implies 

tha t  the dimension of ~ is at  most q - a 0 ,  while we have seen above tha t  the dimension 

of ~ is at  least ~. 

To prove (8.1) let 4 be any function in B. By Lemma 6.6 there are outer functions / 

and g in H ~ such tha t  I]1 = eu and I gl = e-U. (Here u denotes the function in L ~ having 

as its Gelfand representative.) Let ~ and #~ be any two representing measures for ~. 

Then 

Hence for all real t fexp (t )d ifexp >~ 1. (8.2) 

Also, the left side of (8.2) equals 1 at  t =0.  Thus the derivative with respect to t of the left 

side of (8.2) vanishes at  t=0 .  But  this derivative equals S dd /~ l -S  ~d/~2, and so (8.1) 

is proved. 

The argument we just gave shows tha t  all representing measures for r agree on the 

set of functions 4 in C~(X) satisfying ~ 4d~=(0 ,  ..., 0). I t  follows tha t  ~ has dimension 

at  most a. As we know that  ~ contains r .. . . .  r we may  conclude that  r ..... r span ~. 

The following conclusion is now immediate. 

T~EO~EM 8.2. The/unctional r on fI~ satis/ies the conditions (I) and (II) originally 

imposed on of. 

Let  s denote the set of all a-tuples S log lh]dv with h an invertible function in H %  

From Theorems 8.1 and 8.2 it follows tha t  ~ is discrete. Obviously s  C, but  we do not 

know whether the inclusion can ever be strict. This question turns out to be equivalent 

to the one raised at  the end of w 5, and we shall discuss it further in w 10. 

In  connection with Theorem 8.1 we make the following comment. We can map the 

group A -1 homomorphically onto s by  sending / onto ~ log ]/]dv. As exp (A) is contained 

in the kernel of this map, we get a homomorphism of A-~/exp (A) onto s By Theorem 

8.1, I: is a free Abelian group of rank a, arid thus A-1/exp (A) has a free Abelian group 

of rank a as a factor. Now a theorem of Axons and Royden [27] states that  A-~/exp (A) 

is isomorphic to the first Cech cohomology group with integer coefficients of the maximal  

ideal space of A. So we see that  our assumptions on ~ put  topological restrictions on the 

maximal ideal space of A, provided a > 0. (This observation was suggested by  John Wermer.) 
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I n  proving in the next  section tha t  the measures in S are bounded with respect to  

m, we shall need the following information.  

LEMMA 8.1. I /  / is an outer /unction in I-I x such that 1/1 satis/ies ( ~) ,  then ~ log] / Idv  

is in s 

Proo/. Let  ~ =  ] log [/[dv. B y  Theorem 7.2 there is a factorizat ion ]=gh with g and h 

in H ' ,  g outer, and ]h I = IZI ~. Since / and g are both  outer  it is immediate  f rom Jensen 's  

inequal i ty  t ha t  h mus t  be outer. Therefore h is a generator  of H 1 (Theorem 7.1). Because 

h is bounded and bounded from 0, it follows tha t  hH 1 = H  1. Hence there is an  h 1 in H 1 

such tha t  hh 1 = 1. Bu t  then h I is the inverse of h in H ~, and so j" log Ih]dv = ~ is in s 

The preceding lemma shows tha t  the question raised at  the end of w 6 is equivalent  

to the question of whether s = s 

w 9. The boundedness of the measures in S 

Let  N be the complex vector  space spanned by  the functions dvl/dm ..... dvr To 

prove tha t  the measures in S are bounded with respect to m, we must  show tha t  N c L %  

The first step will be to show t h a t  N c L 2. Let  iV 2 denote the orthogonal  complement  of 

A §  in L ~. (A bar  over a space of functions denotes the space of complex conjugates.) 

Ls .M~A 9.1. N = N  s. 

Proo/. We first show tha t  N 2 c N .  Because N is closed under  complex conjugat ion 

and closed in L 1, it will be enough to show tha t  any  real L ~176 function u annihilating N 

also annihilates N 2. Wi thou t  loss of generali ty we m a y  assume tha t  S udm = 0. By  Theorem 

6.1, for 0 < r ~< 1 there are outer  func t ions / r  in H ~176 such t h a t  I/r I = eru~ Since 

 o jl.( ll = f  o lt.I f 
we m a y  suppose tha t  /~(m)=l for all r. Let  the functions g, be defined by  g,=( /r -1) / r .  

We have 

Because u is bounded,  

and therefore 

f e2rUdm = 1 + 2 r f u dm+ O(r ~) = 1 + 0(r~), 

flgrl  dm = 0 ( 1 ) ,  
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i.e. the family of functions {g~} is bounded in L z. Hence there is a sequence {rn} converging 

to 0 such tha t  the sequence {gr,~} converges weakly in L 2, say to the funct ion g. Because 

each g~ is in H 2 so is g, which means in part icular  t h a t  S Re gdm = ~ udm. On the  other hand  

Reg <<lA]-l_ e~=-l, 
r r 

and the r ight  side converges uniformly to u as r ~ O .  Hence if E is any  measurable set, 

then  by  weak convergence 

Thus  Re g ~< u almost  everywhere, which together  with the  equali ty ~ Re g dm = ~ u dm im- 

phes tha t  Re q = u almost  everywhere. Therefore u is or thogonal  to N 2, which is the desired 

conclusion. The proof t ha t  _N ~ c N is complete. 

Because N 2 is contained in N it is finite dimensional and therefore closed in L 1. Hence 

to prove the inclusion N c N 2, and  thereby complete the proof of the lemma, it will be 

enough to show tha t  any  real L ~ funct ion v annihilating N 2 also annihilates N.  Bu t  if v 

is as described then  it is the real pa r t  of a funct ion in H 2, say v = Re h. By  Theorem 4.3 

the functions e h and e -~ are both in H r176 and so the a-tuple 

is in ~. The same reasoning shows t h a t  t ~ v dr is in s for every real t. I t  therefore follows 

by  the discreteness of ~ tha t  ~ vdv=(O, ..., 0), i.e. v annihilates N,  as desired. The proof 

is complete. 

L v , ~ A  9.2. I / the  real/unction u in L ~ is bounded above and in the L 1 closure o / A  + ~,  

then u annihilates N. 

Proo/. Let  u be as described, and assume wi thout  loss of generali ty t h a t  u<~0. We 

first show tha t  there is an  outer  funct ion h in H ~176 such tha t  u = l o g [ h [ .  Because u is real 

and in the L 1 closure of A + A ,  it is actual ly  in the  L 1 closure of ReA.  Hence there is a 

sequence {gn} in A such tha t  Re gn-+ u in L 1 and  almost  everywhere. Let  

Then 

E(n)  = {x : R e g n ( z ) > 0 } .  

lim fE Regndm=O. 
n---~ ~ (n )  
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Hence by Lemma 2.1, we can by passing to a subsequence assume that there are functions 

/n in A -1 such that logl/nl ~<--max (~r 0) and [n-+l almost everywhere. Let hn= 

]n exp (g,). Then I ha ] ~< 1 for all n, and so by passing to a further subsequence we may 

assume that  the sequence {h~} converges weakly in L 2, say to the function h. Because 

]hn I -+ eu almost everywhere, we have by Lemma 6.2 log[hi ~< u almost everywhere. Thus 

f l o g  lh[ f u  neff,~(m) = [neg,~(m) log [fn(m)[] = log [h,(m)[ dm <~ dm = lim lim + lim 
, )  n - + ~  n- ->  a~ 7t --~ oo 

]h(m)l < flog ]h] din. --log 

I t  follows that  log]h I = u  almost everywhere and that  loglh(m)l =S  log[h]dm (i.e. h is 

outer). 

We may now conclude by Lemmas 8.1 and 9.1 that  S udv is in 2. But the same 

reasoning shows that t ~ udu is in ~ for every positive real number t, and so it follows by 

the discreteness of s that  ~ u d v =  (0 .... ,0), i.e. u annihilates N. The proof is complete. 

I t  is now a simple matter to prove the result we have been aiming for. 

THEORn~ 9.1. N c L %  

Proo]. We first note that N is spanned by the set of functions of the form 1 -d t~ /dm 

with/~ a representing measure for ~. Hence N has a basis consisting of real functions that  

are bounded above. 

Let N ~176 be the annihilator of A +-4 in L ~176 and choose a basis Ul, ..., u~ for N% I t  is 

obvious that N ~ N .  From here on we argue by contradiction, assuming that  the last 

inclusion is proper. Then by the observation of the preceding paragraph, there is a real 

function u~+ 1 in N which is bounded above and which is not linearly dependent on u 1 ..... uz. 

Because the closure of A + A  in L 1 has a codimension equal to dim (N ~) =s, some non- 

trivial linear combination of ul, ..., u~+ 1 must lie in this closure. The real and imaginary 

parts of such a function then belong to both N and the L 1 closure of A +A.  We conclude 

that N contains a non-null real function u that is bounded above and in the L ~ closure 

of A +A.  By Lemma 9.1 u belongs to L 2, and so we may apply Lemma 9.2 to conclude 

that  u amfihilates N. Hence in particular ~ u~dm =0, which is a contradiction. The theorem 

is proved. 

The result just proved,  of course, enables us to simplify the hypotheses in many of 

the preceding theorems. We see now that a non-negative function w in L 1 satisfies condi- 

tion (~)  if and only if ~ log w dm > - oo. This will hold automatically if w is the modulus 

of an outer function. In  particular, therefore, Theorem 7.1 on generators of H ~ holds for 

outer functions without restriction. 



TH~ H v S~AC]~S oP A CLASS O~" :FUNCTION ALG:EBnAS 145 

w 10. More precise forms of Szegii's two theorems 

For ~ a q-tuple of real numbers and 1<p<r162  let HV'~--- IZI~H v, and let the linear 

functional ~v~, ~ on H v' ~ be defined by 

~:.:(llZl:)=/(m)lZ(m)l:, l~m. 

+dso let K(p, g)= II+=.:ll~, By straightforward reasoning one can show that  for p fixed, 

K(p, ~) depends continuously on ~. 

The next result we prove is a strengthened form of Szeg6's first theorem. 

T/tEOlCE~ 10.1. Let w be a non-negative /unction in L 1 such that ~ log w d m > - ~ ,  

and let o~= ~ log wdv. Then 

• l<p<oo. (10.1) 

Proo/. By Theorem 6.1, there is an outer function / in H p such that I/IV=wlZI -~. 

Thus if we let g=l lZ I  :+p, we have [giV=w, and so A~(w)=Ap(IglV). Now A~(lgiv) x/p is 

the distance in L v between g and the subspace of L v spanned by A0g. By Theorem 7.1, 

the linear manifold A0/ spans H~. Therefore Ao9 spans the kernel of the functional 

+~. ~/v, and consequently 

a~( lg l  ~) I ~ . : , ~ ( g ) l  ~ I/(m)l:iZ(m)l: 
II v,.  =,~ li p K(p, g/p) 

Because / and the Zk are outer functions, 

and (10.1) follows. 

CO~OLLAn~C. Let w be a non-negative/unction in L 1 su& that ~ log wdm = - eo. Then 

A,(w) =o. 

Proo/. For n = l ,  2 .... let ~%=~ log (w+l/n)dv.  Then by Theorem 10.1, 

A,(w) <~ A~(w+ l/n) = K(p, o:n/p)-l exp [ f log  (w+ l /n )dm] .  (10.2) 

~qow we have noted above that for p fixed, K(p, ac) is a continuous function of ~. Also, 

it is easily seen that  K(p, o 0 is constant on each coset of s I t  follows that  K(p, ~) is 

bounded from 0. I-Ience the right side of (10.2) goes to 0 as n - + ~ ,  and the corollary is 

proved. 

10- 662903. Acta mathematica. 117. Imprim6 le 9 f6vrier 1967. 
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We are now able to complete the discussion of the relation between Szeg5 functions 

and outer functions. Recall that  a non-negative function w in L 1 is called a Szeg5 func- 

tion for the exponent p if A~(w) =exp  [~ log w d m ] > O .  I t  is proved in w 7 tha t  if / is an 

outer function in H ~ then I/I p is a Szeg5 function for the exponent p. The following theorem 

gives the converse of this result. 

THEOR]~M 10.2. Let  1 <~19 < co. Le t  v be a non .nega t ive /unc t ion  in  LV such that ~ log v dm > 

- ~ and such that v ~ is  a S z e g 5 / u n c t i o n / o r  the exponent  19. Then  there is  an  o u t e r / u n c t i o n  

/ in  H ~ such that I l l  = v almost  everywhere. 

Proo/ .  Let ~ = ~  log vdv.  By Theorem 6.1 there is an outer function g in H ~ such that  

[g] = v l Z [  -~" I t  follows by  the preceding theorem that  ]ZI ~" is a Szeg5 function for the 

exponent 19. Therefore, by  Lemma 7.4, there is an outer function h' in H p such tha t  I h'l  = 

IZI -~. But  then [h'lP is a Szeg5 function for the exponent 19 (Theorem 7.1 and Lemma 

7.1), and so, again by Lemma 7.4, there is an outer function h in H p such that  ]h I = ]h'] -1 = 

IZi ~. The f u n c t i o n / = g h  is then an outer function in H ~ and [/[ =v, as desired. 

At the end of w 5 we raised the following question: if w is a Szeg5 function for the 

exponent p, must  p-1 ] log w d v  belong to 1:? The preceding theorem, together with Lemma 

8.1 and the results of w 7, shows tha t  this is equivalent to the question of whether ~ =1:. 

We see tha t  the function K ( t  9 ,  o:), which by  Lemma 5.1 never exceeds 1, is equal to 1 

precisely when ~ is in C. 

We make one additional remark on the problem of the equality of C and 2. Let us 

suppose for the sake of convenience tha t  we have chosen Z 1 ... . .  Z~ and ?)1 . . . . .  ?)or in such 

a manner tha t  C is the set of points in E r with integral coordinates; the discreteness of 

1: enables us to do this. Suppose it is true that  C=~C. Then because ~ is discrete and con- 

tains /:, the points in C must  have rational coordinates. Hence if ~ is a point of C not 

in s then for some positive integer q the point y = q~ is in C. By the reasoning used in 

proving Lemma 8.1, there is an invertible function h in H ~ such tha t  I h I =  I Zl ~. The 

functions h q and Z" are then outer functions with the same modulus and so one is a con- 

stant  multiple of the other. Hence for the correct choice of h we have h q = Z  r. The func- 

tion Z r therefore has a q-th root in H ~176 although it has no q-th root in A. Thus if E ~:C, 

then in going from A to H ~~ certain invertible functions acquire roots that  they did not 

originally possess. We know of no intuitive reason either for believing or disbelieving in 

the possibility of this phenomenon. 

The next  result relates to SzegS's second theorem. 

T H ~ O R n ~  10.3. Let  v be a non -nega t i ve /unc t i on  in  L ~ (1---<19 < ~ )  such that 
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f l o g  - oo. v d m  > 

Then there is a /unc t ion  [ in H ~ such that ]/] = v almost everywhere. 

The essential par t  of the proof is contained in the following lemma. 

LEMMA 10.1. Let o: be a (~-tuple in E ~. Then there is a /unction h in H ~176 such that 

I hi = I z l   t. oa everywhere. 

Suppose the lemma has been proved, let v be as in Theorem 10.3, and let :r log vdv. 

By Theorem 6.1 there is a function g in H v such tha t  [g[ =vIZI  -~. Thus, if h is the func- 

tion of Lemma 10.1, t h e n / = g h  is in H" and }/I =v,  as desired. I t  therefore only remains 

to prove the lemma. 

Our proof of Lemma 10.1 exploits an often used technique; namely, we shall obtair~ 

the desired function h as one solution of a dual extremal problem. This is precisely the 

method used by  Tumarkin and Havinson [31] to prove a corresponding result about  

analytic functions in finitely connected plane Jordan domains. The possibility of applying 

this method in more abstract  settings was suggested by  Bishop [6]. 

P r o o / e l  Lemma 10.1. Let  a be fixed, and let c denote the supremum of [/(m)[ as f 

varies over the class of functions in A satisfying I/] ~< ]Z] ~- If  we let B =  ]Z]-~A and_ 

define the linear functional ~p on B by  

then c is just the norm of ~p (computed with respect to the supremum norm on B). There~ 

fore, by  the Hahn-Banach and Riesz representation theorems, the functional ~f is repre- 

sented by  a Borel measure # '  on X of total variation c. Letting d# = [Zi-~d# ', we hay@ 

{Zl~d l/xl =c and S/d/~=/(m) for all / in A (i.e. # is a complex representing measure 

for ~v). We now assert tha t  the measure/x is mutual ly  absolutely continuous with m. I n  

fact, let ~t~ and/~s be the absolutely continuous and singular components of # with respect 

to in. Because the measure ~ t - m  annihilates A, it follows by  the generalized F. and M. 

Riesz theorem (Theorem 3.1) that  the singular component o f / ~ - m ,  i .e./~, annihilates A. 

Therefore the measure IZl~d~a represents ~, and we have 

c flzl~ < f]Zl d] a]+ flzl dl , l=c 
I t  follows tha t  /x=/x~, i.e. # < < m .  We must now show tha t  d~t/dm cannot vanish on a 

set of positive m-measure. For this we note that  if ! is in A0, then 
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and so A~( [ d#/dm [ )/> 1 > 0. But  if dp/dm vanished on a set of positive m-measure we would 

have ~ log[dl~/dm[dm~- 0% which would imply by the corollary to Theorem 10.1 that  

Al([dtz/dml)=O. This completes the proof of the assertion t h a t / z  and m are mutual ly  

absolutely continuous. 

Let {/~}~r be a sequence of functions in A such that  ]/~[ ~< [Z] ~ for all n a n d / ~ ( m ) =  

fnd/~-+c. :Because bounded sets in L ~176 are weak-star relatively compact, this sequence 

has a weak-star cluster point h, and clearly Ihl ~< ]Z] ~ almost everywhere modulo m. 

Moreover, ~ hd#=c (because # < <  m). If  we write the last equality i n / h e  form 

/hlZl ]Zl d =c 

and recall tha t  ~ IZl~dl#] =c, we see tha t  we must  have ]h] ]Z ] -~=I  almost everywhere 

modulo/~, and therefore also modulo m. The proof of Lemma 10.1 is complete. 

Tumarkin  and Havinson [31] have shown tha t  in the case of a finitely connected 

plane Jordan domain, the extremizing function h is continuous to the boundary and has 

less zeros in the domain than  the latter 's  degree of connectivity. One suspects tha t  in the 

present abstract  setting, the corresponding proper ty  of h should be that  it generates an 

invariant subspace of H ~ whose codimension in H ~ does not exceed (r. However, we do 

not know how to prove this. 

w 11. Annihilators 

In  the present section we obtain information on the annihilators of A in the spaces 

L p. We need first some facts about invariant subspaces. A (closed) subspace of L" will 

be called invariant if it is invariant under multiplication by  the functions in A. 

L ~ M A  11.1. Let f be a function in L ~ ( l<~p<  oo)such that S l o g t f l d m > - o o ,  let 

~ = j" log]] ldr  , and let M be the invariant subspace o / L  p generated by /. Then there is a 

]unction v in L ~176 with [v [ =  [Z{ ~ almost everywhere, such that M =vH p. The function v is 

uniquely determined by / to within a multiplicative constant of unit modulus. 

Proof. By Theorem 6.1 there is an outer func t ion / ,  in H ~ such tha t  1/: I = I / I IZ I  -~- 

Let t ing v =//[i, we have Iv I = I ZI ~" I f  M 1 is the invariant  subspace generated by  fl, then 

we obviously have M = v M  1. By Theorem 7.1, M 1 =H',  and so M = v H  p, as desired. 
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To prove the uniqueness of v, suppose w has the same properties. Then w-lv I t  p = H  ~, 

and so w-iv is a generator of H ". Therefore w-iv is an outer function. This and the fact 

tha t  Iw-lvl =1 almost everywhere imply tha t  ~ w-~vdm=l ,  which is possible only if 

w-iv = constant almost everywhere. The proof is complete, 

L~,MMA 11.2. Let the subspace M o / L  p (1 ~<p< ~ )  be invariant under A.  Then M NL ~176 

is I2-dense in M. 

Pro@ Let / be any function in M and let M '  be the smallest invariant subspace of 

L ~ containing the function ]/1 +1.  I t  follows from Lamina 11.1 that  M '  (1L ~176 is LP-dense 

in M'.  Let g =//(I/]  + 1). Since multiplication by  g is a bounded operator o n / 2 ,  the linear 

manifold gM" is contained in the invariant subspace of A generated by  the function 

g(I/] +1) =/ .  Hence g M ' c M ,  and it is clear tha t  (gM') NL ~176 is L'-dense in gM'. Therefore 

/ is in the L~-closure of M N L ~176 and the lamina is proved. 

THEOREM 11.1. (i) The annihilator el A o in L ~ is H ~ + N ,  1 <~p <~ co. 

(ii) The annihilator o / A  + N in L ~ is H~d, 1 <~p <~ ~ .  

Pro@ The case p =2  is an immediate consequence of Lemma 9.1. The cases 1 ~<p <2  

follow from the case p = 2  via Lamina 11.2. The cases 2<p~<oo follow from the cases 

1 < p  < 2 by  a simple duality argument. 

We also have information on the real annihilating measures of A, namely, tha t  the 

only real annihilating measures of A tha t  are absolutely continuous with respect to m 

are the measures in S. This is the content of our next  theorem. First a lamina is needed. 

LEM~A 11.3. The only real/unctions in H 1 are the constants. 

Pro@ Let  ] be a real function in H 1 such t h a t / ( m )  =0.  Then by  Jansen's  inequality, 

for any reai number  t, 

f l o g / 1  dm >10. +t/] 

This implies by [17, Lemma 6.6] tha t  [ = 0  almost everywhere. 

T H E O R ~  11.2. I1 the Junction w in L 1 annihilates A +.4, then w belongs to lg. 

Pro@ We may  obviously assume without loss of generality that  w is real. By Theorem 

11.1 there are a function h in H 1 and real functions u and v in N such tha t  w = h + u + i v .  

We then have Ym h = - v ,  and so by  Theorem 4.3 the functions e th and e -th are in H ~176 

Hence the a-tuple l l o g l e ~ l d v = l  vdv is in 2. The same reasoning shows tha t  t I vdv is 
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in s for all real t, and so j" vdv = (0 ... . .  0) because s is discrete. This means tha t  v annihi- 

lates N, and therefore j" v2dm=O, i.e. v = 0 .  Hence we have w = h + u ,  and so h is a real 

function in H0:. Consequently h = 0  by  Lemma 11.3, and w=u,  as desired. 

w 12. Gleason parts 

Two multiplicative linear functionals on a uniform algebra are said to lie in the same 

part if their difference has norm less tban  2. This notion was introduced by Gleason in 

[10], where he observed that  the relation of lying in the same par t  is an equivalence rela- 

tion. Thus the maximal ideal space of a uniform algebra decomposes into disjoint parts,  

and one can show that  these parts  are the largest sets on which one can hope to impose 

an analytic structure [10]. 

B. V. O'Neill has shown tha t  in a hypo-Dirichlet algebra, the Arens-Singer measures 

of two functionals in the same par t  are mutual ly boundedly absolutely continuous [24, 

Lemma A]. His proof can with only minor modifications be carried through under the hypo- 

theses of the present paper. For the sake of completeness we shall present the details. 

First a lemma about  general uniform algebras it needed. I t s  proof can be found (essentially) 

in Hoffman's  logmodular paper  [17, Lemma 7.5]. 

L]~M~A 12.1. I] 9: and 9~ are multiplicative linear/unctionals on a uni/orm algebra, 

then the/ollowin 9 are equivalent. 

(i) 91 and 92 are in di/]erent parts. 

(ii) There is a sequence el/unctions {fn} in the algebra, with I/n I <~ 1/or all n, such that 

9t(s  ~ 0  and ]9~(s -*1. 

T H ~ O R ~  12.1 (O'Neill). Let qzx be a multiplicative linear/unctional on ,4 lying in the 

same part as q, and let m I be an Arens-Singer measure/or q:. Then m: is boundedly absolutely 

continuous with respect to m. 

Proo/. Assume the conclusion of the theorem is false. Then there is a sequence {un} 

of non-negative functions in C(X) such that  .[ undm-->0 and ~ undm:-->c~. By Lemma 2.1, 

we can by  passing to a subsequence suppose tha t  there are functions/~ in A- :  such tha t  

I/n I ~<exp (-Un) a n d / n - ~ l  almost everywhere modulo m. We then have 

~(/.0= f /.dm-~l. [W:(/n)] = e x p  [f log]/.,dm~] < exp [-fu. dml] ~0 .  

As also [/-I ~<1 for all n, it follows by Lemma 12.1 tha t  ~ and ~x lie in different parts.  

This contradiction proves the theorem. 



T H E  H ~ SPACES OF A CLASS OF F U N C T I O N  ALGEBRAS 151 

Let  9)1 and  m 1 be as in the preceding theorem, and let S 1 be the real linear span of 

the set of measures of the form 1'1 - m l  with/~1 a representing measure for 9)l. I f / ' 1  is any  

representing measure for ~1, then the negative component  of # 1 - m l  is boundedly  abso- 

lutely continuous with respect to nh and  therefore also with respect to m, so tha t  m +  

(~(~u 1 - m l )  is a representing measure for 00 whenever d is a sufficiently small positive real 

number.  We  m a y  conclude t h a t  S 1 is contained in S. Thus 9)1 satisfies the  conditions tha t  

we originally placed on q~, and  we can interchange the roles of 00 and qh in the above reason- 

ing. I n  particular, m is boundedly  absolutely continuous with respect to ml, and S 1 = S .  

We assume explicitly for the remainder of this section tha t  a > 0. We shall show tha t  

then the  par t  containing ~0 is non-trivial,  i.e. t ha t  it contains a functional  other  than  ~0. 

For  this purpose we introduce a class of kernel functions in the space H ~. I f  e is any  a-tuple 

of real numbers,  we can obtain  a new inner product  on H ~ by  replacing the measure m 

by  the  measure IZI2~:dm. Let  B a denote the kernel funct ion with respect to  this new inner 

p roduc t  for the  functional  on H ~ induced by  m. I n  other words, then,  B~ is the  unique 

funct ion in H 2 such tha t  

/(m) = [-/~= ]Zl::dm 
,J 

for all / in H 2. The object  of the next  few lemmas is to show tha t  there is an x such tha t  

Ba is not an  outer function. Once this has been done the non-tr ivial i ty of the par t  con- 

taining ~0 will follow wi thout  great  difficulty. For  any  ~, let %=11 [Z{~II~ �9 

L E M ~ A  12.2. The map ~-->B~ is continuous in the L 2 norm. 

Pro@ We prove first the following subsidiary assertions. 

(i) S { BaI ~dm stays bounded as o~ varies over any bounded set. 

(if) The map cr is continuous. 

Proof of (i). Because 

it will be enough to  show tha t  I [ Ba [ dm stays bounded  as ~ varies over any  bounded  set. 

Bu t  

Therefore I [ B~ [ dm <~ 0_2~ , and the desired conclusion follows. 

Proof  of (if). We have 
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Therefore ,Ba(m)-Bz(m)[ <~ f [B:Bz , I lZ , : : -[Z, : '  !dm 

-< ( / , - = 4  I, 
and the desired continuity follows by  (i). 

We can now complete the proof of Lemma 12.2. We have 

and the desired continuity follows by (i) and (ii). 

L~MA 12.3. I log[Nldm> -o~/or aU~. 

Proo/. By Jensen's inequality, 

exp [flog , B~ , dm] >~ [ B:(m) ] = f ] B=[2 ]Z ] 2= dm > O. 

L]~MMA 12.4. Suppose {u~}~ is a sequence o/non-negative ]unctions Converging in L 1 

to the ]unction %. Suppose ]urther that log u~ is in L 1, n=O, 1, 2 .. . . .  and that S log u~dm-+ 

.f log uodm. Then log un->log u o in L 1. 

Proo]. As is easily seen, we may assume without loss of generality that  un-+ uo almost 

everywhere, i f  it happens that  u~ ~> 1 for all n, then /log u 0 - log u~ ] ~< [ u o -  u~ ] and the 

desired conclusion is immediate. If, on the other hand, it  happens that  un ~< 1 for all n, 

then we have 

w~ = log uo - l o g  un/> log Uo, (12.1) 

f wndm -+0, (12.2) 

Wn -+0 almost everywhere. (12.3) 
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If E~ is the set where w~40, then (12.1) and (12.3) together with the dominated con- 

vergence theorem give ~E, w~dm-+0. Hence, by  (12.2), 

and so in this case also the desired conclusion holds. To handle the general ease we simply 

note that  log u~=log max (u~, 1)+log min (u~, 1) and apply the two special eases just 

treated. 

LEM~A 12.5..~] the map o~--S loglB~ldm is conti~',uous, then the map ~loglB~l is 

continuous in the L x norm. 

Proof. This follows immediately from the three preceding lemmas. 

LwMMA 12.6. There is an ~ such that B~ is not an outer ]unction. 

Proo]. Assume the lemma is false. Then we have S logl Baldm=l~ B~(m) l for all c~, 

and so it follows by Lemmas 12.2 and 12.5 that  the map a-~S logIB~ldv of E" into itself 

is continuous. The range of this map is therefore a connected subset of E ". But  also this 

range is contained in the discrete set ~: (Lemma 8.1), and therefore it must consist of a 

single point. On the other hand, if y is a a-tuple with integral coordinates, then a simple 

computation shows that  Bv=Z-r(m)Z-L Hence the range of the map ~-~j~ log I B~[dv 

contains all a-tuples with integral coordinates. This contradiction proves the lemma. 

Is the map a-+~ loglB~ldm eontinuous~. We suspect that  this is so but  have been 

unable to prove it except in the case a = 1. As observed in the above proof, the continuity 

of the map a-+~ log I B~ldm implies the continuity of the map ~ ~ log/B~ldv. Once the 

latter is known one can show using topological considerations that  the map cr ~ log I B~ldv 

is surjective, and from this and the factorization theorem (Theorem 7.2) it follows that  

for each a-tuple fl there is a function h in H ~~ such that  h =  [ZI ~ almost everywhere. Of 

course, we have already proved this last result (Lemma 10.1). However, the proof just 

sketched would be interesting, we feel, if the gap in it could be filled. 

Before stating the next lemma we mention that  the functions B~ are all bounded. 

This follows from Theorem 9.1, because the measures 

B~(m) 

are representing measures for ~. 

LE~MA 12.7. For any a-tuple ~, the invariant subspace o /H ~ generated by the ]unction 

B~ has a codimension in H 2 o] at most a. 
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Proo/. Let M and K be the closures in L 2 of B~A and B~z~ o respectively. (Thus M 

is the invariant subspace of H 2 generated by B~.) Let L~(a) denote the L 2 space of the 

measure IZi2~dm. Then L 2 and L2(a) consist of the same (classes of) functions, and the 

identity map of either onto the other is bounded. Hence H ~, M and K can all be regarded 

as subspaces of L2(a). I t  is easily seen that  K is orthogonal to H 2 in L2(~), and so we can 

prove the lemma by showing that  the orthogonal complement of M §  in L2(a) has a 

dimension of at most o. But if J is this orthogonal complement, then the subspace/~ IZI2~J 

is orthogonal to A + A  in L ~ and so its dimension is at most a (Lemma 9.1). Because B a 

and IZI u~ are non-zero almost everywhere, it follows that  the dimension of J is at most 

o, as desired. 

We are finally able to prove the result we have been aiming for. 

THnOI~E~r 12.2. The part containing q~ is non-trivial. 

Proo/. By Lemma 12.6 we can choose a a-tuple ~ such that B~ is not an outer func- 

tion. Let M be the invariant subspace of H e generated by B~ and let J be the orthogonal 

complement of M in H ~. The subspace J is non-trivial (Lemma 7.1) and finite dimensional 

(Lemma 12.7). Let P be the orthogonal projection in L ~ with range J.  For each / in H ~176 

let the operator Tf on J be defined by 

Tfh=P(/h) ,  hEJ. 

I t  is easy to show that TfTg = Tfg for all / and g in H ~~ Hence ( T s : / E H  ~176 is a commuting 

family of operators on a finite dimensional space, and so this family has a common eigen- 

vector, say h 0. We may suppose that  ~ ]hoi~dm= 1. For / in H ~176 let ~(/) denote the eigen- 

value of Tf corresponding to the eigenvector h 0. Then ~ is a multiplicative linear functional 

on H ~176 and so ~v=~iA is a multiplicative linear functional on A. If  / is in H ~176 t hen /h  o - 

~(/) h e is orthogonal to J,  and therefore 

r = f/I 
dm. 

Hence Ihol2dm is a representing measure for ~. This implies that q and ~v are in the same 

part, because if two functionals are in different parts then any representing measure for 

the one is singular with respect to any representing measure for the other [11, Proposi- 

tion 4]. I t  remains to show that ~ #q .  Now ~3 is weak-star continuous. Therefore, if yJ 

were the same as ~v, then r would equal r (the functional on H ~ induced by m), because 

A is weak-star dense in H% But the function B~h o belongs to M and so is orthogonal to 

h 0. Hence 
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= f BohoZodm = o, 

while, on the other hand, ~(B~) = B~(m) #0. The proof is complete. 
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w 13. Invariant Subspaces 

We shall say that  an invariant subspace M of L v (1 ~<p < oo) is of type B if AoM is 

not dense in M. Given a function / in L v, the invariant subspace of L v generated by  f is 

of type  B if and only if Ap(Iftv)#0. By Lemma 5.1 and the Corollary to Theorem 10.1, 

this will be true if and only if j" log]/]din > - ~ .  Moreover, when the latter happens the 

invariant  subspace of L v generated by  ] is by  Lemma 11.1 of the form wH p where w is a 

function in L ~ that  agrees in modulus almost everywhere with ]Z [~ for some a-tuple of 

real numbers a. We shall call such a function w a rigid ]unction and such a subspace wH ~ 

a Beurling subspace. On the basis of what is known about  logmodular algebras and the 

like (see for example [28]), it seems reasonable to make the following 

CONJECTURE. Every invariant subspaee of L v of type B is a Beurling subspace. 

W e h a v e  been unable to prove this conjecture in general, but  have managed to reduce 

the problem somewhat. The reduction is described in the present section. I t  will enable 

us in the next  section to t reat  the case of finite Riematm surfaces. We have succeeded in 

proving the conjecture for the case a = 1, and this proof is given at  the end of the present 

section. 

For the rest of this section we confine our at tention to the case p = 2. The means of 

relating invariant subspaces in L v to invariant subspaees in L 2 is provided by  Lemma 

11.2. Let  G be the Gleason par t  containing ~. For ~fl in G we let A~ denote the kernel of 

~v and H~ the closure of A~ in H ~. (Thus A~ = A  0 and ~ H~=H0.)  I f  ~o#~ then H~ contains 

a function f such t ha t / (m )  :#0, and from this it follows tha t  H~ is of type B. I t  does not 

seem immediately evident tha t  H~ is of type B. Of course, this conclusion is implied by  

the above conjecture, because H~ is of type B with respect to ~ for any  yJ in G distinct 

from ~v. What  we shall prove is that  if the above conjecture holds for the subspaces H~ 

(~ E G), then it holds in general. 

T~EOREM 13.1. I] the subspace H~ is a Beurling subspace ]or every ~p in G, then every 

invariant subspace o / L  ~ o/type B is a Beurling subspace. 

The proof of the theorem will be relegated to three lemmas. 
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L~MMA 13.1. Let M be an invariant subspace o / L  2 o/type B and let h be a non-zero 

/unction in M which is orthogonal to A~M. Then the invariant subspace o/ L 2 generated by 

h has a codimension in M o/at  most a. 

Proo/. The proof is about the same as that of Lemma 12.7. Assume for convenience 

that  ~ Ihl2dm=l.  If  / is any function in Ar then / a n d / h  are orthogonal, and therefore 

/I hl sdm = O. This implies that  I hi2 dm is a representing measure for ~. Hence h is bounded 

and ~ log lhldm > -- co (the latter by the corollary to Theorem 10.1). Let g be the orthogonal 

complement in M of the invariant subspace generated by h. Then because hAr is orthogonal 

to M, the subspace J is orthogonal to hA § Therefore ~J is orthogonal to A + A  C, 

and so the dimension of ~ / i s  at most a (Lemma 9.1). Since h is non-zero almost everywhere, 

it follows that the dimension of J is at most g, as desired. 

LEMMA 13.2. Assume that H i is a Beurling subspace, and let w be a rigid/unction 

such that H~ = wH ~. Let M be any invariant subspace o / L  2 o/type B. Then wM has codlmen- 

sion one in M. 

Proo/. We first note that  wM equals the L ~ closure of A v M .  In  fact, that  A ~ M  is 

contained in wM is trivial, and that wM is contained in the L 2 closure of A ~ M  follows 

because w is in the weak-star closure of Ar Now suppose the lemma is false, i.e. that  the 

orthogonal complement of wM in M has codimension greater than one. Choose a non-zero 

vector h 1 in this orthogonal complement, and let M 1 be the invariant subspace of L 2 

generated by h 1. Let J be the orthogonal complement of M 1 in M, let P be the orthogonal 

projection in L 2 with range J,  and let the operator T on J be defined by T/=P(w/) .  The 

adjoint of T is then given by T*/=P(fJ/). Now M 1 is a Beurling subspace, and so the ortho- 

gonal complement of wM 1 in M 1 is spanned by h 1. Therefore any non-zero vector in M 

orthogonal to both wM and hi must be in J .  We have assumed that  there is such a vector, 

and consequently the operator T* has 0 as an eigenvalue. By Lemma 13.1, J is finite 

dimensional, and thus T has 0 as an eigenvalue. I t  follows that there is a non-zero vector 

h 2 in J such that  wh 2 is in M1. Let M 2 be the subspace spanned by M 1 and h~. Because 

multiplication by w is an isomorphism on L 2, the subspace wM~ has codimension one in 

wM2. But this is absurd because obviously wM 1 =wM2. This contradiction proves the 

lemma. 

By Lemma 13.1, if M is an invariant subspace of L 2 of type B, then there is a func- 

tion in M that  generates an invariant subspace whose codimension in M is finite. Hence 

the proof of Theorem 13.1 will be complete once we have proved the next lemma. 

LEMMX 13.3. Assume that H$ is a Beurling subspace /or every v 2 in G. Let M be an 
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invariant subspace o / L  2 o/type B, and let h~ be a ]unction in M that generates an invariant 

subspace having finite codimension ~ > 0 in M. Then there is a ]unction in M that generates 

an invariant subspace o/codimension ~ -  1 in M. 

Proo]. Let M 1 be the invariant subspace of L 2 generated by  h 1 and let J be the ortho- 

gonal complement of M 1 in M. Let P be the orthogonal projection in L 2 with range J ,  

and for ] in A let the operator T I on J be defined by  Tih =P(]h). As in the proof of Theo- 

rem 12.2, the family of operators {T] : /EA}  is commutative,  and so this family has a 

common eigenvector h2. For / in A let ~(/) denote the eigenvalue of T r for the eigenvector 

h 2. Then just as before, ~ is a multiplieative linear functional on A lying in the par t  G 

(see the proof of Theorem 12.2). Let  w be a rigid function such that  H~,=wH 2. Also let 

Ma be the subspace spanned by  M 1 and hz. I f  / is in A v then ]h2 is orthogonal to J and 

therefore in M 1. I t  follows tha t  M 2 is an invariant subspace and tha t  wM2 is contained 

in M 1. But  wM2 has codimension one in Ms by  Lemma 13.2, and therefore w M 2 = M  1. 

Hence M 2 is the invariant subspace generated by  hl/w, and the proof is complete. 

Although Theorem 13.1 reduces the above stated invariant  subspace conjecture to a 

special case, it is in this special case where much of the interest resides because it is con- 

nected with the problem of imposing an analytic structure on the par t  G. This problem 

has been studied by  Wermer [37] and O'Neill [24], and their results could be improved 

and simplified if it were known that  the subspaces H~ are Beurling subspaces. 

We now prove the conjecture for the case a = 1. 

T~EOR]S~ 13.2. Assume c~=l. Then the subspace H i is a Beurling subspace. 

Proo]. We shall be fairly sketchy, as the proof resembles several we have already given 

(see especially Theorem 12.2 and Lemma 13.1). :By Lemma 12.6 we can choose a real 

number c~ such that  the kernel function B~ is not an outer function. Let  M be the invariant  

subspace of L ~ generated by  B~. Then M has codimension one in H 2 (Lemma 12.7). Choose 

a vector h in H 2 which is orthogonal to M with respect to the inner product induced by 

the measure IZI2~dm and which is a unit vector with respect to the same inner product. 

Let this inner product be denoted by  ( , )~. A simple computation shows that  the func- 

tional ~fl on A defined by  ~(/) - (/h, h)~ is multiplicative. As y~ is represented by the measure 

[h] ~ ]ZI 2~ dm, it lies in the par t  G. Thus h is bounded and non-zero almost everywhere. 

Let M x be the invariant subspace of L 2 generated by  h. I f  the function / in H ~ is orthogonal 

to M 1 relative to the inner product  ( , )~, then ~] is orthogonal to A § Av for the same 

inner product. I t  follows that  M 1 has codimension one in H 2. But  
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[" 

h(m) = JhB lZl dm = (h, O, 

and therefore M s is contained in H~. Hence M~ = H~, and the proof is complete. 

w 14. Finite Riemaun surfaces 

Let R be a finite open Riemann surface of degree of connectivity o +  1. Let X = ~ R ,  

and let A be the hypo-Dirichlet algebra on X described in w 1. Choose a point z 0 in R, 

which shall be fixed for the remainder of the discussion. The harmonic measure m on X 

evaluated at z 0 is then the Arens-Singer measure for the functional V on A of evaluation 

at z 0. The functions in L 1 =Ll(m) have natural harmonic extensions into R, and we shall 

regard these functions as so extended. The extensions of functions in H 1 are analytic in R. 

Our main objective in the present section is to determine all invariant subspaces of 

L ~, 1 < p  < ~ .  We should first like to point out that  in the present case, it is easy to describe 

explicitly the measures in S. Namely, if F is any smooth closed contour in R, we can 

define a real annihilating measure ~ of A by setting 

fudv= f  ds, ueC(X), 
where ds denotes the are length differential along F and ~/~n denotes differentiation 

along the positive normal to F, both computed in suitable local coordinates. (The function 

u is regarded as extended harmonically into R.) I t  is not hard to show that ~ is boundedly 

absolutely continuous with respect to m, and so belongs to S, and that further, every 

measure in S is a linear combination of such measures ~. As F runs over a homology basis 

for R the corresponding measures ~ run over a linear basis for S. 

In  order to apply the results of w 13 to the present situation, we need the following 

result from function theory (see [25, Lemma 2.5]). 

LEMMA 14.1. For each point a in R there is a/unction in A that has a simple zero at 

a and no other zeros in R D X.  

This lemma tells us that if ~ is the functional on A of evaluation at some point of 

R, then the subspace H~ is a Beurling subspace. Now Arens [2] has proved that  the only 

multiplicative linear functionals on A are the evaluations at points of R U X. Consequently 

the part containing q consists of the evaluations at points of R (Theorem 12.1). The 

hypotheses of Theorem 13.1 are therefore satisfied, and so we have the 

LEMMA 14.2. Every invariant subspace o / L  2 o/ type B is a Beurling subspace. 
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Although it would be a simple matter now to extend this result to general p, the 

case p = 1 will suffice. 

LEMlVIA 14.3. Every invariant subspace o / L  1 o/type B is a Beurling subspace. 

Proo[. Let M be an invariant subspace of L 1 of type B. By Lemma 11.2, M flL ~ is 

dense in M. Thus M N L 2 is an invariant subspace of L ~ of type B, and so by Lemma 14.2 

it has the form wH 2 for some rigid function w. Hence M =wH ~, as desired. 

To go further we need to know that a non-null function in H ~ cannot vanish identically 

in R. This can be proved as follows. Let {R~}F be a sequence of finite Riemann surfaces 

contained in R, each containing the point z0, with the closure of R,  contained in Rn+ 1 

for every n, and with R = (J R n. For each n let Xn denote the boundary of Rn and mn the 

harmonic measure on X~ evaluated at %. Think of the measures mn as points in the closed 

unit ball of the dual of C(R U X). Clearly, any cluster point m' of the sequence {mn} for 

the weak-star topology of C(R O X)* is a positive measure supported by X that  satisfies 

udm' =U(Zo) for every u continuous in R U X and harmonic in R. By the uniqueness of 

harmonic measure it follows that  no measure other than m can be a weak-star cluster 

point of {mn}. Because the closed unit ball in C(R U X)* is weak-star compact, we may 

conclude that  m,--> m in the weak-star topology of C(R U X)*. 

If  U is any (complex valued) harmonic function in R, then 

for all n. In  fact, the quantity on the right is the value at z o of the solution of the Dirichlet 

problem in R~+I with boundary values I U I, and this solution is at least as great as I UI 

everywhere on X~. (This well-known reasoning is due to F. Riesz [26].) Hence lim ~ ] U[dmn 

exists for all U harmonic in R; we let LI(R) denote the family of those U for which this 

limit is finite. Obviously LI(R) is a linear space, and we norm it by setting 

[[ U lI = lim f I U l dm.. 

(Although there is no need to do so here, it is a simple matter to show directly that LI(R) 

is a Banach space.) If  u is a function in LI=LI(m) then ~ luldm is the value at z o of the 

harmonic function in R that at any z takes the value ~ [uldm=, (where m~ is the harmonic 

measure on X evaluated at z), and consequently ~ [u [dmn <~ ~ [u [din. Thus we can define 

a norm decreasing linear transformation T of L 1 into LI(R) by setting (Tu)(z)=~ udmz. 

But because mn-+m in the weak-star topology of C(X U R)*, the transformation T pre- 
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serves the  norms  of cont inuous  funct ions,  a n d  therefore  i t  is an  i sometry .  I n  pa r t i cu la r ,  

Tu vanishes  iden t ica l ly  in R on ly  when u is a null  funct ion,  which is the  resul t  we need.  

LEMMA 14.4. I] M o is a Beurling subspace o / L  1, then every non-trivial invariant sub- 

space o / M  o is a Beurling subspace. 

Proo]. I t  obvious ly  suffices to  consider  the  case where M o = H  1. Suppose  therefore  

t h a t  M is a non- t r iv ia l  i nva r i an t  subspace  of H 1. I f  M conta ins  a funct ion  t h a t  does no t  

van ish  a t  z 0 then  i t  is obv ious ly  of t y p e  B and  so is a Beur l ing subspace  b y  L e m m a  14.3. 

Hence  suppose  all  funct ions  in M vanish  a t  z 0. B y  the  preceding  a rgument ,  a non-zero 

func t ion  in M does no t  vanish  iden t ica l ly  in  R and  so has  a zero of some f ini te  order  a t  

%. Le t  k be the  smal les t  n a t u r a l  n u m b e r  such t h a t  there  is a func t ion  in M wi th  a zero 

of order  k a t  z o. B y  L e m m a  14.1 there  is a funct ion  h in A wi th  a zero of order  k a t  z 0 

and  no o ther  zeros in R (J X.  Thus  h - i M  is an  i nva r i an t  subspace  of H 1 conta in ing  a func- 

t ion t h a t  does no t  vanish  a t  %. Consequent ly  h - l M  is of t y p e  B, and  therefore  a Beur l ing 

subspace,  a n d  so M itself is a Beurl ing subspace.  

LEMMA 14.5. H ~176 is a maximal proper weak-star closed subalgebra o / L  ~176 

Proo]. The proof  we give is an  a d a p t a t i o n  of one due to Sr in ivasan  for the  case where 

R is the  un i t  d isk  (see [14, p. 27]). Le t  K be a p roper  weak-s ta r  closed suba lgebra  of L ~176 

conta in ing  H ~176 and  let  M be the  ann ih i l a to r  of K in L i. Then M is a non- t r iv ia l  i nva r i an t  

subspace  and  is con ta ined  in H ~ + N  (Theorem 11.1). The  inva r i an t  subspace  H ~ + N  is 

conta ined  in the  i nva r i an t  subspace  H i + N ,  which is obvious ly  of t y p e  B. Hence  H o i + N  

and  M are  b y  L e m m a s  14.3 a n d  14.4 bo th  Beur l ing subspaces,  and  so there  is a r ig id  

func t ion  w such t h a t  M = w ( H ~  +N).  I t  follows t h a t  K = w - I H  ~176 Because  K is an  a lgebra  

i t  conta ins  the  func t ion  w -~, a n d  so there  is an  h in H ~176 such t h a t  w - 2 =  w-lh. Therefore  

h = w  -i, i.e. w -1 is in H ~176 Consequent ly  K c H  ~176 a n d  the  proof  is complete.  

L]~MMA 14.6. Every invariant subspace o / L  2 has either the/orm w H  2 with w a rigid 

]unction or the/orm ZE L2 with E a measurable subset o / X .  

Proo/. Let  M be an  inva r i an t  subspace  of L 2. I f  M is of t y p e  B then  i t  has  the  f irst  

of the  descr ibed  forms (Lemma 14.2). Assume therefore  t h a t  M is no t  of t y p e  B. L e t  h 

be a func t ion  in A t h a t  has  a s imple zero a t  z o and  no o ther  zeros in R U X.  I f  h M  were 

no t  equal  to M then  i t  would  be a p roper  closed subspace  of M because h is bounde d  

f rom 0 on X.  B u t  this  would  c lear ly  i m p l y  t h a t  M is of t y p e  B, c o n t r a r y  to  assumpt ion .  

Hence  h M = M ,  and  M is i nva r i an t  under  mul t ip l i ca t ion  b y  h - i .  Le t  K be the  a lgebra  

of all  funct ions  ] in L ~176 such t h a t  ] M c  M.  Then K is weak-s t a r  closed and,  as we have  
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iust seen, it contains H ~ properly. Therefore K = L  r176 by the preceding lemma. But it is 

a well-known result (which we shall not prove here) that  the subspaces of L z that  are 

invariant under multiplication by every function in L ~ are just those of the form z s L  ~ 

with E a measurable subset of X. The proof is complete. 

TH]~O~E~ 14.1. Every invariant subspace o~ L ~ (1 < p <  ~ )  has either the /orm wH p 

with w a rigid/unction or the/orm zEL ~ with E a measurable subset o / X .  

Proo/. The case p =2  is given by the preceding lemma. The cases 1 ~ p  <2  follow 

from the case p = 2  via Lemma 11.2. The cases 2 < p < ~  are obtainable from the cases 

1 < p  < 2 by a simple duality argument. 

A concluding observation: Consider the case where R is a plane domain, so that a + 1 

is the number of boundary components of R. The subspace H Z + N  is invariant and of 

type B, and therefore there is an inner function w such that  H 2= w(H2+ N). The invariant 

subspace wH 2 has codimension ~ in H z, and from this it follows, as one can easily convince 

oneself (or by the reasoning below), that  w has precisely a zeros in R. We shall show that  

the zeros o / w  are the critical points el the Green's/unction/or R with singularity at %. 

To prove this, let G be the Green's function for R with singularity at  z 0 and let H 

be a harmonic conjugate of G. Because the boundary X of R is a union of finitely many 

non-intersecting analytic Jordan curves, the functions G and H extend so as to be har- 

monic in a neighborhood of X. The multiple valued analytic function G + i H  has a 

single valued derivative Q, and Q is analytic on R 0 X except for a pole of order one at z 0. 

The zeros of Q are by definition the critical points of G, and it is known that  there are 

precisely (~ of them in R and none on X [23, p. 133]. The function Qo(z)=(z-zo)Q(z) is 

thus in A, has a zeros in R, and is non-zero on X. :Now we want to show that  Q0 has the 

same zeros as w, and for this it will suffice to show that QoH 2 = w H  ~. From the properties 

of Q0 just mentioned it follows that  QoH 2 has codimension ~ in H 2. As this is also true of 

the subspace wH ~, it will be enough to show that  wH2cQoH2, or equivalently, that  

Q o l H ~ c w - l H  2. To do this we choose the usual positive orientation on X and apply the 

well-known relation 
-Q  

din(z) =~--~ dz ( z e X ) .  (14.1) 

Suppose / is any function in HL Then by Cauehy's theorem 

f xt(Z) g(z) = dz 0 

for all g in H 2. This together with (14.1) implies that  Qffl/is orthogonal to H~, and so 

Qffl/ is in H 2 + N =w-XH ~. We have proved the desired inclusion QfflH2 ~ w - l H  ~. 

11 - 662903. Acta mathematica. 117.  I m p r i m 6  le 9 f 6 v r i e r  1967 .  
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w 15. Hypo-Dirichlet algebras in the plane 

Le~ Y be a compact subset of the plane whose complement has only finitely many 

components, and let A be the algebra of functions on X = a Y that  can be uniformly approxi- 

mated by rational functions whose poles lie off Y. As was pointed out in w 1, A is a hypo- 

Diriehlet algebra. We shall discuss algebras of this kind more fully in a separate paper 

[1]. We limit ourselves here to two remarks. 

The first remark is that  the lemmas and theorem of the preceding section apply 

without change to the algebras of the present section; the proofs carry over verbatim. 

In  fact, when transplanted to the present context the discussion of w 14 becomes basically 

more elementary, as the function theoretic Lemma 14.1 reduces to a triviality, and the 

theorem of Arens is not needed to identify the maximal ideal space. 

Our second remark pertains to one of Mergelyan's approximation theorems. The 

theorem in question states that  the algebra A contains the restriction of every function 

that is continuous on Y and analytic in the interior of Y (i.e., every such function can be 

uniformly approximated by rational functions with poles off Y) [22, p. 24]. By exploring 

the theory of Dirichlet algebras, Glicksberg and Wermer [11] have given a new proof 

of the special case of this theorem in which Y has a connected complement. What  we 

want to point out is that  the theory developed in this paper makes it possible to adopt 

the proof of Glicksberg and Wermer to the present more general setting, and thus to obtain 

a new proof of the more general theorem of Mergelyan cited above. As this involves no 

essentially new ideas, we shall nov present any of the details. 
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