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§ 1. Introduction

This paper is a study of a class of uniform algebras and of the associated Hardy spaces
of generalized analytic functions. It is a natural continuation of a number of similar studies
which have appeared in recent years; see Bochner [7], Helson and Lowdenslager [15],
Hoffman [17], Hoffman and Rossi [18], Konig [19], Lumer {20], [21], Srinivasan [29],
Srinivasan and Wang [30], and Wermer [35]. All of these previous studies are based on
premises that force the generalized analytic functions to behave, roughly speaking, like
analytic functions in a simply connected domain. In the algebras to be investigated here,
the condition of simple connectivity is replaced by one of finite connectivity.

We begin by stating our basic hypotheses. The notations about to be introduced will
be retained throughout. Let X be a compact Hausdorff space and 4 a uniform algebra
on X, that is, a uniformly closed subalgebra of C(X) that contains the constants and
separates points of X. We shall employ the current notations and terminology pertaining
to uniform algebras, for which see [5]. In particular, we denote the space of real parts of
functions in 4 by Re 4, the set of invertible elements of 4 by 4-1, and the set of logarithms
of moduli of functions in 41 by log |4-1|.

Let ¢ be a multiplicative linear functional on 4. Our hypotheses pertain only to the
functional ¢. We denote by M(gp) the set of representing measures for ¢ and by S the
real linear span of the set of all differences between pairs of measures in I(g). Our basic

hypotheses are these:

(I) No non-zero measure in S annihilates log | 4-1|;

(II) 8 has finite dimension ¢.

(*) Supported by National Science Foundation Postdoctoral Fellowships during the academic
years 1963-64 and 1964-65.

(?) Supported by a National Science Foundation Postdoctoral Fellowship during the academic
year 1963-64, and by National Science Foundation Grant GP-3980 during the summer of 1965.
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Conditions (I) and (II) are local versions of, and are implied by, the following global

conditions on 4:

(I') The real linear span of log |4-!| is uniformly dense in Cy(X) (the space of
real continuous functions on X);

(II') The uniform closure of Re 4 has finite codimension in Cy(X).

A uniform algebra satistying (I') and (II') is called a Aypo- Dirichlet algebra; such algebras
were first studied by Wermer [37]. Before anything else we want to mention two concrete

examples.

Example 1. Let R be a finite open Riemann surface, that is, a domain on a Riemann
surface whose closure is compact and whose boundary X is the union of finitely many
non-intersecting analytic Jordan curves, with R lying on one side of X. Let 4 be the
algebra of all functions on X that are restrictions of functions continuous on £ U X and

analytic in R. Then, as Wermer {37] has proved, 4 is a hypo-Dirichlet algebra.

Brample 2. Let X be the boundary of a compact subset Y of the plane whose comple-
ment has only finitely many components. Let A be the algebra of all functions on X
that can be uniformly approximated by rational funections with poles off Y. Then, by a
theorem of Walsh [34], A4 is a hypo-Dirichlet algebra.

Before describing the contents of the paper in greater detail, it will be convenient to
introduce a few notations and to point out a few immediate consequences of our hypo-
theses. From (I) and (IT) it follows that there are o functions Z,, ..., Z, in A~ and ¢ meas-

ures ¥y, ..., ¥, in S such that

flog ]Zj)dvk = 6]76'

We assume that such functions and measures have been chosen once and for all. We

denote the g-tuple of measures (v, ..., v,) by ». For » a function on X we let fu dv stand

(fu dvy, ...,fudv,r),

provided all the relevant integrals exist. The set of all o-tuples [ log |h|dv with Ain 4-1

for the o-tuple

will be denoted by L; it is obviously a subgroup of £’ (¢ dimensional Euclidean space).
By a theorem of Arens and Singer [3, Theorem 5.2} there is a measure m in (@)
such that

tog [g()] = [ 1og |l
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for all 2 in 41, and our assumption (I) implies that there is only one such measure. The
measure m is called the Arens—Singer measure for p. A further result of Arens and Singer

[3, Corollary 6.41] states that for any f in 4 one has the inequality

log [p(h| < flog |f| dm,

which is called Jensen’s inequality.

We now describe briefly the main contents of the paper. In § 2 we prove a useful
lemma, special cases of which have appeared in the literature several times before. The
lemma is used in § 3 to prove that if 4 is any annihilating measure of 4, then the absolutely
continuous and singular components of u with respect to m are also annihilating measures
of A. This is a version of the classical theorem of F. and M. Riesz on analytic measures;
the idea of the proof stems from F. Forelli. An immediate consequence is that the measures
in S are absolutely continuous with respect to m. In §4 the spaces H? (1<p<oo) are
introduced as the closures of 4 in LP(m) (weak-star closure for p =o0), and the lemma of
§ 2 is employed to obtain information about them. §§ 5 and 6 are devoted to analogues
of two classical theorems of Szegd, the theorem on mean-square approximation by poly-
nomials [16, p. 48] and the theorem on the moduli of H? functions on the unit circle [16,
P. 53]. § 7 contains the analogue of a theorem of Beurling on generators of H” on the unit
circle [16, p. 101]. In § 8 we prove the crucial fact that the group £ is discrete. In § 9 we
show that, not only are the measures in § absolutely continuous with respect to m (as is
proved in § 3), they are in fact boundedly absolutely continuous with respect to m. This
result seems to lie fairly deep, and it occupies an important place in the theory. (For the
algebras of Example 1 above, it is fairly easy to prove directly that the measures in S
are bounded, but we know of no such direct proof for the algebras of Example 2.) In
§ 10 we obtain more precise forms of Szegd’s two theorems. § 11 contains information on
the annihilators of A4 in the spaces L”(m). In § 12 we show that when ¢ +0 the Gleason
part containing ¢ is non-trivial. § 13 pertains to invariant subspaces. We have not been
able to prove here as strong a result as we suspect is true. However, the information we
do obtain enables us in § 14 to characterize completely the invariant subspaces of the
algebras of Example 1. This has already been accomplished independently by Voichick
[32], [33], Hasumi [13], and Forelli [private communication]. The methods of these three,
although differing technically from one another, all depend on the same device, namely
the transplantation of the situation to the unit disk by means of a uniformizer followed
by the application of known theorems from the classical H? theory. The quite different
and more direct treatment we give may therefore be of interest. The concluding § 15

contains some remarks on the algebras of Example 2.
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In §13 we offer a conjecture about invariant subspaces. To prove or disprove this
conjecture is, we feel, the most important open problem in the theory. A proof would
yield improvements in the results of Wermer [37] and O’Neill [24] on the embedding of
analytic structures in the maximal ideal space of a hypo-Dirichlet algebra.

We should like to record explicitly our indebtedness to the papers of Helson and
Lowdenslager [15], Hoffman [17], and Lumer [20]. It is in these papers that the pattern
of the present study is largely laid out.

A few notational conventions: For f in 4 we shall write f(m) in place of {fdm. For

o={(cty, ..., %) & o-tuple of real numbers, we define
|Z]*= 12| .| Zo |,
|Z(m)|*= | Zy(m)|*... | Z,{(m})|%,
x-log|Z| =log (|Z}%),
a-log|Z(m)| =log (| Z(m)|=).
For y=(yy, ..., y4) & o-tuple of integers, we let
ZY =2 ... Z¥e.

To conclude this introduction we state the following known lemma, which will be

used several times below. For its proof, see [4, Satz 3].

Lemma 1.1, Let the real continuwous function uw on X be annihilated by S. Then

sup Reg(m) =fu dm= inf Reg(m).
geA geA
Rep<u Reg=>u

§ 2. A preliminary lemma

The lemma we prove in this section, which will play a crucial role, combines ideas
ot Forelli [9], Hoffman and Wermer [36, Lemma 5], and O’Neill {24, Lemma A]. Forelli
was interested in the F. and M. Riesz theorem for certain Dirichlet algebras, Hoffman
and Wermer in the Dirichlet algebra case of Theorem 4.1 below, and O’Neill in a theorem
about Arens-Singer measures for hypo-Dirichlet algebras. By extracting the basic idea

from their proofs, we arrive at

Lemma 2.1. Let {v,}7° be a sequence of non-negative continuous functions on X such
that (v,dm—~0. Then there exists a subsequence {u,} of {v,} and a sequence {f,} in A~

such that |f,| <e=*» and f,—>1 almost everywhere with respect to m.
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Proof. Let J denote the lattice of points in E° with integral coordinates. For § in
E° we let |B] stand for the maximum of the moduli of the components of 8. Choose {u,}
such that {u,dm <n-o-1, and such that the sequence of o-tuples {Ju,dv} converges modulo
J to a point «, with |« — fu,dv| <n-o-l(mod J). By Dirichlet’s theorem on Diophantine
approximation [12, p. 170], there is a sequence of positive integers {g,}, with g¢,<ne,
such that each component of g, « lies within 1/» of an integer. Let w, =g, u, and B, = fw,d.
Then fw,dm —0, and there is a sequence {y,} in J such that |8, —y,| ~0. Let &, =, —y,
and ¢=27|log|Z;| ||, By Lemma 1.1, there are functions g, in 4 such that

Reg, 2wy, ~f,-log|Z| + |&,|c,
Reg,(m) < l/n—;—fwﬂdm—ﬁn-long(m)] + |ea]c.
Define f,=e¢ 9=Z ¥». Then
log|fa| = —Regn—yn-log|Z| < —w,+e,-log|Z| — |e,|c < ~w, < —u,,

and so |f,] <e ™. Also
[1081ldm = ~Regum)—y,10g| z0m)|

= —l/n—fwndm—l—sn-logIZ(m)l —leale
> —l/n—fwndm—2|sn]c.

It follows that {log|f,|dm—0. Because m is an Arens-Singer measure this implies that
1§ f.dm] —1. Therefore, multiplying each f, by the appropriate constant of unit modulus,
we may assume that f f,dm 1. Because also |£.] <1, the latter implies that f,—~1 in
measure modulo m (or, by an easy computation, that f,—>1 in Lz(m)). Hence a suitable
subsequence of {f,} will converge to 1 almost everywhere with respect to 7. The proof

is complete.
§ 3. The F. and M. Riesz theorem
We now apply the method of Forelli [9] to obtain

TuroreM 3.1. Let u be an annihilating measure of A with absolutely continuous and

singular components u, and u, (with respect to m). Then y, and u, annihilate A.
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Proof. Let ¢ be a positive real number, and choose a compact m-null set K such that
[#s] (X —K)<e. Let {u,} be a sequence of non-negative continuous functions on X such
that u, —>oco uniformly on K and { u,dm —0. Because of Lemma 2.1, we may by passing
to a subsequence assume that there are functions f, in 4! such that |f,| <e=*» and f,—1
almost everywhere modulo m. We then have f,—0 uniformly on K. If g is any function

in 4, then
0= ffngd/u :ffngdﬂa+ J' fngdﬂs+f fngd,us-
X-K K

For n—>oo the first term on the right converges to § gdu, and the last term converges to 0.
As the middle term never exceeds ¢|g||, in absolute value, it follows that |  gdu,| <¢||g||c-
As ¢ is arbitrary we have [ gdu,=0 for all g in 4, and the proof is complete.

The following two corollaries are immediate.
CorOLLARY 1. The measures in S are absolutely continuous with respect to m.

CoROLLARY 2. If A is hypo-Dirichlet, then the evaluation functionals on A at points

of X have unique representing measures.

We know of no essentially simpler way of proving Corollary 2.

§ 4. The spaces H?

Henceforth such phrases as “almost everywhere” will refer to the measure m. We
denote the space LP(m) simply by L”. For 1 <p<oco let H” be the closure of 4 in L?, and
let H® be the weak-star closure of 4 in L®. The space H® is an algebra, i.e. it is closed
under multiplication. For f in H? we shall write f(m) in place of [ fdm.

The first two theorems in this section establish the equalities HY N LP =HP, 1 <g<p < oo,
The last theorem is a result about exponentiation which will be useful later. For the case
of Dirichlet algebras, the following theorem is due to Hoffman and Wermer [36, Lemma 5].

Being in possession of Lemma 2.1, we are able to use their proof.

TaroreM 4.1. If b is a bounded function in H', then there is a sequence {h,} in A

such that ||f,|| o< ||kl and b, —h almost everywhere.
Proof. Assume without loss of generality that ||2],=1. Let {g,} be a sequence in 4

converging to k in L' and almost everywhere. Define E(n)={z :|g,(x)| >1}. Then

lim (92| — 1) dm=0,

n—>0 J E(n)
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and therefore also lim log |g,,| dm =0.
n—-> J E@)

Hence, by Lemma 2.1, we can by passing to a subsequence assume that there are fune-
tions f, in 4 such that log|f,| < —max (log|g,|, 0) and f,—1 almost everywhere. The

functions h, =f,g, then form a sequence with the required properties.
COROLLARY., H®=L*NHP, 1<p< oo,
TurorEM 4.2, HP=H'N L7, 1<p<oo,

Proof. Let h be a function in A N L? (1 <p < o), Take a sequence {g,} in 4 converging
to & in L' and almost everywhere. Take also a sequence {«,} in C(X) converging to % in
L? and almost everywhere. Let E(n) = { : | g,(¢) —u,(x)| >1}. Then because § |g, —u,|dm >
0, we have

lim log |9, — u,| dm=0.
n—w J E(n)
Hence, by Lemma 2.1, we may by passing to a subsequence suppose that there are func-

tions f, in A~! such that log|f,| < —max (log|g,—u,|, 0) and f,—1 almost everywhere.

We have
"fngn'"h”p < “fn(gn _un)”p + ”fn(un_h)"p+ “(fn— l)h”p'

As n-—>oo, the first term on the right goes to 0 by the bounded convergence theorem,
the second term goes to 0 by the choice of the u,, and the last term goes to O by the domi-
nated convergence theorem. Thus f,g,—% in L?, and we have proved the inclusion

LP n H'< H?. As the reverse inclusion is trivial, the proof is complete.
CoroLLARY. HP=H'NLP, 1 <p<g<oo.
A function f in H? is called an outer function if log|f(m)| = § log|f|dm> — .
TEEOREM 4.3, If his in H and Reh ts bounded above, then " is an outer function tn H™.

Proof. Assume without loss of generality that Rek <0. Take a sequence {g,} in 4 con-
verging to » in L' and almost everywhere. Let E(n)={x : Reg,(x) >0}. Then

lim Reg,dm=0,

n—>o0 J E(n)

Therefore, by Lemma 2.1, we may by passing to a subsequence suppose that there are
9 — 662903. Acta mathematica. 117. Imprimé le 9 février 1967
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functions f, in A~ such that log|f,| < —max (Reg,, 0) and f,~>1 almost everywhere. We

then have |f,e| <1 and f,e’"—e" almost everywhere, and so e” is in H*. Moreover,

log

fe” dm! = lim log |f,(m) €| = lim [Re g,(m) +log |f,(m)|]1= Re k(m)
because |f,(m)| =1. Hence log| { e"dm| = f log|e"|dm, i.e., ¢" is an outer function.

§ 5. Szegd’s first theorem

Let A, be the kernel of the functional ¢. For w a non-negative function in L! and p

a positive number, we define
A (w) = inf ﬁl — flPw dm.
fedgd -
It is our purpose in the present section to prove the following result.
TrrorEM 5.1. Let w be a non-negative function in L' such that
log w is integrable with respect to all the measures in M(p), (%)

and such that p=1 | log w dv is in C. Then
A (w) =exp [flog wdm] . (6.1)

The main part of the proof will be broken up into three lemmas. The crucial step is
Lemma 5.2. For the remainder of this section we let w stand for a non-negative function

in L. We first obtain, as an easy consequence of Jensen’s inequality, the following estimate.
LemMmA 5.1. A (w)>exp [[ log w dm].

Proof. Let f be in 4,. By the arithmetic-geometric mean value inequality,

fl 1—f[Pw dm > exp [flog (|1 =fPw) dm] = exp [pflog[ 1 -—]‘|dm] exp [flog w dm] .
By Jensen’s inequality
flog] 1 —f|dm >1og|1—f(m)| =0,

and the lemma follows.

LeMMa 5.2. Assume w satisfies (%), is bounded from 0, and f log wdv=(0, ..., 0).
Then (5.1) holds.
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Proof. Choose a sequence {v,} in Cx(X) such that », —log w in LY(p) for all p in M(g),
and such that also v,—~>log w almost everywhere. Assume also, as we may, that the se-

quence {v,} is uniformly bounded below. For n=1, 2, ... define

Uy = Uy~ (fvndv) -log|Z|.

Since lim fvn dv= flog wdy=(0,...,0),

n—»oe

the sequence {u,} is bounded below and converges to log w in I and almost everywhere.
Furthermore { u,dv=(0, ..., 0) for all n. Thus, by Lemma 1.1, there is for each n a func-

tion g, in A such that Reg,=>u,/p and

1 1
<= =
Reg,(m) p fun dm + .

Hence we have

lim Reg,(m)= lim 1 u, dm =% flog wdm. (5.2)

N—>00 . . n—>00

For each n define the function f, in 4, by

]cn =1~ e—gn—l-gn(m).
Then Aj(w) < f]l ~ fulPwdm = e "’gn(’"’fe“” Relnip dm < e? ’“"n"")fe‘“"wdm. (5.3)

Now the sequence {e—*} is bounded in absolute value and converges to 1/w almost every-

where. Therefore, by the dominated convergence theorem,

lim e “wdm=1.

n—>00

This together with (5.2) implies that the right side of (5.3) converges to exp [{ log wdm]
as n~>oo, Hence A,(w) <exp [ log wdm]. The reverse inequality is given by the preceding:

lemma, and so the proof is complete.
Lemma 5.3. Formula (5.1) holds provided w satisfies (%) and {log wdv= (0, ..., 0).

Proof. Let w be as described. For n=1, 2, 3, ... define
Oy = flog (w+1/n)dy, w,=|Z|*w+1/n), s,=sup|Z(=)|*™,
reX

(where |Z(x)|*» stands for the value of the function |Z|* at x). By monotone convergence
we have log (w-+1/n) ~log w in L', and therefore
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lim e, = Jlog wdv=(0,...,0).

n—oo

This implies in particular that s,—~1. Because | logw,dy=(0, ..., 0) for all n, it follows
by Lemma 5.2 that each w, satisfies (5.1). Hence for each » there is a function f, in 4,
such that

f| 1—f,|? w,dm <exp [flog wndm] +1/n=1/n+ |Z(m)| * exp [flog (w-{—l/n)dm] . (54)

On the other hand,
f] 1—fPwdm < f [1—f. P (w+1[n)dm < S"f‘ 1 —f, [P w,dm. (5.5)
Combining (5.4) and (5.5) we obtain
1 1 ~
fll — falPw dm<—+— | Z(m)|~* exp Ulog (w+1/n) d'm,] .

As n—oo the right side of the preceding inequality converges to exp [flog wdm]. Hence
A, (w) <exp [f log w dm], and the proof is complete.

In order now to complete the proof of Theorem 5.1, assume w satisfies (%) and that
p~! flogwdy is in C. Then there is a function A in A-! such that the function w, = |h|*w
satisfies f log w,dv=(0, ..., 0). Hence (5.1) holds for w,, and so

A, (w,) = exp [flog (|A]7w) dm] =|h(m)|” exp [flog w dm] .

This together with the trivial equality A (w,) = |h(m)|PA, (w) implies that w satisfies (5.1).

One question that arises is: if w satisfies (%) and (5.1), must p~! | log w dv belong to
£? Although we have been unable to answer this, some information will be obtained in
§ 10.

§ 6. Szegd’s second theorem

Our goal in the present section is to prove the following result.

THEOREM 6.1, Let v be a non-negative function in Lt satisfying (=) such that § log vdy

is in L. Then there is an outer function f in H' such that |f| =v almost everywhere.

Remarks. 1) Outer functions are defined in § 4.
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2) The function f is uniquely determined by v to within a multiplicative constant of
unit modulus. This follows from results to be obtained in the next section. (see the reason-
ing at the end of the proof of Lemma 7.3).

3) If v is in L? for a p>1 then f is in H?, by the results of §4.

The proof of Theorem 6.1 will be accomplished in a series of lemmas. We first need
to know that functions in H” satisty Jensen’s inequality. This is proved by an argument
which, although well-known, we have been unable to locate in the literature. We therefore

include the details here.

LeMmma 6.1. If f is in HY(1 <p <o) then

log)fm] < [10g] .

Proof. Let {f,}7° be a sequence of functions in 4 converging to f in L?. Then each f,

satisfies Jensen’s inequality, and so for any & >0 we have

log | fu(m)] <flog (1] +&)dm.

As n—oo the left side goes to log|f(m)| and the right side to {1log (|f| +&)dm (because
log (|f.| +¢&)—>log (|f| +¢) in L'). Thus log|f(m)|< [log (|f| +¢)dm. The desired in-
equality is now obtained by letting ¢ -0 monotonically.

The next lemma is purely measure theoretic.

LeMmA 6.2. Assume 1<p<oco, and let {f,}i° be a sequence of functions converging

weakly in L? to the function f. Then |f| <lim sup|f,| almost everywhere.

Proof. It will suffice to show that {z|f|dm < [z lim sup|f,|dm for every Borel set E.

By weak convergence we have
f [#] dm =f f—”—l dm=limf fn il dm<lim supf |fn] dm.
E g | e | E
Hence it only remains to show that

lim supJ‘ |1, dm éf lim sup|f,|dm. (6.1)
E B

For this, let & be a positive real number, and for each positive integer & let

E(e, k) = {z€H : |f,(x)| <e+lim sup|f,(z)| for all j>k}.
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Then U E(e, k)=E. For j=k we have

[itam=[ jppams | jglam

<ot [ tim sup | am+ 1, fmt B, B,
E

where ¢=p/(p—1). But
lim m(E — E(e, k)) =0,

k=00
and sup,||f,||,<ec by weak convergence. Inequality (6.1) now follows, and the proof of
the lemma is complete.

Although it is superfluous to our needs, we mention that Lemma 6.2 is also true
when p=1. To show this, the only modification one must make in the above proof is
the use, in place of Hélder’s inequality, of the fact that when a sequence {f,} converges
weakly in Li(m), the sequence of measures {|f,|dm} is uniformly absolutely continuous
with respect to m [8, p. 294].

The next lemma is the crucial step in the proof of our theorem. As with the crucial
lemma of the preceding section, its proof depends on an application of Lemma 1.1. For

the rest of this section we let » denote a non-negative function in I satisfying ().

LeMMA 6.3. Assume v is in L® and satisfies § log vdy=(0, ..., 0). Then the conclusion
of Theorem 6.1 holds.

Proof. Take a sequence {u,} in Cy(X) such that u,—>log v in Li(g) for every o in M(e),

and also almost everywhere. Assume also, as we may, that the sequence {u,} is uniformly

Upy = Uy — (fundv) ‘log|Z|.

Because [ w,dv—> | log vdy=(0, ..., 0), the sequence {u,} is uniformly bounded above and

converges to log v in I! and almost everywhere. Also | %, dv=(0, ...,0) for every n. There-

bounded above. Define

fore, by Lemma 1.1, there are functions g, in 4 such that Reg,<log u, and

lim Reg, (m)= lim | u, dm= flog vdm. (6.2)
n->00 n-—>o00

Let f,=exp (g,). Then |f,| <exp (u,), and so the sequence {f,} is uniformly bounded.

We may therefore assume that it converges weakly in L? to some function f. By the pre-

ceding lemma,
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[f] <lim sup|f,| <lim exp (u;) =2 (6.3)
almost everywhere. Therefore, by Jensen’s inequality (Lemma 6.1),
log|f(m)| < flog]f] dm < flog vdm. (6.4)
On the other hand,

log |f(m)| = lim log |f,(m)| = lim Reg,(m) = flog vdm

by (6.2). This together with (6.3) and (6.4) implies that log|f(m)| = { log|f|dm and that
|f] =v almost everywhere. The proof is complete.

LemmA 6.4, Assume v is in L2 and | log vdy = (0, ..., 0). Then the conclusion of Theorem
6.1 holds.

Proof. For n=1, 2, ... define

v, =1in (v, n), o, =flog vady, vy =v,|Z| %,
By the monotone convergence theorem we have «,—> (0, ...,0). Therefore v, —v pointwise,
and the sequence {v,} is' bounded in L2. Furthermore, the v, satisfy the hypotheses of
the preceding lemma. Therefore there is for each n an outer function f, in H? such that

|f2] =vn a.e. The sequence {f,} is bounded in H? and so has a subsequence converging

weakly in H? to a function f. By Lemma 6.2
|f] <lim sup|f,| =lim v, =v

almost everywhere. Hence by Jensen’s inequality
log|f(m)| <flog]f| dm <Jlog vdm.

On the other hand, since log|f,| =log v, ~log v in L1, and since each f, is an outer func-

tion, we have
flog vdm = lim flog |f,| dm = lim log |f, (m)| =log |f(m)|.
n—=>oQ n—>0

It follows that log|f(m)| = log|f|dm and that |f] =v almost everywhere. The proof is
complete.

LeMMA 6.5. The conclusion of Theorem 6.1 holds if  log vdy=(O, ..., 0).
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Proof. In this case there is by Lemma 6.4 an outer function g in H? such that |g| =v*
almost everywhere. Let f=g2 Then f is in H' and [f| =v almost everywhere. Moreover,
because f(m)=g(m)?, it is a triviality to verify that f is an outer function.

We can now complete the proof of Theorem 6.1 in a few words. Namely, suppose
only of v that [ Iog vdy belongs to £, and choose an % in A~! such that { log vdy = { log|A|dy.
Then by Lemma 6.5 there is an outer function g in H* such that |g| =v|k|~* almost every-
where, and the function f=gh meets the requirements of the theorem.

For the purpose of proving the discreteness of £ we need the following (apparent)

extension of Theorem 6.1.

LemMaA 6.6, Assume v is in L2, Then the conclusion of Theorem I is still true even if

§ log vdy only belongs to the closure of L.

Proof. Under the hypotheses there is a sequence of o-tuples {«,}i° and a sequence
of outer function {f,}{° in H? such that «, (0, ..., 0) and

1] =] 2]

almost everywhere. The sequence {f,} is then bounded in L? and so we may assume that
it converges weakly to a function f. That f is an outer function and |f| =v almost every-
where can now be proved by the same argument used in the proof of Lemma 6.4.

If f is an outer function, must { log|f|dv belong to £? It is not difficult to show that
the answer is affirmative for the algebras on Riemann surfaces cited in the introduction.

In § 10 we shall see that this question is equivalent to the one raised at the end of § 5.

§ 7. Generators of H?

A function f in HP(1<p<oo) is called a generator of H? if the linear manifold Af is

dense in H”. In the present section we prove the following result.

TueorEM 7.1. If f is an outer function in H? and if |f| satisfies (), then f is a gen-

erator of H".

As usual, the proof will be chopped up into a series of lemmas. We denote by Hj
the set of functions f in HP such that f(m)=0. A non-negative function w in L1 will be

called a Szegd function for the exponent p if Ay (w)=exp [[ log wdm]>0.

Lemma 7.1. If f is a generator of H® then f is an outer function and [f[° is a Szegd

function for the exponent p.
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Proof. Assume f is a generator of H”. Then obviously f(m) 40, and so log|f|? is in L*
(by Jensen’s inequality). Furthermore 4,f is dense in Hj, and so the L?-distance of f from
A,f is not greater than |f(m)|, the distance of f from the function f—f(m). It follows that

[omyb> int [1~gfl dm= A,

But |f(m)]? < exp [f loglfl”dm] (1.1)
by Jensen’s inequality, and so

A(|fIP) <exp [flog Tk dm] . (7.2)

Hence, by Lemma 5.1, inequality (7.2) must be an equality, and therefore inequality
(7.1) is also an equality. This completes the proof.

LeMmA 7.2. Assume that 1 <p < oo, and let f be an outer function in H® such that |f|®

is a Szegd function for the exponent p. Then f is a generator of HP.

Proof. If ¢ is in H? then by Holder’s inequality

(flf—gide)l/p >f|f-gldm> |f(m)|.

Furthermore equality is achieved here by the function g=f—f(m). It follows that the
Lr-distance of f from Hf is equal to |f(m)|. Since L? is uniformly convex, the function
f—f(m) is the unique function in Hj for which this distance is achieved.

Now let M be the closure in L? of 4,f. Then by our hypotheses on f we have

int [li=fo dm=exp | [1og i dm] = 1mP.

In other words, the L*-distance of f from M is equal to |f(m)]|. Since L? is uniformly con-
vex, this distance is achieved by a unique function in M. This together with the observa-
tions of the preceding paragraph and the inclusion M < Hj enables us to conclude that
f—f(m) belongs to M. Hence the constant function f(m) belongs to the L?-closure of Af.
Therefore the L?-closure of Af, being invariant under multiplication by 4, must contain

4 and consequently is all of H?, as desired.

CoroLLARY. If f is an outer function in H?(1<p<oo) such that |f| satisfies (%) and
§ log|f|dv belongs to C, then f is a generator of HP.
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Proof. This is an immediate consequence of the preceding lemma and Theorem 5.1.

Lemwma 7.3. Let f be an outer function in H* such that |f| satisfies (%) and § log|f|dv =
(0, ..., 0). Then there is an outer function g in H? such that f=g2, and f is a generator of H.

Proof. By Theorem 6.1 there is an outer function g in H? such that |g|2=|f| almost
everywhere. Let f, —g2. Then f, is an outer function in H!. The function ¢ is a generator
of H? by the preceding corollary, and it is a triviality to show from this that f, is a gener-
ator of H'. Thus there is a sequence {#,}{" in 4 such that k,f, —~1 in L. If we let h=f/f,,
then we have |k| =1 almost everywhere, and the sequence {k,f} converges in L! to h.
Hence 4 is in H'. Because f=hf, we have f(m)=h(m)f,(m). But |f(m)| = |f,(m)| because
f and f; are outer and |f|=|f,| almost everywhere. Hence |h(m)|=1, which together
with || =1 implies that 4 is a constant. Therefore f is a constant multiple of f,, and the
proof is complete.

Before completing the proof of Theorem 7.1 we prove a factorization theorem. We
shall call a function b in H” an inner function if for some o-tuple o we have |h| =|Z|".

(Thus our notion of inner function depends on the choice of Z, ..., Z,.)

THEOREM 7.2. Let f be a function in H”(l <p<co) such that |f| satisfies (x). Then
there are in H? an outer function g and an inner function b such that f=gh and § log|g|dv=
(0, ..., 0). The functions g and b are uniquely determined by f to within multiplicative con-

stants of unit modulus.

Proof. Let a={ log|f|dv. By Theorem 6.1 there is an outer function g in H? such
that |g| =|f||Z|™ Let k=f/g. By what we have proved above, the function ¢ is a gen-
erator of H”, and so there is a sequence {£,}{° in 4 such that h,g—>1 in L?. Because & is
bounded, it follows that A,f=h,hg >k in L?. Thus & is in H? and so is an inner function.
This proves the existence of the desired factorization. The uniqueness follows by the
reasoning at the end of the proof of Lemma 7.3.

We are now able to complete the proof of Theorem 7.1. Let f be an outer function
in H” such that |f| satisfies (%), and let f=gh be the factorization of the preceding theo-
rem, where g is outer with flog|g|dy=(0,...,0) and % is inner with |h|=|Z[*, =
flogl fldv. Because f(m)=g(m)h(m), it is clear from Jensen’s inequality that » must be
an outer function. As we already know from Lemma 7.3 that g is a generator of H?, the
function 4 belongs to the L*-closure of Af, and so all we need show is that 4 is a generator
of H?,

By the Dirichlet approximation theorem [12, p. 170], there exist a sequence of posi-
tive integers {k,}i° and a sequence {y,}?° of o-tuples with integral coordinates such that
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lim |k, —y,|=0
n—>000
(where |8]| denotes the supremum norm of the o-tuple §). Let &,=k,0t—y,, and define
hy,=hnZ "n,

The functions A4, are then outer functions in H? and belong to the L?-closure of 4%. Because

|k2] =]Z|» we have |h,| -1 uniformly. Because %, is outer we have
| By(m)| = exp [flog | %) dm] =~ exp [flog |Z|n dm] =|Z(m)[r—~1.
Thus we may assume that lim A,(m) exists, say lim A,(m)=A. We then have
fu-hnp dm =1 +f|hn|zdm_2m[zhn(m)] L1s1-2]Ak =0,

i.e. h, 4 in L2 Therefore a subsequence of {k,} converges to A almost everywhere. Because
the &, are uniformly bounded in supremum norm, this subsequence converges to A in L?,
and so the constant function A belongs to the L?-closure of 4h. The proof is complete.

From Theorem 7.1 and Lemma 7.1 it follows that if f is an outer function in H? such
that |f| satisfies (), then |f|? is a Szegé function for the exponent p. Once we have in
our possession a more precise form of Szegd’s first theorem, we shall be able to prove a
converse of this. Namely, we shall show that if » is a non-negative function in L? such
that | log vdm > — co and v” is a Szegd function for the exponent p, then v is the modulus

of an outer function in H”. The following lemma is a preliminary result in this direction.

LrMmA 7.4. Assume 1<p<<oo. Let the positive function v in L* be bounded from 0,
and assume that v® is a Szegd function for the exponent p. Then there is an outer function f

in H? such that |f| =v~" almost everywhere.

Proof. By the uniform convexity of the space L?(v?dm), there is a function ¢ in the
LP(v?dm)-closure of 4, such that

fll —g]"v"dm‘= A (vP). (7.3)

Because v is bounded from 0 the function g is in Hf. Let f=1—g. By the arithmetic-

geometric mean value inequality and Jensen’s inequality,

flflp v?dm > exp [jl‘)g T dm] exp [flog v”dm]

= [f(m)]P exp [flog v"dm] = A, (v°).
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Therefore, by (7.3), both of the preceding inequalities are equalities. That the arithmetic-
geometric mean value inequality is an equality implies that |f|Pv” is constant almost
everywhere, and that Jensen’s inequality for f is an equality implies that f is outer. Hence

some constant multiple of f meets the requirements of the lemma,

§ 8. The discreteness of

Let X denote the space of multiplicative linear functionals on L with the Gelfand
topology. Under the Gelfand representation the algebra L*® is transformed into the algebra
C(X), and the subalgebra H= is transformed into a certain uniformly closed subalgebra
of C(X), which we denote by H®. It is not hard to show that H> separates points of X,
and so is actually a uniform algebra on X; the proof is essentially the same as that of the
corresponding fact for H® of the disk [16, p. 174].

The measure m induces a bounded linear functional on L® which is transformed by
the Gelfand representation into a bounded linear funetional on C(X). The latter is repre-
sented by a probability measure # on X. The measure # is multiplicative on H® and is
a Jensen measure for H* (by Lemma 6.1). Therefore # is also an Arens-Singer measure
for H*. We denote by ¢ the functional on H® induced by #. Let S be the real linear span
of the set of all Borel measures on X of the form u—7 with u a representing meas-
ure for ¢.

In the same way as we lifted m to obtain a measure s on X, we can lift each , to
obtain a measure 7, on X. The measures 7, belong to S, and so the dimension of S is at
least 6. We shall let # stand for the o-tuple of measures (%, ..., #;) and adopt the same
notational conventions with respect to # that we have been using up to now with re-
spect to v.

After these definitions we are ready to prove the main result of this section.
THEOREM 8.1. The set L is discrete.

Proof. The proof is merely an adaptation of Hoffman’s proof that the multiplicative
linear functionals on a logmodular algebra have unique representing measures [17, Theo-
rem 4.2].

Assume that £ is not discrete. Then because L is a subgroup of E°, its closure contains
a linear manifold B, of dimension ¢, 0 <o, <. Let B be the set of all functions % in Cy (X)
such that the o-tuple [ %d# belongs to B,. Then B is a subspace of Cx(X) of codimension

0 —0,. We now assert:

All representing measures for ¢ agree on B. (8.1)
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Once this has been proved the theorem will follow by contradiction. For (8.1) implies
that the dimension of S is at most ¢ —o,, while we have seen above that the dimension
of § is at least 0.

To prove (8.1) let 4 be any function in B. By Lemma 6.6 there are outer functions f
and g in H® such that |f| =e* and |g| =e ™. (Here w denotes the function in L® having
4 as its Gelfand representative.) Let u, and u, be any two representing measures for ¢.
Then

fexp (@) dmfexp (=) duy f 1| f 161dus > | fom) g(om)|

= exp [floglﬂdm] exp [flog|g|dm] =1

Hence for all real ¢ fexp (Pit) dpy f exp (ti)duy > 1. (8.2)

Also, the left side of (8.2) equals 1 at ¢=0. Thus the derivative with respect to ¢ of the left
side of (8.2) vanishes at £=0. But this derivative equals § @du, —{ 4du,, and so (8.1)
is proved.

The argument we just gave shows that all representing measures for ¢ agree on the
set of functions ¢ in Cp(X) satisfying [ 4d#=(0, ..., 0). It follows that S has dimension
at most 0. As we know that S contains 7, ..., #,, we may conclude that #,,...,7, span S.

The following conclusion is now immediate.

TurorEM 8.2. The functional ¢ on H® satisfies the conditions (I) and (I1) originally

smposed on .

Let £ denote the set of all o-tuples § log|h|dy with h an invertible function in H®.
From Theorems 8.1 and 8.2 it follows that f is diserete. Obviously f > £, but we do not
know whether the inclusion can ever be strict. This question turns out to be equivalent
to the one raised at the end of § 5, and we shall discuss it further in § 10.

In connection with Theorem 8.1 we make the following comment. We can map the
group A~ homomorphically onto £ by sending f onto f log|f|dv. As exp (4) is contained
in the kernel of this map, we get a homomorphism of A-1/exp (4) onto £. By Theorem
8.1, £ is a free Abelian group of rank ¢, and thus A~'fexp (4) has a free Abelian group
of rank o as a factor. Now a theorem of Arens and Royden [27] states that A-fexp (4)
is isomorphic to the first Cech cohomology group with integer coefficients of the maximal
ideal space of 4. So we see that our assumptions on ¢ put topological restrictions on the
maximal ideal space of 4, provided ¢ >0. (This observation was suggested by John Wermer.)
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In proving in the next section that the measures in S are bounded with respect to

m, we shall need the following information.

Lemma 8.1. If f is an outer function in HY such that |f| satisfies (3¢), then § log|f|dy
isin C.

Proof. Let o= [ log|f|dv. By Theorem 7.2 there is a factorization f=gh with g and A
in H', g outer, and |h| =|Z|*. Since f and g are both outer it is immediate from Jensen’s
inequality that » must be outer. Therefore A is a generator of H' (Theorem 7.1). Because
k is bounded and bounded from 0, it follows that AH'=H!. Hence there is an A, in H!
such that kh; =1. But then &, is the inverse of k in H®, and so [ log|k|dv =0 is in C.

The preceding lemma shows that the question raised at the end of § 6 is equivalent
to the question of whether ﬁ =L.

§ 9. The boundedness of the measures in S

Let N be the complex vector space spanned by the functions dy,/dm, ..., dv,/dm. To
prove that the measures in § are bounded with respect to m, we must show that N <L,
The first step will be to show that N = L2 Let N? denote the orthogonal complement of
A+ A in L2 (A bar over a space of functions denotes the space of complex conjugé,tes.)

LeMmmA 9.1. N=N2,

Proof. We first show that N2 N. Because N is closed under complex conjugation
and closed in L1, it will be enough to show that any real L® function % annihilating N
also annihilates N2. Without loss of generality we may assume that | wdm =0. By Theorem

6.1, for 0<r<1 there are outer functions f, in H® such that |f,| =¢™. Since
tog| ()] = [10g1,] dm = r [ 105 wdm 0,

we may suppose that f(m)=1 for all . Let the functions g, be defined by g,=(f,—1)/r.
We have

72 f |g.12dm = fe”“dm -1

Because  is bounded,

fe”“dm =1 -|—2frfu dm +0(r?) = 1+ 0(r?),

and therefore f [g.[2dm = 0(1),
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i.e. the family of functions {g,} is bounded in L2 Hence there is a sequence {r,} converging

to 0 such that the sequence {g,,} converges weakly in L2, say to the function g. Because

each g, is in Hg %o is g, which means in particular that | Re gdm = { udm. On the other hand
f]—1_ e*—1

Reg, < = s
r r

and the right side converges uniformly to » as r —~0. Hence if E is any measurable set,

then by weak convergence

JRegdm=lim Regrndm<fudm.
E n—>% JE E

Thus Reg<u almost everywhere, which together with the equality | Regdm = f udm im-
plies that Reg=wu almost everywhere. Therefore u is orthogonal to N2, which is the desired
conclusion. The proof that N2 N is complete.

Because N2 is contained in X it is finite dimensional and therefore closed in L. Hence
to prove the inclusion N< N2, and thereby complete the proof of the lemma, it will be
enough to show that any real L® function v annihilating N? also annihilates N. But if v
is as described then it is the real part of a function in H?, say v=Reh. By Theorem 4.3
the functions ¢" and e~ are both in H®, and so the g-tuple

flogleh|dv=fvdv

is in C. The same reasoning shows that ¢ § vdv is in £ for every real t. It therefore follows
by the discreteness of E that [ vdy=(0, ..., 0), i.e. v annihilates N, as desired. The proof

is complete.

LEmMa 9.2. If the real function u in L2 is bounded above and in the L! closure of A+ A,

then u annihilates N.

Proof. Let u be as described, and assume without loss of generality that »<0. We
first show that there is an outer function A in H* such that w=log|%|. Because u is real
and in the I! closure of 4+ 4, it is actually in the Lt closure of ReA. Hence there is a
sequence {g,} in 4 such that Reg,—w in L1 and almost everywhere. Let

E(n) = {z: Reg,(x)>0}.

Then lim Reg, dm=0.

n—> 00 E(n)
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Hence by Lemma 2.1, we can by passing to a subsequence assume that there are functions
fu in At such that log|f,| < —max (Reg,,0) and f,—1 almost everywhere. Let k,=
fn €xp (g,). Then |h,| <1 for all #, and so by passing to a further subsequence we may
assume that the sequence {,} converges weakly in L2, say to the function %4. Because
[h,] ~€* almost everywhere, we have by Lemma 6.2 log|%| <u almost everywhere. Thus

flog |A| dm < J‘u dm=1lim Reg,(m) = lim [Reg,(m) + log |f,(m)(]= lim log |%, (m)|
=log |A(m)| <J-Iog |h] dm.

It follows that log|h| =u almost everywhere and that log|k(m)| = log|h|dm (ie. h is
outer).

We may now conclude by Lemmas 8.1 and 9.1 that f udy is in L. But the same
reasoning shows that ¢ [ udy is in £ for every positive real number ¢, and so it follows by
the discreteness of L that Judv=(0, ..., 0), i.e. w annihilates N. The proof is complete.

It is now a simple matter to prove the result we have been aiming for.
THEOREM 9.1. N L™,

Proof. We first note that N is spanned by the set of functions of the form 1 —du/dm
with y a representing measure for ¢. Hence IV has a basis consisting of real functions that
are bounded above.

Let N® be the annihilator of 4 +4 in L=, and choose a basis «;, ..., %, for N, It is
obvious that N*<N. From here on we argue by contradiction, assuming that the last
inclusion is proper. Then by the observation of the preceding paragraph, there is a real
function u,., in N which is bounded above and which is not linearly dependent on u,, ..., u,.
Because the closure of 4+ 4 in L! has a codimension equal to dim (N®)=s, some non-
trivial linear combination of %, ..., #;,; must lie in this closure. The real and imaginary
parts of such a function then belong to both N and the L! closure of A -+ A. We conclude
that IV contains a non-null real function » that is bounded above and in the L' closure
of 4+ 4. By Lemma 9.1 % belongs to L2, and so we may apply Lemma 9.2 to conclude
that « annihilates . Hence in particular { u2dm =0, which is a contradiction. The theorem
is proved.

The result just proved, of course, enables us to simplify the hypotheses in many of
the preceding theorems. We see now that a non-negative function w in L' satisfies condi-
tion () if and only if { log w dm > — co. This will bold automatically if w is the modulus
of an outer function. In particular, therefore, Theorem 7.1 on generators of H? holds for

outer functions without restriction.
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§ 10. More precise forms of Szegé’s two theorems

For « a o-tuple of real numbers and 1<p<oo, let H**=|Z|*H?, and let the linear

functional @y, , on H?'* be defined by

(pp.zx(flzla) =f(m)|Z(m)|°‘, jedr.

Also let K(p, @) =||@p.«||P. By straightforward reasoning one can show that for p fixed,
K(p, o) depends continuously on c.
The next result we prove is a strengthened form of Szegd’s first theorem.

TurorEM 10.1. Let w be a non-negative function in L* such that | log wdm> — oo,
and let «= | log wdv. Then

A (w) = K(p, a/p)~! exp [flog wdm] , 1<p<oo. (10.1)

Proof. By Theorem 6.1, there is an outer function f in H” such that |f|?=w|Z|™*
Thus if we let g=f|Z|*”, we have |g[’=w, and so A (w)=A,(|g]?). Now A,(|g|")*" is
the distance in L? between g and the subspace of L? spanned by 4,g. By Theorem 7.1,
the linear manifold 4,/ spans H§. Therefore 4,9 spans the kernel of the functional

Q. asp> a0d consequently

@@ _|fm)}? | Zm)
“ Po.arp “p K(p,o/p)

Ap(lglp)
Because f and the Z, are outer functions,

| H(m)|P| Z(m)|* = exp [Jlog P |2 dm] = exp [Jlog wdm] )
and (10.1) follows.

CoROLLARY. Let w be a non-negative function in L such that § log wdm = — co. Then

Aj(w)=0.

Proof. For n=1, 2, ... let «,= [ log (w+1/n)dy. Then by Theorem 10.1,

A (w) <A (w+1/n) = K(p, o, /p)~* exp [flog (w+1/m) dm] . (10.2)

Now we have noted above that for p fixed, K(p, «) is a continuous function of «. Also,
it is easily seen that K(p, «) is constant on each coset of L. It follows that K(p, o) is
bounded from 0. Hence the right side of (10.2) goes to 0 as n->oco, and the corollary is
proved.

10 — 662903. Acta mathematica. 117. Imprimé le 9 février 1967.
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We are now able to complete the discussion of the relation between Szegé functions
and outer functions. Recall that a non-negative function w in L! is called a Szegd func-
tion for the exponent p if A (w)=exp [ log wdm]>0. It is proved in § 7 that if f is an
outer function in H” then |f| is a Szegd function for the exponent p. The following theorem

gives the converse of this result.

THEOREM 10.2. Let 1 <p < oo, Let v be a non-negative function in L? such that | log vdm >
— oo and such that v* is a Szegd function for the exponent p. Then there is an outer function

f in H® such that |f| =v almost everywhere.

Proof. Let a= { log vdy. By Theorem 6.1 there is an outer function g in H” such that
|g| =v]|Z|* Tt follows by the preceding theorem that |Z|* is a Szegd function for the
exponent p. Therefore, by Lemma 7.4, there is an outer function 4’ in H? such that |A'| =
|Z|™®. But then |A'|? is a Szegd function for the exponent p (Theorem 7.1 and Lemma
7.1), and so, again by Lemma 7.4, there is an outer function & in H? such that |h| =|A'| 1=
|Z|*. The function f=gh is then an outer function in H” and |f| =v, as desired.

At the end of § 5 we raised the following question: if w is a Szegd function for the
exponent p, must p~! | log wdy belong to £? The preceding theorem, together with Lemma
8.1 and the results of § 7, shows that this is equivalent to the question of whether E =L.
We see that the function K(p, «), which by Lemma 5.1 never exceeds 1, is equal to 1
precisely when « is in C

We make one additional remark on the problem of the equality of £ and f Let us
suppose for the sake of convenience that we have chosen Z,, ..., Z, and ,, ..., v, in such
a manner that L is the set of points in o with integral coordinates; the discreteness of
L enables us to do this. Suppose it is true that f:i:ﬁ. Then because f is discrete and con-
tains L, the points in £ must have rational coordinates. Hence if o is a point of £ not
in £, then for some positive integer ¢ the point y =qa is in L. By the reasoning used in
proving Lemma 8.1, there is an invertible function % in H® such that |A|=|Z|* The
functions A? and Z” are then outer functions with the same modulus and so one is a con-
stant multiple of the other. Hence for the correct choice of A we have A?=Z". The func-
tion Z? therefore has a ¢-th root in H®, although it has no ¢-th root in 4. Thus if E#C,
then in going from A4 to H® certain invertible functions acquire roots that they did not
originally possess. We know of no intuitive reason either for believing or disbelieving in
the possibility of this phenomenon.

The next result relates to Szegd’s second theorem.

THEOREM 10.3. Let v be a non-negative function in LP (1 <p<oo) such that
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flog vdm> — oo,

Then there is a function f in H® such that |f| =v almost everywhere.
The essential part of the proof is contained in the following lemma.

Lemma 10.1. Let o be a o-tuple in E°. Then there is a function b in H® such that

|h| =|Z|* almost everywhere.

Suppose the lemma has been proved, let v be as in Theorem 10.3, and let « = { log vdy.
By Theorem 6.1 there is a function ¢ in H” such that |g| =v|Z| . Thus, if % is the func-
tion of Lemma 10.1, then f=gh is in H? and |f| =v, as desired. It therefore only remains
to prove the lemma.

Our proof of Lemma 10.1 exploits an often used technique; namely, we shall obtain
the desired function % as one solution of a dual extremal problem. This is precisely the
method used by Tumarkin and Havinson (31] to prove a corresponding result about
analytic functions in finitely connected plane Jordan domains. The possibility of applying
this method in more abstract settings was suggested by Bishop [6].

Proof of Lemma 10.1. Let « be fixed, and let ¢ denote the supremum of |f(m)| as f
varies over the class of functions in 4 satisfying |f| <|Z|* If we let B=|Z|"*4 and
define the linear functional y on B by

w|Z| ) =fm) (f€4),

then ¢ is just the norm of y (computed with respect to the supremum norm on B). There-
fore, by the Hahn-Banach and Riesz representation theorems, the functional y is repre-
sented by a Borel measure u’ on X of total variation ¢. Letting du=|Z| *du’, we have
§1Z“d |u| =c and { fdu=f(m) for all f in A (ie. u is a complex representing measure
for ¢). We now assert that the measure y is mutually absolutely continuous with m. In
fact, let u, and yu, be the absolutely continuous and singular components of g with respect
to m. Because the measure y —m annihilates 4, it follows by the generalized F. and M.
Riesz theorem (Theorem 3.1) that the singular component of y—m, i.e. u,, annihilates 4.

Therefore the measure [Z [“d,ua represents g, and we have
o< [12ralnl < [ 12 1) + [12alm] =

It follows that u=p,, ie. u<<m. We must now show that du/dm cannot vanish on a

set of positive m-measure. For this we note that if / is in 4, then
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Jn=n|2 lam=| [a=nau| -1
dm ’

and so Ay(|du/dm|)>1>0. But if du/dm vanished on a set of positive m-measure we would
have f log|du/dm|dm= — co, which would imply by the corollary to Theorem 10.1 that
A(|dujdm|)=0. This completes the proof of the assertion that y and m are mutually
absolutely continuous.

Let {f,}i° be a sequence of functions in 4 such that |f,| <|Z|* for all » and f,(m)=
§ f2du—c. Because bounded sets in L® are weak-star relatively compact, this sequence
has a weak-star cluster point %, and clearly |k|<[Z|* almost everywhere modulo m.

Moreover, | hdu=c (because u <<m). If we write the last equality in the form

fh|z|-“|z|“dﬂ=c

and recall that § |Z|*d|u| =c, we see that we must have |h||Z] *=1 almost everywhere
modulo g, and therefore also modulo m. The proof of Lemma 10.1 is complete.
Tumarkin and Havinson {31] have shown that in the case of a finitely connected
plane Jordan domain, the extremizing function % is continuous to the boundary and has
less zeros in the domain than the latter’s degree of connectivity. One suspects that in the
present abstract setting, the corresponding property of A should be that it generates an
invariant subspace of H? whose codimension in H? does not exceed ¢. However, we do

not know how to prove this.

§ 11. Annihilators

In the present section we obtain information on the annihilators of 4 in the spaces
L?. We need first some facts about invariant subspaces. A (closed) subspace of L? will

be called invariant if it is invariant under multiplication by the functions in A.

Lemma 11.1. Let  be a function in L? (L<p< oo) such that § log|f|dm> — oo, let
o= log|f|dv, and let M be the invariant subspace of LP generated by f. Then there is a
Junction v in L®, with |v| =|Z|* almost everywhere, such that M =vHP. The function v is

uniquely determined by f to within a multiplicative constant of unit modulus.

Proof. By Theorem 6.1 there is an outer function £, in H” such that |f,|=|f||Z|™*
Letting v =f/f;, we have |v| =|Z|* If M, is the invariant subspace generated by f;, then
‘we obviously have M =vM,. By Theorem 7.1, M, =H?, and so M =vHP, as desired.
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To prove the uniqueness of v, suppose w has the same properties. Then w-1wH? = H?,
and so w~lv is a generator of H?. Therefore w—'v is an outer function. This and the fact
that |[w—lv| =1 almost everywhere imply that § wlvdm=1, which is possible only if

w~lv =constant almost everywhere. The proof is complete,

Lremma 11.2. Let the subspace M of LP (1 <p < o) .be invariant under A. Then M N L®
ts LP-dense in M.

Proof. Let f be any function in M and let M’ be the smallest invariant subspace of
L? containing the function || +1. It follows from Lemma 11.1 that M’ NL*® is L*-dense
in M’'. Let g=f/(|f] +1). Since multiplication by g is a bounded operator on L?, the linear
manifold gM’ is contained in the invariant subspace of 4 generated by the function
g(|f| +1)=f. Hence gM’< M, and it is clear that (gM’) N L* is L*-dense in gM’. Therefore
f is in the L?-closure of M N L*®, and the lemma is proved.

TaEOREM 11.1. (i) The annihilator of 4y in L? is HP + N, 1 <p< oo,
(ii) The annihilator of A+N in LP is Hf, 1 <p < co.

Proof. The case p=2 is an immediate consequence of Lemma 9.1. The cases 1<<p <2
follow from the case p=2 via Lemma 11.2. The cases 2<p< oo follow from the cases
1<p<2 by a simple duality argument.

We also have information on the real annihilating measures of 4, namely, that the
only real annihilating measures of 4 that are absolutely continuous with respect to m

are the measures in 8. This is the content of our next theorem. First a lemma is needed.
Lemma 11.3. The only real functions in H' are the constants.

Proof. Let f be a real function in H! such that f(m)=0. Then by Jensen’s inequality,
for any real number ¢,

flog|1+t/|dm =0.
This implies by [17, Lemma 6.6] that f=0 almost everywhere.

TaEOREM 11.2. If the function w in L* annihilates A4 + A, then w belongs to N.

Proof. We may obviously assume without loss of generality that w is real. By Theorem
11.1 there are a function % in Hj and real functions « and v in N such that w=h4-u+iv.
We then have Imh= —wv, and so by Theorem 4.3 the functions e¢” and e ** are in H®.

Hence the o-tuple { log|e™|dy={ vdv is in L. The same reasoning shows that ¢ § vdy is
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in L for all real t, and so § vdy=(0, ..., 0) because C is discrete. This means that » annihi-
lates N, and therefore | v?dm =0, i.e. v=0. Hence we have w=Ah+u, and so % is a real

tunction in H{. Consequently =0 by Lemma 11.3, and w=wu, as desired.

§ 12. Gleason parts

Two multiplicative linear functionals on a uniform algebra are said to lie in the same
part if their difference has norm less than 2. This notion was introduced by Gleason in
[10], where he observed that the relation of lying in the same part is an equivalence rela-
tion. Thus the maximal ideal space of a uniform algebra decomposes into disjoint parts,
and one can show that these parts are the largest sets on which one can hope to impose
an analytic structure {10].

B. V. O’Neill has shown that in a hypo-Dirichlet algebra, the Arens-Singer measures
of two functionals in the same part are mutually boundedly absolutely continuous [24,
Lemma AJ. His proof can with only minor modifications be carried through under the hypo-
theses of the present paper. For the sake of completeness we shall present the details.
First a lemma about general uniform algebras it needed. Its proof can be found (essentially)
in Hoffman’s logmodular paper [17, Lemma 7.5).

Lemma 12.1. If p;, and g, are multiplicative linear functionals on a uniform algebra,
then the following are equivalent.

(i) y, and y, are in different parts.
(ii) There is a sequence of functions {f,} in the algebra, with |f,| <1 for all n, such that

1/)1(fn)—>0 (M’MZ Wz(fn)l -1

TarorEM 12.1 (O’Neill). Let ¢, be a multiplicative linear functional on A lying in the
same part as @, and let m, be an Arens—Singer measure for @,. Then my is boundedly absolutely

contrnuous with respect to m.

Proof. Assume the conclusion of the theorem is false. Then there is a sequence {u,}
of non-negative functions in C(X) such that | u,dm—>0 and [ u,dm, —>co. By Lemma 2.1,
we can by passing to a subsequence suppose that there are functions f, in A~? such that
[f.] <exp (—u,) and f,—~1 almost everywhere modulo m. We then have

o(fn) = ffndm"l, [@1(fa)| =exp [flog]fnldml] <exp [— fun dml} 0.

As also |f,]| <1 for all n, it follows by Lemma 12.1 that ¢ and ¢, lie in different parts.
This contradiction proves the theorem.



THE H? SPACES OF A CLASS OF FUNCTION ALGEBRAS 151

Let ¢, and m, be as in the preceding theorem, and let S; be the real linear span of
the set of measures of the form g, —m, with 4, a representing measure for ¢,. If u, is any
representing measure for ¢;, then the negative component of y, —m, is boundedly abso-
lutely continuous with respect to m, and therefore also with respect to m, so that m-
d(u, —m,) is a representing measure for ¢ whenever 4 is a sufficiently small positive real
number. We may conclude that 8, is contained in 8. Thus ¢, satisties the conditions that
we originally placed on @, and we can interchange the roles of ¢ and ¢, in the above reason-
ing. In particular, m is boundedly absolutely continuous with respect to m,, and 8, =S8.

We assume explicitly for the remainder of this section that ¢>0. We shall show that
then the part containing ¢ is non-trivial, i.e. that it contains a functional other than .
For this purpose we introduce a class of kernel functions in the space H2. If « is any o-tuple
of real numbers, we can obtain a new inner product on H?2 by replacing the measure m
by the measure |Z [**dm. Let B, denote the kernel function with respect to this new inner
produect for the functional on H? induced by m. In other words, then, B, is the unique
function in H? such that

f(m) = ffEa |Z|2“dm

for all f in H2. The object of the next few lemmas is to show that there is an « such that
B, is mot an outer function. Once this has been done the non-triviality of the part con-

taining ¢ will follow without great difficulty. For any o, let ¢, =|[|Z[*|,.
Levma 12.2. The map o.— B, is continuous in the L2 norm.

Proof. We prove first the following subsidiary assertions.

(i) § | B,[?dm stays bounded as o varies over any bounded set.

(ii) The map o—B,(m) is continuous.

Proof of (i). Because

J[BOLI2 dm < 6_2“f | B,* |Z|** dm = c_y, B,(m) < c_zaj | B, |dm,

it will be enough to show that § | B,|dm stays bounded as « varies over any bounded set.
But

.= [1Bdan< (180121 an < ([18.F121<am) = @yt <[ am) "

Therefore § | B,|dm <c_,,, and the desired conclusion follows.
Proof of (ii). We have
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B, (m)= fBa By | Z[* dm, Bg(m) = Bg(m) = fBaEﬂ |Z[** dm.

Therefore | B,(m) — By(m)| < fl B, Bs|

< ( f lB,,de)i ( f lBﬁlzdemax

and the desired continuity follows by (i).

2~ 2] m

e~ 2P

b

We can now complete the proof of Lemma 12.2. We have
El—J|Bu-Bﬂ|2dm<lea—BﬂIZIZIZ“dm=f|B“|2|Z|2“dm~fB¢EﬁlZ|2°‘dm
-2a
- [BoBplapean + [|Bi 2P0am+ (1Bl (2~ 1217 dn

)JIBﬁizdm,

< Butm) ~ Byt) + (max || 22~ | 2P?

and the desired continuity follows by (i) and (ii).
Lemma 12.3. f log| B,|dm > — oo for all a.

Proof. By Jensen’s inequality,

exp [flonguldm] > | B,(m)| =f|Ba|2 |Z|**dm > 0.

LeMma 12.4. Suppose {u,}7° is a sequence of non-negative functions converging in L
to the function uy. Suppose further that log u, is in L', n=0, 1, 2, ..., and that § log u,dm —~
f log uydm. Then log u, —log u, in L.

Proof. As is easily seen, we may assume without loss of generality that «, —u, almost
everywhere. If it happens that w,>1 for all n, then |log uy—log ,| <|u,—u,| and the
desired conclusion is immediate. If, on the other hand, it happens that u,<1 for all x,

then we have
w, = log uy —log u, = log u,, (12.1)

fwndm -0, (12.2)

w, >0 almost everywhere. (12.3)
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If E, is the set where w, <0, then (12.1) and (12.3) together with the dominated con-
vergence theorem give |z, w,dm —0. Hence, by (12.2),

f|wn|dm = fwndm—2f w,dm —0,
En

and so in this case also the desired conclusion holds. To handle the general case we simply
note that log u,=log max («,, 1) +log min (u,, 1) and apply the two special cases just
treated.

LeMMA 12.5. If the map o—§ log|B,|dm is continuous, then the map a—log|B,| is

continuous in the L' norm.
Proof. This follows immediately from the three preceding lemmas.
Lemwma 12.6. There is an « such that B, is not an ouler function.

Proof. Assume the lemma is false. Then we have § log| B, |dm=log|B,(m)| for all «,
and so it follows by Lemmas 12.2 and 12.5 that the map o —{ log| B, |dv of E’ into itself
is continuous. The range of this map is therefore a connected subset of E°. But also this
range is contained in the discrete set E (Lemma 8.1), and therefore it must consist of a
single point. On the other hand, if y is a ¢-tuple with integral coordinates, then a simple
computation shows that B, :WZ"’. Hence the range of the map o—f log|B,|d»
contains all o-tuples with integral coordinates. This contradiction proves the lemma.

Is the map a—f log|B,|dm continuous? We suspect that this is so but have been
unable to prove it except in the case o=1. As observed in the above proof, the continuity
of the map «—f log| B,|dm implies the continuity of the map o~ [ log|B,|d». Once the
latter is known one can show using topological considerations that the map o — § log}| B, |dv
is surjective, and from this and the factorization theorem (Theorem 7.2) it follows that
for each o-tuple § there is a function % in H*® such that = |Z|® almost everywhere. Of
course, we have already proved this last result (Lemma 10.1). However, the proof just
sketched would be interesting, we feel, if the gap in it could be filled.

Before stating the next lemma we mention that the functions B, are all bounded.
This follows from Theorem 9.1, because the measures

B.F 2P,
B, (m)
are representing measures for ¢.

LemMma 12.7. For any o-tuple o, the invariant subspace of H? generated by the function

B, has a codimension in H? of at most o.
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Proof. Let M and K be the closures in L2 of B, A4 and B, A, respectively. (Thus M
is the invariant subspace of H? generated by B,.) Let L?(x) denote the L? space of the
measure |Z|**dm. Then L? and L2(«) consist of the same (classes of) functions, and the
identity map of either onto the other is bounded. Hence H2, M and K can all be regarded
as subspaces of L*(x). It is easily seen that K is orthogonal to H? in L*(«), and so we can
prove the lemma by showing that the orthogonal complement of M + K in L*x) has a
dimension of at most ¢. But if J is this orthogonal complement, then the subspace B, |Z[**J
is orthogonal to 4 + A4 in L? and so its dimension is at most ¢ (Lemma 9.1). Because B,
and |Z[** are non-zero almost everywhere, it follows that the dimension of J is at most
o, as desired.

We are finally able to prove the result we have been aiming for.
THEOREM 12.2. The part containing ¢ is non-trivial.

Proof. By Lemma 12.6 we can choose a o-tuple « such that B, is not an outer func-
tion. Let M be the invariant subspace of H? generated by B, and let J be the orthogonal
complement of M in H2 The subspace J is non-trivial (Lemma 7.1) and finite dimensional
(Lemma 12.7). Let P be the orthogonal projection in L? with range J. For each f in H*®
let the operator 7', on J be defined by

T.h=P(fh), hEJ.

It is easy to show that T,7,=T,, for all f and g in H®. Hence {7';: f€ H*} is a commuting
family of operators on a finite dimensional space, and so this family has a common eigen-
vector, say hy. We may suppose that § |k,[*dm=1. For f in H* let 1(f) denote the eigen-
value of 7', corresponding to the eigenvector ,. Then 9 is a multiplicative linear functional
on H®, and so p=¢|4 is a multiplicative linear functional on 4. If f is in H*, then fh,—
P(f) by is orthogonal to J, and therefore

() = ffl h012 dm.

Hence |ky|*dm is a representing measure for . This implies that ¢ and y are in the same
part, because if two functionals are in different parts then any representing measure for
the one is singular with respect to any representing measure for the other [11, Proposi-
tion 4]. It remains to show that p=tp. Now ¢ is weak-star continuous. Therefore, if y
were the same as @, then ¢ would equal ¢ (the functional on H*® induced by m), because
A is weak-star dense in H®. But the function B,%, belongs to M and so is orthogonal to
h,y. Hence
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#(B.) = [ Bhofydm 0,

while, on the other hand, ¢(B,) = B,(m)=0. The proof is complete.

§ 13. Invariant Subspaces

We shall say that an invariant subspace M of L? (1<p<oo) is of type B if 4, M is
not dense in M. Given a function f in L?, the invariant subspace of L? generated by f is
of type B if and only if A,(|f|?)+0. By Lemma 5.1 and the Corollary to Theorem 10.1,
this will be true if and only if § log|f|dm > — co. Moreover, when the latter happens the
invariant subspace of L? generated by f is by Lemma 11.1 of the form wH? where w is a
function in L® that agrees in modulus almost everywhere with |Z|* for some o-tuple of
real numbers «. We shall call such a function w a rigid function and such a subspace wH?
a Bewrling subspace. On the basis of what is known about logmodular algebras and the

like (see for example [28]), it seems reasonable to make the following

CoNJECTURE. Every invariant subspace of LP of type B is @ Beurling subspace.

We have been unable to prove this conjecture in general, but have managed to reduce
the problem somewhat. The reduction is described in the present section. It will enable
us in the next section to treat the case of finite Riemann surfaces. We have succeeded in
proving the conjecture for the case =1, and this proof is given at the end of the present
section. ,

For the rest of this section we confine our attention to the case p=2. The means of
relating invariant subspaces in L? to invariant subspaces in L? is provided by Lemma
11.2. Let @ be the Gleason part containing ¢. For v in & we let A4, denote the kernel of
y and HE the closure of 4, in H2. (Thus 4,=4, and H=Hj}.) If y ¢ then H} contains
a function f such that f(m) =0, and from this it follows that H? is of type B. It does not
seem immediately evident that HZ is of type B. Of course, this conclusion is implied by
the above conjecture, because Hj is of type B with respect to ¢ for any y in @ distinct
from @. What we shall prove is that if the above conjecture holds for the subspaces H;,

(p €6), then it holds in general.

TaEOREM 13.1. If the subspace H3 is a Beurling subspace for every v in G, then every

tnvariant subspace of L2 of type B is a Beurling subspace.

The proof of the theorem will be relegated to three lemmas.
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Lemma 13.1. Let M be an invariant subspace of L? of type B and let h be @ non-zero
function in M which is orthogonal to A, M. Then the invariant subspace of L* generated by

h has a codimension in M of at most ¢.

Proof. The proof is about the same as that of Lemma 12.7. Assume for convenience
that { |k[*dm =1. If f is any function in 4,, then f and fh are orthogonal, and therefore
§ f|2[*dm=0. This implies that |%|2dm is a representing measure for . Hence % is bounded
and f log|h|dm> —co (the latter by the corollary to Theorem 10.1). Let J be the orthogonal
complement in M of the invariant subspace generated by %. Then because 4, is orthogonal
to M, the subspace J is orthogonal to h4 +hA,. Therefore AJ is orthogonal to 4 +4,,
and so the dimension of 4J is at most ¢ (Lemma 9.1). Since % is non-zero almost everywhere,

it follows that the dimension of J is at most o, as desired.

LeMMA 13.2. Assume that H. is a Beurling subspace, and let w be a rigid function
such that H:=wH?. Let M be any invariant subspace of L? of type B. Then wM has codimen-

ston one in M.

Proof. We first note that wM equals the L2 closure of 4, M. In fact, that 4,M is
contained in wM is trivial, and that wM is contained in the L? closure of 4, M follows
because w is in the weak-star closure of 4,. Now suppose the Jemma is false, i.e. that the
orthogonal complement of wM in M has codimension greater than one. Choose a non-zero
vector A, in this’orthogonal complement, and let M, be the invariant subspace of L?
generated by k. Let J be the orthogonal complement of M, in M, let P be the orthogonal
projection in L? with range J, and let the operator 7 on J be defined by T'f=P(wf). The
adjoint of 7 is then given by T™*f=P(wf). Now M, is a Beurling subspace, and so the ortho-
gonal complement of wM; in M, is spanned by %,. Therefore any non-zero vector in M
orthogonal to both wM and A, must be in J. We have assumed that there is such a vector,
and consequently the operator 7™ has 0 as an eigenvalue. By Lemma 13.1, J is finite
dimensional, and thus 7' has 0 as an eigenvalue. It follows that there is a non-zero vector
hy in J such that wh, is in M. Let M, be the subspace spanned by M, and h,. Because
multiplication/by w is an isomorphism on L2, the subspace wM, has codimension one in
wM,. But this is absurd because obviously wM; =wM, This contradiction proves the
lemma.

By Lemma 13.1, if M is an invariant subspace of L? of type B, then there is a funec-
tion in M that generates an invariant subspace whose codimension in M is finite. Hence

the proof of Theorem 13.1 will be complete once we have proved the next lemma.

LeMMA 13.3. Assume that HZ is a Beurling subspace for every y in G. Let M be an
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tnvariant subspace of L? of type B, and let h; be a function in M that generates an invariant
subspace having finite codimension §>0 in M. Then there is a function in M that generates

an tnvariant subspace of codimension 6 —1 in M.,

Proof. Let M, be the invariant subspace of L? generated by %, and let J be the ortho-
gonal complement of M, in M. Let P be the orthogonal projection in L? with range J,
and for f in 4 let the operator 7', on J be defined by T,k =P(fk). As in the proof of Theo-
rem 12.2, the family of operators {T'f: f€A} is commutative, and so this family has a
common eigenvector hy. For fin A4 let y(f) denote the eigenvalue of 7', for the eigénvector
hy. Then just as before, 9 is a multiplicative linear functional on 4 lying in the part @
(see the proof of Theorem 12.2). Let w be a rigid function such that Hﬁ:sz. Also let
M, be the subspace spanned by M, and k,. If fis in A, then fh, is orthogonal to J and
therefore in M,. It follows that M, is an invariant subspace and that wM, is contained
in M,. But wM, has codimension one in M, by Lemma 13.2, and therefore wM,=M,.
Hence M, is the invariant subspace generated by %,/w, and the proof is complete.

Although Theorem 13.1 reduces the above stated invariant subspace conjecture to a
special case, it is in this special case where much of the interest resides because it is con-
nected with the problem of imposing an analytic structure on the part G. This problem
has been studied by Wermer [37] and O’Neill [24], and their results could be improved
and simplified if it were known that the subspaces H> are Beurling subspaces.

We now prove the conjecture for the case o=1.
TueEOREM 13.2. Assume o=1. Then the subspace H is a Beurling subspace.

Proof. We shall be fairly sketchy, as the proof resembles several we have already given
{see especially Theorem 12.2 and Lemma 13.1). By Lemma 12.6 we can choose a real
number o such that the kernel function B, is not an outer function. Let M be the invariant
subspace of L? generated by B,. Then M has codimension one in A2 (Lemma 12.7). Choose
a vector b in H? which is orthogonal to M with respect to the inner product induced by
the measure |Z[**dm and which is a unit vector with respect to the same inner product.
Let this inner product be denoted by (‘, )or A simple computation shows that the func-
tional y on 4 defined by y(f) = (fh, k), is multiplicative. As y is represented by the measure
||* | Z[** dm, it lies in the part G. Thus h is bounded and non-zero almost everywhere.
Let M, be the invariant subspace of L? generated by A. If the function f in H? is orthogonal
to M, relative to the inner product ( , ),, then /f is orthogonal to 4 + A4, for the same
inner product. It follows that 3, has codimension one in H2. But
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h(m) = J‘hEaIZF“ dm = (h, B,), =0,
and therefore M, is contained in Hz. Hence M, =H2Z, and the proof is complete.

§ 14. Finite Riemann surfaces

Let R be a finite open Riemann surface of degree of connectivity o+1. Let X =0R,
and let 4 be the hypo-Dirichlet algebra on X described in § 1. Choose a point z, in E,
which shall be fixed for the remainder of the discussion. The harmonic measure m on X
evaluated at z, is then the Arens-Singer measure for the functional ¢ on 4 of evaluation
at z,. The functions in L' =L(m) have natural harmonic extensions into B, and we shall
regard these functions as so extended. The extensions of functions in H?* are analytic in E.

Our main objective in the present section is to determine all invariant subspaces of
LP, 1 <p<oo. We should first like to point out that in the present case, it is easy to describe
explicitly the measures in S. Namely, if I' is any smooth closed contour in R, we can

define a real annihilating measure # of 4 by setting

Judn=j%% ds, weC(X),

where ds denotes the arc length differential along I' and &/on denotes differentiation
along the positive normal to I', both computed in suitable local coordinates. (The function
u is regarded as extended harmonically into R.) It is not hard to show that # is boundedly
absolutely continuous with respect to m, and so belongs to S, and that further, every
measure in § is a linear combination of such measures #. As I' runs over a homology basis
for R the corresponding measures # run over a linear basis for S.

In order to apply the results of § 13 to the present situation, we need the following

result from function theory (see [25, Lemma 2.5]).

LemMA 14.1. For each point a in R there is a function in A that has a simple zero at

a and no other zeros in RU X.

This lemma tells us that if ¢ is the functional on 4 of evaluation at some point of
R, then the subspace H> is a Beurling subspace. Now Arens [2] has proved that the only
multiplicative linear functionals on A are the evaluations at points of R U X. Consequently
the part containing ¢ consists of the evaluations at points of B (Theorem 12.1). The

hypotheses of Theorem 13.1 are therefore satisfied, and so we have the

Levma 14.2. Bvery invariant subspace of L? of type B is a Beurling subspace.
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Although it would be a simple matter now to extend this result to general p, the

case p =1 will suffice.
Lemvma 14.3. Every invariant subspace of L of type B is a Beurling subspace.

Proof. Let M be an invariant subspace of L! of type B. By Lemma 11.2, M N L2 is
dense in M. Thus M n L? is an invariant subspace of L? of type B, and so by Lemma 14.2
it has the form wH? for some rigid function w. Hence M —wH?, as desired.

To go further we need to know that a non-null function in A cannot vanish identically
in R. This can be proved as follows. Let {R,}i° be a sequence of finite Riemann surfaces
contained in R, each containing the point z, with the closure of R, contained in R,
for every », and with B = |J R,. For each n let X, denote the boundary of R, and m, the
harmonic measure on X, evaluated at z,. Think of the measures m,, as points in the closed
unit ball of the dual of C(RU X). Clearly, any cluster point m’ of the sequence {m,} for
the weak-star topology of C(RU X)* is a positive measure supported by X that satisfies
f wdm’ =u(z,) for every u continuous in B U X and harmonic in R. By the uniqueness of
harmonic measure it follows that no measure other than m can be a weak-star cluster
point of {m,}. Because the closed unit ball in C(R U X)* is weak-star compact, we may
conclude that m,—~m in the weak-star topology of C(R U X)*.

If U is any (complex valued) harmonie function in R, then

f]U]dmn<f]U|dmn+1

for all n. In fact, the quantity on the right is the value at z, of the solution of the Dirichlet
problem in R, .; with boundary values |U|, and this solution is at least as great as |U|
everywhere on X,,. (This well-known reasoning is due to F. Riesz [26].) Hence lim | |U|dm,
exists for all U harmonic in R; we let L(R) denote the family of those U for which this

limit is finite. Obviously L(R) is a linear space, and we norm it by setting
1ol =limf[U[dmn.

(Although there is no need to do so here, it is a simple matter to show directly that L1(R)
is a Banach space.) If u is a function in L' =L%(m) then § |u|dm is the value at z, of the
harmonic function in R that at any z takes the value { |u]|dm,, (where m, is the harmonic
measure on X evaluated at z), and consequently { |u|dm, <[ |u|dm. Thus we can define
a norm decreasing linear transformation 7' of L! into L(R) by setting (Tu)(z) = | udm,.

But because m,—m in the weak-star topology of C(X U R)*, the transformation 7' pre-
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serves the norms of continuous functions, and therefore it is an isometry. In particular,

Twu vanishes identically in R only when # is a null function, which is the result we need.

LemMA 144. If M, is a Beurling subspace of L', then every non-trivial invariant sub-

space of M, is-a Beurling subspace.

Proof. Tt obviously suffices to consider the case where M,=H". Suppose therefore
that M is a non-trivial invariant subspace of H2, If M contains a function that does not
vanish at z, then it is obviously of type B and so is a Beurling subspace by Lemma 14.3.
Hence suppose all functions in M vanish at z,. By the preceding argument, a non-zero
function in M does not vanish identically in R and so has a zero of some finite order at
2. Let k& be the smallest natural number such that there is a function in M with a zero
of order k at z,, By Lemma 14.1 there is a function % in 4 with a zero of order % atb 2,
and no other zeros in R U X. Thus A1} is an invariant subspace of H! containing a func-
tion that does not vanish at z,. Consequently A1} is of type B, and therefore a Beurling

subspace, and so M itself is a Beurling subspace.
LemMMA 14.5. H® is a maximal proper weak-star closed subalgebra of L.

Proof. The proof we give is an adaptation of one due to Srinivasan for the case where
R is the unit disk (see [14, p. 27]). Let K be a proper weak-star closed subalgebra of L®
containing H®, and let M be the annihilator of K in L!. Then M is a non-trivial invariant
subspace and is contained in Hj+N (Theorem 11.1). The invariant subspace Hg+ N is
contained in the invariant subspace H!+ N, which is obviously of type B. Hence Hj+XN
and M are by Lemmas 14.3 and 14.4 both Beurling subspaces, and so there is a rigid
function w such that M =w(Hg--N). It follows that K =w-H®. Because K is an algebra
it contains the function w2, and so there is an % in H® such that w—2—=w-1h. Therefore

h=w, i.e. wl is in H®. Consequently K< H=, and the proof is complete.

LEMMA 14.6. Every invariant subspace of L® has either the form wH? with w a rigid

function or the form yg L? with E a measurable subset of X.

Proof. Let M be an invariant subspace of L2. If M is of type B then it has the first
of the deseribed forms (Lemma 14.2). Assume therefore that M is not of type B. Let A
be a function in 4 that has a simple zero at z, and no other zeros in RU X. If hM were
not equal to M then it would be a proper closed subspace of M because b is bounded
from 0 on X. But this would clearly imply that M is of type B, contrary to assumption.
Hence hM =M, and M is invariant under multiplication by 21 Let K be the algebra
of all functions f in L® such that fM < M. Then K is weak-star closed and, as we have
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just seen, it contains H® properly. Therefore K =L*® by the preceding lemma. But it is
a well-known result (which we shall not prove here) that the subspaces of L? that are
invariant under multiplication by every function in L® are just those of the form y L?
with E a measurable subset of X. The proof is complete.

THEOREM 14.1. Every invariant subspace of L (1 <p <o) has either the form wH?

with w a rigid function or the form ygL? with E a measurable subset of X.

Proof. The case p=2 is given by the preceding lemma. The cases 1<p<2 follow
from the case p=2 via Lemma 11.2. The cases 2<p<co are obtainable from the cases
1 <p<2 by a simple duality argument.

A concluding observation: Consider the case where R is a plane domain, so that ¢ +1
is the number of boundary components of R. The subspace H2+ N is invariant and of
type B, and therefore there is an inner function w such that H2=w(H?2+ N). The invariant
subspace wH? has codimension ¢ in H?, and from this it follows, as one can easily convince
oneself (or by the reasoning below), that w has precisely ¢ zeros in B. We shall show that
the zeros of w are the critical points of the Green’s function for R with singularity at 2.

To prove this, let G be the Green’s function for R with singularity at z, and let H
be a harmonic conjugate of G. Because the boundary X of R is a union of finitely many
non-intersecting analytic Jordan curves, the functions G' and H extend so as to be har-
monic in a neighborhood of X. The multiple valued analytic function G'+¢H has a
single valued derivative @, and @ is analytic on R U X except for a pole of order one at z,.
The zeros of @ are by definition the critical points of @, and it is known that there are
precisely ¢ of them in R and none on X [23, p. 133]. The function @(z)=(z—~z,)Q(z) is
thus in A, has ¢ zeros in R, and is non-zero on X. Now we want to show that @, has the
same zeros as w, and for this it will suffice to show that QyH?=wH?2 From the properties
of @, just mentioned it follows that ,H? has codimension ¢ in H2. As this is also true of
the subspace wH?, it will be enough to show that wH?><—@,H? or equivalently, that
Qo H2<w-1H2, To do this we choose the usual positive orientation on X and apply the
well-known relation

_—@
dm(z) ~omm dz (z€ X). (14.1)
Suppose f is any function in H2 Then by Cauchy’s theorem
[ 1@rgterdz=o
X

for all g in H2. This together with (14.1) implies that Qg'f is orthogonal to H, and so
Qo'f is in H?+ N =w1H2. We have proved the desired inclusion Qg H2< w-1H?2,
11 — 662903. Acta mathematica. 117. Imprimé le 9 février 1967.
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§ 15. Hypo-Dirichlet algebras in the plane

Let Y be a compact subset of the plane whose complement has only finitely many
components, and let 4 be the algebra of functions on X =0Y that can be uniformly aﬁproxi-
mated by rational functions whose polés lie off Y. As was pointed out in § 1, 4 is a hypo-
Dirichlet algebra. We shall discuss algebras of this kind more fully in a separate paper
[1]. We limit ourselves-here to two remarks.

The first remark is that the lemmas and theorem of the preceding section apply
without change to the algebras of the present section; the proofs carry over wverbatim.
In fact, when transplanted to the present context the discussion of § 14 becomes basically
more elementary, as the function theoretic Lemma 14.1 reduces to a triviality, and the
theorem of Arens is not needed to identify the maximal ideal space.

Our second remark pertains to one of Mergelyan’s approximation theorems. The
theorem in question states that the algebra 4 contains the restriction of every function
that is continuous on Y and analytic in the interior of ¥ (i.e., every such function can be
uniformly approximated by rational functions with poles off Y) [22, p. 24]. By exploting
the theory of Dirichlet algebras, Glicksberg and Wermer [11] have given a new proof
of the special case of this theorem in which ¥ has a connected complement. What we
want to point out is that the theory developed in this paper makes it possible to adopt
the proof of Glicksberg and Wermer to the present more general settiﬁg, and thus to obtain
a new proof of the more general theorem of Mergelyan cited above. As this involves no

essentially new ideas, we shall not present any of the details.
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