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In response to physiological and psychogenic stressors, the hypothalamic–pituitary–adrenal

(HPA) axis orchestrates the systemic release of glucocorticoids (GCs). By virtue of nearly

ubiquitous expression of the GC receptor and the multifaceted metabolic, cardiovascular,

cognitive, and immunologic functions of GCs, this system plays an essential role in the

response to stress and restoration of an homeostatic state. GCs act on almost all types of

immune cells and were long recognized to perform salient immunosuppressive and anti-

inflammatory functions through various genomic and non-genomic mechanisms. These

renowned effects of the steroid hormone have been exploited in the clinic for the past

70 years and synthetic GC derivatives are commonly used for the therapy of various aller-

gic, autoimmune, inflammatory, and hematological disorders.The role of the HPA axis and

GCs in restraining immune responses across the organism is however still debated in light

of accumulating evidence suggesting that GCs can also have both permissive and stimula-

tory effects on the immune system under specific conditions. Such paradoxical actions of

GCs are particularly evident in the brain, where substantial data support either a beneficial

or detrimental role of the steroid hormone. In this review, we examine the roles of GCs

on the innate immune system with a particular focus on the CNS compartment. We also

dissect the numerous molecular mechanisms through which GCs exert their effects and

discuss the various parameters influencing the paradoxical immunomodulatory functions

of GCs in the brain.
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ACTIVATION CASCADE AND REGULATION OF THE HPA AXIS

Any imbalances to an organism homeostasis elicit a complex
stress response that involves the coordinated activation of func-
tionally overlapping neuroendocrine and autonomic systems.
Among these critical systems is the hypothalamic–pituitary–
adrenal (HPA) axis, which is triggered by stressors of various
sources (physical, emotional, immunological, etc.) to provoke the
systemic release of glucocorticoids (GCs).

The activity of the HPA axis is regulated by multiple afferent
sympathetic, parasympathetic, and limbic circuits (e.g., amygdala,
hippocampus, and medial prefrontal cortex) innervating either
directly or indirectly the paraventricular nucleus (PVN) of the
hypothalamus. The PVN integrates converging stimulatory (cat-
echolaminergic, glutamatergic, and serotonergic) or inhibitory
(GABA-ergic) inputs, and thus represents a critical relay in the
control of the HPA axis (1–3). The HPA axis is activated when
secretory neurons of the medial parvocellular division of the PVN
are stimulated, either directly or by relieving inhibitory inputs
(Figure 1). As a result, corticotropin-releasing hormone (CRH)
and arginine vasopressin (AVP) are both released in the portal
circulation of the anterior pituitary gland. In turn, these neu-
ropeptides trigger the secretion of adrenocorticotrophic hormone
(ACTH) in the bloodstream by pituitary corticotrophs. ACTH
then induces the production and the systemic release of GCs by
the zona fasciculata of the adrenal cells (4–7).

Under basal conditions, the HPA axis exhibits a continuous
oscillatory activity characterized by circadian and ultraradian vari-
ations. GCs are thus secreted in a highly pulsatile fashion through-
out a 24 h cycle, displaying greater mean levels during the awake
phase (8). The circadian rhythm of the HPA axis is orchestrated
by the suprachiasmatic nucleus (SCN) of the hypothalamus (9)
and the oscillating release of GCs is believed to optimize stress
responses. Interestingly, the ultraradian pulsatility of the HPA
axis was recently associated with pulses of glucocorticoid receptor
(GR)-mediated transcriptional regulation (10). Upon stress, the
intensity and duration of the HPA response both depend on the
specific nature of the encountered stressor (5, 11, 12). The precise
circadian or ultraradian phase at which stress occurs also pro-
foundly influences the systemic release of GCs, since higher levels
are secreted when the challenge coincides with rising pulses (13).

Multiple non-exclusive pathways participate in the activation
of the HPA axis upon cerebral or peripheral immune challenges.
When an immunogenic insult takes place in the brain, various
inflammatory mediators produced locally may trigger the HPA
axis. In contrast, multiple routes convey stimulatory signals from
the periphery to the HPA axis when a challenge occurs outside
the CNS. In this scenario, circulating immunogenic or inflamma-
tory factors may access and activate regulatory neuronal circuits
(either directly or not) projecting to the PVN via the fenes-
trated endothelium of the circumventricular organs (CVOs) or
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Bellavance and Rivest Immunomodulatory actions of GCs in the brain

FIGURE 1 | Activation cascade of the hypothalamic–pituitary–adrenal

(HPA) axis by systemic immune stimuli. Integrated brain circuits trigger

the parvocellular neurons of the PVN to release infundibular CRH, which

stimulates the release of ACTH from corticotroph cells of the pituitary.

ACTH reaches the bloodstream and finally induces the systemic release

of GCs by the adrenals. PGE2 may activate or inhibit neurons through the

EP4 and EP3 receptors, respectively. ACTH, adrenocorticotrophic

hormone; CRH, corticotrophin releasing factor; EP1–4, PGE2 receptor

subtypes; GABA, γ-aminobutyric acid (inhibitory); NTS, nucleus tractus

solitarius (A2/C2 neurons); PGE2, prostaglandin of E2 type; PVN,

paraventricular nucleus of the hypothalamus; VLM, ventrolateral medulla

(A1/C1 neurons).

a disrupted blood–brain barrier (BBB) (14, 15). Alternatively,
circulating immune ligands may also bind their cognate recep-
tor(s) anchored in the luminal membrane of endothelial cells of
brain capillaries. Hence, they can simultaneously engage numer-
ous transduction signaling pathways that disseminate the acti-
vating cues to the HPA axis through the parenchymal release
of diverse inflammatory messengers. To this end, distinct lines
of evidence support a critical role of MyD88, COX-2, microso-
mal prostaglandin E synthase (mPGES-1), and prostaglandin E2

(PGE2) in relaying peripheral stimulatory signals to the HPA axis.
Although the exact cell types at play are still actively debated,
endothelial cells are widely acknowledged as pivotal in this activat-
ing cascade. The contribution of perivascular cells (PVCs) however
remains a controversial topic since they were identified either as a
negligible (16) or substantial source of PGE2 (17) in murine mod-
els of systemic inflammation. In addition to COX-2, more recent
findings also support a role for COX-1 in activating the HPA axis
(18, 19). Finally, afferent fibers of the vagus nerve may also signal

peripheral inflammation to the brain and thereby activate the HPA
response (20, 21).

The precise regulation of the activity of the HPA axis is of the
utmost importance since both an excessive or insufficient release
of GCs entail severe detrimental metabolic and immunological
effects. As a matter of fact, chronic exposure to GCs results in
various adverse side effects such as osteoporosis, diabetes, hyper-
tension, dyslipidemia, and even neurodegeneration (5, 22). On the
other hand, a deficient or blunted HPA axis is commonly observed
in the clinic in a wide range of autoimmune and inflammatory
diseases. Likewise, disrupting the HPA axis surgically (through
adrenalectomy) or pharmacologically (with GR antagonists) com-
promises the survival of normally resistant mice to septic shock
(23–27). The magnitude and duration of the HPA response is thus
tightly controlled by autoregulatory feedback loops involving the
adrenals, pituitary, PVN, and upstream corticolimbic structures
such as the hippocampus, amygdala, and medial prefrontal cor-
tex (28). As a result, the HPA response is terminated through the
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same neuronal circuitry that mediates its activation [reviewed in
Ref. (2)].

ACTIONS OF GCs ON IMMUNE CELLS

The anti-inflammatory and immunosuppressive actions of GCs
were first unraveled by the pioneering work of Kendall, Reichstein,
and Hench more than 70 years ago and were since exploited in the
clinic to treat a plethora of allergic, autoimmune, inflammatory,
and hematological disorders as well as for preventing allograft
rejection (29, 30). GCs exert immunomodulatory functions by
acting on practically every immune cell type, by virtue of the
nearly ubiquitous expression of the GR. The cell-specific actions of
GCs, which underlie the long-recognized anti-inflammatory and
immunosuppressive effects of this steroid hormone, are briefly
highlighted below.

Glucocorticoids strongly influence the phenotype, survival, and
functions of monocytes and macrophages. GCs have long been
recognized to increase the phagocytic potential of these criti-
cal effectors cells and thereby stimulate the clearance of foreign
antigens, pathogens, inflammatory cells, cellular debris, and other
potentially harmful elements (31, 32). The steroid hormone also
suppresses immunostimulatory functions and efficiently abro-
gates the production of pro-inflammatory mediators (such as
cytokines, chemokines, and reactive oxygen or nitrous species)
through various synergistic genomic and non-genomic mech-
anisms (33). In doing so, GCs promote an anti-inflammatory
phenotype and expand the migratory activity and survival of these
myeloid cells (34, 35).

Glucocorticoids perform similar key functions in dendritic cells
(DCs). In addition to regulating the maturation, survival, and
motility of these antigen-presenting cells, GCs also hamper their
immunogenic functions. Indeed, the end product of the HPA axis
restricts the capacity of DCs to stimulate T cells by preventing
the up-regulation of various co-stimulatory molecules, such as
MHCII, B7.2 (CD86), and CD40 (33, 36, 37). GCs can also convert
DCs to tolerogenic cells, which promote the production of regula-
tory T cells (38, 39). This immunosuppressive effect critically relies
on the GC-mediated expression of glucocorticoid-induce leucine
zipper (GILZ), since this transcription factor appears as both nec-
essary and sufficient for the induction of a tolerogenic state (40,
41). Recent work also indicates that the co-repressor DC-SCRIPT
participate to this conversion (37). Interestingly, GCs exert distinct
actions in immature and mature DCs and a disparate expression
of various isoforms of the GR was recently found to underlie these
divergent effects (42).

Another salient outcome of GCs administration is neutrophilia.
The steroid hormone expands the number of circulating neu-
trophils by (1) increasing their egress from the bone-marrow to
the bloodstream and by (2) concomitantly hindering their trans-
migration to inflammatory sites by alleviating the expression of cell
adhesion molecules (43, 44). Paradoxically, GCs were also shown
to promote or attenuate neutrophil apoptosis, respectively through
Annexin A1 (45) or Mcl-1 and XIAP (46).

In contrast to neutrophils, GCs reduce the levels of circulating
T cells by enhancing their migration back to the bone-marrow
and secondary lymphoid organs (47, 48). GCs also trigger T cells
apoptosis, notably through the up-regulation of BIM (49, 50). The

relative expression of distinct GR isoforms is also believed to dic-
tate the susceptibility of T cells to the pro-apoptotic effects of GCs
(50). Additionally, the steroid hormone potently represses the pro-
duction of pro-inflammatory cytokines, more specifically of those
promoting Th1 and Th17 polarization (33). Accordingly, the tar-
geted disruption of the GR in T cells (GRlkc-Cre mice) produced
hyperactive Th1 cells and increased mortality upon infection (51)
while it precipitated the onset of disease in a murine model of
multiple sclerosis (experimental autoimmune encephalomyelitis)
(52). Complementarily, other lines of evidence suggest that GCs
promote the differentiation of regulatory T cells (Treg), which
are key suppressors of immune functions (53, 54). Finally, the
steroid hormone may also interact directly with the signaling com-
plex of the T cell receptor (TCR) after stimulation to inhibit its
downstream transduction signaling pathways (55, 56). The actions
of GCs in T cells thus heavily depend of the subtype targeted.
Finally, GCs may also act on B cells and influence their survival,
proliferation, and function (53, 57).

In addition to such prominent anti-inflammatory actions, a
substantial body of knowledge now clearly indicates that GCs
also have permissive and even stimulatory effects on immune
processes. As a consequence, GCs are now more appropriately
regarded as immunomodulators. The paradoxical actions of GCs
are particularly evident in the CNS, where numerous lines of
evidence either support a beneficial or detrimental role of the
steroid hormone in various pathological contexts. In the next
section, we aim to discuss the key functions assumed by the
HPA axis and GCs in regulating the innate immune system
of the brain in health and disease. We next dissect the mul-
tiple parameters defining the specific actions of GCs in these
contexts.

CNS INNATE IMMUNE SYSTEM

The CNS was once regarded as an immune-privileged organ owing
to the lack of lymphatic drainage, selective permeability of the BBB
and apparent absence of immune responses. Significant advances
in the last two decades have challenged this dogma and helped to
considerably expand our understanding of the immune processes
taking place in the CNS in health and disease. Robust inflam-
matory responses are elicited in neuropathological contexts such
as infection, traumatic injury as well as autoimmune and neu-
rodegenerative disorders by the resident innate immune cells of
the brain, microglia. Dynamic research now aims at decipher-
ing the crucial functions of microglia in preserving and restoring
the brain homeostasis during immune challenges, injuries, and
chronic diseases.

Microglia represent a heterogeneous cell population account-
ing for approximately 5–12% of total brain cells. They are distrib-
uted unevenly throughout the CNS, as grey matter and specific
structures such as the hippocampus, basal ganglia, and substantia
nigra typically all exhibit greater densities than the white matter
(58–60). In resting conditions, microglial cells display a heavily
ramified morphology and dynamically survey their immediate
environment with highly motile but non-overlapping protru-
sions (61, 62). Upon encountering an endogenous or exogenous
threat, microglia adopt an amoeboid morphology, show increased
motility and promptly initiate an inflammatory response. In
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this context, activated microglia produce numerous inflamma-
tory mediators and reactive species (oxygen or nitrous derived),
which initially help to mobilize other immune cells and aim to
restore homeostasis. Activated microglia also support neuronal
survival and function by engulfing pathogens, cellular debris, or
other neurotoxic entities and can synthesize various neurotrophic
factors to promote tissue maintenance and repair (63, 64). How-
ever, the excessive or sustained activation of microglial cells (such
as in chronic neurodegenerative diseases) usually produces sig-
nificant inflammatory collateral damage and may hence fuel a
vicious self-sustaining cycle driving further injury. Therefore, in
order to preserve the fragile environment of the CNS many syn-
ergistic mechanisms are normally deployed to control microglia
activity. Microglial cells represent prime targets of GCs in the CNS
owing to a predominant expression of GR (65). Through these
key innate immune cells, GCs therefore perform major regulatory
functions on the innate immune system of the CNS in health and
disease.

GCs BIOAVAILABILITY IN THE CNS

Owing that both endogenous and exogenous GC derivatives are
highly lipophilic compounds, they easily diffuse through the BBB
and act on nearly all cell types of the CNS. The bioavailability of
endogenous and synthetic compounds can however diverge sig-
nificantly according to three critical determinants: (1) the binding
affinity to corticosteroid-binding globulin (CBG), (2) the uptake
by various efflux pumps located at the BBB, and (3) the suscep-
tibility to enzymatic metabolism. The endogenous bioactive form
of GCs, namely cortisol in humans and corticosterone in rodents,
is inactive while associated to plasma transport proteins such as
serum albumin and CBG. CBG is a thermosensitive glycopro-
tein that binds up to 90% of circulating GCs in the bloodstream.
The remaining 10% may also be associated to serum albumin. In
consequence, the levels of free circulating GCs are usually about
5% (66, 67). Like most xenobiotics, synthetic GC analogs such
as dexamethasone are efficiently expelled from the CNS by mul-
tidrug resistance (MDR) transporters expressed by the endothelial
cells of the BBB (68). The efflux of free cortisol from the CNS
is a major impediment and this phenomenon was suggested to
underlie the preferential access of inactive GC metabolites to the
brain.

Whereas plasma transport proteins and efflux pumps narrow
the access of GCs to the brain, the activity of the steroid hormone
is also regulated at the cellular level by the enzymatic intercon-
version of bioactive and inert GC species by 11β-hydroxysteroid
dehydrogenases (11β-HSD). Briefly, 11β-HSD type 1 generates the
bioactive form (cortisol or corticosterone) from inactive 11-keto
derivatives while 11β-HSD type 2 catalyzes the opposite reaction.
Interestingly, 11-keto derivatives do not bind to CBG in plasma
nor are expelled by the efflux pumps of the BBB. As a result, 11-
keto-GCs reach the CNS more readily than the bioactive form.
11β-HSD type 1 is widely expressed by both neurons and glial
cells, whereas that of the type 2 isoform is more restricted (66, 68,
69). The distinct expression patterns of the two 11β-HSD enzymes
in the CNS therefore also markedly influence GC signaling.

Collectively, these three pivotal parameters regulate GR signal-
ing in the CNS by controlling the bioavailability of its ligands.

GLUCOCORTICOID RECEPTOR

Glucocorticoids exert part of their biological effects by binding two
proximate members of the nuclear receptor superfamily, namely
the GR and the mineralocorticoid receptor (MR). Although GRs
are ubiquitously expressed in the brain, they are most abundant
in the PVN and the hippocampus. In contrast, MR expression
appears mostly confined to a few limbic sites regulating salt
appetite and autonomic outflow (70, 71). The binding affinity
of cortisol is however 10-fold greater for the MR than the GR
(66). MRs are thus heavily bound by basal/low levels of GCs while
substantial ligation of GRs only occurs upon stress or when the
highest ultraradian peaks are reached.

Like other nuclear receptors of its class, the GR is primarily
composed of three characteristic domains: an N-terminal trans-
activation domain (NTD), a DNA-binding domain (DBD), and
a C-terminal ligand-binding domain (LBD) (72). The human
GR (hGR) is produced from a single gene (NR3C1, chromosome

5q31.3) and encompasses nine exons. The two best-characterized
isoforms, namely GR-α and GR-β, arise from the alternative splic-
ing of the exon 8 to distinct acceptor sites of exon 9. Alternative
translation initiation sites further expand the variety of GR-α iso-
forms, producing height different proteins with a truncated NTD
(GRα-A, GRα-B, GRα-C1, GRα-C2, GRα-C3, GRα-D1, GRα-D2,
and GRα-D3). Finally, rearrangements in GR mRNA also yield
three functionally distinct splice variants, namely GR-γ, GR-A,
and GR-P (72, 73). The physiological significance of each GR iso-
form is beginning to emerge [elegantly reviewed in Ref. (74)], and
remains best defined for the GR-α and β isoforms.

In the absence of ligand, GR-α is maintained in the cytoplasm
but translocates to the nucleus upon ligation. In contrast, GR-
β permanently resides in the nucleus where it selectively acts as a
dominant negative inhibitor of GR-α (75). The relative abundance
of the inhibitor GR-β, which normally represents only 1% of GR-α
in the brain, is thus a key parameter in dictating GC responsive-
ness (76). Interestingly, pro-inflammatory cytokines were recently
reported to increase the GR-β/GR-α ratio (77). Despite that
endogenous or synthetic GC ligands do not bind to GR-β, pre-
vious work has nonetheless shown that its regulatory actions on
transcription could be altered by the progesterone receptor (PR)
as well as the GR antagonist mifepristone (RU486) (78). In the
presence of other GR isoforms, GR-β appears to modulate (either
positively or negatively) the transcription of a large set of genes
that do not overlap with that of GR-α (77).

MECHANISMS OF TRANSCRIPTIONAL REGULATION BY THE

GLUCOCORTICOID RECEPTOR

The non-liganded GR-α is sequestered in the cytoplasm by a mul-
tiprotein complex that may be composed of heat-shock protein
(HSP) 90, 70, 56, or 40, as well as co-chaperones p23, p60, Src
kinase, and immunophilins FKBP51, 52 (22, 75, 79). These cyto-
plasmic chaperones conceal the nuclear localization signal (NLS)
of the steroid receptor and thereby preclude its shuttling to the
nucleus. Importantly, these chaperones also maintain GR-α in a
conformation state that is optimal for ligand binding. The binding
of a single GC molecule to a GR (1:1 ratio) provokes a con-
formational change that leads to the dissociation of chaperones
and unmasks the NLS to importin proteins. The liganded GR
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is then transported to the nucleus where it profoundly modu-
lates gene expression through multiple genomic and non-genomic
mechanisms.

GENOMIC MECHANISMS

Once in the nucleus, liganded GRs do not bind to DNA in a stable
manner. They rather constantly shuttle between the nucleoplasm
and GC-responsive elements (GRE) located in the promoter or

enhancer regions of GC-responsive genes (80, 81). The variety of
GRE is continuously expanding, but can nonetheless be divided
into four broad categories: simple positive, composite, tethering,
and the relatively novel simple negative GRE (nGRE) (Figure 2).
Simple positive GREs (+GRE) represent imperfect palindromic
sequences composed of inverted hexamers separated by a three
base pair (bp) spacer. Each hexamer provides a binding interface
for each monomer of GR homodimers. Simple GREs (+GRE) are

FIGURE 2 | Genomic and non-genomic mechanisms through which GCs

regulate gene transcription. Free circulating GCs easily diffuse through

membranes such as the blood–brain barrier (BBB) and thus target both

peripheral and CNS cells. The bioavailability of endogenous and exogenous

GCs in the CNS is however limited at the organ level by efflux pumps

expressed at the BBB and at the cellular level by enzymatic metabolism

(11β-HSD enzymes). The unliganded GC receptor (GR) is sequestered in the

cytoplasm by multiple chaperones. Ligation of the GR by a GC molecule (1:1

ratio) alters its conformation and results in the dissociation of the chaperones.

The activated GR then translocates to the nucleus and dynamically modulate

gene transcription through various mechanisms. Liganded GRs bind to four

main types of GR-response elements (GREs). Activated GRs physically

interact with DNA on simple (+GRE), negative (nGRE), and composite GREs

(cGRE). The activated GR can also be recruited to other DNA-binding

sequences (DBS) via protein–protein interactions (tGRE). Transactivation or

transrepression activity of the GR is partly dictated by the type of GRE and its

binding partners. Alternatively, GRs also regulate transcription through steric

hindrance on DNA sites overlapping with GREs, by sequestering transcription

factors from DNA and by competing for co-activators binding. Furthermore,

liganded GRs may occupy other response elements by binding to overlapping

GREs, sequester transcription factors from DNA and compete for

co-activators.
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deemed“positive”owing that they enable GR homodimers to stim-
ulate gene expression (i.e., transactivation) through chromatin
decondensation and recruitment of co-activators. GR-mediated
transactivation typically induces the expression of potent signal-
ing inhibitors (e.g., IκBα, MPK-1, IL-10, Annexin A1, GILZ, and
SOCS proteins), which strongly interfere with salient immune
signaling pathways such as those triggered by the Toll-like recep-
tors (TLR) (82–85). Composite GREs (cGRE) represent chimeric
sequences that are recognized by a GR monomer paired with
another transcription factor (i.e., GR heterodimers). Tethering
GREs (tGRE) stand out from other GRE types since they do not
exhibit bindings motifs per se for the GR. They rather engage
other transcription factor complexes that eventually recruit GRs
through protein–protein interactions. As a result, tethered GRs
do not physically interact with DNA at tGRE. Interestingly, both
composite and tethering GREs enable direct transactivation or
transrepression; the resulting effect on gene transcription is dic-
tated by the transcription factors to which GRs are bound. For
instance, tethering of a GR monomer was reported to increase the
transcription of STAT3, STAT5, cAMP responsive element bind-
ing (CREB), and CCAAT/enhancer binding protein (C/EBP)-α
responsive genes while inhibiting the activity of NF-κB, AP-1, acti-
vating transcriptions factors (ATFs), and IRF3 (72, 73, 86, 87).
Additionally, the steric hindrance entailed by tethered GRs can
interrupt gene transcription by hindering the recruitment and
activity of the transcriptional machinery. In this line, very recent
data point toward a role of GR:GRIP1 complexes in preventing
the recruitment of PolII to initiation-controlled inflammatory
genes such as IL-1α and IL-1β, and concomitantly promoting the
accumulation of pause-inducing negative elongation factor, which
precludes the release of PolII from the elongation block of genes
like TNF-α, CCL2, and CCL3 (88). The fourth and last type is the
simple nGRE. They are composed of two inverted repeats and are
believed to be recognized by GR homodimers (89). In contrast
to +GRE, GR activity at nGRE mediates the direct repression of
transcription by recruiting the transrepressor nuclear receptor co-
repressor 1 (NCoR) and silencing mediator of retinoid and thyroid
hormone receptors (SMRT). Interestingly, nGRE were localized in
many NF-κB and AP-1-responsive genes, which encode immune
and inflammatory proteins. Finally, we note that through such
genomic mechanisms, GCs regulate the expression and protein
abundance of their own regulators (i.e., HES1) and that this feed-
back loop is mandatory for proper GC-mediated changes in gene
expression (90).

NON-GENOMIC MECHANISMS

In addition to their genomic actions, liganded GRs also impact
on gene transcription through various non-genomic mechanisms.
These mechanisms do not require de novo protein synthesis and
thus underlie the more rapid actions of GCs. Prominent exam-
ples include mRNA destabilization, competition for co-activators
[e.g., CREB-binding protein (CBP), p300, and GRIP], and inter-
ference with the binding of transcription factors to DNA (91–94).
Complementarily, freed cytoplasmic chaperones may also per-
form anti-inflammatory actions following their dissociation from
the activated GR. For instance, the immunophilin FKBP52 was
recently identified as a gene-specific regulator of GR functions

(95). It should be noted that other types of GRs, such as those
embedded in the cytoplasmic or mitochondrial membranes, were
also proposed to regulate transcriptional activity but the mech-
anistic details underlying their origin and function remain ill-
defined (96–98). Although definite proof is still lacking, it was
posited that the membrane-bound GR might be a variant of
the cytosolic form potentially arising from alternative promot-
ers, differential splicing, or post-translational modifications (99).
Of particular interest, ligation of GRs anchored in membrane lipid
rafts by dexamethasone was recently found to abate intercellular
communication through gap junctions in neural progenitor cells
(100). Such mechanism might also operate in immune cells and
influence their function by modulating cell–cell interactions and
the immune synapse. Additional non-genomic actions of the lig-
anded GRs may include direct interactions with membrane (e.g.,
GPCRs, ion channels, TCR), and cytoplasmic proteins (MAPK and
phospholipases) that indirectly impact on transcriptional activity
(76, 79, 101). For instance, dexamethasone was shown to potenti-
ate CXCR4 signaling and even synergize with its ligand CXCL12 in
resting T cells, presumably through the CD45- and GR-dependent
activation of Lck and other downstream kinases (102). Therefore,
GCs trigger various non-genomic and genomic signaling path-
ways that can act in concert to shape the function of immune cells.
Finally, GCs may also entail non-specific and GR-independent
effects by altering the physicochemical properties of plasma and
mitochondrial membranes at high concentrations (101, 103) and
by modifying the composition (104) or the formation (105) of
lipid rafts in various immune cells.

FUNCTIONAL INSIGHTS FROM GR MUTANT MOUSE STRAINS

Several lines of GR mutant transgenic mice provided key insights
about the functions of the GR in regulating the HPA axis and
immune processes (106). The GRdim mouse, which carries a point
mutation (A458T) preventing GR dimerization, is among the best
characterized. Initial evidence suggested that classic transactiva-
tion by GRs was defective in these mice and that this mecha-
nism was required for the full range of GC immunosuppressive
actions (107, 108). This hypothesis is supported by prior work
showing that repression of IL-1β, MIP-2, MCP-1, and IP-10 by
GCs is hindered in macrophages isolated from GRdim mice (109,
110). Contrastingly, other findings indicate that in GRdim mice
NF-κB and AP-1 target genes can still be silenced by GCs (107,
108), that the GC-inducible gene MKP-1 is normally expressed in
macrophages (82) and that irritant dermatitis can successfully be
treated with GCs (22). These contradictory data may arise from
a residual transactivation activity of the GR in GRdim mice since
many other amino acids were found to enable the dimerization
of the receptor (111). The single point mutation A458T engi-
neered in GRdim is thus unlikely to fully abrogate the formation
of functional GR homodimers (30, 112, 113). Moreover, GRdim

regulatory defects were recently shown to be tissue, cytokine, and
time-dependent, which further complicate the interpretation of
the dimerization-dependent genomic actions of the GR (114).

The targeted knock-out of the GR was also achieved in a variety
of cell populations or types to investigate the cell-specific functions
of GCs. For instance, in the GRlysMCre transgenic mice, GR expres-
sion is selectively reduced in macrophages, microglia, and other
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myeloid cells such as DCs, granulocytes, and mast cells. Upon
MPTP intoxication (115) or intra-striatal injection of LPS (116),
this strain exhibited greater neuronal loss, microglia reactivity,
and expression of pro-inflammatory genes than age-matched con-
trols. Of particular note, increased mortality was also observed
in GRlysMCre mice compared to controls following a peripheral
injection of LPS (109). The GRlysMCre mice therefore helped in
uncovering the crucial actions of GR signaling in microglia and
peripheral myeloid cells in the proper and timely regulation of the
immune response in order to avoid secondary inflammatory dam-
ages. The role of GR signaling in endothelial cells was also recently
tackled with two distinct transgenic lines. Using the Tie2-GRKO
mice, one group recently revealed that GR activation in endothe-
lial cells of brain vessels might be both necessary and sufficient
to constrain the production of key structural proteins of the BBB
following focal cerebral ischemia (117). Alternatively, the GREC KO

mice displayed increased mortality, hemodynamic instability, and
higher levels of inflammatory cytokines (TNF-α and IL-6) than
controls during sepsis (118). Finally, the broad disruption of the
GR allele in the CNS [GRNesCre (5)] and its targeted deletion in
the forebrain [forebrain-specific GR knock-out; FBGRKO mice]
(119), or the PVN all resulted in the disinhibition of the HPA axis
(120). However, current evidence indicates that GR disruption
in the forebrain (FBGRKO vs. WT) did not influence neuronal
death or damaged area in the hippocampus following an excito-
toxic insult, nor the infarct volume in a model of focal cerebral
ischemia (117). Elucidating the impact of the targeted GR dele-
tion in specific cell populations on central immune processes as
well as survival of neurons and glial cells in different pathological
contexts will undoubtedly help to further decipher the complex
context and cell-specific functions of GCs in the brain.

CONTEXT-DEPENDENT ACTIONS OF THE GLUCOCORTICOID

RECEPTOR

A myriad of GR, epigenetic, and contextual parameters underlie
the cell-, signal-, and gene-specific actions of GCs. As exemplified
above for GR-α and GR-β, GR isoforms have unique transcrip-
tional regulatory profiles. GC actions on gene expression are thus
first influenced by the relative abundance of the numerous GR
isoforms in a given cell or tissue. In similar fashion, the differential
expression of transcription factors, co-activators, co-repressors,
and other binding partners are critical in tailoring the actions of
GCs through the GR (22).

The activation state of a target cell and the specific transduc-
tion signaling pathways triggered at a given time further define
the actions of the GR. Signaling pathways can fine-tune GR
activity through various post-translational modifications includ-
ing phosphorylation, ubiquitination, sumoylation, and acetylation
(72, 121). Through their own effects on transcription, chromatin,
and epigenome, cell signaling pathways further shape GR effects.
For instance, TLR signaling pathways are subjected to suppres-
sive actions of GCs in a signal- and gene-specific manner. To
this end, Ogawa et al. found that the liganded GR sequesters the
co-activator p65 from IRF3 and IRF7 homodimers on interferon-
stimulated response elements (IRSE) on a specific set of genes
following TLR4 and TLR9, but not TLR3 signaling (122). In such
context, regulatory actions of GCs thus appear to be specified

by MyD88 signaling. The liganded GR was also found to pre-
vent the recruitment of IRF3 (which then acts as a co-activator)
to p65 on NF-κB target genes upon TLR4 stimulation by LPS
(94, 123). It was also reported that dexamethasone inhibit JNK
upon TLR3 (TRIF) or TLR9 (MyD88) activation through the GR,
but that the concomitant activation of both signaling pathways
(or TLR4) yields to the resistance of JNK to deactivation by GCs
(124). The same group recently reported similar results for SOCS1,
a critical regulator of type I IFN transduction signaling pathways
(83).

Lastly, genome wide analyses unraveled that changes as subtle
as the permutation of a single bp in GREs modifies the confor-
mation of the liganded GR. Through structure alteration, such
changes orchestrate interactions with cofactors as well as the reg-
ulatory actions of activated GRs on transcription (125, 126). GRE
sequences therefore represent key allosteric modulators. The ever
increasing variety of bona fide GREs reported in the literature
implies that the interactions of liganded GRs and DNA are much
more flexible than previously anticipated.

PARADOXICAL ACTIONS OF GCs ON THE INNATE IMMUNE

SYSTEM OF THE BRAIN

In addition to their long recognized and well characterized anti-
inflammatory actions, accumulating evidence now indicate that
GCs do not merely allow inflammatory responses to unfold but
rather stimulate them under specific circumstances. Whether
GCs play beneficial or detrimental roles in the CNS in health
and diseases have been debated for decades, and the complex
dichotomous and context-dependent actions of the steroid hor-
mone certainly add to the confusion. The fact that GC actions
evolve dynamically over time and the incomplete understand-
ing of the parameters driving the CNS innate immune system
toward tissue maintenance/repair or damage also warrant a care-
ful interpretation of the literature. Here, we review experimen-
tal evidence supporting the bidirectional actions of GCs in the
brain.

ANTI-INFLAMMATORY ACTIONS OF GCs IN THE BRAIN

Substantial evidence established that GCs restrain and/or termi-
nate the innate immune response in the CNS following either
a peripheral or cerebral challenge. Almost 20 years ago, exacer-
bated levels of pro-inflammatory cytokines were found in the
brain of adrenalectomized mice following a sub-cutaneous injec-
tion of LPS (127–130). GCs were also shown to prevent the
production of pro-inflammatory mediatory in cultured microglia
primed with LPS (131, 132). Glezer et al. have reported concor-
dant results in vivo, by showing that dexamethasone suppresses
LPS-induced NF-κB activity in the murine brain (133). More
recently, Munhoz and colleagues demonstrated that a severe or
mild deficiency in plasma corticosterone significantly enhanced
NF-κB activation in the brain of rodents challenged with systemic
LPS (134). Complementarily, the non-selective COX inhibitors
ketorolac and indomethacin were found to potentiate the expres-
sion of NF-κB target genes in brain capillaries and parenchymal
microglia during systemic inflammation (i.v. bolus of LPS, IL-
1β, or TNF-α) by hampering the activation of the HPA axis and
the subsequent release of GCs. Interestingly, this effect could be
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replicated by the administration of the GR antagonist RU486
(mifepristone) (135, 136).

Glucocorticoids also exert salient anti-inflammatory actions
when the immunogenic insult is taking place within the CNS
compartment. Accordingly, Nadeau et al. reported that the robust
inflammatory response induced by an intracerebral injection
of LPS could be abolished by a prior systemic administration
of the endotoxin (137). Further investigation revealed that the
immunosuppressive actions of peripheral LPS were mediated by
plasma corticosterone and GR activation. Indeed, exogenous GCs
mimicked whereas the GR antagonist RU486 nullified the anti-
inflammatory effect of the systemic immune challenge. The phys-
iological importance of the GC feedback in controlling innate
immune responses in organs as sensitive as the brain was fur-
ther illustrated in rodents and mice injected with RU486 before
intracerebral LPS. Antagonizing the GR significantly exacerbated
and prolonged the inflammatory response, which in turn pro-
voked substantial neuronal death and even mortality (138, 139).
Interestingly, these findings were replicated in GRlysMCre (vs. WT)
mice challenged with an intra-striatal bolus of LPS (116), again
supporting a pivotal of GR signaling in microglia in restrain-
ing the amplitude and duration of the immune response in this
context.

PRO-INFLAMMATORY ACTIONS OF GCs IN THE BRAIN

The vast majority of GC pro-inflammatory actions in vivo were
described in animal models of acute or chronic stress. As a matter
of act, both types of stress elicit an HPA response and were shown
to exacerbate salient features of inflammation in the CNS provided
that they occur prior to peripheral or cerebral immune insults. For
instance, acute stressors such as inescapable tailshocks (IS) were
demonstrated to potentiate the expression of pro-inflammatory
mediators in specific regions of the brain following the peripheral
administration of LPS in rodents (140–142). Chronically stressed
rodents exhibited enhanced NF-κB activity in multiple limbic
regions during LPS-induced systemic inflammation (143). Chron-
ically stressed animals injected either in the prefrontal cortex (144)
or the hippocampus (145) with this endotoxin also displayed exac-
erbated microglia activation and tissue damage. Interestingly, in
these studies the priming effects of stress (regardless of its chronic-
ity) on the ensuing immune response could be abated with RU486
or by experimentally maintaining plasma GCs to basal levels in
adrenalectomized animals. GR signaling was thus proposed to be
essential for the cross-sensitization between stress and the inflam-
matory response to LPS. More specifically, exposure to high levels
of GCs was suggested to prime the reactivity of microglial cells
to a subsequent immune stimulation presumably by making the
neuroimmune environment more permissive to inflammation,
inducing GC resistance or blunting the HPA response (146). In
support of this hypothesis, restraint stress and other physical stres-
sors were shown to induce inflammatory mediators (e.g., iNOS,
TNF-α, COX-2, PGE2, IL-1β, and CD14), reduce immunoregula-
tory proteins (e.g., CD200R) and trigger microglia proliferation
in the rodent brain (147–152). In opposition, microglia GR sig-
naling was recently found to suppress rather than bolster the
priming effects of chronic stress on microglia reactivity to a subse-
quent intracerebral injection of LPS (116). Further investigation is

needed to shed more light on the factors entailing these conflicting
experimental observations about the specific role of microglial GR
signaling the priming effect of stress.

Interestingly, GR ligation by endogenous GCs was also found
to be required for the expression of several inflammatory genes.
Notably, the pharmacological ablation of GR signaling with RU486
was found to hinder the LPS-mediated expression of various
immune genes involved in host defense, such as IL-1β (153).
Recent data also indicate that the concomitant signaling of GCs
and damage-associated molecular patterns (DAMPs) accentuate
the expression of pro-inflammatory mediators. In fact, the com-
bined exposure of human and murine myeloid cells to dexametha-
sone and ATP following LPS was found to enhance the production
of IL-1β, TNF-α, IL-6, and IL-10 (43). Synergistic effects of dex-
amethasone and ATP in the expression of the purinergic receptor
P2Y2 and key adhesion molecules (e.g., VCAM and ICAM) were
also reported (154). Together, these data suggest that GCs can exert
pro-inflammatory actions in the context of acute cellular dam-
age or death. Complementarily, dexamethasone and TNF-α were
recently shown to coregulate a unique set of immune genes when
combined (155). Therefore, as for the anti-inflammatory actions
of GCs, the activation state and signaling context of a target cell
also define its pro-inflammatory functions.

PARAMETERS DETERMINING THE DICHOTOMOUS ROLES OF GCs IN

THE CNS

Numerous parameters were found to influence the dichotomous
actions of GCs. Of particular interest is the timing of GC exposure
relative to an immune challenge. Prior work established that acute
stress or exogenous GCs can potentiate or conversely repress the
same pro-inflammatory genes provided that they are respectively
administered before or after LPS (140, 156). In another study,
both physical and psychogenic stressors could abate LPS-induced
neuroinflammation, as long as they occurred after the immune
challenge (157). Timing of exposure to GCs following an immuno-
genic challenge thus appears to be a pivotal parameter dictating
the opposite actions of the steroid hormone (158). The disparate
susceptibility of distinct brain regions to innate immune events
and GC signaling also represent decisive factors. For example, the
prefrontal cortex and hippocampus were both found to be more
sensitive than the hypothalamus to inflammation and the neuro-
toxic effects of GCs (142, 143, 159). Finally, other elements such as
the length of exposure, dose, and route of administration as well as
the type of synthetic GCs employed should be taken into account
(160). In that regard, we noted that pharmacological compounds
targeting the GR (agonists and antagonists) are invariably admin-
istered via peripheral routes in vivo and are rarely quantified in the
CNS despite the distribution impediment caused by the BBB. Con-
sequently, one must not exclude that significant immune and/or
metabolic disturbances in the periphery may concomitantly influ-
ence the immune state of the brain. We also emphasize on the
fact that pro-inflammatory markers such as the cytokines such as
IL-1β and TNF-α also act in a context-dependent manner. Such
cytokines can thus be harmful for the cerebral elements (138)
but they also play beneficial roles in the inflammatory response
(161–163). It should also be kept in mind that a pro-inflammatory
environment does not automatically lead to collateral damages and
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that timing is again a key parameter here. While an exaggerated
(magnitude or duration) inflammatory response can trigger neu-
ronal injury and cell death, pro-inflammatory mediators may
initially (i.e., acute phase) stimulate the clearance of debris, the
recruitment of cellular reinforcements and program tissue remod-
eling. Despite complicating the overall picture, such factors must
be carefully considered when interpreting the actions of GCs in
the CNS.

CONCLUSION

A wealth of experimental and clinical data provides clear evi-
dence that accurate signaling between the nervous, endocrine, and
immune systems leading to a proper feedback (timing, amplitude,
duration, sensitivity, etc.) by GCs is mandatory to avoid serious
detrimental consequences for the brain elements following an
immunogenic challenge. GCs induce important plastic changes
in the brain and many of their effects, including those related to
their priming and pro-inflammatory properties may play critical
roles in the “yin and yang” effects of the innate immune reaction
in the brain. In future studies, it will be critical to decipher the
genomic and non-genomic functions underlying the contextual
remodeling of the cerebral innate immune system by endogenous
and synthetic GCs. Such research endeavor may unravel why GCs
either succeed or fail in managing specific inflammatory and neu-
ropathological diseases. Novel regulatory mechanisms of the HPA
axis and GC/GR functions, such as those involving epigenetics
or miRNAs, also represent promising avenues. Shedding more
light on these intricacies will help to better dissect the benefi-
cial and detrimental actions of GCs in the CNS and to develop
new therapeutic strategies enabling to balance their paradoxical
actions.
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