

The HPC Challenge (HPCC) Benchmark Suite

Piotr Luszczek, David Bailey,
Jack Dongarra, Jeremy Kepner,

 Robert Lucas, Rolf Rabenseifner,
 Daisuke Takahashi

SC06, Tampa, Florida
Sunday, November 12, 2006

Session S12
1:30-5:00

Acknowledgements

• This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA), the Department of
Defense, the National Science Foundation (NSF), and the
Department of Energy (DOE) through the DARPA High
Productivity Computing Systems (HPCS) program under
grant FA8750-04-1-0219 and under Army Contract
W15P7T-05-C-D001

• Opinions, interpretations, conclusions, and
recommendations are those of the authors
and are not necessarily endorsed by the United States
Government

Introduction

• HPC Challenge Benchmark Suite

– To examine the performance of HPC architectures
using kernels with more challenging memory access
patterns than HPL

– To augment the TOP500 list

– To provide benchmarks that bound the performance of
many real applications as a function of memory access
characteristics ― e.g., spatial and temporal locality

– To outlive HPCS

• HPC Challenge pushes spatial and temporal boundaries
and defines performance bounds

TOP500 and HPCC

• TOP500
– Performance is represented by

only a single metric
– Data is available for an

extended time period
(1993-2005)

• Problem:
There can only be one “winner”

• Additional metrics and statistics
– Count (single) vendor systems

on each list
– Count total flops on each list

per vendor
– Use external metrics: price,

ownership cost, power, …
– Focus on growth trends over

time

• HPCC
– Performance is represented by

multiple single metrics
– Benchmark is new — so data is

available for a limited time
period
(2003-2005)

• Problem:
There cannot be one “winner”

• We avoid “composite” benchmarks
– Perform trend analysis

• HPCC can be used to show
complicated kernel/
architecture performance
characterizations

– Select some numbers for
comparison

– Use of kiviat charts
• Best when showing the

differences due to a single
independent “variable”

• Over time — also focus on growth
trends

High Productivity Computing Systems (HPCS)

Goal:

 Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national

security applications by a factor of 10X to 40X

Programmability (idea-to-first-solution): reduce cost and
time of developing application solutions

Portability (transparency): insulate research and
operational application software from system

Robustness (reliability): apply all known techniques to

protect against outside attacks, hardware faults, &
programming errors

Fill the Critical Technology and Capability Gap

Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant

modeling and biotechnology

HPCS Program Focus Areas

Analysis &

Analysis &

Assessment

Assessment

Performance

Characterization

& Prediction

System

Architecture
Software

Technology

Hardware
Technology

Programming
Models

Industry R&D

Industry R&D

HPCS Program Phases I-III

(Funded Three)

Phase II

R&D

02 05 06 07 08 09 1003

Phase III

Prototype Development

System
Design
ReviewIndustry

 Milestones

Productivity
Assessment
(MIT LL, DOE,

DoD, NASA, NSF)

MP Peta-Scale
Procurements

 Year (CY)

Concept
Review PDR

Early
Demo

Technology
Assessment

Review

(Funded Five)

Phase I
Industry
Concept

Study

Program Reviews

Critical Milestones

Program Procurements

CDR
DRR

 1 2 4 5 6 7

04

 3

Mission
Partners

Mission Partner
Peta-Scale

Application Dev

11

Final
Demo

SW
Rel 1

SCR

SW
Rel 2

SW
Rel 3

SW
Dev Unit

Deliver Units
Mission Partner

Dev Commitment
Mission Partner

System Commitment

HPLS
Plan

MP Language Dev

HPCS Benchmark and Application Spectrum

8 HPCchallenge
Benchmarks

(~40) Micro & Kernel
Benchmarks

Local
DGEMM
STREAM

RandomAccess

1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

E
x
is

ti
n

g
 A

p
p

li
c
a

ti
o

n
s

E
m

e
rg

in
g

 A
p

p
li

c
a

ti
o

n
s

F
u

tu
re

 A
p

p
li
c
a

ti
o

n
s

Execution
Bounds

Execution
Indicators

Execution and
Development

Indicators

(~10) Compact

Applications

Spectrum of benchmarks provide different views of system

• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds

• Applications drive system issues; set legacy code performance bounds

• Kernels and Compact Apps for deeper analysis of execution and development time

R
e
c
o

n
n

a
is

s
a
n

c
e

S

im
u

la
ti

o
n

In

te
ll
ig

e
n

c
e

9 Simulation
Applications

System Bounds

Discrete
Math

…
Graph

Analysis
…

Linear
Solvers

…
Signal

Processing
…

Simulation
…

I/O

HPCS
Spanning Set

of Kernels

3 Scalable
Compact Apps

Pattern Matching
Graph Analysis

Signal Processing

3 Petascale/s
Simulation
(Compact)

Applications

Others
Classroom
Experiment

Codes

Motivation of the HPCC Design

Spatial Locality

T
e
m

p
o

ra
l
L

o
c
a
li
ty

DGEMM

HPL

PTRANS

STREAM

FFT

RandomAccess

Mission
Partner

Applications

Low

H
ig

h

High

 Measuring Spatial and Temporal Locality (1/2)

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

T
e

m
p

o
ra

l
lo

c
a

li
ty

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

• Spatial and temporal data locality here
is for one node/processor — i.e.,
locally or “in the small”

Generated by PMaC @ SDSC

FFT

 Measuring Spatial and Temporal Locality (2/2)

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

T
e

m
p

o
ra

l
lo

c
a

li
ty

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

Generated by PMaC @ SDSC

High Temporal Locality
Good Performance on
Cache-based systems
Spatial Locality occurs

 in registers

No Temporal or Spatial Locality
Poor Performance on
Cache-based systems

High Spatial Locality
Moderate Performance on

Cache-based systems

FFT

High Spatial Locality
Sufficient Temporal Locality
Satisfactory Performance on

Cache-based systems

Supercomputing Architecture Issues

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages
CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Standard Parallel
Computer Architecture

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

CPU

RAM

Disk

Network Switch

Corresponding
Memory Hierarchy

Performance
Implications

In
c
re

a
s
in

g
 B

a
n
d

w
id

th

In
c
re

a
s
in

g
 L

a
te

n
c
y

In
c
re

a
s
in

g
 C

a
p

a
c
it

y

In
c
re

a
s
in

g
 P

ro
g

ra
m

m
a
b

il
it

y

• Standard architecture produces a “steep” multi-layered memory hierarchy

– Programmer must manage this hierarchy to get good performance

• HPCS technical goal

– Produce a system with a “flatter” memory hierarchy that is easier to
program

HPCS Performance Targets

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

HPCS Targets
(improvement)

• Top500: solves a system

Ax = b

• STREAM: vector operations

A = B + s x C

• FFT: 1D Fast Fourier Transform
Z = FFT(X)

• RandomAccess: random
updates

T(i) = XOR(T(i), r)

bandwidth

latency

2 Petaflops
(8x)

6.5 Petabyte/s
(40x)

0.5 Petaflops
(200x)

64,000 GUPS
(2000x)

• HPCS program has developed a new suite of benchmarks (HPC Challenge)

• Each benchmark focuses on a different part of the memory hierarchy

• HPCS program performance targets will flatten the memory hierarchy,
improve real application performance, and make programming easier

Official HPCC Submission Process

1. Download

2. Install

3. Run

4. Upload results

5. Confirm via @email@

6. Tune

7. Run

8. Upload results

9. Confirm via @email@

Optional

● Only some routines can be replaced
● Data layout needs to be preserved
● Multiple languages can be used

Provide detailed
installation and

execution environment

Prequesites:
● C compiler

● BLAS
● MPI

Results are immediately available on the web site:
● Interactive HTML
● XML
● MS Excel
● Kiviat charts (radar plots)

HPCC as a Framework (1/2)

• Many of the component benchmarks were widely used before the
HPC Challenge suite of Benchmarks was assembled

– HPC Challenge has been more than a packaging effort

– Almost all component benchmarks were augmented from their
original form to provide consistent verification and reporting

• We stress the importance of running these benchmarks on a single
machine — with a single configuration and options

– The benchmarks were useful separately for the HPC community,
meanwhile

– The unified HPC Challenge framework creates an unprecedented
view of performance characterization of a system

• A comprehensive view with data captured the under the same
conditions allows for a variety of analyses depending on end user
needs

HPCC as a Framework (2/2)

• HPCC unifies a number of existing (and well known) codes in one
consistent framework

• A single executable is built to run all of the components

– Easy interaction with batch queues

– All codes are run under the same OS conditions – just as an
application would

• No special mode (page size, etc.) for just one test (say Linpack
benchmark)

• Each test may still have its own set of compiler flags

– Changing compiler flags in the same executable may inhibit inter-
procedural optimization

• Why not use a script and a separate executable for each test?

– Lack of enforced integration between components

• Ensure reasonable data sizes

• Either all tests pass and produce meaningful results or failure is
reported

– Running a single component of HPCC for testing is easy enough

Base vs. Optimized Run

• HPC Challenge encourages users to develop optimized benchmark codes that use
architecture specific optimizations to demonstrate the best system performance

• Meanwhile, we are interested in both
– The base run with the provided reference implementation
– An optimized run

• The base run represents behavior of legacy code because
– It is conservatively written using only widely available programming languages

and libraries
– It reflects a commonly used approach to parallel processing sometimes referred

to as hierarchical parallelism that combines
• Message Passing Interface (MPI)
• OpenMP Threading

– We recognize the limitations of the base run and hence we encourage optimized
runs

• Optimizations may include alternative implementations in different programming
languages using parallel environments available specifically on the tested system

• We require that the information about the changes made to the original code be
submitted together with the benchmark results

– We understand that full disclosure of optimization techniques may sometimes be
impossible

– We request at a minimum some guidance for the users that would like to use
similar optimizations in their applications

HPCC Base Submission

• Publicly available code is
required for base submission

1. Requires C compiler, MPI
1.1, and BLAS

2. Source code cannot be
changed for submission run

3. Linked libraries have to be
publicly available

4. The code contains
optimizations for
contemporary hardware
systems

5. Algorithmic variants
provided for performance
portability

• This to mimic legacy
applications’ performance

1. Reasonable software
dependences

2. Code cannot be changed
due to complexity and
maintenance cost

3. Relies on publicly available
software

4. Some optimization has been
done on various platforms

5. Conditional compilation and
runtime algorithm selection
for performance tuning

Baseline code has over 10k SLOC — there must more productive way of coding

HPCC Optimized Submission

• Timed portions of the code may be replaced with optimized code
• Verification code still has to pass

– Must use the same data layout or pay the cost of redistribution
– Must use sufficient precision to pass residual checks

• Allows to use new parallel programming technologies
– New paradigms, e.g. one-sided communication of MPI-2:

MPI_Win_create(…);
MPI_Get(…);
MPI_Put(…);
MPI_Win_fence(…);

– New languages, e.g. UPC:
• shared pointers
• upc_memput()

• Code for optimized portion may be proprietary but needs to use publicly
available libraries

• Optimizations need to be described but not necessarily in detail – possible
use in application tuning

• Attempting to capture: invested effort per flop rate gained
– Hence the need for baseline submission

• There can be more than one optimized submission for a single base
submission (if a given architecture allows for many optimizations)

Base Submission Rules Summary

• Compile and load options

– Compiler or loader flags which are supported and documented by
the supplier are allowed

– These include porting, optimization, and preprocessor invocation

• Libraries

– Linking to optimized versions of the following libraries is allowed

• BLAS

• MPI

• FFT

– Acceptable use of such libraries is subject to the following rules:

• All libraries used shall be disclosed with the results submission.
Each library shall be identified by library name, revision, and source
(supplier). Libraries which are not generally available are not
permitted unless they are made available by the reporting
organization within 6 months.

• Calls to library subroutines should have equivalent functionality to
that in the released benchmark code. Code modifications to
accommodate various library call formats are not allowed

Optimized Submission Rules Summary

• Only computational (timed) portion of the code can be changed

– Verification code can not be changed

• Calculations must be performed in 64-bit precision or the equivalent

– Codes with limited calculation accuracy are not permitted

• All algorithm modifications must be fully disclosed and are subject to
review by the HPC Challenge Committee

– Passing the verification test is a necessary condition for such an
approval

– The replacement algorithm must be as robust as the baseline
algorithm

• For example — the Strassen Algorithm may not be used for the
matrix multiply in the HPL benchmark, as it changes the operation
count of the algorithm

• Any modification of the code or input data sets — which utilizes
knowledge of the solution or of the verification test — is not
permitted

• Any code modification to circumvent the actual computation is not
permitted

HPCC Tests at a Glance

1. HPL

2. DGEMM

3. STREAM

4. PTRANS

5. RandomAccess

6. FFT

7. b_eff

• Scalable framework — Unified
Benchmark Framework

– By design, the HPC Challenge
Benchmarks are scalable with
the size of data sets being a
function of the largest HPL
matrix for the tested system

HPCC Testing Scenarios

1. Local

1.Only single process
computes

2. Embarrassingly parallel

1.All processes compute
and do not communicate
(explicitly)

3. Global

1.All processes comput and
communicate

4. Network only

M

PP

M

PP

M

PP

M

PP

Network

M

PP

M

PP

M

PP

M

PP

Network

M

PP

M

PP

M

PP

M

PP

Network

Naming Conventions

HPL
STREAM

FFT
…

RandomAccess

S

EP

G

system

CPU

thread

Examples:
2. G-HPL
3. S-STREAM-system

HPCC Tests - HPL

• HPL = High Performance Linpack

• Objective: solve system of linear equations
Ax=b A∈ Rn×n x,b∈ R

• Method: LU factorization with partial row pivoting

• Performance: (2/3n3 + 3/2n2) / t

• Verification: scaled residuals must be small
|| Ax-b || / (ε ||A|| ||x|| n)

• Restrictions:

– No complexity reducing matrix-multiply

• (Strassen, Winograd, etc.)

– 64-bit precision arithmetic through-out

• (no mixed precision with iterative refinement)

HPL:TOP500 and HPCC Implementation Comparison

ContinuousContinuousBi-annualReporting frequency

NoNoYesN-half reported

YesYesNo
Numerics of solution

reported

YesYesYes
Floating-point in 64-

bits

DescribeReference codeNot requiredDisclose code

HPCC
Optimized

HPCC BaseTOP500

HPCC HPL: Further Details

• Linear system solver (requires all-to-all communication)

• Stresses local matrix multiply performance

• DARPA HPCS goal: 2 Pflop/s (8x over current best)

• High Performance Linpack (HPL) solves a system Ax = b

• Core operation is a LU factorization of a large MxM matrix

• Results are reported in floating point operations per second (flop/s)

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

LU
Factorization

A

L

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

U

2D block cyclic distribution
is used for load balancing

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

HPCC Tests - DGEMM

• DGEMM = Double-precision General Matrix-matrix
Multiply

• Objective: compute matrix
C ← αAB + βC A,B,C∈ Rn×n α,β∈ R

• Method: standard multiply (maybe optimized)

• Performance: 2n3/t

• Verification: Scaled residual has to be small
|| x – y || / (ε n || y ||)

where x and y are vectors resulting from multiplication by
a random vector of left and right hand size of the
objective expression

• Restrictions:

– No complexity reducing matrix-multiply
• (Strassen, Winograd, etc.)

– Use only 64-bit precision arithmetic

HPCC Tests - STREAM

• STREAM is a test that measures sustainable memory
bandwidth (in Gbyte/s) and the corresponding
computation rate for four simple vector kernels

• Objective: set a vector to a combination of other vectors
COPY: c = a
SCALE: b = α c
ADD: c = a + b
TRIAD: a = b + α c

• Method: simple loop that preserves the above order of
operations

• Performance: 2n/t or 3n/t

• Verification: scalre residual of computed and reference
vector needs to be small

|| x – y || / (ε n || y ||)

• Restrictions:

– Use only 64-bit precision arithmetic

Original and HPCC STREAM Codes

Whole
memory,

Runtime

Whole
memory,

Runtime

Exceeds caches,

Compile time
Vectors’ size

PossiblePossibleNo
Reporting Multiple of Number

of Processors

OS-specificOS-specificImplicitData alignment

AnyC onlyFortran (or C)Programming Language

HPCC
Optimized

HPCC BaseSTREAM

HPCC STREAM: Further Details

• Basic operations on large vectors (requires no communication)

• Stresses local processor to memory bandwidth

• DARPA HPCS goal: 6.5 Pbyte/s (40x over current best)

• Performs scalar multiply and add

• Results are reported in bytes/second

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

A
=
B
+

s x C

Np-1...10

Np-1...10

Np-1...10

HPCC Tests - PTRANS

• PTRANS = Parallel TRANSpose

• Objective: update matrix with sum of its transpose and
another matrix

A=AT+B A,B∈ Rn×n

• Method: standard distributed memory algorithm

• Performance: n2/t

• Verification: scaled residual between computed and
reference matrix needs to be small

|| A0 – A || / (ε n || A0 ||)

• Restrictions:

– Use only 64-bit precision arithmetic

– The same data distribution method as HPL

HPCC PTRANS: Further Details

987987987

654654654

321321321

987987987

654654654

321321321

987987987

654654654

321321321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

• matrix: 9x9
•3x3 process grid
• Communicating pairs:

• 2-4, 3-7, 6-8

• matrix: 9x9
•1x9 process grid
• Communicating pairs:

• 1-2, 1-3, 1-4, 1-5, 1-6,
1-7, 1-8, 1-9, 2-3, …,
8-9
• 36 pairs!

HPCC Tests - RandomAccess

• RandomAccess calculates a series of integer updates to
random locations in memory

• Objective: perform computation on Table
Ran = 1;
for (i=0; i<4*N; ++i) {
 Ran= (Ran<<1) ^ (((int64_t)Ran < 0) ? 7:0);
 Table[Ran & (N-1)] ^= Ran;
}

• Method: loop iterations may be independent

• Performance: 4N/t

• Verification: up to 1% of updates can be incorrect

• Restrictions:

– Use at least 64-bit integers

– About half of memory used for ‘Table’

– Parallel look-ahead limited to 1024 (limit locality)

HPCC RandomAccess: Further Details

• Randomly updates memory (requires all-to-all communication)

• Stresses interprocessor communication of small messages

• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates N element table of unsigned integers

• Each processor generates indices, sends to all other processors, performs
XOR

• Results are reported in Giga Updates Per Second (GUPS)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

Generate random indices

0

Table

Send,
 XOR,
Update

1 Np-1

0 1 NP-1

. .

. .

HPCC Tests - FFT

• FFT = Fast Fourier Transform

• Objective: compute discrete Fourier Transform

zk=Σxj exp(-2π√-1 jk/n) x,z∈ Cn

• Method: any standard framework (maybe optimized)

• Performance: 5nlog2n/t

• Verification: scaled residual for inverse transform of
computed vector needs to be small

|| x – x(0) || / (ε log2 n)

• Restrictions:

– Use only 64-bit precision arithmetic

– Result needs to be in-order (not bit-reversed)

HPCC FFT: Further Details

• FFT a large complex vector (requires all-to-all communication)

• Stresses interprocessor communication of large messages

• DARPA HPCS goal: 0.5 Pflop/s (200x over current best)

• 1D Fast Fourier Transforms an N element complex vector

• Typically done as a parallel 2D FFT

• Results are reported in floating point operations per second (flop/s)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

0

0

1

:

Np-1

FFT rows

FFT columns

corner
turn

1 Np-1. .

HPCC Tests – b_eff

• b_eff measures effective bandwidth and latency of the
interconnect

• Objective: exchange 8 (for latency) and 2000000 (for
bandwidth) messages in ping-pong, natural and random
ring patterns

• Method: use standard MPI point-to-point routines

• Performance: n/t (for bandwidth)

• Verification: simple checksum on received bits

• Restrictions:

– The messaging routines have to conform to the MPI
standard

HPCC Awards Overview

• Goals

– Increase awareness of HPCC

– Increase awareness of HPCS and its goals

– Increase number of HPCC submissions

• Expanded view of largest supercomputing installations

• Means

– HPCwire sponsorships and press coverage

– HPCS mission partners’ contribution

– HPCS vendors’ contribution

HPCC Awards Rules

• Class 1: Best Performance

– Figure of merit:
raw system performance

– Submission must be valid
HPCC database entry

• Side effect: populate HPCC
database

– 4 categories: HPCC
components

• HPL

• STREAM-system

• RandomAccess

• FFT

– Award certificates
• 4x $500 from HPCwire

• Class 2: Most Productivity

– Figure of merit: performance
(50%) and elegance (50%)

• Highly subjective

• Based on committee vote

– Submission must implement
at least 3 out of 4 Class 1
tests

• The more tests the better

– Performance numbers are a
plus

– The submission process:
• Source code

• “Marketing brochure”

• SC06 BOF presentation

– Award certificate
• $1500 from HPCwire

HPCC Awards Committee

• David Bailey
LBNL NERSC

• Jack Dongarra (Co-Chair)
Univ. of Tenn/ORNL

• Jeremy Kepner (Co-Chair)
MIT Lincoln Lab

• Bob Lucas
USC/ISI

• Rusty Lusk
Argonne National Lab

• Piotr Luszczek
Univ. of Tennessee

• John McCalpin
AMD

• Rolf Rabenseifner
HLRS Stuttgart

• Daisuke Takahashi
Univ. of Tsukuba

SC|05 HPCC Awards Class 1 - HPL

May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
0.1

1

10

100

1000

T
fl
o
p
/s

259 Tflop/s

110 Gflop/s

HPCS goal: 2000 Tflop/s

SC04 SC|05

1. IBM BG/L 259 (LLNL)
2. IBM BG/L 67 (Watson)
3. IBM Power5 58 (LLNL)

x7
TOP500: 280 Tflop/s

TOP500 Systems
in HPCC database:

 #1, #2, #3,
 #4, #10, #14, #17,
#35, #37, #71, #80

Initial
HPCC Awards
Annoucement

SC|05 HPCC Awards Class 1 – STREAM-sys

May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
10

100

1000

10000

100000

1000000

G
B

/s

160 TB/s

27 GB/s

HPCS goal: 6500 TB/s

SC04 SC|05

1. IBM BG/L 160 (LLNL)
2. IBM Power5 55 (LLNL)
3. IBM BG/L 40 (Watson)

x40

Initial
HPCC Awards
Annoucement

SC|05 HPCC Awards Class 1 – FFT

May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
1

10

100

1000

10000

G
fl
o
p
/s

2311 Gflop/s

4 Gflop/s

HPCS goal: 500 Tflop/s

SC|05SC04

1. IBM BG/L 2.3 (LLNL)
2. IBM BG/L 1.1 (Watson)
3. IBM Power5 1.0 (LLNL)

x200

Initial
HPCC Awards
Annoucement

SC|05 HPCC Awards Class 1 –RandomAccess

May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
0.001

0.01

0.1

1

10

100

G
U

P
S

35 GUPS

0.01 GUPS

HPCS goal: 64000 GUPS

SC04 SC|05

1. IBM BG/L 35 (LLNL)
2. IBM BG/L 17 (Watson)
3. Cray X1E 8 (ORNL)

x1800

Initial
HPCC Awards
Annoucement

SC|05 HPCC Awards Class 2

√√HPF

√√StarP

√√OpenMP, C++

√√MPT C

√√√√Parallel Matlab

√√√√Cilk

√√√UPCx3

√√Cray MTA C

√√√√pMatlab

√√Python+MPI

FFTSTREAMRandomAccessHPLLanguage Sample
 submission

from
committee
members

Winners

Finalists

SC06 HPCC Awards BOF

Awards will be presented at
the SC06 HPC Challenge BOF

Tuesday, November 14, 2006

In Ballroom B-C

12:15-1:15

HPCC b_eff Analysis Outline

• How HPC Challenge Benchmark (HPCC) data can be used
to analyze the balance of HPC systems

• Details on ring based benchmarks

• Resource based ratios

• Inter-node bandwidth and

• memory bandwidth

• versus computational speed

• Comparison mainly based on public HPCC data

HPCC and Computational Resources

Computational
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

HPL
(Jack Dongarra)

STREAM
(John McCalpin)

Random & Natural

Ring
Bandwidth & Latency
(my part of the
 HPCC Benchmark Suite)

Random and Natural Ring B/W and Latency

• Parallel communication pattern on all MPI processes ()

– Natural ring

– Random ring

• Bandwidth per process
– Accumulated message size / wall-clock time / number of processes

– On each connection messages in both directions

– With 2xMPI_Sendrecv and MPI non-blocking  best result is used

– Message size = 2,000,000 bytes

• Latency
– Same patterns, message size = 8 bytes

– Wall-clock time / (number of sendrecv per process)

Inter-node B/W on Clusters of SMP Nodes

• Random Ring

– Reflects the other dimension of a Cartesian domain
decomposition and

– Communication patterns in unstructured grids

– Some connections are inside of the nodes

– Most connections are inter-node

– Depends on #nodes and #MPI processes per node

Accumulated Inter-node B/W on Clusters of SMPs

• Accumulated bandwidth

:= bandwidth per process x #processes

~=
 accumulated inter-node bandwidth _

 1 – 1 / #nodes

similar to
bi-section bandwidth

Balance Analysis with HPCC Data

• Balance can be expressed as a set of ratios

– e.g., accumulated memory bandwidth / accumulated
Tflop/s rate

• Basis

– Linpack (HPL)  Computational Speed

– Random Ring Bandwidth  Inter-node communication

– Parallel STREAM Copy or Triad  Memory bandwidth

• Be careful:

– Some data are presented for the total system

– Some per MPI process (HPL processes),
e.g., ring bandwidth

– i.e., balance calculation always with
accumulated data on the total system

Balance: Random Ring B/W and HPL

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image005.gif

•Ratio measures balance between

inter-node communication and
computational speed (Linpack).

• It varies between systems by a

factor of ~20.

Status Sep. 14, 2006

Balance: Random Ring B/W and CPU Speed

Same as on previous slide,
but linear ...

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image006.gif

Balance: Memory and CPU Speed

High memory bandwidth ratio
on vector-type systems
(NEC SX-8, Cray X1 & X1E),
but also on Cray XT3.

•Balance: Variation between

systems only about 10.

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image011.gif

Balance: FFT and CPU

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image015.gif

• Ratio ~20.

Balance: PTRANS and CPU

•Balance: Variation between

systems larger than 20.

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image013.gif

Acknowledgments

• Thanks to
– all persons and institutions that have uploaded HPCC results.

– Jack Dongarra and Piotr Luszczek
for inviting me into the HPCC development team.

– Matthias Müller, Sunil Tiyyagura and Holger Berger
for benchmarking on the SX-8 and SX-6 and discussions on HPCC.

– Nathan Wichmann from Cray for Cray XT3 and X1E data.

• References
– S. Saini, R. Ciotti,B. Gunney, Th. Spelce, A. Koniges, D. Dossa, P. Adamidis,

R. Rabenseifner, S. Tiyyagura, M, Müller, and R. Fatoohi: Performance
Evaluation of Supercomputers using HPCC and IMB Benchmarks.
In the proceedings of the IPDPS 2006 Conference.

– R. Rabenseifner, S. Tiyyagurra, M. Müller: Network Bandwidth Measurements
and Ratio Analysis with the HPC Challenge Benchmark Suite (HPCC).
Proceedings of the 12th European PVM/MPI Users' Group Meeting, EuroPVM
/MPI 2005

http://www.ipdps.org/ipdps2006/
http://www.pvmmpi05.unina2.it/
http://www.pvmmpi05.unina2.it/

Conclusions

• HPCC is an interesting basis for

• benchmarking computational resources

• analyzing the balance of a system

• scaling with the number of processors

• with respect to application needs

• HPCC helps to show the strength and weakness of super-
computers

• Future super computing should not focus only on Pflop/s
in the TOP500

• Memory and network bandwidth are as same as important
to predict real application performance

Reporting Results - Etiquette

• The HPC Challenge Benchmark suite has been designed to permit
academic style usage for comparing

– Technologies

– Architectures

– Programming models

• There is an overt attempt to keep HPC Challenge significantly
different than “commercialized” benchmark suites

– Vendors and users can submit results

– System “cost/price” is not included intentionally

– No “composite” benchmark metric

• Be cool about comparisons!

• While we can not enforce any rule to limit comparisons observe rules
of

– Academic honesty

– Good taste

Total Number of HPCC Submissions

2 0 0 3 - 0 5 - 0 9 2 0 0 4 - 0 1 - 1 4 2 0 0 4 - 0 9 - 2 0 2 0 0 5 - 0 5 - 2 8 2 0 0 6 - 0 2 - 0 2 2 0 0 6 - 1 0 - 1 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

Based vs. Optimized Submission

• Optimized G-RandomAccess is a UPC code

– ~125x improvement

G-HPL G-PTRANS

G-Random

Access G-FFTE

G-STREAM

Triad

EP

STREAM

Triad

EP

DGEMM

Random

Ring

Bandwidth

Random

Ring

Latency
System - Processor Speed Count TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec

Cray mfeg8 X1E 1.13GHz 248 opt 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58

Cray X1E X1E MSP 1.13GHz 252 base 3.1941 85.204 0.014868 15.54 2440 9.682 14.185 0.36024 14.93

System Information Run

Type

Exploiting Hybrid Programming Model

• The NEC SX-7 architecture can permit the definition of
threads and processes to significantly enhance
performance of the EP versions of the benchmark suite
by allocating more powerful “nodes”

– EP-STREAM

– EP-DGEMM

G-HPL G-PTRANS

G-Random

Access G-FFTE

G-STREAM

Triad

EP

STREAM

Triad

EP

DGEMM

Random

Ring

Bandwidth

Random

Ring

Latency
System Speed Count Threads Processes TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec

NEC SX-7 0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-7 0.552GHz 32 1 32 0.2553 20.546 0.000964 11.29 836.9 26.154 8.239 5.03934 14.21

System Information

Kiviat Charts: Comparing Interconnects

• AMD Opteron clusters

– 2.2 GHz

– 64-processor cluster

• Interconnects

1. GigE

2. Commodity

3. Vendor

• Cannot be differentiated based
on:

– HPL

– Matrix-matrix multiply

• Available on HPCC website

Kiviat chart (radar plot)

Augmenting TOP500’s 26th Edition with HPCC

1.270.7855299442021Jaguar10

27Stella9

28MareNostrum8

36
Earth

Simulator
7

1.281.011184418133336Red Storm6

38Thunderbird5

1.440.223021914752Columbia4

3.250.2967445765863ASC Purple3

0.2521.684501728491BGW2

0.2635.52311160374259281BlueGene/L1

B/WLatencyGUPSFFTSTREAMPTRANSHPLRmaxComputer

Augmenting TOP500’s 27th Edition with HPCC

B/WLatencyGUPSFFTSTREAMPTRANSHPLRmaxComputer

35.86
Earth

Simulator
10

1.1497.971.02111843.581813.0632.9936.19Red Storm9

37.33
BlueGene
eServer

8

38.18Fire x46007

38.27Thunderbird6

42.9Tera-105

0.8964.230.252292091.3146.7851.87Columbia (*)4

3.1845.11.038425555357.975.8ASC Purple3

0.1594.7021.61123550171.5583.991BGW (*)2

0.1595.9235.4723111604665.9259.2280.6BlueGene/L1

Normalize with Respect to Peak flop/s

17.52555.90.00286.9%NEC SX-8

3.5308.70.00371.9%SGI Altix

6.1435.70.08970.6%IBM BG/L

15.5703.50.00353.5%IBM POWER5

13.4696.10.42267.3%Cray X1E

38.31168.80.03181.4%Cray XT3

FFTSTREAMRandomAccessHPLComputer

Normalizing with peak flop/s cancels out number of processors:

G-HPL / Rpeak = (local-HPL*P) / (local-Rpeak*P) = local-HPL / local-Rpeak

Good: can compare systems with different number of processors.
Bad: it’s easy to scale peak and harder to scale real calculation.

Correlation: HPL vs. Theoretical Peak

HPL versus Theoretical Peak

0

5

10

15

20

25

30

0 5 10 15 20 25

HPL (Tflop/s)

T
h

e
o

re
ti

c
a
l

P
e
a
k
 (

T
fl

o
p

/s
)

• How well does HPL data correlate with theoretical
peak performance?

Cray XT3

NEC SX-8

SGI Altix

Correlation: HPL vs. DGEMM

HPL versus DGEMM

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

HPL (Tflop/s)

D
G

E
M

M
 (

G
fl

o
p

/s
)

• Can I Run Just Run DGEMM Instead of HPL?

• DGEMM alone overestimates HPL performance

• Note the 1,000x difference in scales! (Tera/Giga)

• Exercise: correlate HPL versus Processors*DGEMM

Cray XT3

NEC SX-8

SGI Altix

Correlation: HPL vs. STREAM-Triad

HPL versus STREAM Triad

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

HPL (Tflop/s)

S
T

R
E

A
M

 T
ri

a
d

 (
G

B
/s

)

• How well does HPL correlate with STREAM-Triad
performance?

Cray XT3
NEC SX-8

SGI Altix

Cray X1E/opt

Correlation: HPL vs. RandomAccess

HPL versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

HPL (Tflop/s)

G
-R

a
n

d
o

m
A

c
c
e
s
s
 (

G
U

P
S

)

• How well does HPL correlate with
G-RandomAccess performance?

• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix

Cray X1E/opt

IBM BG/L

Rackable

Correlation: HPL vs. FFT

HPL versus FFT

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

HPL (Tflop/s)

F
F

T
 (

G
fl

o
p

/s
)

• How well does HPL correlate with FFT performance?

• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix

Correlation: STREAM vs. PTRANS

Global Stream versus PTRANS

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000

Global STREAM (GB/s)

P
T

R
A

N
S

 (
G

B
/s

)

• How well does STREAM data correlate with PTRANS
performance?

Cray XT3

NEC SX-8

Correlation: RandomRing B/W vs. PTRANS

RandomRing Bandwidth versus PTRANS

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

RandomRing Bandwidth (GB/s)

P
T

R
A

N
S

 (
G

B
/s

)

• How well does RandomRing Bandwidth data
correlate with PTRANS performance

• Possible bad data?

Cray XT3

NEC SX-8

NEC SX-7

Correlation: #Processors vs. RandomAccess

Number of Processors versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000

Number of Processors

G
-R

a
n

d
o

m
A

c
c

e
s

s
 (

G
U

P
S

)

• Does G-RandomAccess scale with the number of
processors?

Cray XT3

SGI Altix

Cray X1E/opt

IBM BG/LRackable

Correlation: Random-Ring vs. RandomAccess

RandomRing Bandwidth versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16

RandomRing Bandwidth (GB/s)

G
-R

a
n

d
o

m
A

c
c
e

s
s
 (

G
U

P
S

)

• Does G-RandomAccess scale with the RandomRing
Bandwidth?

• Possible bad data?

Cray X1E/opt

NEC SX-8
NEC SX-7

Correlation: Random-Ring vs. RandomAccess

RandomRing Bandwidth versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

RandomRing Bandwidth (GB/s)

G
-R

a
n

d
o

m
A

c
c
e
s
s
 (

G
U

P
S

)

• Does G-RandomAccess scale with RandomRing
Bandwidth?

• Ignoring possible bad data…

Cray X1E/opt

Correlation: Random-Ring vs. RandomAccess

RandomRing Latency versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

RandomRing Latency (usec)

G
-R

a
n

d
o

m
A

c
c
e
s
s
 (

G
U

P
S

)

• Does G-RandomAccess scale with RandomRing
Latency ?

Cray X1E/opt

Rackable

Correlation: RandomAccess Local vs. Global

Single Processor RandomAccess versus G-RandomAccess

(per System)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200

Single Processor RandomAccess (GUPS)

G
-R

a
n

d
o

m
A

c
c

e
s

s
 (

G
U

P
S

)

• Does G-RandomAccess scale with single processor
RandomAccess performance (per system)?

Cray X1E/opt

Cray XT3
Rackable

Correlation: RandomAccess Local vs. Global

Single Processor RandomAccess versus G-RandomAccess

(per Processor)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3

Single Processor RandomAccess (GUPS)

G
-R

a
n

d
o

m
A

c
c

e
s

s
 (

G
U

P
S

)

• Does G-RandomAccess scale with single processor
RandomAccess performance?

Cray X1E/opt

Rackable

Correlation:STREAM-Triad vs.RandomAccess

STREAM Triad versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000

STREAM Triad (GB/s)

G
-R

a
n

d
o

m
A

c
c
e
s
s
 (

G
U

P
S

)

• Does G-RandomAccess scale with STREAM Triad?

Cray XT3

SGI Altix

Cray X1E/opt

Rackable

NEC SX-8

IBM BG/L

RandomAccess Correlations Summary

• G-RandomAccess doesn’t correlate with other tests

• Biggest improvement comes from code optimization

– Limit on parallel look-ahead forces short messages

• Typical MPI performance killer

• Communication/computation overlap is wasted by message
handling overhead

– UPC implementation can be integrated with existing
MPI code base to yield orders of magnitude speedup

– Using interconnect topology and lower-level (less
overhead) messaging layer is also a big win

• Generalization from 3D torus: hyper-cube algorithm

Principal Component Analysis

• Correlates all the tests simultaneously

• Load vectors hint at relationship between original results
and the principal components

• Initial analysis:

– 29 tests
• Rpeak, HPL, PTRANS (x1)

• DGEMM (x2)

• FFT, RandomAccess (x3)

• STREAM (x8)

• b_eff (x10)

– 103 computers
• Must have all 29 valid (up-to-date) values

• Principal components (eigenvalues of covariance matrix
of zero-mean, unscaled data):

– 4.57, 1.17, 0.41, 0.15, 0.0085,
0.0027

• Only 3 (4) components
• redundancy or
• opportunity to check?

Effective Bandwidth Analysis

HPCS ~102

HPC ~104

Clusters ~106

1.E

1.E

1.E

1.E

1.E

D
A
R
P
A
 H

P
C
S
 G

o
a
ls

IB
M

 B
G

/L
 (L

L
N

L
) O

p
t

IB
M

 B
G

/L
 (L

L
N

L
)

IB
M

 P
o
w

e
r5

 (L
L
N

L
)

C
ra

y
 X

T
3
 (O

R
N

L
)

C
ra

y
 X

T
3
 (E

R
D

C
)

C
ra

y
 X

1
 (O

R
N

L
) O

p
t

C
ra

y
 X

1
 (O

R
N

L
)

N
E
C
 S

X
-8

 (H
L
R
S
)

S
G

I A
ltix

 (N
A
S
A
)

C
ra

y
 X

1
E
 (A

H
P
C
R
C
)

O
p
te

ro
n
 (A

M
D

)

D
e
ll G

ig
E
 P

6
4
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

3
2
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

1
6
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

8
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

4
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

2
 (M

IT
L
L
)

D
e
ll G

ig
E
 P

1
 (M

IT
L
L
)

Top500 (words/s)

STREAM (words/s)

FFT (words/s)

RandomAccess (words/s)

Systems
(in Top500

order)

M
e

g
a

G
ig

a
T

e
ra

P
e
ta

E
ff

e
c
ti

v
e
 B

a
n

d
w

id
th

 (
w

o
rd

s
/s

e
c
o

n
d

)

• All results in
words/secon
d

• Highlights
memory
hierarchy

• Clusters

– Hierarchy
steepens

• HPC systems

– Hierarchy
constant

• HPCS Goals

– Hierarchy
flattens

– Easier to
program

K
il
o

Public Web Resources

• Main HPCC website

– http://icl.cs.utk.edu/hpcc/

• HPCC Awards

– http://www.hpcchallenge.org/

• HPL

– http://www.netlib.org/benchmark/hpl/

• STREAM

– http://www.cs.virginia.edu/stream/

• PTRANS

– http://www.netlib.org/parkbench/html/matrix-kernels.htm

• FFTE

– http://www.ffte.jp/

http://icl.cs.utk.edu/hpcc/
http://www.hpcchallenge.org/
http://www.netlib.org/benchmark/hpl/
http://www.cs.virginia.edu/stream/
http://www.netlib.org/parkbench/html/matrix-kernels.html
http://www.ffte.jp/

HPCC Makefile Stucture (1/2)

• Sample Makefiles live in
hpl/setup

• BLAS

– LAdir – BLAS top directory for other LA-variables

– LAinc – where BLAS headers live (if needed)

– LAlib – where BLAS libraries live (libmpi.a and friends)

– F2CDEFS – resolves Fortran-C calling issues (BLAS is usually
callable from Fortran)
• -DAdd_, -DNoChange, -DUpCase, -Dadd__
• -DStringSunStyle, -DStringStructPtr, -DStringStructVal,
-DStringCrayStyle

• MPI

– MPdir – MPI top directory for other MP-variables

– MPinc – where MPI headers live (mpi.h and friends)

– MPlib – where MPI libraries live (libmpi.a and friends)

HPCC Makefile Stucture (1/2)

• Compiler

– CC – C compiler

– CCNOOPT – C flags without optimization (for
optimization-sensitive code)

– CCFLAGS – C flags with optimization

• Linker

– LINKER – program that can link BLAS and MPI
together

– LINKFLAGS – flags required to link BLAS and MPI
together

• Programs/commands
– SHELL, CD, CP, LN_S, MKDIR, RM, TOUCH
– ARCHIVER, ARFLAGS, RANLIB

MPI Implementations for HPCC

• Vendor

– Cray (MPT)

– IBM (POE)

– SGI (MPT)

– Dolphin, Infiniband (Mellanox, Voltaire, ...), Myricom (GM, MX),
Quadrics, PathScale, Scali, ...

• Open Source

– MPICH1, MPICH2 (http://www-unix.mcs.anl.gov/mpi/mpich
/)

– Lam MPI (http://www.lam-mpi.org/)

– OpenMPI (http://www.open-mpi.org/)

– LA-MPI (http://public.lanl.gov/lampi/)

• MPI implementation components

– Compiler (adds MPI header directories)

– Linker (need to link in Fortran I/O)

– Exe (poe, mprun, mpirun, aprun, mpiexec, ...)

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://public.lanl.gov/lampi/
http://public.lanl.gov/lampi/
http://public.lanl.gov/lampi/

Fast BLAS for HPCC

• Vendor

– AMD (AMD Core Math Library)

– Cray (SciLib)

– HP (MLIB)

– IBM (ESSL)

– Intel (Math Kernel Library)

– SGI (SGI/Cray Scientific
Library)

– ...

• Free implementations

– ATLAS
http://www.netlib.org
/atlas/

– Goto BLAS
http://
www.cs.utexas.edu/users/flame/goto

http://www.tacc.utexas.ed
u/resources/software

• Implementations that use Threads

– Some vendor BLAS

– Atlas

– Goto BLAS

• You should never use reference
BLAS from Netlib

– There are better alternatives for
every system in existence

http://www.netlib.org/atlas/
http://www.netlib.org/atlas/
http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/flame/goto
http://www.cs.utexas.edu/users/flame/goto

Tuning Process: Internal to HPCC Code

• Changes to source code are not allowed for submission

• But just for tuning it's best to change a few things

– Switch off some tests temporarily

• Choosing right parallelism levels

– Processes (MPI)

– Threads (OpenMP in code, vendor in BLAS)

– Processors

– Cores

• Compile time parameters

– More details below

• Runtime input file

– More details below

Tuning Process: External to HPCC Code

• MPI settings examples

– Messaging modes

• Eager polling is probably not a good idea

– Buffer sizes

– Consult MPI implementation documentation

• OS settings

– Page size

• Large page size should be better on many systems

– Pinning down the pages

• Optimize affinity on DSM architectures

– Priorities

– Consult OS documentation

Parallelism Examples with Comments

• Pseudo-threading helps but be careful

– Hyper-threading

– Simultaneous Multi-Threading

– ...

• Cores

– Intel (x86-64, Itanium), AMD (x86)

– Cray: SSP, MSP

– IBM Power4, Power5, ...

– Sun SPARC

• SMP

– BlueGene/L (single/double CPU usage per card)

– SGI (NUMA, ccNUMA, DSM)

– Cray, NEC

• Others

– Cray MTA (no MPI !)

HPCC Input and Output Files

• Parameter file hpccinf.txt

– HPL parameters

• Lines 5-31

– PTRANS parameters

• Lines 32-36

– Indirectly: sizes of arrays for
all HPCC components

• Hard coded

• Output file hpccoutf.txt

– Must be uploaded to the
website

– Easy to parse

– More details later...

• Memory file hpccmemf.txt

– Memory available per MPI
process
Process=64

– Memory available per thread
Thread=64

– Total available memory
Total=64

– Many HPL and PTRANS
parameters might not be
optimal

Tuning HPL: Introduction

• Performance of HPL comes from

– BLAS

– Input file hpccinf.txt

• Essential parameters in the input file

– N – matrix size

– NB – blocking factor

• Influences BLAS performance and
load balance

– PMAP – process mapping

• Depends on network topology

– PxQ – process grid

• Definitions N

NB

=

A x = b

P
X

P
Y

P
Z

P
X

Tuning HPL: More Definitions

• Process grid parameters: P, Q, and PMAP

P
0

P
4

P
8

P
1

P
2

P
5

P
9

P
6

P
10

P
3

P
7

P
11

P
0

P
1

P
2

P
3

P
6

P
4

P
5

P
7

P
8

P
9

P
10

P
11

P=3

Q=4

PMAP=RPMAP=C

Tuning HPL: Selecting Process Grid

Tuning HPL: Selecting Number of Processors

Prime numbers
37

41 43

47
53

59
61

Tuning HPL: Selecting Matrix Size

Too small
Best performance

Too big
6 x 10

Not optimial parameters

Too big
12 x 10

Tuning HPL: Further Details

• Much more details from HPL's author:

• Antoine Petitet

• http://www.netlib.org/benchmark/hpl/

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/

Tuning FFT

• Compile-time parameters

– FFTE_NBLK

• blocking factor

– FFTE_NP

• padding (to alleviate negative cache-line effects)

– FFTE_L2SIZE

• size of level 2 cache

• Use FFTW instead of FFTE

– Define USING_FFTW symbol during compilation

– Add FFTW location and library to linker flags

Tuning STREAM

• Intended to measure main memory bandwidth

• Requires many optimizations to run at full hardware
speed

– Software pipelining

– Prefetching

– Loop unrolling

– Data alignment

– Removal of array aliasing

• Original STREAM has advantages

– Constant array sizes (known at compile time)

– Static storage of arrays (at full compiler's control)

Tuning PTRANS

• Parameter file hpccinf.txt

– Line 33 — number of matrix sizes

– Line 34 — matrix sizes

• Must not be too small – enforced in the code

– Line 35 — number of blocking factors

– Line 36 — blocking factors

• No need to worry about BLAS

• Very influential for performance

Tuning b_eff

• b_eff (Effective bandwidth and latency) test can also be
tuned

• Tuning must use only standard MPI calls

• Examples

– Persistent communication

– One-sided communication

HPCC Output File

• The output file has two parts

– Verbose output (free format)

– Summary section

• Pairs of the form:
name=value

• The summary section names

– MPI* — global results

• Example: MPIRandomAccess_GUPs

– Star* — embarrassingly parallel results

• Example: StarRandomAccess_GUPs

– Single* — single process results

• Example: SingleRandomAccess_GUPs

Optimized Submission Ideas

• For optimized run the same MPI harness has to be run on the same
system

• Certain routines can be replaced – the timed regions

• The verification has to pass – limits data layout and accuracy of
optimization

• Variations of the reference implementation are allowed (within
reason)

– No Strassen algorithm for HPL due to different operation count

• Various non-portable C directives can significantly boost
performance

– Example: #pragma ivdep

• Various messaging substrates can be used

– Removes MPI overhead

• Various languages can be used

– Allows for direct access to non-portable hardware features

– UPC was used to increase RandomAccess performance by orders
of magnitude

• Optimizations need to be explained upon results submission

