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Introduction

• HPC Challenge Benchmark Suite

– To examine the performance of HPC architectures 
using kernels with more challenging memory access 
patterns than HPL 

– To augment the TOP500 list

– To provide benchmarks that bound the performance of 
many real applications as a function of memory access 
characteristics ― e.g., spatial and temporal locality

– To outlive HPCS

• HPC Challenge pushes spatial and temporal boundaries 
and defines performance bounds



  

TOP500 and HPCC

• TOP500
– Performance is represented by 

only a single metric
– Data is available for an 

extended time period
(1993-2005)

• Problem:
There can only be one “winner”

• Additional metrics and statistics
– Count (single) vendor systems 

on each list
– Count total flops on each list 

per vendor
– Use external metrics: price, 

ownership cost, power, …
– Focus on growth trends over 

time

• HPCC
– Performance is represented by 

multiple single metrics
– Benchmark is new — so data is 

available for a limited time 
period
(2003-2005)

• Problem:
There cannot be one “winner”

• We avoid “composite” benchmarks
– Perform trend analysis

• HPCC can be used to show 
complicated kernel/ 
architecture performance 
characterizations

– Select some numbers for 
comparison

– Use of kiviat charts
• Best when showing the 

differences due to a single 
independent “variable”

• Over time — also focus on growth 
trends



  

High Productivity Computing Systems (HPCS)

Goal:

 Provide a new generation of economically viable high productivity computing 
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national 

security applications by a factor of 10X to 40X

Programmability (idea-to-first-solution): reduce cost and 
time of developing application solutions 

Portability (transparency): insulate research and 
operational application software from system

Robustness (reliability): apply all known techniques to 

protect against outside attacks, hardware faults, & 
programming errors

Fill the Critical Technology and Capability Gap

Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant 

modeling and biotechnology
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HPCS Program Phases I-III
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HPCS Benchmark and Application Spectrum
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Spectrum of benchmarks provide different views of system

• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds

• Applications drive system issues; set legacy code performance bounds 

• Kernels and Compact Apps for deeper analysis of execution and development time
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Motivation of the HPCC Design

Spatial Locality
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 Measuring Spatial and Temporal Locality (1/2)

HPC Challenge 
Benchmarks

Select Applications
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• Spatial and temporal data locality here 
is for one node/processor — i.e., 
locally or “in the small”

Generated by PMaC @ SDSC
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 Measuring Spatial and Temporal Locality (2/2)

HPC Challenge 
Benchmarks

Select Applications
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Supercomputing Architecture Issues
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• Standard architecture produces a “steep” multi-layered memory hierarchy

– Programmer must manage this hierarchy to get good performance

• HPCS technical goal

– Produce a system with a “flatter” memory hierarchy that is easier to 
program



  

HPCS Performance Targets

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

HPCS Targets
(improvement)

• Top500: solves a system

Ax = b

• STREAM: vector operations

A = B + s x C

• FFT: 1D Fast Fourier Transform
Z = FFT(X)

• RandomAccess: random 
updates

T(i) = XOR( T(i), r ) 

bandwidth

latency

2 Petaflops
(8x)

6.5 Petabyte/s
(40x)

0.5 Petaflops
(200x)

64,000 GUPS
(2000x)

• HPCS program has developed a new suite of benchmarks (HPC Challenge)

• Each benchmark focuses on a different part of the memory hierarchy

• HPCS program performance targets will flatten the memory hierarchy, 
improve real application performance, and make programming easier



  

Official HPCC Submission Process

1. Download

2. Install

3. Run

4. Upload results

5. Confirm via @email@

6. Tune

7. Run

8. Upload results

9. Confirm via @email@

Optional

● Only some routines can be replaced
● Data layout needs to be preserved
● Multiple languages can be used

Provide detailed
installation and

execution environment

Prequesites:
● C compiler

● BLAS
● MPI

Results are immediately available on the web site:
● Interactive HTML
● XML
● MS Excel
● Kiviat charts (radar plots)



  

HPCC as a Framework (1/2)

• Many of the component benchmarks were widely used before the 
HPC Challenge suite of Benchmarks was assembled

– HPC Challenge has been more than a packaging effort

– Almost all component benchmarks were augmented from their 
original form to provide consistent verification and reporting 

• We stress the importance of running these benchmarks on a single 
machine — with a single configuration and options

– The benchmarks were useful separately for the HPC community, 
meanwhile

– The unified HPC Challenge framework creates an unprecedented 
view of performance characterization of a system

• A comprehensive view with data captured the under the same 
conditions allows for a variety of analyses depending on end user 
needs



  

HPCC as a Framework (2/2)

• HPCC unifies a number of existing (and well known) codes in one 
consistent framework

• A single executable is built to run all of the components

– Easy interaction with batch queues

– All codes are run under the same OS conditions – just as an 
application would

• No special mode (page size, etc.) for just one test (say Linpack 
benchmark)

• Each test may still have its own set of compiler flags

– Changing compiler flags in the same executable may inhibit inter-
procedural optimization

• Why not use a script and a separate executable for each test?

– Lack of enforced integration between components

• Ensure reasonable data sizes

• Either all tests pass and produce meaningful results or failure is 
reported

– Running a single component of HPCC for testing is easy enough



  

Base vs. Optimized Run

• HPC Challenge encourages users to develop optimized benchmark codes that use 
architecture specific optimizations to demonstrate the best system performance

• Meanwhile, we are interested in both
– The base run with the provided reference implementation
– An optimized run

• The base run represents behavior of legacy code because
– It is conservatively written using only widely available programming languages 

and libraries
– It reflects a commonly used approach to parallel processing sometimes referred 

to as hierarchical parallelism that combines
• Message Passing Interface (MPI)
• OpenMP Threading

– We recognize the limitations of the base run and hence we encourage optimized 
runs 

• Optimizations may include alternative implementations in different programming 
languages using parallel environments available specifically on the tested system

• We require that the information about the changes made to the original code be 
submitted together with the benchmark results

– We understand that full disclosure of optimization techniques may sometimes be 
impossible 

– We request at a minimum some guidance for the users that would like to use 
similar optimizations in their applications



  

HPCC Base Submission

• Publicly available code is 
required for base submission

1. Requires C compiler, MPI 
1.1, and BLAS

2. Source code cannot be 
changed for submission run

3. Linked libraries have to be 
publicly available

4. The code contains 
optimizations for 
contemporary hardware 
systems

5. Algorithmic variants 
provided for performance 
portability

• This to mimic legacy 
applications’ performance

1. Reasonable software 
dependences

2. Code cannot be changed 
due to complexity and 
maintenance cost

3. Relies on publicly available 
software

4. Some optimization has been 
done on various platforms

5. Conditional compilation and 
runtime algorithm selection 
for performance tuning

Baseline code has over 10k SLOC — there must more productive way of coding



  

HPCC Optimized Submission

• Timed portions of the code may be replaced with optimized code
• Verification code still has to pass

– Must use the same data layout or pay the cost of redistribution
– Must use sufficient precision to pass residual checks

• Allows to use new parallel programming technologies
– New paradigms, e.g. one-sided communication of MPI-2:

MPI_Win_create(…);
MPI_Get(…);
MPI_Put(…);
MPI_Win_fence(…);

– New languages, e.g. UPC:
• shared pointers
• upc_memput()

• Code for optimized portion may be proprietary but needs to use publicly 
available libraries

• Optimizations need to be described but not necessarily in detail – possible 
use in application tuning

• Attempting to capture: invested effort per flop rate gained
– Hence the need for baseline submission

• There can be more than one optimized submission for a single base 
submission (if a given architecture allows for many optimizations)



  

Base Submission Rules Summary

• Compile and load options

– Compiler or loader flags which are supported and documented by 
the supplier are allowed

– These include porting, optimization, and preprocessor invocation

• Libraries

– Linking to optimized versions of the following libraries is allowed

• BLAS

• MPI

• FFT

– Acceptable use of such libraries is subject to the following rules:

• All libraries used shall be disclosed with the results submission. 
Each library shall be identified by library name, revision, and source 
(supplier). Libraries which are not generally available are not 
permitted unless they are made available by the reporting 
organization within 6 months.

• Calls to library subroutines should have equivalent functionality to 
that in the released benchmark code. Code modifications to 
accommodate various library call formats are not allowed



  

Optimized Submission Rules Summary

• Only computational (timed) portion of the code can be changed

– Verification code can not be changed

• Calculations must be performed in 64-bit precision or the equivalent

– Codes with limited calculation accuracy are not permitted

• All algorithm modifications must be fully disclosed and are subject to 
review by the HPC Challenge Committee

– Passing the verification test is a necessary condition for such an 
approval

– The replacement algorithm must be as robust as the baseline 
algorithm

• For example — the Strassen Algorithm may not be used for the 
matrix multiply in the HPL benchmark, as it changes the operation 
count of the algorithm

• Any modification of the code or input data sets — which utilizes 
knowledge of the solution or of the verification test — is not 
permitted

• Any code modification to circumvent the actual computation is not 
permitted



  

HPCC Tests at a Glance

1. HPL

2. DGEMM

3. STREAM

4. PTRANS

5. RandomAccess

6. FFT

7. b_eff

• Scalable framework — Unified 
Benchmark Framework

– By design, the HPC Challenge 
Benchmarks are scalable with 
the size of data sets being a 
function of the largest HPL 
matrix for the tested system



  

HPCC Testing Scenarios

1. Local

1.Only single process 
computes

2. Embarrassingly parallel

1.All processes compute 
and do not communicate 
(explicitly)

3. Global

1.All processes comput and 
communicate

4. Network only
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Naming Conventions

HPL
STREAM

FFT
…

RandomAccess

S

EP

G

system

CPU

thread

Examples:
2. G-HPL
3. S-STREAM-system



  

HPCC Tests - HPL

• HPL = High Performance Linpack

• Objective: solve system of linear equations
Ax=b A∈ Rn×n x,b∈ R

• Method: LU factorization with partial row pivoting

• Performance: ( 2/3n3 + 3/2n2 ) / t

• Verification: scaled residuals must be small
|| Ax-b || / (ε ||A|| ||x|| n)

• Restrictions:

– No complexity reducing matrix-multiply

• (Strassen, Winograd, etc.)

– 64-bit precision arithmetic through-out 

• (no mixed precision with iterative refinement)



  

HPL:TOP500 and HPCC Implementation Comparison

ContinuousContinuousBi-annualReporting frequency

NoNoYesN-half reported

YesYesNo
Numerics of solution 

reported

YesYesYes
Floating-point in 64-

bits

DescribeReference codeNot requiredDisclose code

HPCC 
Optimized

HPCC BaseTOP500



  

HPCC HPL: Further Details

• Linear system solver (requires all-to-all communication)

• Stresses local matrix multiply performance

• DARPA HPCS goal: 2 Pflop/s (8x over current best)

• High Performance Linpack (HPL) solves a system Ax = b

• Core operation is a LU factorization of a large MxM matrix

• Results are reported in floating point operations per second (flop/s)
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HPCC Tests - DGEMM

• DGEMM = Double-precision General Matrix-matrix 
Multiply

• Objective: compute matrix
C ← αAB + βC  A,B,C∈ Rn×n  α,β∈ R

• Method: standard multiply (maybe optimized)

• Performance: 2n3/t

• Verification: Scaled residual has to be small
|| x – y || / (ε n || y || )

where x and y are vectors resulting from multiplication by 
a random vector of left and right hand size of the 
objective expression

• Restrictions:

– No complexity reducing matrix-multiply
• (Strassen, Winograd, etc.)

– Use only 64-bit precision arithmetic



  

HPCC Tests - STREAM

• STREAM is a test that measures sustainable memory 
bandwidth (in Gbyte/s) and the corresponding 
computation rate for four simple vector kernels

• Objective: set a vector to a combination of other vectors
COPY: c = a
SCALE: b = α c
ADD: c = a + b
TRIAD: a = b + α c

• Method: simple loop that preserves the above order of 
operations

• Performance: 2n/t or 3n/t

• Verification: scalre residual of computed and reference 
vector needs to be small

|| x – y || / (ε n || y || )

• Restrictions:

– Use only 64-bit precision arithmetic



  

Original and HPCC STREAM Codes

Whole 
memory,

Runtime

Whole 
memory,

Runtime

Exceeds caches,

Compile time
Vectors’ size

PossiblePossibleNo
Reporting Multiple of Number 

of Processors

OS-specificOS-specificImplicitData alignment

AnyC onlyFortran (or C)Programming Language

HPCC 
Optimized

HPCC BaseSTREAM



  

HPCC STREAM: Further Details

• Basic operations on large vectors (requires no communication)

• Stresses local processor to memory bandwidth

• DARPA HPCS goal: 6.5 Pbyte/s (40x over current best)

• Performs scalar multiply and add

• Results are reported in bytes/second
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HPCC Tests - PTRANS

• PTRANS = Parallel TRANSpose

• Objective: update matrix with sum of its transpose and 
another matrix

A=AT+B  A,B∈ Rn×n

• Method: standard distributed memory algorithm

• Performance: n2/t

• Verification: scaled residual between computed and 
reference matrix needs to be small

|| A0 – A || / ( ε n || A0 || )

• Restrictions:

– Use only 64-bit precision arithmetic

– The same data distribution method as HPL



  

HPCC PTRANS: Further Details

987987987

654654654

321321321

987987987

654654654

321321321

987987987

654654654

321321321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

• matrix: 9x9 
•3x3 process grid
• Communicating pairs:

• 2-4, 3-7, 6-8

• matrix: 9x9
•1x9 process grid
• Communicating pairs:

• 1-2, 1-3, 1-4, 1-5, 1-6,
1-7, 1-8, 1-9, 2-3, …,
8-9
• 36 pairs!



  

HPCC Tests - RandomAccess

• RandomAccess calculates a series of integer updates to 
random locations in memory

• Objective: perform computation on Table
Ran = 1;
for (i=0; i<4*N; ++i) {
  Ran= (Ran<<1) ^ (((int64_t)Ran < 0) ? 7:0);
  Table[Ran & (N-1)] ^= Ran;
}

• Method: loop iterations may be independent

• Performance: 4N/t

• Verification: up to 1% of updates can be incorrect

• Restrictions:

– Use at least 64-bit integers

– About half of memory used for ‘Table’

– Parallel look-ahead limited to 1024 (limit locality)



  

HPCC RandomAccess: Further Details

• Randomly updates memory (requires all-to-all communication)

• Stresses interprocessor communication of small messages

• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates N element table of unsigned integers

• Each processor generates indices, sends to all other processors, performs 
XOR

• Results are reported in Giga Updates Per Second (GUPS)
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HPCC Tests - FFT

• FFT = Fast Fourier Transform

• Objective: compute discrete Fourier Transform

zk=Σxj exp(-2π√-1 jk/n)  x,z∈ Cn

• Method: any standard framework (maybe optimized)

• Performance: 5nlog2n/t

• Verification: scaled residual for inverse transform of 
computed vector needs to be small

|| x – x(0) || / (ε log2 n )

• Restrictions:

– Use only 64-bit precision arithmetic

– Result needs to be in-order (not bit-reversed)



  

HPCC FFT: Further Details

• FFT a large complex vector (requires all-to-all communication)

• Stresses interprocessor communication of large messages

• DARPA HPCS goal: 0.5 Pflop/s (200x over current best)

• 1D Fast Fourier Transforms an N element complex vector

• Typically done as a parallel 2D FFT

• Results are reported in floating point operations per second (flop/s)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

0

0

1

:

Np-1

FFT rows

FFT columns

corner 
turn

1 Np-1. .



  

HPCC Tests – b_eff

• b_eff measures effective bandwidth and latency of the 
interconnect

• Objective: exchange 8 (for latency) and 2000000 (for 
bandwidth) messages in ping-pong, natural and random 
ring patterns

• Method: use standard MPI point-to-point routines

• Performance: n/t (for bandwidth)

• Verification: simple checksum on received bits

• Restrictions:

– The messaging routines have to conform to the MPI 
standard



  

HPCC Awards Overview

• Goals

– Increase awareness of HPCC

– Increase awareness of HPCS and its goals

– Increase number of HPCC submissions

• Expanded view of largest supercomputing installations

• Means

– HPCwire sponsorships and press coverage

– HPCS mission partners’ contribution

– HPCS vendors’ contribution



  

HPCC Awards Rules

• Class 1: Best Performance

– Figure of merit:
raw system performance

– Submission must be valid 
HPCC database entry

• Side effect: populate HPCC 
database

– 4 categories: HPCC 
components

• HPL

• STREAM-system

• RandomAccess

• FFT

– Award certificates
• 4x $500 from HPCwire

• Class 2: Most Productivity

– Figure of merit: performance 
(50%) and elegance (50%)

• Highly subjective

• Based on committee vote

– Submission must implement 
at least 3 out of 4 Class 1 
tests

• The more tests the better

– Performance numbers are a 
plus

– The submission process:
• Source code

• “Marketing brochure”

• SC06 BOF presentation

– Award certificate
• $1500 from HPCwire



  

HPCC Awards Committee

• David Bailey
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• Jack Dongarra (Co-Chair)
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USC/ISI

• Rusty Lusk
Argonne National Lab

• Piotr Luszczek
Univ. of Tennessee

• John McCalpin
AMD

• Rolf Rabenseifner
HLRS Stuttgart

• Daisuke Takahashi
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SC|05 HPCC Awards Class 1 – STREAM-sys
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May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
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SC|05 HPCC Awards Class 1 –RandomAccess

May 9, 03 Jan 14, 04 Sep 20, 04 May 28, 05 Feb 2, 06
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SC|05 HPCC Awards Class 2

√√HPF

√√StarP

√√OpenMP, C++

√√MPT C

√√√√Parallel Matlab

√√√√Cilk

√√√UPCx3

√√Cray MTA C

√√√√pMatlab

√√Python+MPI

FFTSTREAMRandomAccessHPLLanguage Sample
 submission

from
committee
members

Winners

Finalists



  

SC06 HPCC Awards BOF

Awards will be presented at 
the SC06 HPC Challenge BOF

Tuesday, November 14, 2006

In Ballroom B-C

12:15-1:15



  

HPCC b_eff Analysis Outline

• How HPC Challenge Benchmark (HPCC) data can be used 
to analyze the balance of HPC systems

• Details on ring based benchmarks

• Resource based ratios

• Inter-node bandwidth and

• memory bandwidth

• versus computational speed

• Comparison mainly based on public HPCC data



  

HPCC and Computational Resources

Computational 
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

HPL
(Jack Dongarra)

STREAM
(John McCalpin)

Random & Natural

Ring 
Bandwidth & Latency
(my part of the
 HPCC Benchmark Suite)



  

Random and Natural Ring B/W and Latency

• Parallel communication pattern on all MPI processes (   )

– Natural ring

– Random ring

• Bandwidth per process 
– Accumulated message size / wall-clock time / number of processes

– On each connection messages in both directions

– With 2xMPI_Sendrecv and MPI non-blocking  best result is used

– Message size = 2,000,000 bytes

• Latency
– Same patterns, message size = 8 bytes

– Wall-clock time / (number of sendrecv per process)



  

Inter-node B/W on Clusters of SMP Nodes

• Random Ring

– Reflects the other dimension of a Cartesian domain 
decomposition and

– Communication patterns in unstructured grids

– Some connections are inside of the nodes

– Most connections are inter-node

– Depends on #nodes and #MPI processes per node



  

Accumulated Inter-node B/W on Clusters of SMPs

• Accumulated bandwidth

:= bandwidth per process  x  #processes

~=
    accumulated inter-node bandwidth _   

                   1 – 1 / #nodes 

similar to
bi-section bandwidth



  

Balance Analysis with HPCC Data

• Balance can be expressed as a set of ratios

– e.g., accumulated memory bandwidth / accumulated 
Tflop/s rate

• Basis 

– Linpack (HPL)       Computational Speed

– Random Ring Bandwidth       Inter-node communication

– Parallel STREAM Copy or Triad  Memory bandwidth

• Be careful:

– Some data are presented for the total system

– Some per MPI process  (HPL processes), 
e.g., ring bandwidth

– i.e., balance calculation always with 
accumulated data on the total system



  

Balance: Random Ring B/W and HPL

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image005.gif

•Ratio measures balance between 

inter-node communication and 
computational speed (Linpack).

• It varies between systems by a 

factor of ~20.

Status Sep. 14, 2006



  

Balance: Random Ring B/W and CPU Speed

Same as on previous slide,
but linear ...

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image006.gif



  

Balance: Memory and CPU Speed

High memory bandwidth ratio 
on vector-type systems 
(NEC SX-8, Cray X1 & X1E),
but also on Cray XT3.

•Balance: Variation between 

systems only about 10.

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image011.gif



  

Balance: FFT and CPU

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image015.gif

• Ratio ~20.



  

Balance: PTRANS and CPU

•Balance: Variation between 

systems larger than 20.

hpcc_2006-09-14_analysis.ppt  Als Webseite speichern  hpcc_2006-09-14_analysis-Diagramme/image013.gif
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Conclusions

• HPCC is an interesting basis for 

• benchmarking  computational resources

• analyzing the balance of a system

• scaling with the number of processors

• with respect to application needs

• HPCC helps to show the strength and weakness of super-
computers

• Future super computing should not focus only on Pflop/s 
in the TOP500

• Memory and network bandwidth are as same as important 
to predict real application performance



  

Reporting Results - Etiquette

• The HPC Challenge  Benchmark suite has been designed to permit 
academic style usage for comparing 

– Technologies

– Architectures

– Programming models

• There is an overt attempt to keep HPC Challenge significantly 
different than “commercialized” benchmark suites

– Vendors and users can submit results

– System “cost/price” is not included intentionally

– No “composite” benchmark metric

• Be cool about comparisons!

• While we can not enforce any rule to limit comparisons observe rules 
of 

– Academic honesty

– Good taste



  

Total Number of HPCC Submissions
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Based vs. Optimized Submission

• Optimized G-RandomAccess is a UPC code

– ~125x improvement

G-HPL G-PTRANS

G-Random

Access G-FFTE

G-STREAM

Triad

EP

STREAM

Triad

EP

DGEMM

Random

Ring

Bandwidth

Random

Ring

Latency
System - Processor Speed Count TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec

Cray mfeg8 X1E  1.13GHz 248  opt 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58

Cray X1E X1E MSP  1.13GHz 252  base 3.1941 85.204 0.014868 15.54 2440 9.682 14.185 0.36024 14.93

System Information Run

Type



  

Exploiting Hybrid Programming Model

• The NEC SX-7 architecture can permit the definition of 
threads and processes to significantly enhance 
performance of the EP versions of the benchmark suite 
by allocating more powerful “nodes”

– EP-STREAM

– EP-DGEMM

G-HPL G-PTRANS

G-Random

Access G-FFTE

G-STREAM

Triad

EP

STREAM

Triad

EP

DGEMM

Random

Ring

Bandwidth

Random

Ring

Latency
System Speed Count Threads Processes TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec

NEC SX-7  0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-7  0.552GHz 32 1 32 0.2553 20.546 0.000964 11.29 836.9 26.154 8.239 5.03934 14.21

System Information



  

Kiviat Charts: Comparing Interconnects

• AMD Opteron clusters

– 2.2 GHz

– 64-processor cluster

• Interconnects

1. GigE

2. Commodity

3. Vendor

• Cannot be differentiated based 
on:

– HPL

– Matrix-matrix multiply

• Available on HPCC website

Kiviat chart (radar plot)



  

Augmenting TOP500’s 26th Edition with HPCC
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Augmenting TOP500’s 27th Edition with HPCC

B/WLatencyGUPSFFTSTREAMPTRANSHPLRmaxComputer

35.86
Earth 

Simulator
10

1.1497.971.02111843.581813.0632.9936.19Red Storm9

37.33
BlueGene 
eServer

8

38.18Fire x46007

38.27Thunderbird6

42.9Tera-105

0.8964.230.252292091.3146.7851.87Columbia (*)4

3.1845.11.038425555357.975.8ASC Purple3

0.1594.7021.61123550171.5583.991BGW (*)2

0.1595.9235.4723111604665.9259.2280.6BlueGene/L1



  

Normalize with Respect to Peak flop/s

17.52555.90.00286.9%NEC SX-8

3.5308.70.00371.9%SGI Altix

6.1435.70.08970.6%IBM BG/L

15.5703.50.00353.5%IBM POWER5

13.4696.10.42267.3%Cray X1E

38.31168.80.03181.4%Cray XT3

FFTSTREAMRandomAccessHPLComputer

Normalizing with peak flop/s cancels out number of processors:

G-HPL / Rpeak = (local-HPL*P) / (local-Rpeak*P) = local-HPL / local-Rpeak

Good: can compare systems with different number of processors.
Bad: it’s easy to scale peak and harder to scale real calculation.



  

Correlation: HPL vs. Theoretical Peak

HPL versus Theoretical Peak 
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• How well does HPL data correlate with theoretical 
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Correlation: HPL vs. DGEMM

HPL versus DGEMM
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• Can I Run Just Run DGEMM Instead of HPL?

• DGEMM alone overestimates HPL performance

• Note the 1,000x difference in scales! (Tera/Giga)

• Exercise: correlate HPL versus Processors*DGEMM
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NEC SX-8

SGI Altix



  

Correlation: HPL vs. STREAM-Triad

HPL versus STREAM Triad
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• How well does HPL correlate with STREAM-Triad 
performance?
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Correlation: HPL vs. RandomAccess

HPL versus G-RandomAccess
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• How well does HPL correlate with
G-RandomAccess performance?

• Note the 1,000x difference in scales! (Tera/Giga)
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Correlation: HPL vs. FFT

HPL versus FFT
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• How well does HPL correlate with FFT performance?

• Note the 1,000x difference in scales! (Tera/Giga)
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Correlation: STREAM vs. PTRANS

Global Stream versus PTRANS

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000

Global STREAM (GB/s)

P
T

R
A

N
S

 (
G

B
/s

)

• How well does STREAM data correlate with PTRANS 
performance?
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Correlation: RandomRing B/W vs. PTRANS

RandomRing Bandwidth versus PTRANS
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• How well does RandomRing Bandwidth data 
correlate with PTRANS performance

• Possible bad data?
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Correlation: #Processors vs. RandomAccess

Number of Processors versus G-RandomAccess
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Correlation: Random-Ring vs. RandomAccess

RandomRing Bandwidth versus G-RandomAccess
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Correlation: Random-Ring vs. RandomAccess

RandomRing Bandwidth versus G-RandomAccess
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Correlation: Random-Ring vs. RandomAccess

RandomRing Latency versus G-RandomAccess
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• Does G-RandomAccess scale with RandomRing 
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Correlation: RandomAccess Local vs. Global

Single Processor RandomAccess versus G-RandomAccess

(per System)
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Correlation: RandomAccess Local vs. Global

Single Processor RandomAccess versus G-RandomAccess

(per Processor)
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Correlation:STREAM-Triad vs.RandomAccess

STREAM Triad versus G-RandomAccess
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RandomAccess Correlations Summary

• G-RandomAccess doesn’t correlate with other tests

• Biggest improvement comes from code optimization

– Limit on parallel look-ahead forces short messages

• Typical MPI performance killer

• Communication/computation overlap is wasted by message 
handling overhead

– UPC implementation can be integrated with existing 
MPI code base to yield orders of magnitude speedup

– Using interconnect topology and lower-level (less 
overhead) messaging layer is also a big win

• Generalization from 3D torus: hyper-cube algorithm



  

Principal Component Analysis

• Correlates all the tests simultaneously

• Load vectors hint at relationship between original results 
and the principal components

• Initial analysis:

– 29 tests
• Rpeak, HPL, PTRANS (x1)

• DGEMM (x2)

• FFT, RandomAccess (x3)

• STREAM (x8)

• b_eff (x10)

– 103 computers
• Must have all 29 valid (up-to-date) values

• Principal components (eigenvalues of covariance matrix 
of zero-mean, unscaled data):

– 4.57,  1.17,  0.41,  0.15,  0.0085,
0.0027

• Only 3 (4) components
• redundancy or
• opportunity to check?



  

Effective Bandwidth Analysis

HPCS ~102

HPC ~104

Clusters ~106
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Public Web Resources

• Main HPCC website

– http://icl.cs.utk.edu/hpcc/ 

• HPCC Awards

– http://www.hpcchallenge.org/ 

• HPL

– http://www.netlib.org/benchmark/hpl/  

• STREAM

– http://www.cs.virginia.edu/stream/ 

• PTRANS

– http://www.netlib.org/parkbench/html/matrix-kernels.htm
 

• FFTE

– http://www.ffte.jp/ 

http://icl.cs.utk.edu/hpcc/
http://www.hpcchallenge.org/
http://www.netlib.org/benchmark/hpl/
http://www.cs.virginia.edu/stream/
http://www.netlib.org/parkbench/html/matrix-kernels.html
http://www.ffte.jp/


  

HPCC Makefile Stucture (1/2)

• Sample Makefiles live in
hpl/setup

• BLAS

– LAdir – BLAS top directory for other LA-variables

– LAinc – where BLAS headers live (if needed)

– LAlib – where BLAS libraries live (libmpi.a and friends)

– F2CDEFS – resolves Fortran-C calling issues (BLAS is usually 
callable from Fortran)
• -DAdd_, -DNoChange, -DUpCase, -Dadd__
• -DStringSunStyle, -DStringStructPtr, -DStringStructVal, 
-DStringCrayStyle

• MPI

– MPdir – MPI top directory for other MP-variables

– MPinc – where MPI headers live (mpi.h and friends)

– MPlib – where MPI libraries live (libmpi.a and friends)



  

HPCC Makefile Stucture (1/2)

• Compiler

– CC – C compiler

– CCNOOPT – C flags without optimization (for 
optimization-sensitive code)

– CCFLAGS – C flags with optimization

• Linker

– LINKER – program that can link BLAS and MPI 
together

– LINKFLAGS – flags required to link BLAS and MPI 
together

• Programs/commands
– SHELL, CD, CP, LN_S, MKDIR, RM, TOUCH
– ARCHIVER, ARFLAGS, RANLIB



  

MPI Implementations for HPCC

• Vendor

– Cray (MPT)

– IBM (POE)

– SGI (MPT)

– Dolphin, Infiniband (Mellanox, Voltaire, ...), Myricom (GM, MX), 
Quadrics, PathScale, Scali, ...

• Open Source

– MPICH1, MPICH2 (http://www-unix.mcs.anl.gov/mpi/mpich
/)

– Lam MPI (http://www.lam-mpi.org/)

– OpenMPI (http://www.open-mpi.org/)

– LA-MPI (http://public.lanl.gov/lampi/)

• MPI implementation components

– Compiler (adds MPI header directories)

– Linker (need to link in Fortran I/O)

– Exe (poe, mprun, mpirun, aprun, mpiexec, ...)

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://public.lanl.gov/lampi/
http://public.lanl.gov/lampi/
http://public.lanl.gov/lampi/


  

Fast BLAS for HPCC

• Vendor

– AMD (AMD Core Math Library)

– Cray (SciLib)

– HP (MLIB)

– IBM (ESSL)

– Intel (Math Kernel Library)

– SGI (SGI/Cray Scientific 
Library)

– ...

• Free implementations

– ATLAS
http://www.netlib.org
/atlas/

– Goto BLAS
http://
www.cs.utexas.edu/users/flame/goto

http://www.tacc.utexas.ed
u/resources/software

• Implementations that use Threads

– Some vendor BLAS

– Atlas

– Goto BLAS

• You should never use reference 
BLAS from Netlib

– There are better alternatives for 
every system in existence

http://www.netlib.org/atlas/
http://www.netlib.org/atlas/
http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/flame/goto
http://www.cs.utexas.edu/users/flame/goto


  

Tuning Process: Internal to HPCC Code

• Changes to source code are not allowed for submission

• But just for tuning it's best to change a few things

– Switch off some tests temporarily

• Choosing right parallelism levels

– Processes (MPI)

– Threads (OpenMP in code, vendor in BLAS)

– Processors

– Cores

• Compile time parameters

– More details below

• Runtime input file

– More details below



  

Tuning Process: External to HPCC Code

• MPI settings examples

– Messaging modes

• Eager polling is probably not a good idea

– Buffer sizes

– Consult MPI implementation documentation

• OS settings

– Page size

• Large page size should be better on many systems

– Pinning down the pages

• Optimize affinity on DSM architectures

– Priorities

– Consult OS documentation



  

Parallelism Examples with Comments

• Pseudo-threading helps but be careful

– Hyper-threading

– Simultaneous Multi-Threading

– ...

• Cores

– Intel (x86-64, Itanium), AMD (x86)

– Cray: SSP, MSP

– IBM Power4, Power5, ...

– Sun SPARC

• SMP

– BlueGene/L (single/double CPU usage per card)

– SGI (NUMA, ccNUMA, DSM)

– Cray, NEC

• Others

– Cray MTA (no MPI !)



  

HPCC Input and Output Files

• Parameter file hpccinf.txt

– HPL parameters

• Lines 5-31

– PTRANS parameters

• Lines 32-36

– Indirectly: sizes of arrays for 
all HPCC components

• Hard coded

• Output file hpccoutf.txt

– Must be uploaded to the 
website

– Easy to parse

– More details later...

• Memory file hpccmemf.txt

– Memory available per MPI 
process
Process=64

– Memory available per thread
Thread=64

– Total available memory
Total=64

– Many HPL and PTRANS 
parameters might not be 
optimal



  

Tuning HPL: Introduction

• Performance of HPL comes from

– BLAS

– Input file hpccinf.txt

• Essential parameters in the input file

– N – matrix size

– NB – blocking factor

• Influences BLAS performance and
load balance

– PMAP – process mapping

• Depends on network topology

– PxQ – process grid

• Definitions N

NB

=

A  x = b

P
X

P
Y

P
Z

P
X



  

Tuning HPL: More Definitions

• Process grid parameters: P, Q, and PMAP

P
0

P
4

P
8

P
1

P
2

P
5

P
9

P
6

P
10

P
3

P
7

P
11

P
0

P
1

P
2

P
3

P
6

P
4

P
5

P
7

P
8

P
9

P
10

P
11

P=3

Q=4

PMAP=RPMAP=C



  

Tuning HPL: Selecting Process Grid



  

Tuning HPL: Selecting Number of Processors

Prime numbers
37

41 43

47
53

59
61



  

Tuning HPL: Selecting Matrix Size

Too small
Best performance

Too big
6 x 10

Not optimial parameters

Too big
12 x 10



  

Tuning HPL: Further Details

• Much more details from HPL's author:

•  Antoine Petitet

• http://www.netlib.org/benchmark/hpl/

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/


  

Tuning FFT

• Compile-time parameters

– FFTE_NBLK

• blocking factor

– FFTE_NP

• padding (to alleviate negative cache-line effects)

– FFTE_L2SIZE

• size of level 2 cache

• Use FFTW instead of FFTE

– Define USING_FFTW symbol during compilation

– Add FFTW location and library to linker flags



  

Tuning STREAM

• Intended to measure main memory bandwidth

• Requires many optimizations to run at full hardware 
speed

– Software pipelining

– Prefetching

– Loop unrolling

– Data alignment

– Removal of array aliasing

• Original STREAM has advantages

– Constant array sizes (known at compile time)

– Static storage of arrays (at full compiler's control)



  

Tuning PTRANS

• Parameter file hpccinf.txt

– Line 33 — number of matrix sizes

– Line 34 — matrix sizes

• Must not be too small – enforced in the code

– Line 35 — number of blocking factors

– Line 36 — blocking factors

• No need to worry about BLAS

• Very influential for performance



  

Tuning b_eff

• b_eff (Effective bandwidth and latency) test can also be 
tuned

• Tuning must use only standard MPI calls

• Examples

– Persistent communication

– One-sided communication



  

HPCC Output File

• The output file has two parts

– Verbose output (free format)

– Summary section

• Pairs of the form:
name=value

• The summary section names

– MPI* — global results

• Example: MPIRandomAccess_GUPs

– Star* — embarrassingly parallel results

• Example: StarRandomAccess_GUPs

– Single* — single process results

• Example: SingleRandomAccess_GUPs



  

Optimized Submission Ideas

• For optimized run the same MPI harness has to be run on the same 
system

• Certain routines can be replaced – the timed regions

• The verification has to pass – limits data layout and accuracy of 
optimization

• Variations of the reference implementation are allowed (within 
reason)

– No Strassen algorithm for HPL due to different operation count

• Various non-portable C directives can significantly boost 
performance

– Example: #pragma ivdep

• Various messaging substrates can be used

– Removes MPI overhead

• Various languages can be used

– Allows for direct access to non-portable hardware features

– UPC was used to increase RandomAccess performance by orders 
of magnitude

• Optimizations need to be explained upon results submission


