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Abstract

The repulsive Hubbard model has been immensely useful in understand-

ing strongly correlated electron systems, and serves as the paradigmatic

model of the field. Despite its simplicity, it exhibits a strikingly rich

phenomenology which is reminiscent of that observed in quantum ma-

terials. Nevertheless, much of its phase diagram remains controversial.

Here, we review a subset of what is known about the Hubbard model,

based on exact results or controlled approximate solutions in various

limits, for which there is a suitable small parameter. Our primary focus

is on the ground state properties of the system on various lattices in two

spatial dimensions, although both lower and higher dimensions are dis-

cussed as well. Finally, we highlight some of the important outstanding

open questions.
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1. Introduction

The Hubbard model (1) has come to play a paradigmatic role in the theory of electronic

correlations in quantum materials where interactions play an essential role. Its central-

ity in the quantum statistical mechanics of interacting fermions is comparable to that of

the Ising model in classical statistical mechanics, yet almost sixty years after it was first

described, there remain unsettled basic questions, even concerning the actual phases that

arise for various lattice geometries. Conversely, the more progress that is made in obtaining

theoretical solutions, the clearer it becomes that this simple model can exhibit a startling

array of phases and regimes, many of which have clear parallels with observed behaviors

of a wide variety of complex materials. For instance, there is compelling evidence that

ferromagnetism, various forms of antiferromagnetism, unconventional superconductivity,

charge-density waves, electronic liquid crystalline phases, and topologically ordered phases

(e.g., “spin liquids”), among other phases, occur in specific realizations of the Hubbard

model.

It is our purpose here to summarize, to the extent possible in a brief article, what is

established concerning the quantum phases of the Hubbard model. While some discussion of

the model on small clusters and in one dimension (d = 1) is included for pedagogic purposes,

the focus is primarily on the model on regular lattices (i.e. in the absence of disorder) in

d = 2 and d = 3. Likewise while we include some discussion of finite temperature results, our

focus is on ground state properties, mostly to keep the scope of the article manageable. In

the strong coupling limit and in the special case of one electron per site, the Hubbard model

reduces to an insulating quantum Heisenberg antiferromagnet, which itself can exhibit many

different and fascinating quantum phases; these will be covered to an extent but mostly we

will focus on phases that occur for generic electron densities. Furthermore, we have mostly
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focused on equilibrium properties of the model, especially those essential thermodynamic

correlation functions that characterize distinct quantum phases of matter.

Even within this limited scope, we have restricted ourselves to “controlled” solutions - by

which we mean either exact results (typically obtained using numerical methods of various

sorts) or in cases where there is an approximation scheme that becomes asymptotically exact

as an explicitly identified small parameter tends to zero. This has led us to omit discussion

of a variety of new and powerful “mean-field” methods, including dynamical mean field

theory and dynamical cluster approximations, which have profitably been applied to this

problem. Fortunately, a companion paper to the present paper (2) has these approaches as

its complementary focus.

We also will not explore the relation between the Hubbard model and experiments in

any particular quantum material. Nonetheless, much of the modern resurgence of interest

in this model is a consequence of the role it has played in the study of high temperature

superconductivity in the cuprates. Originally, this connection was suggested on rather basic

phenomenological grounds (3, 4) - the “parent state” in the cuprates is a quasi-2d antifer-

romagnetic insulator, and the Hubbard model on the square lattice is the simplest possible

model of a doped antiferromagnet. It is thus striking that many of the properties of this

model that have been uncovered in subsequent theoretical studies turn out to resemble

essential features of the electronic states of the cuprates that have been revealed by exper-

iments, viz.: 1) The Hubbard model (at least for a range of U not too large) exhibits a

“dome” of d-wave superconductivity throughout a range of doping. 2) It exhibits antifer-

romagnetic long-range order when undoped. 3) It evolves to an effectively weakly-coupled

Fermi liquid state upon heavy doping. 4) It exhibits a tendency toward formation of long-

period unidirectional charge and spin density wave orders (stripes) in the same range of

doping in which superconducting correlations (at least locally) appear strongest. Indeed, as

in the materials themselves, the relation between density-wave and superconducting orders

appears more complicated than the collocation “competing orders” might suggest, leading

to their description as “intertwined.” As has been noted earlier (5), this congruence in be-

havior is sufficiently striking that it encourages the view that the solution of the Hubbard

model can, in some sense, be considered to be the solution of the high Tc problem.

2. Theorems

The Hubbard model describes itinerant, interacting electrons of spin- 1
2

hopping on a set Λ

of spatially localized orbitals. The Hamiltonian is written as

Ĥ = −
∑
i,j∈Λ

∑
σ

tij c
†
iσ cjσ + U

∑
i∈Λ

c†i↑c
†
i↓ci↓ci↑ , 1.

where the hopping tij is often restricted to nearest-neighbor sites, i.e. tij = t∗ji = t δ|i−j|,1,

but generalizations can include further neighbor hopping and/or Peierls phase factors to

account for nonzero magnetic flux. Unless explicitly noted, we will confine our attention

to the zero flux (time-reversal invariant) case. Moreover, we will consider only regular,

connected lattices, i.e. we do not consider the effects of “disorder.” The electron filling is

defined to be n ≡ N/|Λ| where |Λ| is the total number of sites and N is the number of

electrons. The half-filled band, with one electron per site, corresponds to n = 1.

Continuous global symmetries – The model’s most apparent symmetry is a global U(2),

under which ciσ → Uσσ′ ciσ′ with U ∈ U(2) the same matrix on all sites i. Separating
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U(2) = U(1) × SU(2), the global U(1) invariance reflects global charge conservation, hence

the total particle number N̂ =
∑
i,σ c

†
iσciσ is a good quantum number. This symmetry may

be spontaneously broken in a superconducting state. The global SU(2) invariance reflects

spin isotropy, hence Ŝz and Ŝ2 are good quantum numbers, with Ŝ = 1
2

∑
i,µ,ν c

†
iµ σµν ciν .

Global SU(2) invariance of the ground state is spontaneously broken in any ferromagnetic

or antiferromagnetic state.

Particle-hole symmetry – On a bipartite lattice, the transformation ciσ → ηi c
†
iσ, where

ηi = ± on alternate sublattices, results in the transformed Hamiltonian

Ĥ ′ = −
∑
i,j∈Λ

∑
σ

tij c
†
iσ cjσ + U

∑
i∈Λ

c†i↑c
†
i↓ci↓ci↑ + U

(
|Λ| − N̂

)
, 2.

At half-filling, N̂ = |Λ|, the model is particle-hole symmetric. In such cases, the system

is proven (6) to be of uniform density, with 〈c†iσcjσ〉 = 1
2
δij if i and j are on the same

sublattice (with no implicit sum on σ)1. However, this does not preclude either magnetic

or charge density wave order in the thermodynamic limit.

The SU(2) spin symmetry of the Hubbard model is generated by the operators

Ŝ+ =
∑
i

c†i↑ ci↓ , Ŝ− = (Ŝ+)† , Ŝz =
1

2

∑
i

(
c†i↑ci↑ − c

†
i↓ci↓

)
, 3.

all of which commute with Ĥ as well as with the number operator N̂ =
∑
i,σ c

†
iσciσ. A

second, “hidden” SU(2) symmetry (7, 8) is present on bipartite lattices, and is generated

by the pseudospin operators

Ĵ+ =
∑
i

ηi c
†
i↑c
†
i↓ , Ĵ− = (Ĵ+)† , Ĵz =

1

2

(
N̂ − |Λ|

)
, 4.

where ηi = ±1 on the A and B sublattices, respectively. These operators also satisfy the

SU(2) algebra
[
Jα, Jβ

]
= iεαβγJ

γ . While the Jα’s do not commute with Ĥ and N̂ as do

the generators Sα for physical spin, they are eigenoperators in that[
K̂, Ĵ±

]
= ±(U − 2µ) J± 5.

and [K̂, Ĵz] = 0, where K̂ = Ĥ −µN̂ is the grand canonical Hamiltonian (µ is the chemical

potential). Thus, at half-filling, when µ = 1
2
U , the Hubbard model has an additional SU(2)

symmetry. Hence, the global symmetry group at half-filling is SO(4) ∼= SU(2)× SU(2)/Z2,

where the Z2 is associated with the fact that Ĵz + Ŝz has to be an integer when |Λ| is even,

and half-integer when |Λ| is odd (9).

Lieb’s theorem – In 1989, Lieb (10) proved that for the attractive Hubbard model, with

U < 0 (and allowing more generally for site-dependent Ui < 0 ∀ i) that if the total number

of electrons N is even, then the ground state of Ĥ is unique, and is a total spin singlet, i.e.

with S = 0. A corollary is that if U > 0 (independent of i), Λ is bipartite with |A| ≥ |B|, and

N = |Λ| is even, then the ground state of Ĥ has total spin S = 1
2

(
|A|− |B|

)
and degeneracy

2S + 1 (i.e. spin degeneracy is the only degeneracy). A convenient example is the so-

called Lieb lattice, in which the A sublattice is a square lattice and there is a B sublattice

1The conditions for uniform density from ref. (6) are much more general, and include the possi-
bility of site-dependent and even nonlocal interactions.
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Table 1 Possible phases consistent with the LSMOH theorem. A check in the first

column indicates that the number of electrons per site is not an even integer. “Unique”

indicates whether a single, non-degenerate ground state on the torus is possible. By

“featureless” we mean that there is no spontaneous symmetry breaking of any kind

(this does not exclude topological order). The last column names a phase that is

consistent with the listed properties, if any.

n /∈ 2Z unique gapped featureless insulator example

3 3 3 3 3 NOT POSSIBLE

3 3 7 3 7 METALLIC

3 3 3 7 3 DENSITY WAVE

3 3 7 3 3 GAPLESS SPIN LIQUID

3 7 3 3 3 GAPPED SPIN LIQUID

7 3 3 3 3 BAND INSULATOR

site at the center of every link (i.e. the CuO2 lattice of the Emery model (11)). Lieb’s

proof extends the Perron-Frobenius argument deployed in one-dimensional systems (12) by

invoking a tool known as “spin-space reflection positivity”. The theorem then entails a

hierarchy of lowest energy levels in different total spin sectors, E0(S) < E0(S + 1), where

S ∈
{

1
2
(|A| − |B|), . . . , 1

2
|Λ| − 1

}
. For bipartite lattices, the conditions of Lieb’s theorem

guarantee a ferromagnetic ground state when there is a sublattice imbalance, i.e. |A| 6= |B|.
Thouless-Nagaoka-Tasaki theorem – An extension by Tasaki (13, 14) of the celebrated

Nagaoka theorem (15), which in fact was originally proven in a more restricted form by

Thouless (16), states the following: For the Hubbard model with U = ∞ and arbitrary

non-negative tij , and with N = |Λ| − 1, the ground state has total spin S = 1
2
N and

degeneracy 2S + 1. This establishes that there is a ferromagnetic ground state in the

U → ∞ limit when the system is one electron shy of half-filling. No rigorous extension of

these results to finite doped hole density has yet been achieved.

LSMOH theorem – The Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH) theorem

states, in essence, that when the filling n is not an even integer, a unique, gapped, fea-

tureless, insulating ground state is impossible. It is useful to first consider the sort of

behavior that is ruled out by the theorem but which may pertain if the conditions of the

theorem are not met, examples of which are shown in Table 2. The Hubbard model in d = 1

is a band insulator when n = 0 or n = 2, but has a Mott phase for n = 1 that preserves

all symmetries and with no adiabatic connection to a band insulator. More generally, the

theorem applies to models with any number of conserved flavors; in such a case, it states

that a featureless, gapped ground state is impossible if the filling of at least one flavor per

unit cell is non-integer.

The original argument, due to Lieb, Schultz, and Mattis (LSM) (17), applied to an

N -site, spin-S XXZ spin chain with periodic boundary conditions and zero total magneti-

zation. LSM showed that if the ground state |Ψ0 〉 is a state with crystal momentum K0,

i.e. if t̂ |Ψ0 〉 = eiK0 |Ψ0 〉, where t̂ is the lattice translation operator and we work in units

where the lattice spacing is a ≡ 1, then the application of the spin twist operator ,

V̂ = exp

(
2πi

N

N∑
j=1

j Ŝzj

)
, 6.

results in a state |Ψ1 〉 = V̂ |Ψ0 〉 with crystal momentum K1 = K0 + 2πS, satisfying

www.annualreviews.org • The Hubbard Model 5



Table 2 Character of the ground state of the positive U Hubbard square.

N S symmetry range of U/t E0 for U � t E0 for U � t

0 0 1 any U 0 0

1 1/2 1 any U −2t −2t

2 0 1 any U −4t+ U/4− (5/128)U2/t −2
√

2t− 4t2/U

3
1/2 x, y U < UNag −4t+ U/2− (7/128)U2/t —

3/2 1 UNag < U — −2t

4 0 (x2 − y2) any U −4t+ 3U/4t− (13/128)U2/t −12t2/U

〈Ψ1 | ĤXXZ |Ψ1 〉 = E0 +O(1/N). For exp(2πiS) = −1, the states are of different crystal

momentum and thus orthogonal. Thus, in the thermodynamic limit any ground state

|Ψ0 〉 must be degenerate (or gapless). The theorem was extended to more general one-

dimensional systems in Ref. (18).

While the LSM argument does not apply in dimensions d > 1, it was extended by

Oshikawa (19) and subsequently rigorized by Hastings (20) to d-dimensional systems with

periodic boundary conditions (i.e. on a d-torus) and a finite excitation gap. The line of

reasoning, inspired by Laughlin’s argument for quantization of the Hall conductivity in

two dimensions (21), focuses on the consequences of adiabatic φ = 2π U(1) flux threading

through one of the toroidal cycles, followed by a “pullback” to the original U(1) flux state. In

the thermodynamic limit, starting with an initial ground state |Ψ0(φ = 0) 〉, this procedure

results in a low energy state |Ψ1(φ = 0) 〉 (similar to the LSM construction), which becomes

degenerate with the ground state in the thermodynamic limit. The analysis can be applied

to bosonic systems as well (see, e.g., Ref. (22, 23)).

3. The Hubbard square and its extensions

The Hubbard square - that is the four site square “molecule” of Hubbard sites - is sim-

ple enough that its spectrum can be computed analytically (24), but already complicated

enough that it hosts a variety of non-trivial many-body effects that shed considerable light

on the more general problem (25). The symmetry (i.e. total spin S and transformation

properties under the spatial symmetries of the square) of the ground state for the model

with nearest-neighbor hopping, t, in different ranges of U/t and for different values of the

electron number N between 0 and 4, is given in Table 2. Since in the absence of next-nearest-

neighbor hopping, t′ = 0, the model is particle-hole symmetric, the analogous results for

4 < N ≤ 8 are easily obtained.

The most remarkable feature of this table is that the ground state for N = 4 and

U > 0 transforms non-trivially under spatial symmetries - it transforms according to the

B1g representation of the D4 spatial symmetries of the square, (i.e. it transforms like

x2− y2). It is easy to prove (26) that no non-interacting model on the square can have this

property, i.e. this is an intrinsically new effect of “strong” correlations. It is thus worthwhile

to understand its origin.

It is possible to understand this property in the weak coupling limit. We start from

considering the single-particle states for U = 0. Treating the square as a four site ring, all

eigenstates may be labeled by a Bloch wavevector k. Provided |t′| < |t|, the single particle

states are ordered in energy such that the lowest (k = 0) state has energy −2t− t′, the next

6 Arovas et al.



are the two-fold degenerate (k = ±π/2) with energy +t′ that transform as x and y, and the

highest (k = π) state has energy 2t− t′ and transforms as xy. Thus, for U = 0, the ground

state with N = 4 is any state with two electrons (of opposite spin) in the k = 0 state, and

two electrons in either of the first excited states; it is thus six-fold degenerate. However,

they can be expressed uniquely as states of given symmetry: there is a triplet of S = 1 states

which transforms trivially under spatial transformations (rotations and mirror reflections),

and three S = 0 states, one (with one electron each in k = ±π/2) which transforms trivially

under spatial transformations, and two which are superpositions of states with two electrons

either in k = π/2 or k = −π/2, which transform either as xy or as x2 − y2. Of these, the

one that is adiabatically connected to the U > 0 ground state is the latter,∣∣Ψx2−y2
〉

= 1√
2

[
c†π/2,↑c

†
π/2,↓ − c

†
−π/2,↑c

†
−π/2,↓

]
c†0↑c

†
0↓
∣∣ 0 〉 . 7.

Given that there are no degeneracies once symmetry is imposed, it is clearly possible to

incorporate the effects of small U by straightforward perturbation theory. Hund’s first rule,

which in this context would be expected to be derivable in first order perturbation theory,

would imply that the triplet state would be the most likely candidate ground state. Indeed,

for any Slater determinant state, the first order energy is 4UN↑N↓ where Nσ is the number

of electrons with given spin polarization, and this takes its minimal value of 3U/4 in a triplet

state with three electrons of one polarization and one electron of the opposite polarization.

However, manifestly |Ψx2−y2 〉 is not a Slater determinant, and indeed it is easy to show

that to first order in U , it is degenerate with the triplet state. Computing the second order

correction requires a bit of algebra, but the result (given for t′ = 0 in Table 2) is that the

singlet state has the lower energy.

This is a rare example of a case in which Hund’s rule is violated. Note that the cause of

this is a subtle quantum effect – the ground state in the U → 0 limit is a highly entangled

state that does not reduce to a single Slater determinant.

The other case that has interesting structure is the N = 3 square. For U = 0, the

ground state is four-fold degenerate, but this degeneracy is fixed by symmetry and hence

survives to non-zero U . Specifically, the ground state has S = 1/2 and k = ±π/2, i.e. it

transforms under the spatial symmetries as (x, y). However, for large U , we know from

Nagaoka’s theorem that the ground state must have S = 3/2. Since parallel spins do not

interact in the Hubbard model, this state is the non-interacting (Slater determinant) state

with one electron in each of k = 0 and ±π/2; the resulting state is manifestly invariant

under the spatial symmetries. It requires a little algebra to derive the critical value of

U = UNag that separates the two regimes; for t′ = 0, UNag = 4(2 +
√

7) t ≈ 18.6t.

It is also interesting to consider an ensemble of Hubbard squares. If they can exchange

particles, we can ask the question: if we have a total of N electrons (with 0 < N ≤ 8) and

two molecular Hubbard squares on which to place them, what is the lowest energy state?

Not surprisingly, for N = 8 it is best to put four electrons on each molecule, while for N = 7

it is best to place three on one molecule and four on the other. However, for N = 6, the

result is more interesting. We define the pair binding energy,

∆p ≡ 2E(3)− E(4)− E(2) , 8.

where E(n) is the n-electron ground state energy of a molecule. ∆p is the energy difference

between placing 3 electrons (one “doped hole”) on each molecule, or two electrons (one pair

of doped holes) on one and four electrons (no holes) on the other. ∆p is negative for U

www.annualreviews.org • The Hubbard Model 7



larger than a certain value Up, as one might have expected, but it is positive for U < Up, i.e.

there is an effective induced attraction between two doped holes. (For t′ = 0, Up ≈ 4.584t.)

The existence of a range of U > 0 in which ∆p > 0 constitutes the simplest paradigmatic

example of a system in which an effective attraction - indeed induced pairing - arises from

purely repulsive microscopic interactions. Ultimately, it is related to the anomalous stability

of the state with four electrons on one molecule. In the weak coupling limit, the pair-

binding can be computed perturbatively as ∆p = A U2/t + . . . , where A is a function

of t′/t with A = 1/32 for t′ = 0. One can also consider the separate contributions of

the kinetic energy (hopping term) and the interaction energy (Hubbard term) to ∆p. In

the weak-coupling limit, pair formation is associated with a cost in kinetic energy which

is more than compensated by a reduced cost in repulsion, but for Up > U > U? (where

U? ≈ 2.457 t for t′ = 0), ∆p gets a positive contribution from a lowering of the kinetic

energy and a negative contribution (disfavoring pair-binding) from the interactions. An

intrinsically strong coupling mechanism of “kinetic-energy driven pairing” is thus in play

for U? < U < Up.

One final lesson from this concerns the preferred symmetry of a “pairing” order param-

eter. Consider the operator Φ̂ =
∑
i,j φi,j ci↑ cj↓ that creates the two-electron ground state

by acting on the undoped (four electron) ground state. This operator can be viewed as

creating a “Cooper pair” of doped holes. As first observed by Scalapino and Trugman (25),

the symmetry properties of Φ̂ are determined by the difference of the spatial symmetries of

two and four electron ground states. For the case tabulated above valid for |t′| < |t|, this

means that this operator has dx2−y2 symmetry. This illustrates the robust preference for

d-wave superconductivity that we will see is a generic feature of the Hubbard model on the

square lattice.

While the Hubbard square is particularly illuminating as it is analytically solvable, it is

worth noting that other small clusters - solvable numerically - can exhibit similar behaviors,

and in particular regimes pair binding arises even when U > 0. Examples of this include

the Hubbard model on the tetrahedron (in which pair-binding persists for all U), cube, and

truncated tetrahedron (27).

Distinct phases of matter - and in particular spontaneously broken symmetries - do not

arise in finite Hubbard clusters. However, in certain circumstances, the properties of an

extended system consisting of weakly coupled clusters can be inferred from the properties

of an isolated cluster in a controlled expansion in powers of the (assumed small) intercluster

couplings. Such an analysis was carried through for a 2d “checkerboard” array of Hubbard

squares in Refs. (28, 29, 30, 31, 32, 33, 34). Here, the complexity of the various regimes

found for the isolated square implies the existence of a still richer phase diagram in the

U−x plane. Not surprisingly, in the range of U for which there is pair-binding on the single

square, there arises a substantial portion of this phase diagram in which the ground state is

a d-wave superconductor - although as a consequence of the reconstructed band-structure

implied by the four-site unit cell, the line of nodes fails to intersect the Fermi surface and

hence the quasiparticle spectrum is fully gapped. In addition, there is a variety of possibly

insulating charge and spin density wave states, and several distinct Fermi liquid phases

among which is one with spin- 3
2

charge e quasiparticles (which is thus not adiabatically

connected to any free electrons state) and one with quasi-particles with spin- 1
2
, charge e,

and an additional orbital pseudo-spin 1
2
.
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4. One dimension

In a tour-de-force of mathematical physics, the 1d Hubbard chain was exactly solved by

the Bethe-ansatz method2 (35). For this as well as more general 1d problems, such as

the Hubbard model on various relatively narrow width ladders and cylinders, much more

is known than for higher dimensional cases. Particularly powerful numerical methods can

be deployed, as discussed in § 6.1 below. In addition, a weak-coupling renormalization

group (RG) - known colloquially as “g-ology” in reference to the various couplings ga -

leads to a rich set of results involving multiple “intertwined orders” in the sense that the

interactions that promote charge-density-wave, spin-density-wave, and singlet and triplet

superconducting correlations evolve in a complex, interrelated fashion under RG.

Moreover, at long distances and low energies, the properties of all such 1d systems

are describable by a limited set of free boson conformal field theories, i.e. the physics is

that of a small number of weakly interacting, linearly dispersing bosonic collective modes.

Distinct quantum phases of matter are generically classified by possible discrete broken

symmetries, and by the number of gapless modes (i.e. the “central charge”) and the quantum

numbers (spin, charge, crystal-momentum) associated with each such mode (36, 37). The

relation between the microscopic fermionic degrees of freedom and the bosonic modes,

called “bosonization”, can be complicated in specific cases, but is in principle understood

in general.

Other than some of the numerical results, this intellectual block is relatively old and

well known - much of it dating from the 1970’s - and so will not be reviewed here. For a

modern treatment, see ref. (38).

5. Asymptotically exact results in special limits

5.1. Weak coupling limit

5.1.1. Background. In this section, we consider the instabilities of the Hubbard model in

d > 1 in the weak-coupling limit U/t � 1. The goal is to express the properties of the

system starting from the band structure that results from diagonalizing the Hamiltonian

with U = 0. Corrections to all quantities can be expressed as an asymptotic series in

U/t. Clearly, at zero temperature, the radius of convergence of this series is zero, since

the behavior is qualitatively distinct for U/t → 0− and U/t → 0+: When U/t → 0−, BCS

mean-field theory is asymptotically exact, and there is a superconducting instability below

a characteristic scale Tc,− ∼ exp [−1/(ρ|U |)], where ρ is the density of states at the Fermi

energy. The superconductivity is described by an order parameter ∆, which has only one

sign on the entire Fermi surface, so that 〈∆〉FS ' max(∆)FS, where 〈•〉FS denotes an average

over the Fermi surface. Such a superconducting state is termed “conventional” as it arises

in many elemental metals where the pairing mechanism is the electron-phonon coupling.

When U/t→ 0+, as we now argue, there is also a superconducting instability, but with two

qualitatively different features. First, the superconductivity itself sets in below a parametri-

cally lower scale Tc,+ ∼ exp
[
−1/(αρ2U2)

]
� Tc,−, where α is an order unity constant that

depends on the entire band structure of the system. Second, the superconducting behavior

is “unconventional” in the sense that 〈∆〉FS � max(∆)FS.

2The Bethe Ansatz solution allows to calculate the spectrum and the many-body eigenstates of
the one-dimensional Hubbard model. Calculating correlation functions is more difficult.
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These distinctions imply that the ground states on either side of U/t = 0 are not adi-

abatically connected. The point U/t = 0 is a peculiar multi-critical point corresponding

to a free Fermi gas. These sharply distinct asymptotic behaviors are also more directly

manifest in perturbation theory at finite frequency: a subclass of perturbative corrections

represented diagrammatically by ladders in the particle-particle (BCS) channel are loga-

rithmically divergent so long as either time-reversal symmetry or inversion symmetry are

present in the normal state.

In a seminal paper, Kohn and Luttinger (KL) (39) explored how superconductivity

arises from repulsive interactions. They considered a 3d electron gas with weak short-

ranged repulsive interactions, for which they identified an instability to an unconventional

superconducting state with non-zero Cooper pair angular momentum. In particular, they

emphasized the role played by Friedel oscillations associated with the existence of a sharp

Fermi surface. Below, we provide a modern discussion of the problem in the language of

the renormalization group (RG), and show that (in contradistinction to the KL analysis)

the structure of the particle-hole susceptibility at all energy scales, not just close to the

Fermi level, dertermines the superconducting instabilities (40, 41). For a recent reviews on

superconductivity from repuslive interactions, consult Refs. (5, 42) and references therein.

5.1.2. The Fermi liquid fixed point. We first summarize the basic results of the RG formu-

lation of Landau Fermi liquid theory, pioneered by Polchinski (43) and by Shankar (44),

which will be invoked in the discussion that follows. To keep things simple, we will present

the key results for a rotationally-invariant Fermi surface. The generalization appropriate

for anisotropic Fermi surfaces, relevant to crystalline systems, is discussed below.

Instead of attempting to derive a Fermi liquid from microscopics, the strategy is to

proclaim a fixed point of the RG and then to analyze its stability. The fixed point theory is

similar to the action S0 in imaginary time of a free-Fermi gas in d-dimensions with chemical

potential µ and energy dispersion E(k):

S0 =
∑
α=↑,↓

∫
ddk dω

(2π)d+1
ψ̄k,ω,α

(
iω − E(k) + µ

)
ψk,ω,α . 9.

We retain frequency modes |ω| less than a UV cutoff Λ � EF (having “integrated out”

higher energy modes) and thus can linearize the dispersion as E(k) = µ+ vFk⊥ + · · · . We

express the measure as ddk = kd−1
F dk⊥dΩk, where dΩk is a solid angle element on the Fermi

surface, k⊥ is the direction of momentum perpendicular to the Fermi surface, and vF is the

magnitude of Fermi velocity. Redefining fermion fields as ψk,ω → k
(d−1)/2
F ψk,ω , we arrive

at the fixed point action for a Fermi liquid:

SFL =
∑
α=↑,↓

Λ∫
−Λ

dω

2π

dk⊥dΩk
(2π)d

ψ̄k,ω,α
(
iω − vFk⊥

)
ψk,ω,α . 10.

The stability of the Fermi liquid fixed point is determined by power counting from

which one learns that: (i) a constant shift to the kinetic energy is relevant but harmless,

as it amounts to a shift in the chemical potential, and (ii) all higher derivative corrections

to the kinetic energy are irrelevant, and hence the kinetic energy is governed by a single

parameter, the Fermi velocity vF.

Next we similarly analyze the role of interactions. A key observation is that generic

4-fermion interactions (and all higher order interactions) are irrelevant at the Fermi liquid

10 Arovas et al.



fixed point, due to the phase space restrictions imposed by the Pauli principle and the

Fermi surface. This result explains in large part the ubiquity of Fermi liquids in nature

(the prime example being liquid helium-3) despite the presence of strong interactions in

real systems. Only under two special kinematic circumstances are interactions important.

First, forward scattering interactions are exactly marginal, and are incorporated into the

Landau parameters. Second, the dimensionless BCS interaction V`, where ` labels the

pairing channel3, is marginal only at tree-level: one-loop corrections are logarithmically

divergent. (This is directly related to the properties of the particle-particle ladders that lead

to the Cooper instability for negative U discussed above.) Attractive (repulsive) interactions

are marginally relevant (irrelevant). This is captured by the BCS β-function, obtained by

promoting Λ to a running scale Λ = Λ0 exp(−t), and obtaining the flow of the coupling:

β =
dV`
dt

= −V 2
` . 11.

Thus, repulsive BCS interactions (V` > 0) weaken and attractive interactions grow, even-

tually leading to the BCS instability.

At this point, it may seem that the KL instability is absent since we have just concluded

that the metal is stable for repulsive interactions. However, a system with short-ranged

repulsive interactions can have effective attractive interactions in some pairing channel `, in

which case the β-function in that channel would indicate a superconducting instability. In

the case of the Hubbard model, the bare repulsive U enters only the s-wave BCS channel

and is orthogonal to unconventional pairing channels (e.g. d-wave, p-wave, etc.). But as

we integrate out high energy modes, we induce attractive interactions in unconventional

pairing channels (45), and the dominant one among these leads to a superconducting state.

The proper description of such effects involves a two-step renormalization group analy-

sis (46). In the first step, we integrate out modes in a weakly interacting metal to obtain

a description along the lines of the fixed point theory above. Then, what were formally

repulsive interactions at short-distances may manifest themselves as attractive interactions

in certain pairing channels. In the second step, the RG flow of such couplings determines

the superconducting instabilities.

5.1.3. Two-step Renormalization group for the Hubbard model.

Mode elimination: Lattice electrons governed by the Hubbard model are far from any

RG fixed point, and thus any perturbative RG in this regime is meaningless. To overcome

this apparent obstacle, we integrate out the high energy degrees of freedom perturbatively,

which is well-controlled in the weak-coupling limit. This is the first step of the analysis.

Upon doing so, we obtain a low energy effective theory consisting of modes within an

energy cutoff Λ0 � EF . Generically, the effective field theory is of the Fermi liquid form

described earlier, appropriately generalized to account for crystalline anisotropy. All salient

microscopic details (e.g., lattice symmetry, filling, etc.) are encoded in the shape of the

Fermi surface, the magnitude of the Fermi velocity as a function of position on the Fermi

surface, and the marginal perturbations of the Fermi liquid, namely the Landau parameters

and BCS couplings. The choice of the cutoff Λ0 is largely arbitrary. It should be sufficiently

small that the quasiparticle dispersion can be linearized, but it cannot be exponentially small

3In a rotationally invariant system, ` corresponds to the angular momentum channel. More
generally, ` labels the irreducible representation of a crystallographic point group.
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in the couplings, where perturbation theory breaks down, as we noted above. Importantly,

the final results should not depend on the choice of Λ0.

At the end of the first step, we thus obtain an effective Hamiltonian of Fermi liquid form

Heff = H0+HBCS where H0 is the kinetic energy keeping just the linearized dispersion about

the Fermi energy and

HBCS = − 1
2

∑
k,k′

Γα,β;γ,δ(k,k
′)ψ†k,α ψ

†
−k,β ψ−k′,γ ψk′,δ . 12.

When the system of interest has spatial inversion symmetry (“parity”), the BCS kernel

above decouples into even and odd parity channels. Constraints from the Pauli-principle

require that without spin-orbit coupling even (odd) parity solutions have spin zero (one):

Γα,β;γ,δ(k,k
′) = Γs(k,k

′) (δαγ δβδ − δαγ δβδ) + Γt(k,k
′) (δαγ δβδ + δαδ δβγ) , 13.

where the subscripts s(t) denote “singlet” (“triplet”). At weak coupling, these quantities

can be expressed as an asymptotic series in U/t:

Γs(k,k
′) = 1

2
U + 1

4
U2 [χ(k + k′) + χ(k − k′)

]
+O(U3/t2)

Γt(k,k
′) = 1

4
U2 [χ(k + k′)− χ(k − k′)

]
+O(U3/t2) .

14.

The quantity χ(k) is the non-interacting static particle-hole susceptibility, where from di-

mensional analysis it follows that χ ∼ 1/t. It is important to observe that the strength of

the interaction involves both large and small momentum transfers on the Fermi surface and

the full structure of the susceptibilities χ determine the effective interaction, not just the

subtle non-analyticities of χ associated with the sharpness of the Fermi surface.

RG flow: Having obtained the low energy effective Hamiltonian we now proceed to

analyze the RG flow of the BCS couplings. We define a dimensionless Hermitian matrix

g(kF,k
′
F), which is the effective interaction Γ(kF,k

′
F) defined above, evaluated on the Fermi

surface and weighted by the density of states in the neighborhood of the Fermi points kF,k
′
F:

g(kF,k
′
F) =

AF

(2π)d
Γ(kF,k

′
F)√

vF(kF) vF(k′F)
, 15.

where AF =
∫
dkF is the (d − 1)-dimensional “area” of the Fermi surface. The RG flows

are computed by promoting the cutoff Λ0 to a running scale Λ→ Λ0 exp(−t), and the RG

equation obeyed by g is the convolution

dg(kF,k
′
F, t)

dt
= −

∫
dpF

AF

g(kF,pF, t) g(pF,k
′
F, t) . 16.

It is most convenient to analyze the RG flows in the representation where g is diagonal. Dis-

tinct eigenstates correspond to, but are not fully specified by an irreducible representation

(irrep) of the crystalline point group, where∫
dk′F

AF

g(kF,k
′
F)ψ`(k

′
F) = λ` ψ`(kF) . 17.

Here, ψ`(kF) is normalized such that
∫
dkF |ψ`(kF)|2 = AF. Distinct eigenvalues do not

mix under RG (within the one-loop approximation), and the BCS β-function for each λ` is

identical in form to Eq. (11).
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Thus, positive eigenvalues (corresponding to repulsive effective interactions) weaken

and negative ones grow. The first eigenvalue to grow to be of order unity indicates an

instability of the Fermi liquid towards the corresponding superconducting state. That the

bare Hubbard repulsion can generate effective attractive interactions in unconventional

pairing channels is the key result of the two-stage RG analysis.

In practice, one discretizes the points on the Fermi surface, and solves the resulting

discrete eigenvalue problem to find the dominant eigenvalues. This way, the most important

features of the band structures determine the marginal BCS couplings and the dominant

instabilities. Fig. 1 shows the result for the square lattice Hubbard model with second

neighbor hopping t′ = 0 (a) and t′ = −0.3t (b). One sees that the dominant instability of

the system in the weak-coupling limit is to a d-wave superconductor near half-filling. In

a similar fashion, one can study lattice systems of other geometries (47, 46, 48). Among

other things, Ref. (48) found a plotting error in Ref. (46). Figs.1c and 1d shows results for

the triangular and honeycomb lattices respectively with only nearest-neighbor hoppings.

Again, near half-filling, the dominant instability is to d-wave pairing, but in this case

this corresponds to a two dimensional irrep, i.e. a combination of dx2−y2 and dxy pairing.

Determining which combination of these two components is preferred in the ordered state

is beyond the scope of the RG treatment, but since the effective couplings are weak, this

can be addressed within the context of BCS mean-field theory. As a consequence, one

expects the corresponding superconducting state to be the time-reversal symmetry breaking

combination generally referred to as d± id, although a nematic d-wave superconductor (i.e.

a real combination of dx2−y2 and dxy) is also possible.

Cutoff-independence: A crucial observation made in ref. (46) was that the resulting

scale associated with superconductivity is independent of the arbitrary choice of cutoff, Λ0.

Indeed, the only characteristic scale, namely the bandwidth W determines the supercon-

ducting instability: Tc ∼ W exp
(
− 1
/
αρ2U2

)
, as alluded to earlier. While the details of

the proof of cutoff independence can be found in ref. (46), we provide here some intuition

for why this has to be the case. The main requirement for cutoff independence is that

the Fermi liquid fixed point be the only nearby fixed point. This is certainly true in the

weak-coupling limit.

Let us consider two different mode elimination schemes: (i) eliminating modes above

the scale Λ0, and (ii) eliminating all modes above Λ1 < Λ0. The only assumptions on the

cutoffs are that W exp(−1/ρU) � Λ1 < Λ2 � U2/t. In the scheme with initial cutoff

Λ1, we have “less RG time” t for attractive BCS couplings to grow than the scheme with

initial cutoff Λ0. But this discrepancy is precisely compensated by the fact that the effective

attractions start off being larger in the scheme with Λ1, which is obtained by integrating

the β-function in Eq. (11) between Λ0 and Λ1.

The presence of other nearby fixed points, or of additional modes (e.g., phonons,

magnons, etc.) introduce additional scales and the cutoff independence is then no longer

guaranteed. There is a corollary to this absence of any characteristic scales other than

the bandwidth in the weak-coupling limit: associating a ‘pairing glue’ of a well-developed

bosonic fluctuation spectrum, while tempting, is strictly incorrect. Instead, the electronic

fluctuation spectrum itself, at all momentum scales ranging from the lattice scale down to

the longest length scales, is responsible for pairing.

5.1.4. Extensions. In the weak-coupling limit of the Hubbard model in d > 1 the Fermi

liquid state is generically unstable only to superconductivity. It is typically necessary to
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Figure 1

Dominant pairing eigenvalues λ (defined in Eq. 17) as a function of n the density per site in the weak-coupling limit of the

Hubbard model on a square lattice (a-b) with second-neighbor hopping t′ = 0 (a), t′ = −0.3t (b), and (c) a triangular

lattice and (d) a honeycomb lattice, both with only nearest-neighbor hopping. The eigenvalues have been scaled by a
factor of 5 in (d) for clarity. The dominant pairing on a square lattice near half-filling has dx2−y2 symmetry (labeled

x2 − y2) for both t′ = 0 and t′ = −0.3t. On the triangular and honeycomb lattices, a two-dimensional irreducible

representation with d-wave symmmetry, labeled {x2 − y2, 2xy}, is favored when the Fermi surface is electron-like and

simply connected. By contrast, a solution with f -wave symmetry, labeled y(y2 − 3x2), sets in near the van Hove filling,
and in the regime where there are two hole-like Fermi pockets centered at the zone corners. The f-wave symmetry

corresponds to a nodeless gap function with relative phase of π between the two hole pockets. Solutions with p-wave

symmetry, labeled {x, y}, also occur in (b-d) in a narrow sliver of energy about the van Hove filling. This occurs when
n ≈ 0.73 in (b) n = 1.5 in (c) and n = 0.75 in (d). The figures were obtained by discretizing the Fermi surfaces at each

density with a grid of 120 points. Care must be taken in the vicinity of the van Hove fillings.

treat the model at intermediate or strong coupling to access non-superconducting orders,

for instance using the large-N or numerical approaches discussed below. To access such

orders within the weak-coupling limit, one has to consider non-generic band structures,

such as those that produce a perfectly nested Fermi surface or a case in which the Fermi

surface crosses a 2d van Hove singularity (vHS). While these are fine-tuned cases, they bring

the interplay between superconductivity and the tendency towards other broken symmetry

phases into the weak-coupling regime (49).

Considerable effort has been devoted to such problems. For instance in the case of

Fermi surfaces crossing a 2d vHS, the problem has been studied in straight pertubation

theory, first by Dzyaloshinskii (50) and Schulz (51), who concluded that the most singular

tendency was towards superconductivity. A more sophisticated scaling theory near 2d vHS

has remained elusive, as one must contend with the existence of log-squared divergences

in the Cooper channel along with log divergences of forward scattering interactions. The

interplay between these effects lead to RG equations that explicitly depend on the energy

scale and hence are useless when it comes to constructing asymptotic behavior of correlation

functions. For a review, see ref. (49).

As already mentioned, the weak coupling RG in 1d is quite different than for d > 1.

However, in special cases, such as for the case of quadratic band-touching in 2d, the RG

equations have similar form as in one dimension4 (54, 55). As in the usual FL, in these

4This also applies for quadratic band-touching in 3d with appropriate long-range forces (52, 53).
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cases there are a number of interactions - represented by a set of running coupling constants,

ga(t), that are marginal (dimensionless) by power counting. To lowest non-trivial order,

this leads to a perturbative expression for the RG flows (analogous to that in Eq. 16) of

the form

dga
dt

= Γb,ca gb gc + . . . , 18.

where summation convention is assumed, and the remaining terms are of third order and

higher. The important point is that the tensor quantity Γ which reflects physics of the

specific system being studied, generally intertwines the various different interactions in a

non-trivial fashion.

Depending on the specific problem being studied, and the bare values of the interactions,

there are two different sorts of behavior solutions of this equation can exhibit. Under

some circumstances, the interactions are all marginal or marginally irrelevant, i.e. some

combinations of g’s flow to zero and others do not change under RG (at least to this

order). More usually, there are some set of interactions that are marginally relevant. In

this case, the RG flows carry the system to a “ray” along which the interactions continue

to grow until, no matter how weak the bare interactions, a point is reached at which the

perturbative treatment breaks down. At this point, other methods must be employed to

solve the problem. The possible rays can be identified (56) by looking for possible solutions

of the form ga(t) = Ga(t∗ − t)−1, where Ga are solutions of the set of quadratic equations

Ga = −Γb,ca GbGc . 19.

Those couplings for which Ga 6= 0 grow strongly toward strong-coupling under the RG flow,

while any coupling for which Ga = 0 remains relatively weak. Such a runaway flow of some

of the coupling constants typically signals the opening of an interaction-driven gap, often

associated with spontaneous symmetry breaking.

Despite the fact that these results apply (in d > 1) only for fine-tuned band-structures,

they may be useful over some range of intermediate energies and/or temperatures if the fine-

tuned conditions are approximately satisfied, especially if one extrapolates the results to

intermediate coupling strengths. We refer the reader to the literature for further discussion

of these ideas (55, 57, 58).

5.2. Strong coupling limit

When the density of electrons per site is n = 1, the low energy physics in the strong coupling

limit of the Hubbard model is, famously, that of the corresponding spin- 1
2

Heisenberg anti-

ferromagnet, with exchange coupling 4 |tij |2/U . This applies whether the lattice is regular

or irregular. At the same time, the system is a “Mott” insulator in the simple sense that

the insulating gap

∆c = 1
2
U +O(t) 20.

is determined by the interaction strength and has no relation to any ordering phenomena

that occur below temperature scales of order J .

Needless to say, the physics of quantum antiferromagnets is a rich topic in its own right.

Depending on the lattice structure, the range of the exchange interactions, and the degree

of disorder, strong evidence exists for the existence of various forms of antiferromagnetic
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ordered phases (colinear, coplanar, non-coplanar, commensurate or incommensurate, chiral

or non-chiral, etc.), spin-Peierls phases, nematic and spin nematic phases, quantum spin

liquid phases of various flavors, spin-glasses, random singlet phases, and surely others.

For n < 1, the low energy physics (e.g., the equilibrium properties the system at tem-

peratures T � U/2) is governed by a version of the famous t-J model

Ht−J = −
∑
i,j

tij B̂ij +
∑
i,j

Jij

(
Si · Sj − 1

4
n̂i n̂j

)
−
∑
i,j,k

Kijk ∆̂†ij ∆̂jk +O
(
t3/U2) , 21.

where B̂ij = c†i↑cj↑ + c†i↓cj↓, ∆̂ij = 2−1/2
(
ci↑cj↓ + cj↑ci↓

)
, and Kijk = 2tijtjk/U , and

where it is understood that Ht−J operates in a restricted Hilbert space in which no site is

doubly occupied. This model is often studied in its own right (typically neglecting the term

proportional to K) and, so long as Jij < |tij |, the results are often taken as representative

of results for the Hubbard model in some physically reasonable range of Ueff ∼ 4t2/J .

However, strictly speaking, the mapping to the t− J model is valid only in the asymptotic

limit Jij/tij → 0.

Thus, truly in the strong coupling limit, one should begin with the solution of U →∞
problem, i.e. the t−J model with Jij = Kijk = 0, and only keep corrections due to non-zero

J and K as small perturbations. The Hubbard model was originally introduced to study

itinerant ferromagnetism, based on the fact that this occurs in Hartree-Fock approximation

so long as the “Stoner” criterion is satisfied, Uρ(EF) > 1. However, more accurate numerical

studies have found that ferromagnetism in the Hubbard model on a bipartite lattice with

|A| = |B| seems to require Uρ(EF)� 1. To elicit ferromagnetism for U/t = O(1), it appears

necessary to introduce frustration in the form of further neighbor same-sublattice hoppings,

or to consider the model on non-bipartite lattices (59) or on line graphs (60, 61) at densities

away from half-filling.

Provided the kinetic energy satisfies the Perron-Frobenius condition (tij ≥ 0 for all

i and j), the problem with a single hole in a finite size lattice is governed by Nagaoka’s

theorem (see § 2), i.e. the ground state is a fully polarized ferromagnetic state. Clearly, the

limit U → ∞ and N → ∞ do not commute. However, for large but finite U , the solution

in the thermodynamic limit can easily seen to be a “Nagoaka polaron.” Its nature can

be understood from a simple variational argument: Consider a state in which a region of

radius R has spins aligned ferromagnetically, while the rest of the system is in its n = 1

antiferromagnetic ground state. The variational energy of such a state is

ENag = −E0 + t̄R−2 + J̄Rd , 22.

where E0 =
∑
j tij , and t̄ and J̄ are averages of tij and Jij that depend on the details of

the lattice structure and the assumed shape of the polaron; here, the second term is the

kinetic energy cost of confining the hole in a region of size R and the third term is the

cost in exchange energy of making a ferromagnetic bubble. Minimizing this expression with

respect to R, we obtain an expression for the size and energy of the Nagaoka polaron:

ENag = −E0 + 2t̄R−2 with RNag =
(
2t̄/dJ̄

)1/(d+2)
. 23.

It is a straightforward exercise to go from the single polaron to the problem with a small

but finite hole density. The polaron should strictly be viewed as a new sort of quasi-particle

- one with charge e and spin S ∼ RdNag. Two such particles have a short-range effective

attraction of order t̄R−2
Nag; if two are placed adjacent to each other, the hole associated with
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each polaron can now delocalize over twice as large a ferromagnetic region. Thus, there is a

tendency for polarons to agglomerate, i.e. for the system to phase separate. Opposing this

is the effective Fermi pressure of the polaron gas – however, because the polaron is large,

its effective mass is large,5 so the Fermi pressure is negligible. Thus, at T = 0 and for low

density of doped holes, 1 > n > nc, one expects macroscopic two-phase coexistence between

an undoped antiferromagnetic phase with n = 1 and a fully polarized ferromagnetic phase

with n = nc where nc ∼ R−dNag. Correspondingly, for a range of densities n > nc but not too

small, this line of reasoning leads one to expect a half-metallic ferromagnetic phase, i.e. a

state with all the spins parallel to one another.

The stability of the fully spin-polarized state (known as a half-metallic ferromagnet) at

finite doped hole density has not been rigorously established. Indeed, it has been shown that

even for U =∞, the fully polarized state is unstable beyond a (typically substantial) critical

doped hole density (62). However, exact diagonalization (63) and DMRG studies (64) of the

model on a square lattice (2d) provide strong corroborating evidence that the half-metallic

ferromagnetic phase is stable for U =∞ in the range of density 1 > n & 0.8 and that two-

phase coexistence occurs at large but finite U in a range of density6 1 > n > nc ∼ (t/U)1/2.

However, there is also indication that ferromagnetic phases arise only when U is extremely

large, U/t & 100. None-the-less, the existence of ferromagnetic phases at very large U

implies that, strictly speaking, the non-ferromagnetic states generally seen (and expected)

at intermediate values of U cannot be approached from a strong-coupling perspective.

5.3. Dilute limit

The dilute limit of the Hubbard model is defined by fixing U/t and letting n → 0. In this

limit, strong arguments have been put forward that in d = 2 and 3 and for positive U ,

the system forms a Fermi liquid (which may have a superconducting instability at very low

temperatures, to be discussed below).

Consider d = 3 first. Using the filled Fermi sea as a trial state, the kinetic energy per

particle scales as EKE ∼ t n2/3 (where we have used the effective mass approximation near

the band bottom), whereas the typical interaction energy satisfies EPE ∼ Un. Thus, in the

limit n→ 0, EK � EPE. One may therefore expect the system’s properties to be calculable

in an expansion in the small parameter (U/t) ·n1/3 (which plays a similar role to that of rs
in a uniform electron gas). As explained in Refs. (65, 66, 67), the proper small parameter is

actually kFas, where kF ∝ n
1/3 and as is the scattering length. For small U/t, the scattering

length satisfies as ∼ a (U/t) (where a is a lattice constant).

In d = 2, the situation is more subtle, since the above argument gives that EKE/EPE

is density independent. However, a more careful treatment (outlined below) shows that

in this case the two-particle scattering amplitude near the Fermi energy, propotional to

1/ ln(1/n), serves as an emergent small parameter (66). Thus, in both cases, a systematic

expansion starting from the Fermi gas is possible, resulting in a Fermi liquid whose Landau

5Relative to the band mass, the Nagaoka polaron can readily be seen to have has an effective
mass enhancement of order (t̄/J̄)Rd−1

Nag . This is since moving the polaron involves flipping spins

along its entire surface.
6It is a peculiarity of the Hubbard model that there is no interaction between electrons with the

same spin – thus, for any value of n, all energy eigenstates with maximal total spin are simply Slater
determinants. In particular the half-metallic ferromagnetic ground state is always an eigenstate of
the Hubbard Hamiltonian - the only question is under what circumstances it is the ground state.
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parameters are parametrically small in the n→ 0 limit.

To arrive at the expansion appropriate for the dilute limit, we examine the diagrammatic

representation of the two-particle vertex function. The dominant terms are the ones that

form the ladder series [Fig. 2(a)]. Summing the ladder series gives the effective two-particle

interaction (also known as the T -matrix):

Ueff(q, ε) =
U

1 + Γ0(q, ε)U
, 24.

where Γ0(q, ε) =
∫

ddk

(2π)d
(εk + ε−k+q − iε)−1. In the dilute limit, we are interested in the

interaction at momenta and energies of the order of the Fermi momentum and Fermi energy,

respectively. In d = 3, we can safely take |q| → 0 and ε → 0, obtaining Γ0 ∼ 1/t. Terms

that are not part of the ladder series, such as those shown in Fig. 2(b,c), are suppressed by

powers of ρUeff ∼ kFas, and are thus small. The effective interaction near the Fermi energy

is thus finite in the dilute limit. The Fermi liquid parameters, such as the Landau function

and the effective mass correction, are all of the order of kFas (since they are proportional

to ν0 ∝ kF). The smallness of the Fermi liquid parameters ensures the self-consistency of

the expansion.

In d = 2, Γ0 diverges logarithmically in the limit |q| → 0, ε → 0. This divergence is

cut off by setting |q| ∼ kF, ε ∼ µ, where µ is the chemical potential. In the dilute limit,

such that (U/t) ln(1/n) � 1, this gives Ueff ∼ t/ ln(t/µ) ∼ t/ ln(1/n). Hence, terms that

are not part of the ladder series are suppressed by a factor ρUeff ∼ 1/ ln(1/n)� 1, and can

be neglected (66). The Fermi liquid parameters are small in proportion to 1/ ln(1/n).

In both d = 2 and d = 3, the system is thus described as a weakly interacting Fermi liq-

uid in the dilute limit, independently of the original Hubbard interaction. The Fermi liquid

state can then be treated as discussed in § 5.1. In d = 3, and in the presence of time reversal

or inversion symmetries, one expects an instability towards a triplet superconducting state

whose critical temperature Tc scales as

EF e
−1/(ρUeff)

2

∼ t n2/3 exp
{
−
(
1 + t

U

)2
n−2/3

}
, 25.

where we have omitted dimensionless numbers of the order of unity in the exponents. The

d = 2 case requires additional care, since the Lindhard susceptibility is nearly momentum

independent. Hence, no effective attraction is generated at second order in Ueff. A calcu-

lation of the third order terms, performed in ref. (68), gives Tc ∼ EF exp
[
− 1/(ρUeff)3

]
∼

t n exp
[
− 1/ ln3(1/n)

]
. Note that in both d = 2 and 3, Tc � EF .

5.4. Large-N generalization and the Hartree Fock approximation

5.4.1. A large N limit. While quantum many-body models are generally insoluble except

in very special cases, by extending the global symmetry of the model from SU(2) to a larger

group such as SU(N) or Sp(N), a systematic expansion in powers of 1/N about the N →∞
limit can often be derived (69, 70, 71, 72, 73, 74). Here, we discuss a large-N generalization

of the Hubbard model (75) that allows controlled access to a variety of intermediate-coupling

spin and charge ordered phases. Consider the Hamiltonian

H = −
∑
〈ij〉

∑
α=±

N∑
m=1

c†iαm
(
tij + µ δij

)
cjαm +

1

N

∑
i

(
1
2
V n2

i − 1
2
JS 2

i + 1
2
KΨ†iΨi

)
, 26.
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Figure 2

(a) Ladder series for the two-particle scattering amplitude in the dilute limit. The empty square
represents the bare interaction U , and the filled square is the effective interaction Ueff (also known

as the T matrix). (b,c) Examples of diagrams which are not part of the ladder series. These

diagrams are suppressed comapred to those shown in panel in the n→ 0 limit (a) (see text).

where i labels the lattice sites, α = ± the spin polarization, and m ∈ {1, . . . , N} is a ‘flavor’

index. The coupling constants V , J , and K are all non-negative. The local density ni, spin

Si, and superconducting order parameter Ψi are given by

ni =
∑
α,m

c†iαmciαm , Si =
1

2

∑
α,β,m

c†iαm σαβ ciβm , Ψi =
∑
α,β,m

ciαm εαβ ciβm , 27.

where εαβ = iσyαβ . Consider a global transformation of the fermion fields

ciσm → c̃iσm = Rmm′ Uσσ′ ciσ′m′ . 28.

Suppressing the site index i, we write c̃ = RU c, where R acts on flavor indices and U acts

on spin indices. Thus,

ñ = c†σm (R†R)mm′ (U†U)σσ′ cσ′m′

S̃a = 1
2
c†σm (R†R)mm′ (U†σa U)σσ′ cσ′m′

Ψ̃ = (RtR)nn′ (U tεU)σσ′ cσn cσ′n′ .

29.

Thus if U ∈ SU(2) and R ∈ O(N), we have ñ = n, Ψ̃ = Ψ, and furthermore S̃a = Mab S
b,

where Mab = 1
2
Tr
(
U† σa U σb

)
∈ SO(3). Hence, H̃ = H, i.e. the Hamiltonian H possesses a

global U(2)×O(N) symmetry (including the U(1) charge conservation). In the case N = 1,

the system reduces to the usual Hubbard model with U = V + 3
4
J + 2K.

To elicit the large-N theory, we employ three Hubbard-Stratonovich transformations to

decouple each of the three terms quartic in the fermion operators. The resulting dimen-

sionless action is then

A =

β∫
0

dτ
∑
i

(
N

2V
φ2
i +

N

2J
χ2
i +

N

2K
|∆i|

2

)
+
∑
i,j
σ,m

c̄iσm
(
∂τ − tij − µδij

)
cjσm

− 1

2

∑
i,m

∑
α,β

(
c̄iαm ciαm

)(iφi δαβ + 1
2
χi · σαβ i∆i εαβ

i∆̄i εαβ −iφi δαβ −
1
2
χi · σαβ

)(
ciβm
c̄iβm

)
.

30.

Here β = 1/kBT where T is the temperature, τ is imaginary time, and
{
φi,χi,Re∆i, Im∆i

}
are the six time-dependent Hubbard-Stratonovich fields.
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We may now formally integrate out the fermions, obtaining the following effective action:

Aeff =

β∫
0

dτ
∑
i

(
N

2V
φ2
i +

N

2J
χ2
i +

N

2K
|∆i|2

)
− 1

2
N Tr log G−1[{φi}, {χi}, {∆i}] . 31.

Here, G−1 = G−1
0 −M[{φi}, {χi}, {∆i}], where

G−1
0 =

(
G−1

0 0

0 −
(
G−1

0

)T ) . 32.

The inverse of the free Green’s function is given by G−1
0 = −∂τ + tij + µδij , and M is the

matrix that appears in the second line of Eq. (30).

Crucially, the effective action is proportional to N . Hence, in the large N limit, the par-

tition function is dominated by the lowest-action saddle point of Aeff . Fluctuations around

the saddle point are suppressed by powers of N−1. We seek a saddle point characterized

by time-independent, but possibly site-dependent fields φi and χi. Since we have assumed

K ≥ 0, it is straightforward to see that ∆i = 0 at any such saddle point. Substituting

φ̃i ≡ iφi and differentiating the effective action with respect to φ̃i and χi yields:

φ̃i = −V
∑
α,m

〈
c̄iαm ciαm

〉
φ̃i,χi

χi = 1
2
J
∑
α,β,m

〈
c̄iαm σαβ ciβm

〉
φ̃i,χi

.
33.

Here, the expectation value is taken with respect to the quadratic action (30) with {φ̃i}, {χi}
set to their saddle point values. Eqs. (33) are the self-consistent Hartree-Fock (HF) equa-

tions describing possible spin and charge ordered states. They are identical to the HF equa-

tions of the one-band Hubbard model with 2V = 1
2
J = U , K = 0. Thus, the Hartree-Fock

approximation becomes asymptotically exact in the large-N generalization of the Hubbard

model given by Eq. (26).7

5.4.2. Some Hartree-Fock results. There have been numerous Hartree-Fock studies of the

Hubbard model. A priori - especially when dealing with forms of order that only arise when

U exceeds a finite critical value - there is no obvious small parameter that justifies these

solutions. However, with the large N limit as justification, it is worth summarizing at least

some of the Hartree-Fock results that have been obtained in this way.

In the case of a half-filled band, n = 1, with t′ = 0, the Fermi surface is perfectly nested

and the HF ground state is a Néel antiferromagnetic insulator for all U > 0. In particular,

for d > 2 and small U , the sublattice magnetization, m, and the quasi-particle gap, ∆AF ,

depend on U as m ∼ ∆AF ∼ exp(−1/ρU), while for d = 2 the expressions are slightly

more complicated, with m ∼ ∆AF ∼ exp
(
−
√

8π2t/U
)
, because of the logarithmically

divergent density of states associated with the van-Hove points. For small but non-zero

t′, the system remains metallic for U < Uc but is antiferromagnetic for larger U , where

7Interestingly, setting N = 1, this choice of parameters corresponds to a Hubbard model with
an interaction strength V + 3

4
J + K = 2U . This discrepancy between the Hartree-Fock equations

for the Hubbard model and the saddle point equations obtained by decoupling the interaction in
an SU(2) symmetric way was noted in Ref. (76).
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Uc ∼ t/ ln |t/t′| for d > 2 and Uc ∼ t/ ln2 |t/t′| in d = 2. The details of the metal-insulator

transition as a function of U has not been exhaustively studied, and may vary depending on

dimensionality, the value of t′, and other details. The simplest cases involve either a direct

first order transition from a featureless metal for U < Uc to an AF insulator for U > Uc, or

a sequence of two transitions, the first (typically continuous) from a featureless metal for

U < Uc1 to an antiferromagnetic metal phase - i.e. with m small enough that a portion of

the Fermi surface remains ungapped - followed by a (typically first order) transition to the

AF insulator at U > Uc2 > Uc1.

It is also interesting to consider the evolution of the HF ground state with the intro-

duction of a dilute concentration of doped holes, x ≡ 1 − n � 1, starting from the AF

insulator. One possible solution of the HF equations is simply a doped version of the Néel

state - here the energy cost per doped hole is ∆AF

{
1 +O(x2/d)

}
. This is typically never

the lowest energy HF solution (77); a better solution is one in which a portion of the sam-

ple is undoped AF and another is a non-magnetic metal with a finite concentration xc of

doped holes, where xc ∼ ρ(EF) ∆AF. For small U in d > 2, it was shown in ref. (77) that

xc =
√

2 ρ(EF) ∆AF and that the energy per doped hole is 2−1/2∆AF

{
1 +O(x

2/d
c )

}
, i.e.

it has lower energy than the doped Néel state. The same analysis applies for small t′ in

d = 2, and even for t′ = 0 with with slight complications due to the divergent density of

states. However, more interesting insulating “stripe” states were found (78, 79, 80) to have

still lower energies - at least in d = 2 with t′ = 0. Here for small x, the system forms

a unidirectional spin-density wave (SDW) state in which the doped holes are localized on

anti-phase domain walls a distance W apart, resulting in a new periodicity of the spin-order

λ = 2W . Moreover, the domain-wall spacing is such that there are an even-integer number

of electrons per unit cell, i.e. λ = 1/x, and the system remains insulating. From numerics

in 2d with t′ = 0, the energy per doped hole of the striped phase was estimated (81) to be

approximately 0.66 ∆AF, some 7% less than that of the phase separated state.

6. Numerical results

6.1. DMRG results for ladders and cylinders

The density-matrix-renormalization group (DMRG) approach (82, 83) has proven to be

extremely useful in obtaining ground state correlations of Hubbard cylinders and ladders.

As the computational effort grows roughly linearly with the length of the system, L, but

exponentially with the number of legs, W , these results are largely confined to rather small

W . However, for these systems, it provides an incomparably versatile approach to the

intermediate coupling problem, without relying on any artificial limiting procedure.

6.1.1. The utility of DMRG . DMRG is now understood to be an extremely clever vari-

ational approach (84, 83) to studying the ground state properties of arbitrary interacting

electron models. It uses a class of variational states known as matrix-product states - which

as the name suggests are parameterized by the elements of a matrix associated with each

site. The larger the dimension of the matrices (known as the “bond dimension”), the better

the approximate ground state obtained. For any finite size system, DMRG calculations in

principle converge to the exact result for large enough bond dimension, Bd. However, as the

calculations are more demanding the larger Bd, not all published results can be taken at face

value. This is reflected in the unfortunate fact that there are examples in the literature of
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DMRG studies that have reached contradictory conclusions concerning the character of the

ground state phase of certain model problems. Moreover, different sorts of results require

different levels of care (85), as we elaborate below.

• Generally, the bond dimension required to achieve a given accuracy increases expo-

nentially with the degree of entanglement of the phases being explored. Thus, DMRG

results converge more easily in systems in which the central charge (the number of

gapless modes) is small and ones in which all correlation lengths are short. Con-

versely, systems with many gapless modes and/or long correlation lengths may need

a very large Bd to converge.

• Even within a given phase, the reliability of the DMRG results for fixed Bd de-

pends, to some extent, on what questions are asked. The nature of the short-range

correlations – i.e. what sort of “local order” arises – is less sensitive to subtle as-

pects of the entanglement, and so can be extracted reliably even in calculations with

relatively modest values of Bd, while issues concerning long distance correlations –

especially power-law falloff of correlations associated with gapless modes – are much

more strongly dependent on Bd.

In quoting results of DMRG calculations, we have restricted ourselves to either dis-

cussing results that pertain to short-range correlations (about which there typically is no

disagreement), or to results in which the Bd dependence has been seriously investigated and

the extrapolation to Bd →∞ appears convincing. There are also generalizations of DMRG,

such as projected entangled pair states (PEPS) (86), which uses tensorial generalizations of

the matrix product states of DMRG. Because these methods have not been as thoroughly

tested and benchmarked as has DMRG, we have largely omitted results obtained from these

approaches. DMRG methods have recently been extended and are beginning to be applied

to study dynamical properties of ladders and cylinders (87, 88). This is a very promising

new direction, but one that is still in its infancy. Again, taking a conservative stance, we

have mostly not reviewed these results either. (See, however, Ref. (89).)

The bulk of the DMRG studies have been carried out on ladder or cylinder versions

of Hubbard model for “intermediate” values of U of order the band-width, 8t ≤ U ≤ 12t,

and for ranges of electrons per site n in the range 1.3 ≥ n ≥ 0.7, corresponding to a

concentration of “doped holes” or “doped electrons” 0 ≤ x ≤ 0.3. Effects of differing band-

structure have been studied largely by considering a range of first and second neighbor

hopping, t′/t. Many studied have treated the t− J instead of the Hubbard model, because

the results for the former tend to have better convergence properties. Results so obtained

are generally interpreted as representative of the solutions of a corresponding Hubbard

model with U/t ≈ (4t/J) and a somewhat renormalized value of t′/t.

We now summarize some of the salient results that have been obtained from these

studies. We distinguish three types of inferences that can be drawn:

1) Most directly, from an analysis of the short-distance behavior of various ground state

correlation functions, it is relatively straightforward to determine what sort of order-

ing tendencies are strong for particular ranges of parameters. We will illustrate such

orders by describing the form of broken symmetry (long-range order) that would

result were these short-distance correlations extended to long distances. Since the

Hubbard model is not a realistic model of any actual material, it may be that identi-

fying ordering tendencies reveals the most model independent - and hence physically
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significant - features of the interesting strong correlations physics.

2) Extrapolating the result to the limit of infinitely long cylinders and ladders, we can

identify distinct phases of matter based on the asymptotic long-distance correlations.

As discussed in §4, this means identifying any discrete broken symmetries, and the

number and character of distinct gapless charge and spin modes; for instance, a

Luther-Emery liquid has a single gapless charge mode (central charge c = 1), and

power-law (QLRO) CDW and superconducting correlations.

3) Most speculatively, we can introduce conjectures concerning the extrapolation of the

DMRG results to the 2d (W → ∞) limit. This can only be done with confidence

when the results are weakly W dependent even for relatively small W .

6.1.2. The square lattice.

Undoped ladders: For the most part, studies of the undoped model (x = 0) have been

carried out in the regime in which U is (assumed) large enough that there is a substantial

charge gap, ∆c & t, so the Hubbard model is equivalent to a spin 1/2 Heisenberg model with

first and second neighbor exchange couplings, J ′/J = (t′/t)2. For even W , this necessarily

results in a fully gapped state (90, 91), i.e., with a non-zero spin-gap, ∆s.

However (92), for J ′/J < Xc1 ≈ 0.41, the resulting state exhibits the same local spin

correlations as the Néel state shown in Fig. 3a, and has a spin correlation length that

grows exponentially with W , i.e. ξs ∼ exp(αW ) with α = O(1). Indeed, as shown on

theoretical grounds in ref. (91), in a range of J ′/J in which the 2d system has long-range

antiferromagnetic order characterized by a renormalized spin-stiffnes ρs and a spin-wave

velocity c, α(J ′/J) = 2πρs/~c. Thus, the DMRG results provide compelling evidence that

the 2d system has Néel order in this regime, as shown in Fig. 3c.

For J ′/J > Xc2 ≈ 0.62, the local order resembles the stripe magnetic state, shown

in Fig. 3b. While we have not found data that show the systematic scaling of ξs with

W , ∆s is a sufficiently rapidly decreasing function of W up to at least W = 10 that it is

reasonable to conclude that stripe LRO arises in the W →∞ limit. On the other hand, for

Xc1 < J ′/J < Xc2, there is a spin-gap that does not decrease substantially with increasing

W . These results have led to the conjecture (93, 92) that for this intermediate range, there

is a quantum disordered phase or phases (i.e. phases with no magnetic order) in the W →∞
limit, as shown in Fig. 3c. However, there is still some debate (94) about the nature of this

region in the 2d limit, e.g., whether there is valence bond crystalline order or a Z2 quantum

spin liquid.

Lightly doped ladders: DMRG studies of the doped ladder have also primarily in-

volved U large enough that the undoped ladder is insulating, and have focused on the range

of parameters (i.e. J ′/J < Xc1) which correspond to a doped Néel antiferromagnet.

Naturally, the most reliable results have been obtained for the two-leg ladder, W = 2.

So long as x < xc ∼ 0.3, for the typical range of intermediate U and t′/t, there is general

consensus (95, 96, 97, 98) that, in the L→∞ limit, such ladders generically form a Luther-

Emery liquid (99). Specifically, there is a non-zero spin-gap, ∆s ∼ t2/U , a single gapless

charge mode (c = 1) and power-law equal-time CDW and SC correlations which fall as

cos(QCDWr + φ0)|r|−KCDW and |r|−KSC , respectively. The CDW ordering vector is equal

to the value of 2kF = Wπn mandated by the generalized LSM theorem (see § 2), QCDW =

Wπn ≡ 2πx and consistent with expectations from conformal field theory, KSC = 1/KCDW.

While DMRG does not directly yield information concerning the susceptibility, once

the identification with the corresponding quantum field theory is established, it follows
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Figure 3

Forms of antiferromagnetic order in the undoped square lattice: a) Néel, b) Stripe AF, c)
schematic phase diagram of the 2d model at large U as a function of J ′/J ≡ (t′/t)2

that these same exponents can be identified with the low T behavior of the corresponding

susceptibilities, i.e. χCDW(q = QCDW) ∼ T−(2−KCDW) when KCDW < 2 and χSC(T ) ∼
T−(2−KSC) if KSC < 2. However, while both exponents are typically in the range 2 >

KSC > 1/2 in which both susceptibilities diverge, the precise values of these exponents, and

thus whether SC or CDW correlations are dominant, varies as a function of x and t′/t. In

fact, for the two-leg ladder, the same Luther-Emery phase has been shown to exist down

to U as small as U = 4t. To get an idea of why smaller values of U are so difficult, note

that for t′ = 0 and x = 1/12, the spin correlation length ξs ≈ 30 lattice constants; it is thus

found that ladders up to L = 200 must be treated to get reliable results (98). (Interestingly,

in this case, the CDW and SC susceptibilities are equally divergent, KSC ≈ KCDW ≈ 1.)

The nature of the short-range correlations on the two-leg ladder are also interest-

ing. Although the SDW correlations decay exponentially with distance, the spin cor-

relation length is sufficiently long that one can identify a preferred ordering vector,

QSDW = πn ≡ π ± πx. Importantly, this is mutually commensurate with the CDW or-

dering vector, QCDW ≡ 2QSDW. Also, the superconducting order is “d-wave-like” in the

sense that the pair-field correlations on bonds parallel to and perpendicular to the lad-

der direction have opposite signs. (Since the ladder does not have any symmetry relating

parallel and vertical bonds, this is not a precise symmetry classification, and indeed the

magnitude of the pair-field correlations are somewhat different on the two sets of bonds.)

The short-range order is thus a two-leg version of the correlations shown schematically in

Fig. 4a, where for graphical simplicity we have drawn this picture for the commensurate

case x = 1/4 so that λCDW = 4. The relative phase of the CDW, SDW, and SC modulations

are representative of what is seen in the calculations, i.e. the spin order is strongest where

the SC order is weakest and where the local doped hole concentration is closest to 0. (The

fact that the CDW is “bond-centered,” i.e. that it preserves reflection symmetry about a

bond-centered mirror plane, was likewise chosen for purposes of illustration only.)

Even for the two-leg ladder, there are circumstances in which other phases arise. As

already mentioned in §5.2, for large enough U , for 0 < x . 0.2, there is a fully polarized

(half-metallic) phase - a result that was also established using DMRG (64). Moreover,

24 Arovas et al.



for special rational values of x (such as x = 1/8) and for a range of U/t, commensurate

CDW long-range order is possible (100, 101), i.e. a discrete breaking of the translational

symmetry. The ordering vector in this case is, as before, λCDW = 2/x, but now there is a

gap to charge excitations as well a spin-gap.

Moving to W = 4 leg ladders and cylinders, a still richer variety of behaviors has been

observed (102, 103, 104). In particular the nature of the states for a given value of x is

found to depend significantly on the value of t′. Under some circumstances, especially in

4-leg cylinders with t′ small and negative,8 there appears to be (105, 106, 107) a Luther-

Emery liquid phase with c = 1, divergent CDW and SC susceptibilities with the product

KCDWKSC = 1 and with the KSC in the range 0.5 < KSC . 2, and exponentially falling

SDW correlations with ξsdw ∼ 10. Where this occurs, it is typically also true that QCDW =

4πx. The sketch in Fig. 4b is a caricature of the short-range order seen here. Recalling

that periodic boundary conditions have been enforced around the cylinder, it is apparent

that the SC order – which oscillates in sign between neighboring bonds around the cylinder

– has a “true d-wave” form (108, 107) in the sense that it changes sign under a C4 rotation

about the central axis of the cylinder. Such a state is likely to be a peculiarity of the 4-leg

cylinder.

For t′ = 0, the W = 4 leg cylinder shows significantly different tendencies. The most

extensive studies (108, 109, 105, 107) have been carried out primarily for the (assumed

representative) value of x = 1/8. Here the preferred CDW ordering vector is half what it

was in the previous case, QCDW = 2kF ≡ 2πx. Moreover, it seems that the SC correlations

fall rapidly – most probably exponentially - with distance. (However, in this case, the SC

correlation length, ξSC is remarkably long - it is estimated in ref. (110) that ξSC ≈ 18).

There is again significant short-range SC and SDW order, with, as in Fig. 4a, the SC order

being d-wave-like, and the SDW ordering vector satisfying the mutual comensurability

condition, 2QSDW ≡ QCDW. This, if extrapolated to the 2d limit, is suggestive (109) of a

commensurate unidirectional CDW insulating state, either with or without accompanying

SDW order, with a significant but strictly short-range correlated tendency toward d-wave

SC. Thinking of the peaks in the CDW as being a stripe of high doped hole density, this

state, which arises naturally in Hartree-Fock calculations in 2d, is sometimes referred to as

having “full stripes” – full, in the sense that since λCDW = 1/x, there is one doped hole per

site along the length of each stripe. By contrast, the state with λCDW = 1
2x

(QCDW = 4πx)

is then referred to as ”half-filled” stripes.

Patterns of local order corresponding to partially-filled stripes of different varieties have

been found in calculations on W = 6 leg ladders (111, 112). Very recently, there have been

the first DMRG studies(113, 114, 115) (actually, of the t− J model) to find direct evidence

of (quasi)-long-range d-wave-like SC order in cylinders with W > 4. Not surprisingly, the

SC correlations tend to be strongest for values of the parameters (e.g. t′/t) for which the

CDW correlations are relatively weaker(114, 115). Generally, the phases with strong SC

correlations occur only for x greater than a (parameter dependent) critical value of x - the

one exception to this(113) being the case of very large t′ ≈ t/
√

2, where the state at x = 0

is (as already discussed) a quantum para-magnet (probably a spin liquid), and where SC

quasi-long-range-order appears down to the smallest values of x (x = 1/18) explored so far.

A periodic modulation of the hopping was found to significantly enhance the d-wave like

8In DMRG studies, a value of t′ ≈ −0.3t is often taken as a value representative of the band-
structure of the hole-doped cuprates.
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Figure 4

Various patterns of intertwined short-range order for the square lattice Hubbard model at moderate x and intermediate U .

Here the size of the circles indicates represents the doped hole density, the arrows represent the site magnetization, and

the thickness of the lines the magnitude of the singlet pair field on each bond; the sign of the pair-field is color coded with
red positive and blue negative. Here a) Represents coexisting SDW, CDW, and d-wave-like SC, b) (relevant in particular

to the M = 4 leg cylinder) represents SDW, CDW, and cylindrical “true d-wave” SC, and c) represents SDW, CDW, and

PDW order.

pairing correlations, as well (116). As these are very new results, it is still necessary for

further studies to be carried out to determine the full phase diagram.

6.1.3. The honeycomb lattice. DMRG studies have been performed for the Heisenberg

model on the honeycomb lattice for a range of J ′/J (117, 118). The behavior of the

honeycomb model appears to have similar motifs as the more studied square and triangular

lattices. In particular, there is evidence for an intermediate spin-disordered phase for a

range of J ′/J between the Néel and striped phases. All or much of this intermediate phase

seems to possess plaquette order (118). Some DMRG studies have also been performed on

the honeycomb Hubbard model away from half filling (119, 120, 121). We will not further

summarize these results here.

6.1.4. The triangular lattice. DMRG studies of the Hubbard model on the triangular lattice

have recently produced evidence of a number of intriguing behaviors (122, 123, 124, 125,

126, 127). Unfortunately, there is still considerable disagreement in the inferences drawn

from different studies, making it difficult to give a definitive review.

Undoped cylinders with 3 ≤ W ≤ 5 have been studied at x = 0. There is strong

evidence (and a general consensus) that there are at least three distinct phases as a function

of U/t. For U < Uc1 ≈ 8t there is a compressible phase that has been identified as “metallic”

in several DMRG studies. More specifically the DMRG studies have concluded that it is

metallic in the sense of being adiabaticaly connected to the non-interacting limit, i.e. that

there are gapless spin and charge modes corresponding to each Fermi surface crossing of

the non-interacting band-structure. This conclusion is difficult to reconcile with a weak

coupling analysis (98) of the sort described in §5.1. Rather, assuming there are no as yet

undetected transitions with a critical value of U < Uc1, it is likely that most of these modes

are gapped, but that the gaps are sufficiently small (the correlation lengths sufficiently

large) that they have been overlooked in DMRG studies to date. Indeed, the weak coupling

analysis suggests that the small U phase is a Luther-Emery liquid (c = 1) with time reversal

symmetry breaking - i.e. an extension of the d + id SC phase that arises in 2d at small U
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(see §5.1) to a cylinderical geometry.

The most intriguing phase at x = 0 occurs for Uc1 < U < Uc2 ≈ 10t. Here there is

evidence that the system becomes a spin liquid in the 2d limit. For instance, for M = 4

and suitable boundary conditions, there seems to be a fully gapped state with only very

short-range spin correlations. It was concluded in ref. (123) that this phase is chiral -

indicating that in the 2d limit it would correspond to a time reversal symmetry breaking

chiral spin liquid (i.e. a Kalmeyer-Laughlin phase (128)). This has a degree of naturalness

as it is easy to conceive a continuous transition from a d + id SC to a chiral spin liquid.

However, it should be mentioned that other studies (126, 125) have found evidence that

this intermediate phase is a fully gapped but non-chiral state – which is suggestive that

there is a Z2 spin liquid (i.e. a Moessner-Sondhi phase (129)) in the 2D limit – or even a

gapless spin liquid (127) with a nodal spinon spectrum.

Finally, for Uc2 < U there is a phase with local correlations corresponding to the 120◦

antiferromagentic state, known to be the ground state of the 2d model in the large U limit.

Doped cylinders: The nature of the lightly doped system clearly depends on the

character of the undoped parent state. The resulting phase diagram has not been nearly as

thoroughly investigated as in the case of the square lattice. Particularly interesting is the

fate of a lightly doped spin liquid. A spin liquid can be thought of as a quantum disordered

superconductor, such that upon light doping, the “pairing” is a property inherited from the

insulating state while the superfluid stiffness (and hence the ordering temperature) vanishes

continuously as x→ 0 (3, 130, 131). Specifically, light doping of a gapped spin liquid could

lead to a gapped superconductor - with the “superconducting” gap derived from the spin-

liquid gap - which is chiral (d + id) (132) or non-chiral depending on the nature of the

spin-liquid from which it arose - while a nodal spin liquid naturally connects to a nodal

superconductor (133). There is preliminary DMRG evidence that each of these may occur

on the triangular lattice under appropriate circumstances (134, 124, 127, 122, 135).

6.1.5. The kagome lattice. The Heisenberg model on the kagome lattice is a paradigmatic

example of a geometrically frustrated quantum magnet. It has long been suspected that this

system does not order magnetically, even with only nearest-neighbor J . Different ground

states have been proposed based on exact diagonalization of finite clusters (136, 137, 138,

139, 140, 141), and various approximate approaches. [For a discussion, see Refs. (141, 142).]

DMRG calculations on cylinders of width up to W = 17 have been performed (143, 144,

145, 146, 147). (In some of these calculations, a small second-neighbor J ′ ≤ 0.15J has been

applied.) These works consistently find a quantum disordered ground state with no sign

of magnetic or valence bond crystalline order. This suggests a quantum spin liquid ground

state. Unfortunately, there is disagreement on the nature of this spin liquid, e.g., whether it

has a spin gap (145) or a gapless Dirac spinon spectrum (147). The disagreements suggest

that the long-range correlations may not yet be fully converged with respect to the bond

dimension, and more extensive studies are needed to resolve the nature of the ground state.

In the studies of the doped system carried out to date (148, 149), light doping of the

kagome spin liquid seemingly leads to a “holon” crystal phase - an insulating state with one

doped hole but zero spin per unit cell - rather than to a superconductor.

www.annualreviews.org • The Hubbard Model 27



6.2. Quantum Monte Carlo results

The determinant quantum Monte Carlo method (150, 151, 152, 153) is a powerful technique

to find equilibrium properties of interacting fermions. It is controlled, in the sense that the

results are guaranteed to converge to the exact answers upon increasing the computational

effort. Unfortunately, in many cases of interest, the applicability of the DQMC method is

limited due to the fermion sign problem (154). In these cases, the computational cost for

a given accuracy increases exponentially with the system size and the inverse temperature.

The repulsive Hubbard model suffers from the fermion sign problem in DQMC at generic

values of the filling. Below, we briefly review some useful results that were nevertheless

obtained using DQMC, either for special parameters where the sign problem is absent, or

by employing very large computational resources to overcome the sign problem.

The U > 0 Hubbard model is sign problem free if the system is particle-hole sym-

metric (152). This is the case at half filling (n = 1) on a bipartite lattice (e.g., square or

honeycomb), when the intra-sublattice hopping is set to zero. Note that the sign of U can be

changed by performing a particle-hole transformation on one spin species, showing that the

U < 0 Hubbard model is sign problem free with zero total magnetization and an arbitrary

filling. The Hubbard model has been simulated using DQMC on a square lattice (152),

showing a clear Mott gap and an antiferromagnetic (Néel) ground state for all U > 0.

On the honeycomb lattice, the semimetal state with Dirac nodes is stable for sufficiently

small U , whereas the ground state for sufficiently large U is a collinear sublattice antiferro-

magnet with opposite spin polarization on the two sublattices (155, 156). Initial simulations

suggested a quantum spin liquid state at intermediate U between the semimetal and the

AF (157); however, the current consensus is that there is a direct continuous transition

between the semimetal and AF phases with no intermediate phase (158, 159).

The bilayer Hubbard model has been studied at half filling for the square (160, 161, 162)

and honeycomb (163, 57) lattices. In the latter case, motivated by Bernal-stacked bilayer

graphene, an AB stacking has been considered. In this case, the non-interacting band

structure has quadratic band touchings, and the system may be expected to be unstable

even in the presence of arbitrarily weak U , as discussed in §5.1. However, it was found that

for weak interactions, the dispersion gets renormalized, and each quadratic band touchings

splits into four linearly dispersing Dirac points (57). As a result, a finite U is needed to bring

the system from the semimetal into the AF phase, much as in the single layer honeycomb

model.

Finally, DQMC has been applied to the square (164, 165, 104, 166) and honeycomb (167)

lattice away from half filling. These calculations require massive computing resources. The

square lattice calculations have currently been performed for systems for size L = 8 at tem-

peratures down to T/t ' 0.2 and interaction strength U/t = 8. At these temperatures, finite

size effects are found to be small, such that L = 8 is probably sufficient to make inferences

about the thermodynamic limit. No symmetry broken phase was found. However, there are

significant short-range correlations (164) indicative of incommensurate unidirectional spin

density wave, d-wave superconductivity, as well as nematic bond order (166), that grow as

the temperature decreases.

7. Are there exotic phases in the Hubbard model?

Progress has been made in recent years in constructing “reverse engineered” model Hamil-

tonians - such as the Kitaev model or the quantum dimer model - that exhibit exotic
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quantum phases of various sorts. This is sufficient to settle certain long-standing issues of

principle - such as whether quantum-spin-liquid phases exist. However, to address whether

it is reasonable to expect such phases to arise without extreme fine tuning, it is worthwhile

to ask whether these arise in some version of the Hubbard model - with some particular

lattice geometry or some range of U/t or t′/t.

7.1. Phases with exotic broken symmetries

Two novel classes of broken symmetry phases have been proposed as candidate orders

to account for some observed anomalies in the cuprate high temperature superconductors:

states with orbital loop current order (168, 169) and pair-density-wave states (170, 171, 172)

with spatially modulated superconducting order.

7.1.1. Orbital Loop current order. These are states that are close relatives of a charge

density wave, but which break time-reversal symmetry, i.e. in which

i
∑
σ

〈c†j,σck,σ − c
†
k,σcj,σ〉 = Jjk 6= 0 . 34.

Two particularly important such proposals are a zero-momentum “intra-unit cell orbital

antiferromagnet” in which Jjk = J(Rj −Rk), which has ordering vector Q = 0, and a “d-

density-wave,” in which - on a square lattice in particular - Jjk = eiQ·RjJ(Rj −Rk) with

Q = (π, π). In both these examples, J(R) transforms non-trivially under the operations

of the point group. Another related state - of which the “triplet d-density wave” is an

example (173) - is a spin-current density wave - which preserves time-reversal symmetry.

As far as we know, convincing evidence for the existence of such phases has not been

found in either numerical or controlled approximate studies of Hubbard models. DMRG

calculations on doped Hubbard ladders that have probed such order typically have found

very weak, extremely short-range current-current correlations (174, 175, 176, 108)9.

There is evidence (discussed in §7.2) that a chiral spin-liquid phase arises in a small but

finite range of U/t in the undoped Hubbard model on the triangular lattice. Moreover, for

a band-structure with a symmetry protected quadratic band-touching, there is a dominant

tendency toward an anomalous quantum Hall state at weak coupling (177). Although these

states break time reversal symmetry, they must have a zero orbital current on any link lying

in a mirror plane. However, a CDW state in doped versions of either of these seems likely

to support orbital loop current order.

7.1.2. Pair Density wave. A pair-density-wave (PDW) is a close relative of the famous

FFLO states (178, 179) that arise (at least in theory) in conventional superconductors in

response to a small degree of spin-polarization. As the name suggests, this is a supercon-

ducting state with a pair-field that is spatially modulated:〈
c†j,↑ck,↓ + c†k,↑cj,↓

〉
= Φ(Rj ,Rk) 6= 0 , 35.

where in contrast with any conventional superconducting state, the spatial average of Φ van-

ishes,
∑
R Φ(R,R+ r) = 0 for fixed r. (This is a spin-singlet PDW - one can also consider

9In (175), indications of loop current order were found for relatively large x in a three band
model with substantial nearest-neighbor V , but this was found to arise in an “unphysical” range of
parameters, i.e. one in which the undoped system is not an antiferromagnetic insulator.
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the possibility of a spin-triplet PDW.) Such states have been found as close competitors

in certain variational treatments of the Hubbard model, and short-range PDW correlations

have been reported in several different DMRG calculations on Hubbard ladders. Moreover,

to date, no clear evidence of PDW long-range order (or even of sufficiently strong quasi-

long-range order to lead to a divergent PDW susceptibility) has been presented in studies

of any version of the Hubbard model (180, 181), except in one dimension (182, 183). How-

ever, the observation of clear PDW short-range order in some cases is a promising point of

departure for future investigations (170, 184, 185).

7.2. Phases with topological character

There has been an extensive search for spin-liquid phases in Hubbard models with an

odd integer number of electrons per unit cell. Here, as discussed in § 2, it follows from the

generalized LSMOH theorem that any insulating phase that preserves translation symmetry

must be a topologically ordered “spin liquid” phase that cannot be adiabatically connected

to any band-insulator. At present, while there is no absolutely convincing evidence of such

a phase, as discussed in §6.1, there are several systems for which DMRG results are highly

suggestive of the existence of quantum spin liquid phases, albeit for relatively narrow ranges

of parameters.

8. Speculations concerning the phase diagram in d ≥ 2

Until this point, we have presented results that are established with some degree of theoret-

ical certainty. Alas, this means we have not been able to present any results for what might

a-priori be considered the most important regime - spin- 1
2

fermions with density near but

not equal to 1 per site and U comparable to the band-width. This is the range of parameters

that is likely most relevant to phenomena in a host of highly correlated materials including

the cuprate and various organic superconductors. In this final section we make a specu-

lative attempt to extrapolate from regimes in which our theoretical understanding is solid

to obtain a global picture of the phases and regimes of the Hubbard model - particularly

focused on the properties of the model in 2d.

8.1. The square lattice Hubbard model

In Fig. 5a we show a schematic T = 0 phase diagram in the U/t − µ plane of the square

lattice Hubbard model with non-vanishing second neighbor hopping matrix, t′/t 6= 0. On

the basis of the weak coupling analysis, we know that for U/8t � 1, there is a uniform

d-wave SC phase with no other forms of coexisting order. (Here 8t is the non-interacting

bandwidth.) In the large U limit and for a range of doping 0 < x . 0.2, one can conclude

on the basis of DMRG studies that there is a fully polarized ferromagnetic phase - a “half-

metallic ferromagnet” (HMF). Moreover, there are compelling theoretical arguments (63,

186) (which we will not review here) that there is a direct first-order transtion from the

AFI to the HMF phase, giving rise to the region of two-phase coexistence indicated, with

the density of the compressible phase going as xc ∼
√

8t/U as U →∞.

Independent of U , in the dilute electron limit (not shown) the system behaves as a Fermi

liquid behavior down to an exponentially low energy scale, below which it presumably forms

an unconventional superconducting state by some version of the Kohn-Luttinger mechanism.

Finally, for the half filled band (x = 0) and U/8t greater than a critical value, αc, there is an
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insulating phase which, so long as t′/t . 1/2 (so the magnetism is not terribly frustrated),

exhibits long-range Néel order. (As discussed in §5.4.2, αc ∼ 1/ ln |t/t′| → 0 as t′/t→ 0.)

In the figure, we have indicated by the black circle a presumed direct (and conse-

quently first order) transition from the d-wave superconductor at x = 0 to the insulating

antiferromagnetic phase. Such a direct transition occurs in Hartree-Fock approximation (or

equivalently in a suitable large N limit) for small t′/t, although at larger t′/t there can arise

an intermediate antiferromagnetic metal (i.e. only partially gapped) phase (187). Assum-

ing the transition at x = 0 is first order, the transition must remain first order for a range

of chemical potentials. Consequently, for small U/8t > αc there must exist a two-phase

coexistence region corresponding to the thick solid line in the figure.

Indeed, arguments suggesting that the antiferromagnetic insulating phase is generically

bounded by a line of first order transitions (leading to phase separation) were summarized

in ref. (77), and more recently have been supported by extensive variational Monte Carlo

studies of the Hubbard model in ref. (188). Another candidate small x phase when U/8t &
αc that is suggested by Hartree-Fock studies (78, 79, 80) (especially in the limit t′ = 0)

is an insulating incommensurate unidirectional colinear SDW (stripe) phase. The stripe

phase can be thought of as a form of micro-phase-separation.

Unfortunately, the structure of the middle part of the phase diagram, where U/8t ∼ 1

and 1/12 . x . 1/3, is presently unsettled. From DMRG and other studies, it is clear that

there are strong local tendencies toward d-wave SC, as well as unidirectional (stripe) CDW

and SDW orders. Implicit in the observation of striped states is a strong tendency toward

lattice rotational symmetry breaking, i.e. nematic order10.

That all DMRG studies (as well as other less controlled methods) find strong local

tendencies toward d-wave SC is compatible with the supposition that the Hubbard model

at intermediate coupling captures an essential feature of cuprate physics that leads to high-

temperature d-wave SC. However, whether the Hubbard model has more than a “d-wave

tendency” - i.e. whether it actually supports a robust d-wave SC phase at intermediate U

or not - is still unsettled. Under most circumstances, especially in broader ladders, the

DMRG studies suggest that the competing tendency toward CDW order may be stronger.

8.2. The triangular lattice Hubbard model

Fig. 5b shows a conjectured phase diagram for the triangular lattice Hubbard model. Again,

from a weak coupling analysis, we know that the small U portion of the phase diagram is

superconducting, likely a d+ id SC (189, 190). At n = 1 and large enough U , the model is

equivalent to a spin 1/2 Heisenberg model, for which strong evidence exists that the ground

state has long-range, coplanar three sublattice insulating antiferromagnetic order - the “120◦

state.” DMRG studies consistently indicate the existence of an intermediate insulating

phase without any long or quasi-long-range antiferromagnetic order - corresponding to some

sort of quantum spin liquid (QSL). Thus, at x = 0 there are two transitions (indicated by

the solid circles) as a function of U/8t. The exact nature of the QSL, however, is still

contravertial.

There is some evidence that the QSL in question is a chiral spin liquid, which would be

compatible with a continuous transition to a chiral (d+ id) SC upon light doping, as shown

10This interpretation requires some care, because of the effects of the boundaries, present in most
DMRG calculations.
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Figure 5

Speculative ground state phase diagrams of the Hubbard model as a function of U and chemical

potential, µ (upper panels) or doped hole density, x (lower panels). a) Square lattice with

t� |t′| > 0: AFI indicates an insulating (incompressible) phase with Néel AF order and doped
hole-density x = 0. The thick solid line indicates a first-order transition from the AFI to a

compressible phase, and the black circles denote points at which x = 0 in the compressible phase.

“2-phase” denotes a region of two-phase coexistence. HMF denotes a half metallic ferromagnetic
phase. At intermediate U/8t, there is clear numerical evidence of multiple local ordering

tendencies of comparable strengths including unidirectional CDW, colinear unidirectional SDW,

nematic, and d-wave SC. Which of these phases actually orders is still uncertain. b) Triangular
lattice: At weak coupling, the ground state is a dx2−y2 + idxy SC. DMRG studies suggest that

for x = 0 as a function of increasing U there is an insulating quantum spin liquid (QSL) phase

when U is comparable to the bandwdith, 9t, that lies between the small U SC and the large U
three-sublattice 120◦ ordered AFI phase. The transition from the QSL to the AFI is likely first

order. For U ∼ 9t and finite x, there is DMRG evidence of at least short-range tendencies to
d+ id and nematic (NSC)superconducting order, as well as CDW, SDW and PDW phases.

in the figure. Then at larger doping and intermediate values of U/8t, there is evidence from

DMRG studies of a local tendency toward a variety of possible broken symmetry phases

including SDW, CDW, PDW and nematic SC. However, again, which of these orders exist

as ground state phases in 2d is still an open question. Preliminary evidence (122) that

the SC tendencies are particularly strong at small x and for U in the spin-liquid regime

offers some encouragement for the long cherished ideal that a spin liquid may be a high

temperature superconductor waiting to happen.
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9. Important Open Questions

We end by highlighting some of the major outstanding challenges in the physics of the

Hubbard model.

Is the Hubbard model a high temperature SC? It has been established that

the repulsive U Hubbard model has a superconducting ground state at small U , but it

still remains uncertain whether - and if so under what circumstances - it supports “high

temperature superconductivity.” In other words, are there circumstances (i.e. some range

of band-structure parameters) in which the Hubbard model is superconducting when all

the energy scales are comparable, i.e. when U is on the order of the bandwidth, so that

Tc - if a SC state arises - is a sizable fraction of EF. To get a quantitative feeling, recall

that the bandwidth in the cuprates is of the order of W ∼ 2eV. Taking W ' 8t, we obtain

that a Tc of 0.05t would correspond to Tc ∼ 150K, of the order of the maximal transition

temperature found in the cuprates.

While affirmative answers to this question have been suggested on the basis of various

approximate calculations, the presence of multiple intertwined orders - with the consequent

existence of subtle energies that are difficult to capture reliably - renders the validity of

these approximate results uncertain.

What exotic phases arise? At the same time, while there are various reasons to

feel that exotic forms of quantum order can arise in the Hubbard model - at least if the

underlying band-structure cooperates - currently the evidence for these states ranges from

suggestive to absent. Ideally, one would like to identify versions of the model that unam-

biguously exhibit various forms of insulating quantum spin liquids, pair-density-wave SCs

(in more than one dimension), and/or possible forms of orbital loop current order.

What sort of non-Fermi-liquid behaviors occur at elevated T? We have hardly

touched on the nature of the model at finite T (although much is known) and have totally

neglected any issues associated with near equilibrium dynamical properties, much less the

far from equilibrium behaviors that are of so much recent interest. For instance, for U on

the order of the bandwidth, there most probably will not be a broad range of T above all

ordering temperatures in which the system can be well described by the weakly interacting

quasi-particles of Fermi liquid theory. What the behavior is in this regime of T - especially

including what processes govern the dissipative linear response of the system - is one of the

most important open areas in the field.

Have we learned anything useful? Finally, we have discussed controlled solutions

of the Hubbard model - and have emphasized the limited progress that has been made

even on this simplest of all model strongly correlated systems. Obviously, from a broader

perspective, what is needed are much simpler and more versatile methods of solution (2, 191,

192) that once benchmarked by comparison with the controlled results discussed here, can

be applied more widely - perhaps even in ways that interface with microscopic electronic-

structure approaches (193, 194, 195).
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