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Abstract. We propose a novel online kernel classifier algorithm that
converges to the Hard Margin SVM solution. The same update rule is
used to both add and remove support vectors from the current classifier.
Experiments suggest that this algorithm matches the SVM accuracies
after a single pass over the training examples. This algorithm is attractive
when one seeks a competitive classifier with large datasets and limited
computing resources.

1 Introduction

Support Vector Machines (SVMs) [1] are the successful application of the kernel
idea [2] to large margin classifiers [3]. Early kernel classifiers [2] were derived
from the perceptron [4], a simple and efficient online learning algorithm. Many
authors have sought to replicate the SVM success by applying the large margin
idea to such simple online algorithms [5, 6, 7, 8, 9, 10].

This paper proposes a simple and efficient online kernel algorithm which
combines several desirable properties:
– Continued iterations of the algorithm eventually converge to the exact Hard

Margin SVM classifier.
– Like most SVM algorithms, and unlike most online kernel algorithms, it

produces classifiers with a bias term. Removing the bias term is a known
way to simplify the numerical aspects of SVMs. Unfortunately, this can also
damage the classification accuracy [11].

– Experiments on a relatively clean dataset indicate that a single pass over the
training set is sufficient to produce classifiers with competitive error rates,
using a fraction of the time and memory required by state-of-the-art SVM
solvers.
Section 2 reviews the geometric interpretation of SVMs. Section 3 presents

a simple update rule for online algorithms that converge to the SVM solution.
Section 4 presents a critical refinement and describes its relation with previous
online kernel algorithms. Section 5 reports experimental results. Finally section
6 discusses the algorithm capabilities and limitations.

2 Geometrical Formulation of SVMs

Figure 1 illustrates the geometrical formulation of SVMs [12, 13]. Consider a
training set composed of patterns xi and corresponding classes yi = ±1. When
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Fig. 1. Geometrical interpretation of
Support Vector Machines

Fig. 2. Basic update of the HULLER

the training data is separable, the convex hulls formed by the positive and neg-
ative examples are disjoint. Consider two points XP and XN belonging to each
convex hull. Make them as close as possible without allowing them to leave
their respective convex hulls. The median hyperplane of these two points is the
maximum margin separating hyperplane.

The points XP and XN can be parametrized as

XP =
∑

i∈P αixi

∑
i∈P αi = 1 αi ≥ 0

XN =
∑

j∈N αjxj

∑
j∈N αj = 1 αj ≥ 0 (1)

where sets P and N respectively contain the indices of the positive and negative
examples. The optimal hyperplane is then obtained by solving

min
α

‖XP − XN‖2 (2)

under the constraints of the parametrization (1). The separating hyperplane is
then represented by the following linear discriminant function:

ŷ(x) = (XP − XN ) x + (XNXN − XP XP )/2 (3)

Since XP and XN are represented as linear combination of the training pat-
terns, both the optimization criterion (2) and the discriminant function (3) can
be expressed using dot products between patterns. Arbitrary non linear classi-
fiers can be derived by replacing these dot products by suitable kernel functions.
For simplicity, we discuss the simple linear setup and leave the general kernel
framework to the reader.

3 Single Example Update
We now describe a first iterative algorithm that can be viewed as a simplification
of the nearest point algorithms discussed in [14, 11]. The algorithm stores the
position of points XP and XN using the parametrization (1). Each iteration
considers a training pattern xk and updates the position of XP (when yk = +1)
or XN (when yk = −1.)

Figure 2 illustrates the case where xk is a positive example (negative exam-
ples are treated similarly). The new point X′

P is a priori the point of segment
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[XP , xk] that minimizes the distance ‖X′
P − XN‖2. The new point X′

P can be
expressed as X′

P = (1 − λ)XP + λxk with 0 ≤ λ ≤ 1.
This first algorithm is flawed: suppose that the current XP contains a non

zero coefficient αk that in fact should be zero. The algorithm cannot reduce
this coefficient by selecting example xk. It must instead select other positive
examples and slowly erode the coefficient αk by multiplying it by (1 − λ). A
simple fix was proposed by Haffner [15]. If the coefficient αk is strictly positive,
we can safely let λ become slightly negative without leaving the convex hull. The
revised constraints on λ are then −αk/(1 − αk) ≤ λ ≤ 1.

The optimal value of λ can be computed analytically by first computing
the unconstrained optimum λu. When xk is a positive example, solving the
orthogonality equation (XP − X′

P )(XN − X′
P ) = 0 for λ yields:

λu =
(XP − XN )(XP − xk)

(XP − xk)2
=

XP
2 − XN XP − XP xk + XN xk

XP
2 + x2

k − 2XP xk

(4)

Similarly, when xk is a negative example, we obtain:

λu =
(XN − XP )(XN − xk)

(XN − xk)2
=

XN
2 − XN XP − XN xk + XP xk

XN
2 + x2

k − 2XN xk

(5)

A case by case analysis of the constraints shows that the optimal λ is:

λ = min
(

1, max
(

−αk

1 − αk
, λu

))

(6)

Both expressions (4) and (5) depend on the quantities XP XP , XNXP , and
XNXN whose computation could be expensive. Fortunately there is a simple
way to avoid this calculation: in addition to points XP and XN , our algorithm
also maintains three scalar variable containing the values of XP XP , XNXP ,
and XP XP . Their values are recursively updated after each iteration: when xk

is a positive example,

X ′
P X ′

P =(1 − λ)2XP XP + 2λ(1 − λ)XP xk + λ2xkxk

XN X ′
P =(1 − λ)XN XP + λXN xk

XN XN =XN XN

(7)

and similarly, when xk is a negative example,

XP XP =XP XP

X ′
N XP =(1 − λ)XN XP + λxkXP

X ′
N X ′

N =(1 − λ)2XN XN + 2λ(1 − λ)XN xk + λ2xkxk

(8)

Figure 3 shows the resulting update algorithm. The cost of one update is dom-
inated by the calculation of XP xk and XNxk. This calculation requires the
dot products between xk and all the current support vectors, i.e. the training
examples xi with non zero coefficient αi in the parametrization (1).
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UPDATE(k):

- Compute XP xk, XN xk, and xkxk.
- Compute λu using equations (4) or (5).
- Compute λ using equation (6)
- αi ← (1 − λ)αi for all i such that yi = yk.
- αk ← αk + λ.
- Update XP XP , XN XP and XN XN using equation (7) or (8).

Fig. 3. Algorithm for the basic update

HULLER:

- Initialize XP and XN by averaging a few points.
Compute initial XP XP , XN XP , and XN XN .

- Iterate:
- Pick a random p such that αp = 0
- UPDATE(p)
- Pick a random r such that αr �= 0
- UPDATE(r)

Fig. 4. The HULLER algorithm

4 Insertion and Removal
Simply repeating this update for random examples xk works poorly. Most of the
updates do nothing because they involve examples that are not support vectors
and have no vocation to become support vectors. A closer analysis reveals that
the update operation has two functions:

– Performing an update for an example xk such that αk = 0 represents an
attempt to insert this example into the current set of support vectors. This
occurs when the optimal λ is greater than zero, that is, when the point xk

violates the SVM margin conditions.
– Performing an update for an example xk such that αk �= 0 will optimize the

current solution and possibly remove this example from the current set of
support vectors. The removal occurs when the optimal λ reaches its (nega-
tive) lower bound.

Recent work on kernel perceptrons [10] also rely on two separate processes to
insert and remove support vectors from the expression of the current separating
hyperplane. This paper discusses a situation where both functions are imple-
mented by the same update rule (figure 2). Picking the examples xk randomly
gives a disproportionate weight to the insertion function.

The HULLER algorithm, figure 4, corrects this imbalance by allocating an
equivalent computing time to both functions. First, it picks a random example
that is not a current support vector and attempts to insert it into the current set
of support vectors. Second, it picks a random example that is a current support
vector and attempts to remove it from the current set of support vectors. This
simple modification has a dramatic effect on the convergence speed.
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5 Experiments
The HULLER algorithm was implemented in C and benchmarked against the
state-of-the-art SVM solver LIBSVM1 on the well known MNIST2 handwritten
digit dataset. All experiments were run with a RBF kernel width parameter
γ = 0.005. Both LIBSVM and the HULLER implementation use the same code
to compute the kernel values and similar strategies to cache the frequently used
kernel values. The cache size was initially set to 256MB.

Figure 5 reports the experimental results on the ten problems consisting
of classifying each of the ten digit category against all other categories. The
HULLER algorithm was run in epochs. Each epoch sequentially scans the ran-
domly permuted MNIST training set and attempts to insert each example into
the current set of support vectors (first update operation in figure 4). After each
insertion attempt, the algorithm attempts to remove a random support vector
(second update operation in figure 4.)

The HULLER×1 results were obtained after a single epoch, that is after
processing each example once. The HULLER×2 results were obtained after two
epochs. All results are averages over five runs.

The HULLER×2 test errors (top left graph in figure 5) closely match the
LIBSVM solution. This is confirmed by counting the number of support vec-
tors (bottom left graph), The HULLER×2 computing times usually are slightly
shorter than the already fast LIBSVM computing times (top right graph).

The HULLER×1 test errors (top left graph in figure 5) are very close to
both the HULLER×2 and LIBSVM test errors. Standard paired significance tests
indicate that these small differences are not significant. This accuracy is achieved
after less than half the LIBSVM running time, and, more importantly, after a
single sequential pass over the training examples. The HULLER×1 always yields
a slightly smaller number of support vectors (bottom left graph). We believe that
a single HULLER epoch fails to insert a few examples that appear as support
vectors in the SVM solution. A second epoch recaptures most missing examples.

Neither the HULLER×1 or HULLER×2 experiments yield the exact SVM
solution. On this dataset, the HULLER typically reaches the SVM solution after
five epochs. The corresponding computing times are not competitive with those
achieved by LIBSVM.

These results should also be compared with results obtained with a theoreti-
cally justified kernel perceptron algorithm. Figure 5 contains results obtained with
the AVERAGED PERCEPTRON [5] using the same kernel and cache size. The first
epoch runs very quickly but does not produce competitive error rates. The AVER-
AGED PERCEPTRON approaches3 the LIBSVM or HULLER×1 accuracies after
ten epochs4. The corresponding training times stress the importance of the kernel
cache size. When the cache can accomodate the dot products of all examples with
all support vectors, additional epochs require very little computation. When this
is not the case, the AVERAGED PERCEPTRON times are not competitive.
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm
2 http://yann.lecun.com/exdb/mnist
3 This is consistent with the empirical results reported in [5] (table 3).
4 The Averaged Perceptron theoretical guarantees only hold for a single epoch.
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Fig. 5. MNIST results for the HULLER (one and two epochs), for LIBSVM, and for
the AVERAGED PERCEPTRON (one and ten epochs). Top left: test error accuracies.
Top right: training time. Bottom left: number of support vectors. Bottom right: training
time as a function of the number of support vectors.

Fig. 6. Computing times with various cache sizes. Each color indicates the additional
time required when reducing the cache size. The HULLER times remain virtually
unchanged.
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Figure 6 shows how reducing the cache size affects the computing time.
Whereas LIBSVM experiences significantly increased training times, the HULLER
training times are essentially unchanged. The most dramatic case is the sepa-
ration of digit “1” versus all other categories. The initial 256MB cache size is
sufficient for holding all the kernel values required by LIBSVM. Under these con-
dition, LIBSVM runs almost as quickly as the HULLER×1. Reducing the kernel
cache size to 128MB doubles the LIBSVM training time and does not change the
HULLER training times.

A detailled analysis of the algorithms indicate that LIBSVM runs best when
the cache contains all the dot products involving a potential support vector
and an arbitrary example: memory requirements grow with both the number of
support vectors and the number of training examples. The HULLER runs best
when the cache contains all the dot products involving two potential support
vectors: the memory requirements grow with the number of support vectors
only. This indicates that the HULLER is best suited for problems involving a
large separable training set.

6 Discussion

Fast start versus deep optimization. The HULLER processes many more ex-
amples during the very first training stages. After processing the first pair of
examples, the SMO core of LIBSVM must compute 120000 dot products to up-
date the example gradients and choose the next pair. During the same time, the
HULLER processes at least 500 examples. By the time LIBSVM has reached the
fifth pair of examples, the HULLER has processed a minimum of 1500 fresh ex-
amples. Online kernel classifiers without removal step tend to slow down sharply
because the number of support vectors increases quickly. The removal step en-
sures that the number of current support vectors does not significantly exceed
the final number of support vectors.

To attain the exact SVM solution with confidence, the HULLER also must
compute all the dot products it did not compute in the early stages. On the other
hand, when the kernel cache size is large enough, LIBSVM already knows these
values and can use this rich local information to move more judiciously. This
is why LIBSVM outperforms the huller in the final stages of the optimization.
Nevertheless, the HULLER produces competitive classifiers well before reaching
the point where it gets outpaced by state-of-the-art SVM optimization packages
such as LIBSVM.

Noisy datasets. The HULLER addresses the hard margin SVM problem and
therefore performs poorly on noisy datasets [16]. Most online kernel classi-
fiers share this limitation. However, soft margin support vector machines with
quadratic slacks [16] can be implemented as hard margin support vector ma-
chines with a modified kernel KC(xi, xj) = K(xi, xj) + 1

C δij . However, the
resulting classifier is not directly comparable to the standard soft-margin SVM
with linear slacks.
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7 Conclusion

The HULLER is a novel online kernel classifier algorithm that converges to the
Hard Margin SVM solution. Experiments suggest that it matches the SVM ac-
curacies after a single pass over the training examples. Time and memory re-
quirements are then modest in comparison to state-of-the-art SVM solvers.
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