THE HULLS OF REPRESENTABLE I-GROUPS AND f-RINGS

Dedicated to the memory of Hanna Neumann

PAUL CONRAD

(Received 11 September 1971)

Communicated by G. B. Preston

1. Introduction and statements of the main results

A lattice-ordered group ("l-group") G will be called a P-group if $G = g'' \oplus g'$ for each $g \in G$ (projectable) an SP-group if $G = C \oplus C'$ for each polar C of G (strongly projectable) an L-group if each disjoint subset has a 1. u. b. (laterally complete) an O group if it is both an L-group and a P-group (orthocomplete).

G is representable if it is an l-subgroup of a cardinal product of totally ordered groups. It follows that a P-group must be representable and hence SP-groups and O-groups are also representable.

G is a large l-subgroup of an l group H or H is an essential extension of G if G is an l-subgroup of H and for each non-zero convex l-subgroup S of H we have $S \cap G \neq 0$.

We show that if G is a large *l*-subgroup of an X-group H, where X = P, SP, L or O, then the intersection K of all *l*-subgroups of H that contain G and are X-groups is an X-group. Thus K is a minimal essential extension of G that is an X-group and we shall call such an extension of G an X-hull of G.

THEOREM 2.6. There exists a unique X-hull G^X of a representable l-group G. Moreover, G is dense in G^X , G^X is representable and if G is archimedean or abelian, then so is G^X .

We then show that if G is a representable *l*-group then each $0 < g \in G^{O}$ is the join of a disjoint subset of G^{P} . Thus

$$G \subseteq G^{P} \subseteq G^{SP} \subseteq (G^{SP})^{L} = (G^{P})^{L} = G^{O} \text{ and}$$
$$G \subseteq G^{L} \subseteq (G^{L})^{P} = (G^{L})^{SP} \subseteq G^{O}.$$

but $(G^L)^{SP}$ need not equal G^o .

A rather natural direct limit construction provides the existence and uniqueness of G^{X} .

If G is a D_f -module, f-ring or f-algebra then there is a unique way of extending the multiplication so that G^X is a D_f -module, f-ring or f-algebra that contains G as a submodule, subring or subalgebra. Thus the multiplicative structure of G^X is completely determined by its additive structure. This phenomenon is due to the fact that each polar preserving endomorphism ("p-endomorphism") of G has a unique extension to a p endomorphism of G^X .

If G is a vector lattice then G^{P} is the p extension of G defined by Amemiya [1], but Amemiya's definition of a p extension is fairly complicated and so are his proofs of the existence and uniqueness of G^{P} . However, he does mention that G^{P} is the minimal P-group in which G is dense.

Now suppose that G is a representable l-group. Then G^P is the Stone extension $\Sigma(G)$ of G that is defined by Speed [21]. His definition of $\Sigma(G)$ is categorical, but the maps involved are rather special *l*-homomorphisms. Speed also defines G^o categorically and makes a rather thorough investigation of P-groups. G^L is the lateral completion of G defined in [9]. There the definition required that G be dense in G^L . Finally G^o is the orthocompletion of G defined by Bernau [3]. Here again the definition of G^o is somewhat complicated being modelled after the definition used by Amemiya for countably laterally complete vector lattice p extensions.

If F is a (real) f-algebra then Amemiya remarks that his p extension is also an f-algebra. Bernau proves that if G is an f-ring or a vector lattice then so is its orthocompletion.

Vecksler [23] outlines a method for constructing the *P*-hull and the *SP*-hull of an f-ring. In [24] he corrects his definition of an *SP*-hull.

An archimedean l group A is a

d-group if it is divisible

v group if it is a vector lattice

c group if it is a (conditionally) complete lattice

e group if it is essentially closed in the class of archimedean l groups.

If A is a large l subgroup of an archimedian y group H, where y = d, v, c or e, then the intersection K of all l subgroups of H that contain A and are y-subgroups is a y group. Thus K is a minimal essential extension of A that is a y group. We shall call such an extension of A a y hull.

THEOREM 5.2. Each archimedean l-group A admits a unique y-hull A^y for y = d, v, c or e. A^c is the Dedekind MacNeille completion of A and A is dense in A^c . A^v is the l subspace of $(A^d)^c$ that is generated by A. $A^e = ((A^d)^c)^L$ is the essential closure of A.

Once again if A is an f-ring then there is a unique extension of the multipli-

cation of A to a multiplication of A^{y} so that A^{y} is an f-ring and A is a subring of A^{y} . Thus the multiplicative structure of A^{y} is completely determined by its additive structure.

In Section 6 we completely characterize the structure of an archimedean essentially closed f-ring and this gives quite a bit of information about the structure of an arbitrary f-ring.

In Section 7 we get a nice representation of the orthocompletion of an f-ring with a basis and this leads to information about the structure of an arbitrary f-ring with a basis.

NOTATION. Throughout G will denote an *l*-group and for each $0 < g \in G$, G(g) will denote the convex *l*-subgroup of G generated by g. G is a dense *l*-subgroup of an *l*-group H if for each $0 < h \in H$ we have $0 < g \leq h$ for some $g \in G$. $\prod A_{\lambda}$ will denote the cardinal product of *l*-groups A_{λ} and $\sum A_{\lambda}$ will denote the cardinal sum. The cardinal sum of a finite number of *l* groups will be denoted by $A_1 \oplus \cdots \oplus A_n$. For each subset S of G

$$S' = \{g \in G \mid |g| \land |s| = 0 \text{ for all } s \in S\}$$

is the polar of S. Sik [20] has shown that the set P(G) of all polars in G is a complete Boolean algebra and that an *l*-group is representable if and only if each polar is normal.

2. The existence and uniqueness of X-hulls

LEMMA 2.1. If G is a P-group and L-group then G is an SP-group.

PROOF. If $C \in P(G)$ and $\{a_{\lambda} \mid _{\lambda} \in \Lambda\}$ is a maximal disjoint subset of C then $a = \bigvee a_{\lambda}$ is a weak order unit in C and so a'' = C. Thus

$$G = a'' \oplus a' = C \oplus C'.$$

G is an \mathcal{L} -subgroup of an *l*-group H if G is an *l*-subgroup of H and for each disjoint subset $\{a_{\lambda} \mid \lambda \in \Lambda\}$ of G for which $\bigvee_{G} a_{\lambda}$ exists we have $\bigvee_{G} a_{\lambda} = \bigvee_{H} a_{\lambda}$. Note that the intersection of laterally complete \mathcal{L} subgroups of H is a laterally complete \mathcal{L} -subgroup.

LEMMA 2.2. If G is a large l-subgroup of an l group H then G is an \mathcal{L} -subgroup of H.

PROOF. Suppose that $\{a_{\lambda} | \lambda \in \Lambda\}$ is a disjoint subset of G and $a = \bigvee_{G} a_{\lambda}$ exists. If h is an upper bound for the a_{λ} in H then $a \ge a \land h = k \ge a_{\lambda}$ and so it suffices to show that a = k. For each $\lambda \in \Lambda$, $a^{\lambda} = \bigvee_{G} a_{\alpha}$ $(\alpha \neq \lambda)$ exists, $a_{\lambda} \land a^{\lambda} = 0$ and $a = a_{\lambda} + a^{\lambda}$. Thus

$$H(a) = H(a_{\lambda}) \oplus H(a^{\lambda}).$$

Now $k = k_{\lambda} + k_{\lambda}$, where $k_{\lambda} \in H(a_{\lambda})$ and $k^{\lambda} \in H(a^{\lambda})$ and since $a \ge k \ge a_{\lambda}$ we have $a_{\lambda} \ge k_{\lambda} \ge a_{\lambda}$. Therefore $a - k = a^{\lambda} - k^{\lambda} \in \bigcap_{\Lambda} H(a^{\lambda}) = K$. But $K \cap G$ = $\bigcap_{\Lambda} G(a^{\lambda}) \subseteq G(a)$ and so if $0 \le x \in K \cap G$ then $x \wedge a_{\lambda} = 0$ for all $\lambda \in \Lambda$. Thus $x \wedge a = x \wedge \bigvee_{G} a_{\lambda} = \bigvee_{G} x \wedge a_{\lambda} = 0$ and since a is a unit in G(a), x = 0. Therefore $K \cap G = 0$ and since G is large in H, K = 0.

Let G be an l-subgroup of H and denote the polar operation in G (H) by '(*). For $B \in P(G)$ and $C \in P(H)$ define

$$B\mu = (B')^*$$
 and $C\nu = C \cap G$.

1) $B\mu\nu = (B')^* \cap G = B^{**} \cap G = B^{**}\nu = B.$

PROOF. Since $B' \subseteq B^*$ we have $(B')^* \supseteq B^{**} \supseteq B$ and so $(B')^* \cap G \supseteq B^{**} \cap G \supseteq B$. If $0 < x \in (B')^* \cap G$ then $x \in G$ and $x \wedge B' = 0$ and so $x \in B'' = B$.

2) If v is one-to-one then $B\mu = B^{**}$.

3) ([9] p. 455). If G is large in H then μ is an isomorphism of P(G) onto P(H) and v is the inverse.

4) ([10] p. 156). If H is archimedean then the following are equivalent.

- i) G is large in H.
- ii) v is an isomorphism of P(H) into P(G) and μ is the inverse.
- iii) If $0 \neq C \in P(H)$ then $C \cap G \neq 0$.
- iv) If $0 < h \in H$ then $h'' \cap G \neq 0$.

5) If G i, large in H and X is an l subgroup of G or just a non-void subset of G then

- i) $(X'')^{**} = X^{**}$ and $X^{**} \cap G = X''$
- ii) $(X')^{**} = X^*$ and $X^* \cap G = X'$.

PROOF. Since $X \subseteq X''$ we have $X^{**} \subseteq (X'')^{**}$. Also $X^{**}\nu$ is a polar of G that contains X and so $X^{**}\nu = X^{**} \cap G \supseteq X''$. Thus $X'' \subseteq X^{**}$ and hence $(X'')^{**} \subseteq X^{**}$.

$$X^{**} \cap G = (X'')^{**} \cap G = X'' \mu v = X''.$$

From (i) and (2) we have $X^* = (X'')^* = (X')^{**}$. Finally $X^* \cap G = \{g \in G \mid |g| \land X = 0\} = X'$ holds for any *l*-subgroup G of H.

6) If α is an *l*-automorphism of *H* that induces the identity on P(G) then α induces the identity on P(H) provided that *G* is large in *H*.

PROOF. If $C \in P(H)$ then $Cv = Cv\alpha = (G \cap C)\alpha = G\alpha \cap C\alpha = G \cap C\alpha = C\alpha v$, so that $C = C\alpha$ by (3).

PROPOSITION 2.3. Let G be a convex l-subgroup of an l-group H.

- i) If H is an SP-group so is G.
- ii) If H is a P-group so is G.

PROOF. (i) If $A \in P(G)$ then $H = A^{**} \oplus A^*$ and hence $G = (A^{**} \cap G)$ $\oplus (A^* \cap G) = A \oplus (A^* \cap G) = A \oplus A'$.

(ii) Pick $g \in G$. Then $H = g^{**} \oplus g^*$ and so $G = (G \cap g^{**}) \oplus (G \cap g^*)$ = $g'' \oplus g'$. For $g' \subseteq g^*$ implies $(g'')'^* = g'^* \supseteq g^{**}$ and so $g'' = (G \cap (g'')'^*$ $\supseteq G \cap g^{**} \supseteq g''$.

Note that a polar in an L-group is an L-group, but an l-ideal C of an L-group G need not be an L-group.

EXAMPLE.
$$C = \sum_{i=1}^{\infty} R_i \subseteq \prod_{i=1}^{\infty} R_i = G.$$

This also shows that an l-ideal of an O group need not be an O-group.

THEOREM 2.4. If H is an X-group and an essential extension of G and $\{H_{\lambda} | \lambda \in \Lambda\}$ is the set of all l-subgroups of H that contain G and are X-groups then $K = \bigcap_{\Lambda} H_{\lambda}$ is an X-hull of G, where X = P, SP, L or O.

PROOF. If H is an L-group then by Lemma 2.2 each H_{λ} is a laterally complete \mathscr{L} -subgroup of H and so K is an L-group.

Suppose that H is a P-group, $0 < k \in K$ and denote the polar operation in H, K, and H_{λ} by *, # and $^{\lambda}$ respectively. If $0 < x \in K \subseteq H_{\lambda}$ then $x = x_1 + x_2 \in k^{\lambda} \oplus k^{\lambda \lambda}$ and by (5) $k^{\lambda} = k^* \cap H_{\lambda}$ and $k^{\lambda \lambda} = k^{**} \cap H^{\lambda}$. Thus $x_1 + x_2$ is the unique decomposition of x in $H = k^* \oplus k^{**}$. This holds for all λ so x_1 , $x_2 \in \cap H_{\lambda} = K$. Thus $x_1 \in K \cap k^* = k^{\#}$ and $x_2 \in K \cap k^{**} = k^{\#\#}$. Therefore $x \in k^{\#} \oplus k^{\#\#}$ and hence $K = k^{\#} \oplus k^{\#\#}$.

If H is an SP-group then an entirely similar argument shows that K is also an SP-group.

LEMMA 2.5. An L-hull K of a representable l-group G is representable.

PROOF. Theorem 2.8 in [9] asserts that if G is dense in K then K is also representable. The only place in the proof where the hypothesis of denseness is used is to infer that if $(-a_{\alpha} + (a_{\alpha} \wedge b) + a_{\alpha}) \wedge (a_{\alpha} \wedge b) = 0$ and $a_{\alpha} \wedge b > 0$ then $a_{\alpha} \wedge b \ge g > 0$ for some $g \in G$ and so $(-a_{\alpha} + g + a_{\alpha}) \wedge g = 0$. But since G is large in K we can conclude that $n(a_{\alpha} \cap b) \ge g > 0$ for some n > 0 and $g \in G$. Thus $0 = n((-a_{\alpha} + (a_{\alpha} \wedge b) + a_{\alpha}) \wedge (a_{\alpha} \wedge b)) = (-a_{\alpha} + n(a_{\alpha} \wedge b) + a_{\alpha}) \wedge n(a_{\alpha} \wedge b) \ge (-a_{\alpha} + g + a_{\alpha}) \wedge g \ge 0$ and so $(-a_{\alpha} + g + a_{\alpha}) \wedge g = 0$,

COROLLARY. An X-hull of a representable l-group is representable, where X = P, SP, L or O.

THEOREM 2.6. There exists a unique X-hull G^X of a representable l-group G for X = P, SP, L or O. Morover G is dense in G^X and G^X is representable and if G is abelian or archimedean then so is G^X .

PROOF. The existence follows from Theorem 2.4 provided that we can embed G as a large *l*-subgroup in an X-group. In order to do this we make use of the direct limit construction developed in [9].

Let D(G) be the set of all maximal disjoint subsets of the Boolean algebra P(G) of polars of G. If $\mathscr{A}, \mathscr{C} \in D(G)$ then we define $\mathscr{A} \leq \mathscr{C}$ if each $A \in \mathscr{A}$ is contained in some $C \in \mathscr{C}$. Then D(G) is a lower directed partially ordered set. For each $\mathscr{C} \in D(G)$ let $G_{\mathscr{C}}$ be the *l*-group

$$G_{\mathscr{C}} = \prod_{C \in \mathscr{C}} G/C'.$$

If $\mathscr{A} \leq \mathscr{C} \in D(G)$ and $C \in \mathscr{C}$ then $C = (\cap A_{\lambda}')'$ the polar join of the $A_{\lambda} \in \mathscr{A}$ that are contained in C. Thus $C' = \cap A_{\lambda}'$ and so the natural map

$$G/C \to \prod G/A_{\lambda}$$

is an *l*-isomorphism. Thus there is a natural *l*-isomorphism $\pi_{\mathscr{C},\mathscr{A}}$ of $G_{\mathscr{C}}$ into $G_{\mathscr{A}}$ obtained by combining the above maps for each G/C', where $C \in \mathscr{C}$. Let $\mathcal{O}(G)$ be the direct limit of the *l*-groups G with connecting *l*-isomorphisms $\pi_{\mathscr{C},\mathscr{A}}$. Define $k \in \mathcal{O}(G)$ to be positive if k = 0 or $k_{\mathscr{C}} > 0$ for some $\mathscr{C} \in D(G)$. For each $g \in G$ let \tilde{g} be the element in $\mathcal{O}(G)$ with $\tilde{g}_{\mathscr{C}} = (\dots, C' + g, \dots)$ for each $\mathscr{C} \in D(G)$.

In [9] it is shown that $\mathcal{O}(G)$ is a representable laterally complete *l*-group and if G is abelian or archimedean then so is $\mathcal{O}(G)$. Also the map $g \to \tilde{g}$ is an *l*-isomorphism of G into $\mathcal{O}(G)$ and \tilde{G} is dense in $\mathcal{O}(G)$. Thus to complete the proof of existence it suffices to show that $\mathcal{O}(G)$ is a *P*-group. Thus we must show that if $\theta < l \in \mathcal{O}$ then $\mathcal{O} = l^{**} \oplus l^*$.

Consider $\theta < k \in \mathcal{O}(G)$ and pick $\mathscr{C} \in D(G)$ such that $l_{\mathscr{C}} \neq 0 \neq k_{\mathscr{C}}$. Then $l_{\mathscr{C}} = (\dots, C' + l(C), \dots)$, where $0 \leq l(C) \in G$. Let $\overline{l(C)}$ be the convex *l*-subgroup of G that is generated by l(C) and pick $\mathscr{C} \geq \mathscr{A} \in D(G)$ so that each $(C \cap \overline{l(C)})'' \neq 0$ belongs to \mathscr{A} .

$$G_{\mathcal{A}} = \prod G/(C \cap \overline{l(C)})' \oplus \prod G/A_{\lambda}'$$

$$k_{\mathcal{A}} = x_{\mathcal{A}} + y_{\mathcal{A}}'$$

Let x(y) be the element in $\mathcal{O}(G)$ with \mathscr{A} -th component $x_{\mathscr{A}}$ if $x_{\mathscr{A}} \neq 0$ ($y_{\mathscr{A}}$ if $y_{\mathscr{A}} \neq 0$) and θ otherwise. Then k = x + y. It is shown in [9] that the only non-zero components of $l_{\mathscr{A}}$ are of the form $(C \cap \overline{l(C)})' + l(C)$. Thus $l_{\mathscr{A}} \wedge y_{\mathscr{A}} = 0$ and so $y \in l^*$. Thus we need only prove that $x \in l^{**}$. Consider $\theta < t \in \mathcal{O}(G)$ such that $l \wedge t = \theta$. To complete the proof of existence we need to show that $x \wedge t = \theta$.

Pick $\mathscr{D} \in D(G)$ so that $0 \neq t_{\mathscr{D}} = (\dots, D' + t(D), \dots)$. Now ([9] p. 456) $(C \cap \overline{l(C)})'' \cap (D \cap \overline{t(D)})'' = 0$ and so we may choose a $\mathscr{B} \in D(G)$ that contains the $(C \cap \overline{l(C)})'' \neq 0$ and the $(D \cap \overline{t(D)})'' \neq 0$. Let

$$\mathscr{A} \cap \mathscr{B} = \{ A \cap B \neq 0 \, | \, A \in \mathscr{A} \text{ and } B \in \mathscr{B} \}$$

Then $\mathscr{A} \cap \mathscr{B} \in D(G)$ and so we have

Now $x_{\mathscr{A}}$ has nonzero components of the form $(C \cap \overline{l(C)})' + z$ and $t_{\mathscr{B}}$ has nonzero components of the form $(D \cap \overline{t(D)})' + t(D)$. These do not change under the maps into $G_{\mathscr{A} \cap \mathscr{B}}$ and so $x \wedge t = \theta$. Thus there exists an X-hull of G.

Let *H* be an X-hull of *G* and let $\alpha(\beta)$ the the natural *l*-isomorphisms of *G* (*H*) into $\mathcal{O}(G)$ ($\mathcal{O}(H)$). We complete the proof by showing that α can be extended to an *l*-isomorphism ρ of *H* onto the X-hull *K* of $G\alpha = \tilde{G}$ in $\mathcal{O}(G)$.

Thus if H_1 and H_2 are X-hulls of G then $\rho_1 \rho_2^{-1}$ is an *l*-isomorphism of H_1 onto H_2 that induces the identity on G. It follows from Theorem 2.7 that $\rho_1 \rho_2^{-1}$ is unique.

Since G is large in H for each $C \in P(G)$ we have $C = G \cap C^{**}$ and $C' = G \cap C^{*}$. Thus $C' + g = --- \rightarrow C^{*} + g$ is an l isomorphism of G/C' into H/C^{*} . For each $\mathscr{C} \in D(G)$ let $\overline{\mathscr{C}} = \{C^{**} \mid C \in \mathscr{C}\}$. Then $\overline{\mathscr{C}} \in D(H)$ and thus there is a natural l-isomorphism $\tau_{\mathscr{C}}$ of $G_{\mathscr{C}}$ onto $H_{\overline{\mathscr{C}}}$. Moreover if $\mathscr{A} \leq \mathscr{C}$ in D(G)

commutes, where $\pi_{\mathscr{C}\mathscr{A}}^{-}$ is the *l*-isomorphism used in the construction of $\mathcal{O}(H)$. Thus (see [9]) the $\tau_{\mathscr{C}}$ determine an *l*-isomorphism τ of $\mathcal{O}(G)$ into $\mathcal{O}(H)$

If $g \in G$ and $\mathcal{C} \in D(H)$ then $(g\alpha\tau)_{\mathcal{C}} = (g\alpha)_{\mathscr{C}}\tau_{\mathscr{C}} = (\cdots, C' + g, \cdots)\tau_{\mathscr{C}} = (\cdots, C^* + g, \cdots)$ = $(g\beta)_{\mathcal{C}}$. Thus $g\alpha\tau = g\beta$ and hence $G\beta = G\alpha\tau \subseteq \mathcal{O}(G)\tau$ which is an X group and $G\beta$ is large in $\mathcal{O}(H)$. Thus $H\beta \cap \mathcal{O}(G)\tau$ is an X-group and contains $G\beta$ and so since H_{β} is an X-hull of $G\beta$ we have

$$G\alpha\tau = G\beta \subseteq H\beta \subseteq \mathcal{O}(G)\tau \subseteq \mathcal{O}(H).$$

Thus $H\beta\tau^{-1}$ is an X-group that contains G_{α} and so

$$G\alpha = G\beta\tau^{-1} \subseteq K \subseteq H\beta\tau^{-1} \subseteq \mathcal{O}(G)$$

and since $H\beta\tau^{-1}$ is an X-hull of $G\beta\tau^{-1}$ we have $K = H\beta\tau^{-1}$. This completes the proof of Theorem 2.6.

REMARK. We can, of course, define countably laterally complete *l*-groups in the obvious way and then it follows from the above proof that each representable *l*-group admits a unique *CL*-hull. Also *G* admits a unique minimal essential extension *H* that is both a *P*-group and a *CL*-group. For the vector lattice case *H* is the "completion" of Amemiya [1]. See also Vulich [25].

THEOREM 2.7. If α is an l-isomorphism of G_1 onto G_2 , where the G_i are representable l-groups, then there exists a unique extension of α to an l-isomorphism of G_1^X onto G_2^X for X = P, SP, L or O.

PROOF. α induces an isomorphism of $P(G_1)$ onto $P(G_2)$ and hence an isomorphism of $D(G_1)$ onto $D(G_2)$. Also for $C \in P(G_1)$ we have the natural map $C' + g - - \rightarrow (C\alpha)' + g\alpha$ of G_1/C' onto $G_2/(C\alpha)'$. Thus there is a natural map $\alpha_{\mathfrak{F}}$ of $G_{1\mathfrak{F}}$ onto $G_{2\mathfrak{F}\alpha}$ such that

commutes. These maps $\alpha_{\mathscr{C}}$ generate an isomorphism $\bar{\alpha}$ of $\mathcal{O}(G_1)$ onto $\mathcal{O}(G_2)$ and the following diagram commutes

Also it is easy to see that $\tilde{G}_1^X \bar{\alpha} = \tilde{G}_2^X$. Thus α can be extended to an *l*-isomomorphism of G_1^X onto G_2^X .

For the uniqueness it suffices to show that if α is an *l*-automorphism of G^X that induces the identity on G then α is the identity. Since α induces the identity on P(G) it must also induce the identity on $P(G^X)$. Thus we may assume that α is an *l*-automorphism of $\mathcal{O}(G)$ that induces the identity on \tilde{G} and $P(\mathcal{O}G)$. Consider $l \in \mathcal{O}(G)$ with $l_{\mathscr{C}} = (\dots, C' + g, \dots)$ and suppose (by way of contradiction that $(l\alpha)_{\mathscr{C}} = (\dots, C' + x, \dots)$, where $C' + x \neq C' + g$. Then

$$|g-l|_{\mathscr{C}} \wedge (0, \dots, 0, C' + |g-x|, 0, \dots, 0) = 0 \text{ but}$$
$$(|g-l|\alpha)_{\mathscr{C}} \wedge (0, \dots, 0, C' + ||g-x|, 0, \dots, 0) \neq 0.$$

Thus α does not induce the identity on $P(\mathcal{O}(G))$, a contradiction.

PROPOSITION 2.8. Suppose that G is a representable 1-group, α is an l-automorphism of G^0 and X = P, SP, L or 0.

- i) $G^{X}\alpha = (G\alpha)^{X}$ and so if $G\alpha = G$, then $G^{X}\alpha = G^{X}$.
- ii) If $G\alpha \subseteq G$ then $G^X\alpha \subseteq G^X$.

PROOF. $G\alpha$ is large in G^O and hence in $G^X\alpha$. Also $G^X\alpha$ is an X-group. If $G\alpha \subseteq K \subset G^X\alpha$, where K is an *l*-subgroup of $G^X\alpha$ and an X-group then $G \subseteq K\alpha^{-1} \subset G^X$ which contradicts the minimality of G^X . Thus $G^X\alpha$ is the X-hull of $G\alpha$ and so $G^X\alpha = (G\alpha)^X$. If $G\alpha \subseteq G$ then $G^X\alpha = (G\alpha)^X \subseteq G^X$. The following example shows that we may or may not have equality.

EXAMPLE. Let G be the *l*-ideal in $\prod_{i=1}^{\infty} R_i$ generated by $(1, 2, 3, \dots)$. Then $G^o = \prod R_i$. Let α be the multiplication of G^o by $(1, 1/2, 1/3, \dots)$. Then $G\alpha$ is the *l*-ideal of G^o generated by $(1, 1, 1, \dots)$. Thus $G\alpha \subset G$ and both G and $G\alpha$ are SP-groups.

$$G^{P}\alpha = G\alpha \subset G = G^{P}$$
 and
 $G^{L}\alpha = (G\alpha)^{L} = G^{O} = G^{L}.$

COROLLARY. If α is an l-endomorphism of G^X that induces an automorphism on G then α is an automorphism of G^X .

PROOF. Since G is large in G^X it follows that α is one-to-one on G^X and by the minimality of $G^X \alpha$ must be an *l*-automorphism of G^X .

THEOREM 2.9. If G is a P-group then each $\theta < l \in \mathcal{O}(G)$ is the join of a disjoint subset of \tilde{G} . In particular, $\tilde{G}^L = \mathcal{O}(G)$ and hence G^L is an SP-group.

PROOF. Consider $\theta < l \in \mathcal{O}$ and $l_{\mathscr{C}} \neq 0$. In each $C \in \mathscr{C}$ pick a maximal disjoint set $\{a_{\alpha} \mid \alpha \in A\}$ of elements of G. Then $C = (\bigcap a_{\alpha}')' = (\bigcup a_{\alpha}'')''$ and so there is a partition $\mathscr{A} \leq \mathscr{C}$ that consists of principal polars of G.

$$\mathscr{A} = \{a_{\lambda}^{"} \, | \, \lambda \in \Lambda\}$$

Thus $0 \neq l_{\mathscr{A}} = (\dots, a_{\lambda}' + l(\lambda), \dots)$. Now $G = a_{\lambda}'' \oplus a_{\lambda}'$ and so we may assume that $0 \leq l(\lambda) \in a_{\lambda}''$ for each $\lambda \in \Lambda$. In particular, the $l(\lambda)$ are disjoint in G.

$$\tilde{l}(\lambda)_{\mathscr{A}} = (0, \cdots, 0, a_{\lambda}' + l(\lambda), 0, \cdots, 0).$$

Thus $\forall l(\widetilde{\lambda})_{\mathscr{A}} = l_{\mathscr{A}}$ and so $\forall l(\widetilde{\lambda}) = l$.

COROLLARY I. If G is an O-group then $\tilde{G} = \mathcal{O}(G)$.

COROLLARY II. If G is a representable l-group then

$$\tilde{G} \subseteq \tilde{G}^P \subseteq \tilde{G}^{SP} \subseteq (\tilde{G}^{SP})^L = (\tilde{G}^P)^L = \tilde{G}^O = \mathcal{O}(G)$$

where the indicated X-hulls are all in $\mathcal{O}(G)$. In particular, $G^{o} = \mathcal{O}(G)$ and so G^{o} is the orthocompletion defined by Bernau.

PROOF. Clearly $\tilde{G} \subseteq \tilde{G}^P \subseteq \tilde{G}^{SP} \subseteq (\tilde{G}^P)^L \subseteq (\tilde{G}^{SP})^L \subseteq \tilde{G}^O \subseteq \mathcal{O}(G)$ and so it suffices to show that $(\tilde{G}^P)^L = \mathcal{O}(G)$. Let *H* be the *P*-hull of *G* and let α , β , τ be as in the proof of Theorem 2.6.

$$H \xrightarrow{\beta} \tilde{H} \subseteq \tilde{H}^{L} = \mathcal{O}(H)$$

$$\downarrow^{\tau}$$

$$G \xrightarrow{\alpha} \tilde{G} \subseteq \tilde{G}^{P}(\tilde{G}^{P})^{L} \subseteq \mathcal{O}(G)$$

Then $\tilde{H} = \tilde{G}^P \tau \subseteq (\tilde{G}^P)^L \tau \subseteq \mathcal{O}(H)$ and $(\tilde{G}^P)^L \tau$ is an L-group. Thus $(\tilde{G}^P)^L \tau = \mathcal{O}(H)$ and so $(\tilde{G}^P)^L = \mathcal{O}(G)$.

Also it follows that

$$\widetilde{G} \subseteq \widetilde{G} \subseteq (\widetilde{G}^L)^P \subseteq (\widetilde{G}^L)^{SP} \subseteq \widetilde{G}^O = \mathcal{O}(G)$$

but as the next example shows $(\tilde{G}^L)^{SP}$ need not equal \tilde{G}^O . Thus the operators SP and L need not commute.

EXAMPLE. Let Λ be the po-set

Denote the set of maximal (minimal) elements in Λ by A (B). Let V be the set of all functions from Λ into the reals. Then V is a real vector lattice if we define addition pointwise and define $v \in V$ to be positive if each non-zero maximal component is positive. Next let

$$G = \{v \in V \mid v \text{ is constant on } A\}.$$

Note that G is laterally complete but not a P-group. Let

Representable *l*-groups and *f*-rings

 $H = \{v \in V \mid v \text{ restricted to } A \text{ has finite range}\}.$

Then H is not laterally complete and $H^L = V$. We show that

$$H = G^{SP} = G^{P}.$$

Clearly G is large in H and H is an SP-group. Suppose that $G \subseteq K \subseteq H$, where K is a P-group. Let '(*) denote the polars in K (H). Let S be a subset of B and let $s \in G$ be the characteristic function on S. Let $a \in G$ be the characteristic function on A.

$$K = s'' \oplus s', H = s^{**} \oplus s^{*}$$
 and $s^{**} \cap K = s''$ and $s^{*} \cap K = s'$.

Thus $a = a_1 + a_2 \in s'' \oplus s' = K$ and this is also the decomposition in $H = s^{**} \oplus s^*$. Thus a_1 is the characteristic function of the elements in A above S, but such elements generate the group of functions on A with finite range. Therefore K = H and hence $H = G^P$.

PROPOSITION 2.10. If G is a representable l-group then $(G^L)^P = (G^L)^{SP}$.

PROOF. Take $C \in P((G^L)^P$; then $C \cap G^L = Cv \in P(G^L)$: so as in Lemma 2.1, Cv = a'', and thus $C = Cv\mu = a''\mu = (a'')^{**} = a^{**}$, by (3) and (5). Thus $(G^L)^P$ is an SP-group and so $(G^L)^P = (G^L)^{SP}$.

COROLLARY. Let G be a representable l-group.

i)
$$(G^{O})^{X} = (G^{X})^{O}$$
 for $X = P$, SP or L and $(G^{P})^{SP} = (G^{SP})^{P} = G^{SP}$.

ii) $(G^L)^P = (G^L)^{SP} \subseteq (G^P)^L = (G^{SP})^L$ and equality need not hold.

3. The X-hulls of D_f -modules and f-rings

A *p*-endomorphism of an *l*-group G is an endomorphism α of the group such that

$$x \wedge y = 0$$
 implies $x\alpha \wedge y = 0$ for all $x, y \in G$.

It is easy to show that this is equivalent to $G^+\alpha \subseteq G^+$ and $C\alpha \subseteq C$ for each $C \in P(G)$ (see [13]). Thus the *p*-endomorphisms of G are the *l*-endomorphisms that preserve polars. In Section 4 we shall show that each *p*-endomorphism of a representable *l*-group G has a unique extension to the X-hull G^X of G.

Let D be a directed po-ring. G is a D_f -module (see [22]) if G is an abelian *l*-group and a D-module such that for each $d \in D^+$ the map

$$g \longrightarrow gd$$
 for all $g \in G$

is a *p*-endomorphism of G. Steinberg [22] shows that such a G is isomorphic to a subdirect sum of totally ordered modules. Note that each polar of G is a submodule. Note also that each abelian *l*-group A is a D_f -module with respect

to the ring Z of integers and also with respect to the directed ring D of all polar preserving endomorphisms of A.

PROPOSITION 3.1. If G is a vector lattice over a totally ordered division ring D then G is a D_f -module.

PROOF. We are given that G is an abelain *l*-group and $G^+D^+ \subseteq G^+$. If $d \in D^+$ and $g \in G$ then $(g \lor 0)d = gd \lor 0$. For $(g \lor 0)d \ge gd$ and 0 and if $z \ge gd$ and 0 then $zd^{-1} \ge g$ and 0 and so $zd^{-1} \ge g \lor 0$. Therefore $z \ge (g \lor 0)d$.

Now suppose that $x \wedge y = 0$, where $x, y \in G$ and $d \in D^+$. If $1 \ge d$ then $x \ge xd$ and hence $0 = x \wedge y \ge xd \wedge y = 0$. If d > 1 then $1 > d^{-1}$ and so $x \wedge yd^{-1} = 0$. Thus $0 = (x \wedge yd^{-1})d = xd \wedge y$.

Suppose that G is a D_f -module. Then each $C \in P(G)$ is a submodule and hence G/C' is a D_f -module. Thus each of the *l*-groups $G_{\mathscr{C}} = \prod G/C'$ used in the construction of $\mathcal{O}(G)$ is an D_f -module and each of the connecting *l*-isomorphisms $\pi_{\mathscr{C},\mathscr{A}}$ also preserves scalar multiplication by elements of D. Consider $\mathscr{L} \in \mathcal{O}(G)$ and $\mathscr{C} \in D(G)$ such that

$$0 \neq \mathscr{L}_{\mathscr{C}} = (\cdots, C' + \mathscr{L}(C), \cdots)$$
 where $\mathscr{L}(C) \in G$.

Define $\mathscr{L}d$ to be the element in $\mathscr{O}(G)$ with $(\mathscr{L}d)_{\mathscr{C}} = (\dots, C' + \mathscr{L}(C)d, \dots)$. It follows that $\mathscr{O}(G)$ is a D_f -module and the natural map $g \longrightarrow \tilde{g}$ of G into $\mathscr{O}(G)$ also preserves scalar multiplication by elements of D.

THEOREM 3.2. There exists a unique minimal essential extension G^{X_D} of the D_f -module G that is an X-group and also a D_f -module. G^{X_D} is isomorphic to the intersection of all X-subgroups of $\mathcal{O}(G)$ that contain G and are D_f -modules.

The proof is analogous to the proof of Theorem 2.6. We shall show that $G^{X} = G^{X_{D}}$ as *l*-groups and there exists a unique extension of the scalar multiplication of G to a scalar multiplication of G^{X} by D.

Recall that an f-ring G is a lattice ordered ring such that

$$x \wedge y = 0$$
 implies $xd \wedge y = dx \wedge y = 0$ for all $x, y, d \in G^+$.

Thus each polar of G is a ring ideal and so it follows that $\mathcal{O}(G)$ is also an f-ring and the natural *l*-isomorphism of G into $\mathcal{O}(G)$ is a ring isomorphism.

THEOREM 3.3. There exists a unique minimal essential extension G^{X_f} of the f-ring G that is an X-group and also an f-ring. Moreover, G^{X_f} is isomorphic to the intersection of all X-subgroups of $\mathcal{O}(G)$ that contain G and are sub-f-rings of $\mathcal{O}(G)$.

Again the proof is analogous to the proof of Theorem 2.6. We shall show that $G^{X} = G^{X_{f}}$ as *l*-groups and there exists a unique *f*-ring structure for G^{X} so that G is a subring.

4. Lifting *p*-endomophisms from G to G^X

Let G be a representable *l*-group and let \tilde{G}^{X} be the X-hull of G in $\mathcal{O}(G)$.

THEOREM A. (Chambless [7]) $\tilde{G}^{SP} = \{l \in \mathcal{O}(G) \mid l = \theta \text{ or } l_{\mathscr{E}} \neq 0 \text{ for some finite} partition of P(G)\}$. Thus \tilde{G}^{SP} is the direct limit of the groups $G_{\mathscr{E}}$ for finite $\mathscr{E} \in D(G)$ and hence is the join of the directed set of l-groups $G_{\mathscr{E}}\pi_{\mathscr{E}}$, where $\pi_{\mathscr{E}}$ is the natural map of $G_{\mathscr{E}}$ into $\mathcal{O}(G)$.

THEOREM B. (Chambless [7]). Let S be the subalgebra of P(G) generated by elements of the form g' and g". Then

 $\tilde{G}^{P} = \{l \in \mathcal{O}(G) \mid l = \theta \text{ or } l_{\mathscr{E}} \neq 0 \text{ for some finite partition of } P(G) \text{ such that } \mathscr{E} \subseteq S\}$ Thus \tilde{G}^{P} is a direct limit.

Now, as we have seen, if G is an f-ring then so are the $G_{\mathscr{C}}$ and so it follows that \tilde{G}^{P} and \tilde{G}^{SP} are subrings of $\mathcal{C}(G)$. We shall also show that \tilde{G}^{L} is a subring of $\mathcal{C}(G)$.

Amemiya [1] mentions that if G is a vector lattice or an f-ring then under his construction G^{P} is also a vector lattice or an f-ring.

If G is an f-ring then each minimal prime subgroup of (G, +) is a ring ideal and so $T = \prod G/M$, for all minimal prime subgroups M, is an f-ring. is a subring constructs G^P in T. Here it is hard to determine whether or not G^P . Speed [21] since G^P is not large in T.

LEMMA 4.1. If σ is a polar preserving endomorphism of an l-group G, $\{a_{\alpha} \mid \alpha \in A\}$ is a disjoint subset of G and $\forall a_{\alpha}$ exists, then $\{a_{\alpha}\sigma \mid \alpha \in A\}$ is disjoint and $(\forall a_{\alpha})\sigma = \forall a_{\alpha}\sigma$.

PROOF. Clearly $(\forall a_{\alpha})\sigma \geq a_{\beta}\sigma$ for all $\beta \in A$. Suppose that $d \geq a_{\beta}\sigma$ for all β . Then $(\forall a_{\alpha})\sigma \geq (\forall a_{\alpha})\sigma \land d \geq a_{\beta}\sigma$ for each β and hence

$$(\lor a_{\alpha})\sigma - x = (\lor a_{\alpha})\sigma \land d \ge a_{\beta}\sigma$$

for all β , where $x \ge 0$. Therefore $(\forall a_{\alpha})\sigma \ge a_{\beta}\sigma + x$ for all β . To complete the proof it suffices to show that x = 0. Now $(\forall a_{\alpha})\sigma \ge a_{\beta}\sigma + x \land a_{\beta}$ for all β ; so $(\forall_{\alpha \neq \beta} a_{\alpha})\sigma \ge x \land a_{\beta}$ for each β . But $(x \land a_{\beta}) \land a_{\gamma} = 0$ for all $\gamma \neq \beta$, and so

$$0 = (x \wedge a_{\beta}) \wedge (\vee_{\alpha \neq \beta} a_{\alpha}) = (x \wedge a_{\beta}) \wedge ((\vee_{\alpha \neq \beta} a_{\alpha})\sigma) = x \wedge a_{\beta}$$

for each β ; hence $x \wedge (\forall a_{\alpha}) = 0$, and thus $0 = x \wedge (\forall a_{\alpha})\sigma = x$.

COROLLARY I. If $\{a_{\alpha} \mid \alpha \in A\}$ is a disjoint subset of a D_f -module G over a directed po-ring D, $\forall a_{\alpha}$ exists and $0 < c \in D$ then $(\forall a_{\alpha})c = \forall a_{\alpha}c$.

COROLLARY II. If $\{a_{\alpha} | \alpha \in A\}$ is a disjoint subset of an f-ring G and $\forall a_{\alpha}$ exists then $(\forall a_{\alpha})c = \forall a_{\alpha}c$ and $c(\forall a_{\alpha}) = \forall ca_{\alpha}$ for each $c \in G^+$.

LEMMA 4.2. (Henriksen and Isbell [15]). If Y is a multiplicative subsemigroup of an f-ring F then the l-subgroup T of (F, +) that is generated by Y is a subring.

PROOF. Let $[Y] = \{e_1y_1 + \dots + e_ny_n | y_i \in Y, e_i = \pm 1 \text{ and } n \ge 0\}$ be the subgroup of (F, +) generated by Y. Then

$$T = \{ \bigvee_A \wedge_B s_{\alpha\beta} | s_{\alpha\beta} \in [Y] \text{ and } A \text{ and } B \text{ are finite} \}.$$

But [Y] is a subring of F and if $a = \bigvee \land a_{\alpha\beta}$ and $b = \bigvee \land b_{\gamma\delta}$ belong to T then $a^+ = \lor \land (a_{\alpha\beta} \lor 0)$ and $b^+ = \lor \land (b_{\gamma\delta} \lor 0)$ and since positive elements distribute multiplicatively over \lor and \land it follows that $a^+b^+ \in T$ and hence T is a subring of F.

PROPOSITION 4.3. Suppose that G is an f-ring and also a subring of the f-ring H. If H is laterally complete and an essential extension of G then the lateral completion G^{L} of (G, +) in H is a subring.

PROOF. Consider $\{a_{\alpha} | \alpha \in A\}$ and $\{b_{\beta} | \beta \in B\}$ disjoint subsets of G. Then by Corollary II of Lemma 4.1

$$(\vee a_{\alpha})(\vee b_{\beta}) = \vee a_{\alpha}b_{\beta}.$$

Thus the set of all such $\forall a_{\alpha}$ is a subsemigroup of *H*. It follows from Lemma 4.2 that the *l*-subgroup G(1) of *H* generated by these elements $\forall a_{\alpha}$ is a subring. Then by transfinite induction it follows that G^{L} is a subring of *H*, (see [9]).

THEOREM 4.4. Let G be a representable l-group and let X = P, SP, L or O.

1) A p-endomorphism σ of G has a unique extension to a p-endomorphism σ^x of G^x .

2) If σ is one to one then so is σ^X . If σ is onto then so is σ^X for X = P, SP or O.

3) If α is a p endomorphism of G^o such that $G\alpha \subseteq G$ then $G^X\alpha \subseteq G^X$.

PROOF. If $\mathscr{C} \in D(G)$ and $C \in \mathscr{C}$ then $C' + g - \rightarrow C' + g\sigma$ is an *l*-endomorphism of G/C' and hence

$$(\cdots, C' + g(C), \cdots) \xrightarrow{\sigma_{\mathscr{C}}} \rightarrow (\cdots, C' + g(C)\sigma, \cdots)$$

is an *l*-endomorphism of $G_{\mathscr{C}}$. If $\mathscr{C} \geq \mathscr{A} \in D(G)$ then

commutes. For $(\dots, C' + g(C), \dots) \sigma_{\mathscr{C}} \pi_{\mathscr{C},\mathscr{A}} = (\dots, C' + g(C)\sigma, \dots) \pi_{\mathscr{C},\mathscr{A}} = (\dots, A' + g(C)\sigma, \dots) = (\dots, A' + g(C), \dots) \sigma_{\mathscr{A}} = (\dots, C' + g(C), \dots) \pi_{\mathscr{C},\mathscr{A}} \sigma_{\mathscr{A}}$ where of course $A \subseteq C$.

Thus σ determines an *l*-endomorphism $\bar{\sigma}$ of $\mathcal{O}(G)$. Let π be the natural map of G onto $\tilde{G} \subseteq \mathcal{O}(G)$. Then $(g\pi)_{\mathscr{C}} = (\cdots, C' + g, \cdots)$ for all $\mathscr{C} \in D(G)$, and $\pi\bar{\sigma} = \sigma\pi$ on G and so $\bar{\sigma}$ is an extension to $\mathcal{O}(G)$ of the p endomorphism $\pi^{-1}\sigma\pi$ of \tilde{G} .

We next show that $\bar{\sigma}$ is a p-endomorphism of $\mathcal{O}(G)$. If $\theta \neq l, k \in \mathcal{O}(G)$ and $\wedge k = \theta$ then there exist $\mathscr{C} \in D(G)$ such that $l_{\mathscr{C}} \neq 0 \neq k_{\mathscr{C}}$ and such that their supports are disjoint. If $l_{\mathscr{C}}\sigma_{\mathscr{C}} = 0$ then $l\bar{\sigma} = 0$ and hence $l\bar{\sigma} \wedge k = \theta$. In any case the support of $l_{\mathscr{C}}\sigma_{\mathscr{C}} \subseteq$ support of $l_{\mathscr{C}}$ and hence $l_{\mathscr{C}}\sigma_{\mathscr{C}} \wedge k_{\mathscr{C}} = 0$ and so $l\bar{\sigma} \wedge k = \theta$. Therefore $\bar{\sigma}$ is a p-endomorphism of $\mathcal{O}(G)$.

We next show that if α is a *p*-endomorphism of $\mathcal{O}(G)$ that induces $\pi^{-1}\sigma\pi$ on \tilde{G} then $\alpha = \bar{\sigma}$. Consider $l_{\mathscr{C}} = (\dots, C' + g, \dots)$ and suppose that $(l\alpha)_{\mathscr{C}} = (\dots, C' + x, \dots)$ where $C' + x \neq C' + g\sigma$. Then

$$\left| \tilde{g} - l \right|_{\mathscr{C}} \wedge (0, \dots, 0, C' + \left| g\sigma - x \right|, 0, \dots, 0) = 0 \text{ but}$$
$$\left(\left| \tilde{g} - l \right|_{\mathscr{C}} \wedge (0, \dots, 0, C' + \left| g\sigma - x \right|, 0, \dots, 0) \neq 0 \right.$$

and thus α is not a p endomorphism, a contradiction.

Therefore σ has a unique extension to a *p*-endomorphism of G^o . Now if ρ is an extension of σ to say G^p then it can be extended to G^o and so ρ is unique. Thus to complete the proof of (1) it suffices to verify (3). So suppose that α is a *p* endomorphism of G^o such that $G\alpha \subseteq G$.

a) $G^{L}\alpha \subseteq G^{L}$. For if $\{a_{\lambda} \mid \lambda \in \Lambda\}$ is a disjoint subset of G then by Lemma 4.1 $(\lor a_{\lambda})\alpha = \lor a_{\lambda}\alpha$ and so $G(1)\alpha \subseteq G(1)$, where G(1) is the *l*-subgroup of G^{L} that is generated by all the elements $\lor a_{\lambda}$. Thus it follows by transfinite induction that $G^{L}\alpha \subseteq G^{L}$.

b) $G^{SP}\alpha \subseteq G^{SP}$. Here we assume that $G = \tilde{G}$ and $G^O = \mathcal{O}(G)$. Then we know exactly how α operates on $\mathcal{O}(G)$. Consider $\theta \neq l \in G^{SP}$. Then $l_{\mathscr{C}} \neq 0$ for some finite partition \mathscr{C} of P(G). If $(l\alpha)_{\mathscr{C}} = 0$ then $l\alpha = \theta$ and if $(l\alpha)_{\mathscr{C}} \neq 0$ then clearly $l\alpha \in G^{SP}$ by Chambless' Theorem A.

c) $G^{P}\alpha \subseteq G^{P}$. This is a simple application of Chambless' Theorem B. This completes the proof of (1) and (3).

(2) If σ is one to one then σ^X is one to one since G is large in G^X . Now suppose that σ is onto. Then the map $C' + g - \rightarrow C' + g\sigma$ is an *l*-homomorphism of G/C' onto itself. Thus σ^O is clearly onto and using our representations of G^P and G^{SP} it follows that σ^P and σ^{SP} are also onto.

QUESTION. Is σ^{L} onto provided that σ is onto?

THEOREM 4.5. If G is a D_f -module over the directed po-ring D then there

exists a unique extension of the scalar multiplication by elements of D so that G^X is also a D_f -module. Moreover G^X with this scalar multiplication equals G^{X_D} for X = P, SP, L or O.

PROOF. The first part follows from the fact that each *p*-endomorphism of G has a unique extension to a *p* endomorphism of G^X . Now (without loss of generality) $G \subseteq G^X \subseteq G^{X_D} \subseteq \mathcal{O}(G)$ and G^X is a submodule of G^{X_D} . Therefore $G^X = G^{X_D}$.

THEOREM 4.6. If G is an f-ring then there is a unique multiplication on G^X so that G^X is an f-ring and G is a subring. Moreover, G^X with this ring structure equals G^{X_f} for X = P, SP, L or O.

PROOF. We first verify the result for X = O. Now as we have seen $\mathcal{O}(G)$ is a ring and the natural map $g \longrightarrow \tilde{g}$ is a ring *l*-isomorphism. So all we need show is that the multiplication of $\mathcal{O}(G)$ is uniquely determined by that of \tilde{G} . Suppose that \cdot is a multiplication on $\mathcal{O}(G)$ so that $\mathcal{O}(G)$ is an *f*-ring and \cdot induces the given multiplication on \tilde{G} .

If $0 < \tilde{g} \in \tilde{G}$ then the right multiplication of \tilde{G} by \tilde{g} is a *p*-endomorphism of \tilde{G} and so has a unique extension to a *p*-endomorphism of $\mathcal{O}(G)$. Therefore

$$x \cdot \tilde{g} = x \tilde{g}$$
 for all $x \in \mathcal{O}(G)$.

Suppose that $x_{\mathscr{C}} = (0, ..., 0, C' + t, 0, ..., 0)$. Now

 $\tilde{g}_{\mathscr{C}} = (0, \dots, 0, C' + g, 0, \dots, 0) + (\text{the other non-zero components})$ = a + b.

Now $x_{\mathscr{C}} \cdot b = 0$ since they are disjoint and so $(0, \dots, 0, C' + tg, 0, \dots, 0)$ = $x_{\mathscr{C}} \tilde{g}_{\mathscr{C}} = x_{\mathscr{C}} \cdot (a + b) = x_{\mathscr{C}} \cdot a = (0, \dots, 0, C' + t, 0, \dots, 0) \cdot (0, \dots, 0, C' + g, 0, \dots, 0).$

Now consider $x, y \in \mathcal{O}(G)$ with $x_{\mathscr{C}} \neq 0 \neq y_{\mathscr{C}}$.

$$x_{\mathscr{C}} = (\dots, C' + x(C), \dots) = \forall x_{C}, \text{ where } x_{C} = (0, \dots, 0, C' + x(C), 0, \dots, 0)$$

$$y_{\mathscr{C}} = (\dots, C' + y(C), \dots) = \forall y_C$$
, where $y_C = (0, \dots, 0, C' + y(C), 0, \dots, 0)$.

Thus by Lemma 4.1 and the above

$$x_{\mathscr{C}} \cdot y_{\mathscr{C}} = \bigvee x_{c} \cdot \bigvee y_{c} = \bigvee x_{c} \cdot y_{c} = \bigvee x_{c}y_{c} = x_{\mathscr{C}}y_{\mathscr{C}}$$

Therefore \cdot is the natural multiplication on $\mathcal{O}(G)$ and so there is a unique *f*-ring structure on G^o so that G is a subring of the *f*-ring G^o .

Finally we have shown that \tilde{G}^P , \tilde{G}^{SP} and \tilde{G}^L are all subrings of $\mathcal{O}(G)$. Also any ring structure on G^X that induces the given one on G can be extended to a ring structure on G^O . Therefore the ring structures of G^P , G^{SP} and G^L are also determined by their additive structures.

5. The y-hulls of archimedean *l*-groups and *f*-rings

An archimedean *l*-group *A* is called a *d-group* if it is divisible, *v-group* if it is a vector lattice, *c-group* if it a conditionally complete lattice, *e-group* if it is essentially closed in the class of archimedean *l*-groups.

It is well known that an abelian *l*-group A is contained in a unique minimal divisible abelian *l*-group A^d . For there is exactly one way of extending the order of A to a lattice-order of its injective hull A^d so that $(A^d)^+ \cap A = A^+$. Also if A is archimedean then so is A^d .

THEOREM 5.1. If A is a large l-subgroup of an archimedean y-group H, where y = d, v, c or e, then the intersection K of all the l-subgroups of H that contain A and are y-groups is a y-group. Thus K is a minimal essential extension of A that is a y-group and we shall call such an extension a y-hull of A.

THEOREM 5.2. Each archimedean l group A admits a unique y-hull A^y for y = d, v, c or e. A^c is the Dedekind MacNeille completion A^h of A and A is dense in A^c . A^v is the l-subspace of $(A^d)^c$ that is generated by A. $A^e = ((A^d)^c)^L$ is the essential closure of A.

REMARKS. A minimal essential extension of an archimedean *l*-group that is a vector lattice is necessarily archimedean [11]. Bleier [6] has shown that a minimal archimedean vector lattice that contains A is necessarily an essential extension of A and hence is A^v . Also, of course, any complete *l*-group is archimedean.

PROOF OF THEOREM 5.1. If y = d or v then clearly the theorem holds. For the intersection of divisible subgroups (subspaces) is again divisible (a subspace). If A is a large *l*-subgroup of an archimedean *e*-group H then clearly H is an *e*-hull of A. To prove the theorem for y = c we make use of the following two lemmas.

LEMMA 5.3. (Bernau [3]). If G is a dense l-subgroup of an l-group H then all joins and intersections in G agree with those in H.

LEMMA 5.4. If A is a large l-subgroup of an abelian l group B then all joins and intersections in A agree with those in B.

PROOF. A is large in B^d and so A^d is dense in B^d . Suppose that $\{a_{\lambda} \mid \lambda \in \Lambda\} \subseteq A$ and $\bigvee_A a_{\lambda}$ exists. If $\{a_{\lambda} \mid \lambda \in \Lambda\} \leq y \in A^d$ then $ny \in A$ for some n > 0 and so $ny \geq \bigvee_A na_{\lambda} = n \bigvee_A a_{\lambda}$. Thus $y \geq \bigvee_A a_{\lambda}$ and hence $\bigvee_{A^d} a_{\lambda} = \bigvee_A a_{\lambda}$.

Next $\bigvee_{A^d} a_{\lambda} = \bigvee_{B^d} a_{\lambda}$ since A^d is dense in B^d . Finally $\bigvee_{B^d} a_{\lambda} = \bigvee_B a_{\lambda}$ since $\{a_{\lambda} \mid \lambda \in \Lambda\} \subseteq B$ and $\bigvee_{B^d} a_{\lambda} = \bigvee_A a_{\lambda} \in A \subseteq B$. Thus $\bigvee_A a_{\lambda} = \bigvee_B a_{\lambda}$.

COROLLARY. If A is a large l-subgroup of a complete l-group H, then the intersection of all c subgroups of H that contain A is a c subgroup.

QUESTION. Is Lemma 5.4 true for non abelian l groups?

PROOF OF THEOREM 5.2. Clearly the theorem holds for y = d. In [11] it is shown that A admits a unique v hull A^v and that A^v is the l subspace of $(A^d)^{\wedge}$ that is generated by A.

In [10] it is shown that A admits a unique essential closure A^e and that $A^e = ((A^d)^{\wedge})^L$.

The existence of A^e for a complete vector lattice A was proven by Pinsker [19] and Jakubik [16] showed that A^e can be constructed solely from the underlying lattice structure of A.

We now show that there exists a unique c hull A^c and that $A^c = A^{\circ}$. Note that A° is the unique minimal complete l group in which A is dense [12]. Also if A is an l-subgroup of a complete l-group H then H need not contain a copy of A° [12].

LEMMA 5.5. If A is a large l-subgroup of a complete l group H then $A^{\wedge} \subseteq H$.

PROOF. We shall show that there exists an *l*-isomorphism of A^{\wedge} into *H* that is the identity on *A*. If $x \in A^{\wedge}$ then

$$x = \bigvee \{ \underline{x} \in A \mid \underline{x} \leq x \} = \land \{ \overline{x} \in A \mid \overline{x} \geq x \}.$$

Since $\bar{x} \ge \{\underline{x} \in A \mid \underline{x} \le x\}$ we have that $\bigvee_H \underline{x}$ exists. In particular for $0 < x \in A^{\wedge}$, $x = \bigvee \{\underline{x} \in A^{+} \mid \underline{x} \le x\}$ and $\bigvee_H \{\underline{x} \in A^{+} \mid \underline{x} \le x\}$ exists. Define

$$x\sigma = \bigvee_{H} \{ \underline{x} \in A^+ \mid \underline{x} \leq x \}.$$

1) If $a \wedge b = 0$ in A^{\wedge} then $a\sigma \wedge b\sigma = 0$.

For $a = \bigvee \underline{a}$ and $b = \bigvee \underline{b}$, where $\underline{a} \land \underline{b} = 0$ and hence

$$0 \leq a\sigma \wedge b\sigma = \vee_{H}\underline{a} \wedge \vee_{H}\underline{b} = \vee_{H}(\underline{a} \wedge \underline{b}) = 0.$$

2) If $a, b \in (A^{\wedge})^+$ then $a\sigma + b\sigma = (a + b)\sigma$.

For
$$a\sigma + b\sigma = \bigvee_H \underline{a} + \bigvee_H \underline{b} = \bigvee_H (\underline{a} + \underline{b}) = \bigvee_H X$$
, where
 $X = \{\underline{a} + \underline{b} \mid \underline{a}, \underline{b} \in A^+, \underline{a} \leq a \text{ and } \underline{b} \leq \underline{b}\}$, and
 $(a + b)\sigma = \bigvee_H \underline{a + b} = \bigvee_H Y$, where
 $Y = \{y \in A^+ \mid y \leq a + b\}.$

Now if $x \in X$ then $x = a + b \leq a + b$ and so $x \in Y$. Thus $X \subseteq Y$ and hence $\bigvee_H X \leq \bigvee_H Y$.

If $y \in Y$ then $0 \leq y \leq a + b$ and hence y = u + v where $u, v \in A^{\circ}, 0 \leq u \leq a$ and $0 \leq v \leq b$. Thus $u = \bigvee \underline{u}$ and $v = \bigvee \underline{v}$ and hence $y = \bigvee (\underline{u} + \underline{v}) = \bigvee_{A^{\circ}} S$ where $S \subseteq X \subseteq A$ and $y \in A$. Therefore $y = \bigvee_{A^{\circ}} S = \bigvee_{A} S = \bigvee_{H} S$ since by Lemma 5.4 joins in A agree with those in H. Thus $y \leq \bigvee_{H} X$ and so $\bigvee_{H} Y \leq \bigvee_{H} X$.

Therefore σ is a map of $(A^{\wedge})^{+}$ into H^{+} that preserves addition and disjointness and induces the identity on A^{+} . For $g = a - b \in A^{\wedge}$, where $a, b \in (A^{\wedge})^{+}$ define $g\tau = a\sigma - b\sigma$. Then τ is a group homorphism of A^{\wedge} into H that preserves disjointness and so it is an *l*-homomorphism. Since τ induces the identity on the large *l* subgroup A of A^{\wedge} it follows that τ is an *l*-isomorphism.

COROLLARY I. $A^{\wedge} \subseteq (A^d)^{\wedge}$.

COROLLARY II. If A is a large l-subgroup of a complete l-group H and no proper l-subgroup of H contains A and is complete, then $H = A^{*}$. In particular A is dense in H.

COROLLARY III. $A^c = A^{\wedge}$ is unique.

This completes the proof of Theorem 5.2.

If follows at once from Lemma 5.4 that if A is a large l-subgroup of a σ complete l-group H then the intersection K of all the σ complete l-subgroups of H that contain A is σ complete. Thus K is a σ complete hull of A. Since A is large in K^{\wedge} it follows from Lemma 5.5 that $A \subseteq A^{\wedge} \subseteq K^{\wedge}$. Now $A^{\wedge} \cap K$ is σ -complete and contains A and so since K is minimal we have $A \subseteq K \subseteq A^{\wedge}$. Thus K is the intersection of all σ -complete l-subgroups of A^{\wedge} that contain A and hence K is unique. Therefore each archimedean l-group A admits a unique σ -complete hull A^{σ} .

It is well known that A^{σ} is a *P*-group but need not be an *SP*-group (see for example [25] p. 85).

If each bounded disjoint subset of an archimedean vector lattice A is countable then since A is dense in A^{σ} it follows that each bounded disjoint subset of A^{σ} is also countable. Thus ([25] p. 156) A^{σ} is complete and hence $A^{\sigma} = A^{\wedge}$. These spaces A^{σ} of "countable type" were introduced by Pinsker and have many nice properties (see [25] pp. 156–160).

THEOREM 5.6. If α is a p-endomorphism of an archimedean l-group A then there exists a unique extension of α to a p endomorphism $\overline{\alpha}$ of the y-hull A^{y} of A, where y = d, v, c or e.

PROOF. The proof for y = c is contained in [13]. Suppose that y = d and consider $a \in A^y$. Then $na \in A$ for some n > 0. Define $a\overline{\alpha} = ((na)\alpha)/n$. A straightforward computation shows that $\overline{\alpha}$ is a p endomorphism of A^y and an extension

of α . If β is an extension of α to a *p*-endomorphism of A^{y} then

$$n(a\beta) = (na)\beta = (na)\alpha = (na)\overline{\alpha} = n(a\overline{\alpha})$$

and hence $a\beta = a\overline{\alpha}$.

Combining the above we get a unique extension of α to a *p*-endomorphism γ of $(A^d)^c$. Also γ is linear [13] and maps A into A. Thus γ maps the *l*-subspace A^v of $(A^d)^c$ that is generated by A into A^v .

Finally since $A^e = ((A^d)^e)^L$ it follows from Theorem 4.4 that α has a unique extension to a *p* endomorphism of A^e .

COROLLARY. If A is an archimedean D_f -module over the directed po-ring D then there exists a unique extension of the scalar multiplication by elements of D so that A^y is also a D_f -module, where y = d, v, c or e.

REMARKS. Since A is large in A^{y} it follows that α is one-to-one if and only if $\overline{\alpha}$ is one-to-one. It can be shown that if y = d, v or c then $\overline{\alpha}$ is onto provided that α is onto. The proof for y = c is given in [13]. Bleier [6] shows that an *l*-automorphism of A has a unique extension to an *l*-automorphism of A^{y} .

THEOREM 5.7. If A is an archimedean l-group and α is an l-automorphism of A then there exists a unique extension to an l-automorphism $\bar{\alpha}$ of A^y , where y = d, v, c or e.

PROOF. For y = d the map $\bar{\alpha}$ defined in the proof of the last theorem is an *l*-automorphism of A^d . We have shown that the theorem holds for y = L. Thus to complete the proof it suffices to show that α can be extended uniquely to an *l*-automorphism of A^c . For $h \in (A^c)^+$, $h = \bigvee \{\underline{h} \in A^+ | \underline{h} \leq h\}$. Define

$$h\bar{\alpha} = \vee h\alpha.$$

A straightforward computation shows that $\bar{\alpha}$ determines an *l*-automorphism of A^c that is the unique extension of α (see the proof of Lemma 5.5).

LEMMA 5.8. (Bernau [2]). If F is an archimedian f-ring, $x \in F^+$, $\{a_{\lambda} \mid \lambda \in \Lambda\} \subseteq F$ and $\forall a_{\lambda}$ exists then $\forall (xa_{\lambda})$ exists and $\forall (xa_{\lambda}) = x(\forall a_{\lambda})$, and dually.

THEOREM 5.9. Suppose that A is an archimedean f-ring, and A^y is the y-hull of (A, +) for y = d, v, c or e. Then there is a unique multiplication on A^y so that A^y is an f-ring and A is a subring. Thus the additive structure of A^y completely determines the ring structure.

PROOF. For $a, b \in A^d$ there exists an integer n > 0 such that na and nb belong to A. Define

$$ab = ((na)(nb)/n^2.$$

A routine check shows that A^d is an *f*-ring and this is the unique extension of the multiplication of A to an *f*-ring multiplication of A^d .

For $a, b \in ((A^d)^c)^+$ define

$$ab = \wedge \{xy \mid x \ge a, y \ge b \text{ and } x, y \in A^d\}$$

and for $x = x_1 - x_2$ and $y = y_1 - y_2$ in $(A^d)^c$ where $x_i, y_i \in ((A^d)^c)^+$ define

$$xy = x_1y_1 + x_2y_2 - (x_1y_2 + x_2y_1).$$

A rather long messy computation shows that $(A^d)^c$ is an *f*-ring. This construction is "well known".

Now suppose that \cdot and \times are two multiplications of $(A^d)^c$ so that it is an *f*-ring and A^d is a subring and consider $a, b \in ((A^d)^{c+1})^{c+1}$.

$$a = \bigwedge \{x \in A^d \mid x \ge a\}$$
 and $b = \bigwedge \{y \in A^d \mid y \ge b\}$

and hence by Lemma 5.8

$$a \cdot b = (\land x) \cdot (\land y) = \land (x \cdot y) = \land (x \times y) = (\land x) \times (\land y) = a \times b.$$

Thus there is only one such multiplication. Of course the same result holds for A^c .

Now we have shown that the ring structure of $(A^d)^c$ has a unique extension to $((A^d)^c)^L = A^e$ (see Theorem 4.6). To complete the proof it suffices to show that A^v is a subring of A^e . Consider $x, y \in A$ and $r, s \in R$. Then $rx, sy \in A^v$ and $xy \in A$. Thus since A^e is a real algebra (see Section 6)

$$(rx)(sy) = rs(xy) \in A^{\nu}.$$

It follows that the subspace S of A^e that is generated by A is a subring of A^e . Now

$$A^{\nu} = \{ \bigvee_{U} \bigwedge_{V} a_{\alpha\beta} | a_{\alpha\beta} \in S, \alpha \in U, \beta \in V \text{ and } U \text{ and } V \text{ are finite} \}$$

Thus by Lemma 4.2 A^v is a subring of A^e .

REMARKS. If A is an archimedean f-ring and H is a minimal essential extension of A that is an archimedean f-ring and a y-group then $H = A^y$. For clearly $A \subseteq A^y \subseteq H$ as l-groups by Theorems 5.1 and 5.2. If y = e then A^e is essentially closed and large in H and so $A^e = H$. If y = d then an easy computation shows that A^d is a subring of H and so $A^d = H$.

If y = c or v then a rather messy proof shows that A^{y} is a subring of H and so once again $A^{y} = H$.

6. The structure of an archimedean f-ring

Let A be an archimedean f-ring and let X be the Stone space of the complete Boolean algebra P(A) of polars of A. Then X is compact, Hausdorff and extremally disconnected. Let D(X) be the ring of continuous functions from X

[21]

into the extended reals $(R, \pm \infty)$ that are finite on a dense open subset of X. Then as l groups A^e and D(X) are isomorphic [10]. So let us examine the ways in which D(X) can be made into an f-ring with pointwise addition and order.

Suppose that D = D(X) has a multiplication \cdot so that it is an *f*-ring. Then for $a \in D^+$ the map $d \longrightarrow d \cdot a$, for all $d \in D$, is a *p*-endomorphism of (D, +)and so (see [13]) there is an element $\bar{a} \in D^+$ such that

$$d \cdot a = d\bar{a}$$
 for all $d \in D$.

We investigate the map a $--- \rightarrow \bar{a}$. Consider $a, b \in D^+$.

1) $\overline{a+b} = \overline{a} + \overline{b}$.

For $d(\overline{a+b}) = d \cdot (a+b) = d \cdot a + d \cdot b = d\overline{a} + d\overline{b} = d(\overline{a} + \overline{b})$ for all $d \in D$ and so for d = 1, $\overline{a+b} = \overline{a} + \overline{b}$.

2) $\overline{ab} = \overline{a}b$.

 $d\overline{(a\ b)} = d\overline{(a\ \cdot\ b)} = d\ \cdot\ (a\ \cdot\ b) = (d\ \cdot\ a)\ \cdot\ b = (d\ \bar{a})\ \bar{b} = d(\ \bar{a}\ \bar{b}).$

3) $a\tilde{a} = b\tilde{a}$.

 $b\bar{a} = b \cdot a = a \cdot b = a\bar{b}$. Here we use the fact that an archimedean f-ring is commutative.

4) Put $\overline{1} = p$; then for $u, v \in D^+$, $u \cdot v = uvp$.

For, for $a \in D^+$, we have $\bar{a} = 1\bar{a} = a\bar{1} = ap$. Now, v = a - b, where $a, b \in D^+$, and so $u \cdot v = u \cdot (a - b) = u \cdot a - u \cdot b = u\bar{a} - u\bar{b} = uap - ubp = u(a - b)p = uvp$.

5) If \cdot is a multiplication on D(X) such that D(X) is an f-ring with componentwise addition and order then there exists an element $p \in D^+$ so that $a \cdot b = abp$ for all $a, b \in D$, and conversely.

Now D is complete and hence a P group. Thus

$$D = p'' \oplus p'.$$

Clearly p'' is a subring with respect to the \cdot multiplication and p' is a zero subring. Consider $d = u + v \in p'' \oplus p'$ and define

$$d\tau = pu + v.$$

Then for $d_1 = u_1 + v_1$ and $d_2 = u_2 + v_2$ in D we have

$$(d_1 \cdot d_2)\tau = (pu_1u_2)\tau = pu_1pu_2 = d_1\tau d_2\tau$$

and so we have an *l*-isomorphism of the *f*-ring $(D, +, \cdot, \leq)$ onto the *f*-ring $D = p'' \oplus p'$, where p'' is a ring with respect to the pointwise multiplication of D and p' has the zero multiplication.

THEOREM 6.1. Let X be a Stone space and suppose that D(X) is an f-ring with componentwise addition and order. Then there exist clopen subsets Y and

Z of X such that $X = Y \cup Z$, $Y \cap Z = \emptyset$ and $D(X) = D(Y) \oplus D(Z)$, where D(Y) has the pointwise multiplication and D(Z) has the zero multiplication.

Thus we have the structure of an arbitrary essentially closed archimedean f-ring. Recall that the radical of an f-ring A consists of the nilpotent elements.

COROLLARY I. (Henricksen and Isbell [15]). An archimedian f-ring is a subdirect sum of a ring with zero multiplication and one with radical zero.

COROLLARY II. If A is an archimedean f-ring then rad $A = \{a \in A \mid aA = 0\}$ the set of annihilators of A. In particular, rad A is a polar.

PROOF. $A \subseteq D(Y) \oplus D(Z)$ and if $a = u + v \in A$ is nilpotent, where $u \in D(Y)$ and $v \in D(Z)$ then u = 0 and so a = v is an annihilator. Thus rad $A = A \cap D(Z)$. Now D(Z) is a polar in D(X) and A is large in D(X). Thus rad A is a polar in A.

COROLLARY III. If A is an archimedean f-ring and also an SP-group, then rad A is a cardinal summand. In particular, rad A is a cardinal summand of a complete f-ring A.

Note that Corollaries II and III follow directly from Corollary I.

COROLLARY IV. If A is an archimedean f-ring with a weak order unit u and also a P-group, then rad A is a cardinal summand.

PROOF. Since A is large in A^e , u is also a weak unit of A^e and without loss of generality we may assume that as *l*-groups $A^e = D(X)$ and $1 = u \in A$. Then $1 \cdot 1 = p \in A$ and so $A = p'' \oplus p'$, where the polars are taken in A.

COROLLARY V. For an archimedean f-ring A the following are equivalent.

- i) rad A = 0.
- ii) A^e contains an identity.
- iii) $rad A^e = 0$.

PROOF. $(\operatorname{rad} A^e) \cap A = \operatorname{rad} A$ and hence since A is large in A^e it follows that i) and iii) are equivalent. From the Theorem iii) and ii) are equivalent.

Let A be an archimedean f-ring with identity u. Then u is a weak unit in $A (u \land a = 0 \text{ implies } a = ua = 0)$ and hence in A^e . Let X be the Stone space of $P(A) = P(A^e)$. Then there is a *l*-group isomorphism of A^e onto D(X) so that u maps upon 1. Thus without loss of generality, $1 \in A \subseteq A^e = D(X)$ as *l*-groups. It follows from the next theorem that A and A^e are both subrings of D(X). Thus, once again, the additive structure of A determines the ring structure.

THEOREM 6.2. Suppose that A is an l-subgroup of (D(X), +) and $1 \in A$, where X is a Stone space. If A is an f-ring with identity 1 then A is a subring of D(X).

PROOF. Let \cdot be the multiplication in A. Then by (6)

$$1=1\cdot 1=1p=p.$$

Thus \cdot agrees with the pointwise multiplication of D(X).

COROLLARY I. (Birkhoff and Pierce [5]). An archimedean f-ring with identity has radical zero.

COROLLARY II. If A is an archimedean f-ring with identity u then u is also an identity for the f-ring A^{y} , where y = d, v, c or e.

COROLLARY III. If A is an archimedean f-ring with identity then each p-endomorphism of A is a multiplication by a positive element.

PROOF. We may assume that A is a subring of D(X), where D(X) has the pointwise multiplication, and $1 \in A$. Thus any p enomorphism of A has a unique extension to a p-endomorphism of D(X), but each p endomorphism of D(X) is a multiplication by an element $d \in D^+$ [13]. Thus since $1 \in A$ it follows that $d \in A$.

We give two examples of archimedean f-rings for which the radical is not a cardinal summand.

I. Let A = C[0, 1] and let

$$p(x) = \begin{cases} -x + \frac{1}{2} & \text{if } 0 \leq x \leq \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} \leq x \leq 1. \end{cases}$$

Define $g \cdot f = gfh$ for $g, f \in A$. Then A is an f-ring with

$$\operatorname{rad} A = \{ f \in A \, | \, f(x) = 0 \text{ for } 0 \le x \le \frac{1}{2} \}$$

but (A, +) is cardinally indecomposable and so rad A is not a summand.

II. Let $H = \prod_{i=1}^{\infty} Q_i$, where Q_i is the additive group of rationals. In the even components use zero multiplication and in the odd components use the natural multiplication. Let $a = (1/2, 1/4, 1/8, \dots, 1/2^n, \dots)$, and let S be the subring generated by a. Thus S is the ring of polynomials without constant terms in a and with integral coefficients. Let A be the subring of H generated by S and ΣQ_i .

 $A = \{h \in H \mid h \text{ is a polynomial in a except at a finite number of places}\}$. Then A is an f-ring with a basis and a strong order unit, a but rad A is not a cardinal summand. Note that $a^2 = (1/4, 0, 1/64, 0, \cdots)$ but a does not split into a "zero part and a radical zero part".

The next two examples show the well known fact that the class of f-rings with zero radical is not equationally definable.

III. Let S be the semigroup of negative integers. Let A be the semigroup ring of S over the integers and define an element in A to be positive if its largest non-zero component is positive. Then A is a totally ordered integral domain

408

and so rad A = 0. Let J be the set of elements in A with support included in $-2, -3, \cdots$. Then J is a convex ring ideal and A/J is a zero ring. Thus rad A/J = A/J.

IV. Let A be the set of all bounded rational sequences with cardinal order. Then rad A = 0. Let $a = (1, 1/4, 1/9, \dots, 1/n^2, \dots)$ and

$$\langle a \rangle = \{ x \in A \mid |x| < na \text{ for some } n > 0 \}.$$

Then $J/\langle a \rangle$ is an f-ring and $0 \neq \langle a \rangle + (1, 1/2, 1/3, \dots) \in \operatorname{rad} J/\langle a \rangle$.

The following example is due to Roger Bleier and shows that if G is an l-subgroup of an essentially closed archimedean l-group H then H need not contain a copy of the essential closure G^e of G.

V. Pick a Stone space Y so that D(Y) cannot be represented as a subdirect sum of reals. Let C(Y) be the *l*-group of all continuous real valued functions on Y. Then $C(Y) \subseteq \prod R_y$ and $C(Y)^e = D(Y) = C(Y)^L$.

7. The structure of an f-ring with a basis

A strictly positive element s in an f-ring A is called *basic* if s" is totally ordered or equivalently if A/s' is a totally ordered ring. A *basis* for A is a maximal disjoint subset $\{s_{\lambda} \mid \lambda \in \Lambda\}$ where in addition each s_{λ} is basic. Let $S = \{s_{\lambda} \mid \lambda \in \Lambda\}$ be a basis for A. Then there exists a natural ring *l*-isomorphism σ of A into $K = \prod A/s_{\lambda}'$

 $a \xrightarrow{\sigma} (\cdots, s_{\lambda}' + a, \cdots).$

THEOREM 7.1. $K = (A\sigma)^{o}$ and if S is finite then $K = (A\sigma)^{P}$. In either case A is dense in A^{o} .

PROOF. Consider $0 < x = (\dots, s_{\lambda}' + x_{\lambda}, \dots) \in K$ with say $s_{\alpha}' + x_{\alpha} > s_{\alpha}'$. Then we may assume $0 < x_{\alpha} \notin s_{\alpha}'$ and so $0 < a = x_{\alpha} \wedge s_{\alpha} \in (\bigcap_{\lambda \neq \alpha} s_{\lambda}') \setminus s_{\alpha}'$. Thus $0 < a\sigma \leq x$ and so $A\sigma$ is dense in K. Thus since K is a P-group

$$A\sigma \subseteq (A\sigma)^P \subseteq K.$$

We next show that $\overline{s_{\alpha}' + x_{\alpha}} = (0, \dots, 0, s_{\alpha}' + x_{\alpha}, 0, \dots, 0) \in (A\sigma)^{P}$ and hence $(A\sigma)^{P} \supseteq \sum A/s_{\lambda}'$. Let * (#) be the polar operation in $(A\sigma)^{P}$ (K).

$$(A\sigma)^{P} = \overline{s_{\alpha}' + s_{\alpha}}^{**} \oplus \overline{s_{\alpha}' + s_{\alpha}}^{*} = s_{\alpha}\sigma^{**} \oplus s_{\alpha}\sigma^{*}$$
$$x_{\alpha}\sigma = c + d$$

but this is also the unique decomposition of $x_{\alpha}\sigma$ in

$$K = \overline{s_{\alpha}' + s_{\alpha}} \# \# \oplus \overline{s_{\alpha}' + s_{\alpha}} \# = A/s_{\alpha}' \oplus \prod_{\lambda \neq \alpha} A/s_{\lambda}.$$

Thus $c = \overline{s_{\alpha}' + x_{\alpha}} \in (A\sigma)^{P}.$

[25]

Clearly K is the lateral completion of $\sum A/s_{\lambda}'$ and hence of $(A\sigma)^{P}$. Thus K is the orthocompletion of $A\sigma$. If S is finite then $K = \sum A/s_{\lambda}'$ and so $(A\sigma)^{P} = K$.

COROLLARY I. Each s_{λ}' is a prime ring ideal if and only if rad A = 0.

PROOF. (\rightarrow) Each stalk A/s_{λ}' is an integral domain and so rad A = 0.

 (\leftarrow) Suppose that $x, y \in A$, and $xy \in s_{\alpha}'$, then $|x||y| = |xy| \in s_{\alpha}'$ and so without loss of generality $0 < x \leq y$ and $xy \in s_{\alpha}'$. Then by convexity $x^2 \in s_{\alpha}'$. Suppose (by way of contradiction) that $x \notin s_{\alpha}'$. Then $0 < a = x \land s_{\alpha} \in (\bigcap_{\lambda \neq \alpha} s_{\lambda}') s_{\alpha}'$ and hence $a^2 \in \bigcap s_{\lambda}' = 0$, a contradiction.

REMARK. Chambless [7] has shown that if A is an f-ring with rad A = 0 then each minimal prime subgroup of (A, +) is a prime ring ideal.

Let A be an f-ring and suppose that A satisfies

(F) each bounded disjoint subset of A is finite.

Then A has a basis $S = \{s_{\lambda} | \lambda \in \Lambda\}$ and the mapping of a onto $(\dots, s_{\lambda}' + a, \dots)$ is a ring *l*-isomorphism of A into $\sum A/s_{\lambda}'$.

COROLLARY II. $\sum A/s_{\lambda}' = (A\sigma)^{P}$.

PROOF. Since $A\sigma$ is dense in $H = \sum A/s_{\lambda}'$ we have $A\sigma \subseteq (A\sigma)^{P} \subseteq H$ and we have shown that $H \subseteq (A\sigma)^{P}$.

COROLLARY III. For an f-ring A the following are equivalent.

1) $A = \sum A_{\lambda}$, where each A_{λ} is a totally ordered ring.

2) A satisfies (F) and is a P-group.

PROOF. Clearly 1) implies 2). If 2) holds then by Corollary II we have $A \cong \sum A/s_{\lambda}'$.

COROLLARY IV. For an f-ring A the following are equivalent.

1) $A = \sum A_{\lambda}$, where each A_{λ} is a totally ordered integral domain.

2) A satisfies (F), A is a P-group and rad A = 0.

PROOF. Once again it is clear that 1) implies 2). Suppose that 2) is true. By Corollary III, $A \cong \sum A/s_{\lambda}'$ and by Corollary I each stalk A/s_{λ}' is an integral domain.

A convex *l*-subgroup C of an *f*-ring A will be called an *L*-ideal if C is also an ideal of the ring A and a *P*-ideal if C is a ring ideal and A/C is totally ordered. If $0 < s \in A$ is basic, then s' is a *P*-ideal.

THEOREM 7.2. For an *f*-ring the following are equivalent.

1) $A = \sum A_{\lambda}$, where each A_{λ} is an o-simple totally ordered integral domain.

2) A satisfies (F), rad A = 0 and the P-ideals of A satisfy the DCC.

If this is the case then the P-ideals of A are trivially ordered by inclusion.

PROOF. $1 \to 2$. For $\lambda \in \Lambda$ let $M_{\lambda} = \{ a \in A \mid a_{\lambda} = 0 \}$. We shall show that these are the only *P*-ideals of *A* and hence the *P*-ideals are trivially ordered. For let *M* be a *P*-ideal of *A*. If for each $\lambda \in \Lambda$ there exists $0 < a \in M$ with $a_{\lambda} > 0$ then it follows that $M = \sum A_{\lambda}$ a contradiction. Thus $M \subseteq M_{\lambda}$ for some λ . Pick $0 < a_{\lambda} \in A_{\lambda}$. Then $a = (0, \dots, 0, a_{\lambda}, 0, \dots, 0) \notin M$ and since *M* is a prime subgroup of (A, +) we have $M_{\lambda} = a' \subseteq M$. Thus $M = M_{\lambda}$.

 $2 \rightarrow 1$. Let $\{s_{\lambda} \mid \lambda \in \Lambda\}$ be a basis for A. Since A satisfies (F) the mapping σ of a upon $(\dots, s_{\lambda}' + a, \dots)$ is an l-isomorphism of A into $\sum A/s_{\lambda}'$. s_{λ}' is a P ideal and hence the P-ideals of A/s_{λ}' satisfy the *DCC*. Let $\mathscr{I} = I/s_{\lambda}'$ be the minimal convex ring ideal of A/s_{λ}' . By Corollary I of Theorem 7.1 we have that A/s_{λ}' is an integral domain and hence $\mathscr{I}^2 \neq 0$. Thus by a theorem of Johnson (see [14] p. 132) A/s_{λ}' is o simple and so s_{λ}' is a maximal L-ideal of A. Now $s_{\alpha} \in \bigcap_{\lambda \neq \alpha} s_{\lambda}' \setminus s_{\alpha}$ and hence since s_{α}' is a maximal L-ideal we have

$$A = \bigcap_{\lambda \neq \alpha} s_{\lambda}' + s_{\alpha}'$$

If $0 < a \in A$ then a = x + t, where $x \in \bigcap_{\lambda \neq \alpha} s_{\lambda}'$ and $t \in s_{\alpha}'$. Thus $s_{\alpha}' + x = s_{\alpha}' + a$ and $s_{\lambda}' + x = s_{\lambda}'$ for all $\lambda \neq \alpha$. Therefore

$$x\sigma = (0, \dots, 0, s_{\alpha}' + a, 0, \dots, 0)$$

and so $A\sigma = \sum A/s_{\lambda}'$.

COROLLARY. (Birkhoff and Pierce [5]). For an f-ring A the following are equivalent.

1) $A = \sum_{i=1}^{n} A_i$, where each A_i is an o-simple totally ordered integral domain.

2) The L-ideals of A satisfy the DCC and rad A = 0.

3) There are only a finite number of L-ideals of A and rad A = 0.

PROOF. $1 \rightarrow 3$. If T is an L-ideal then $T = \sum (A_i \cap T)$ and since each A_i is o-simple $A_i \cap T = A_i$ or 0. Thus there are only a finite number of L-ideals.

 $3 \rightarrow 2$. Trivial.

 $2 \rightarrow 1$. Let P_1, P_2, \cdots be the minimal prime subgroups of (A, +). Then $P_1 \supset P_1 \cap P_2 \supset P_1 \cap P_2 \cap P_3 \supset \cdots$; for if $a_1 \in P_1 \setminus P_3$ and $a_2 \in P_2 \setminus P_3$ then $a_1 \land a_2 \in (P_1 \cap P_2) \setminus P_3$. Thus there are only a finite number of P_i and hence A has a finite basis and so satisfies (F).

Commutative laws for the various operators

Throughout this section y will denote d, v, c or e, X will denote P, SP, L or O and W will denote d, v, c, e, P, SP, L or O. We shall investigate when two of these operators commute.

1) For an archimedean *l*-group G, $(G^{W})^{e} = (G^{e})^{W} = G^{e}$.

2) For an archimedean *l*-group $G, (G^W)^d \subseteq (G^d)^W$. For W = v, *e*, *P* or *SP* we have equality, but for W = c, *L* or *O* there need not be equality.

PROOF. G is a large *l*-subgroup of $(G^d)^W$ which is divisible. Thus G^W is large in $(G^d)^W$ and so $(G^W)^d \subseteq (G^d)^W$. Clearly $(G^v)^d = (G^d)^v = G^v$. If $0 < g \in (G^P)^d$ then $ng \in G^P$ for some n > 0 and hence $G^P = (ng)'' \oplus (ng)'$. Thus $(G^P)^d = ((ng)'')^d$ $\oplus ((ng)')^d = (ng)^{**} \oplus (ng)^*$, where * is the polar operation in $(G^P)^d$. Thus $(G^P)^d$ is a P-group and hence $(G^P)^d = (G^d)^P$.

If C is a polar in $(G^{SP})^d$ then $C \cap G^{SP}$ is a polar in G^{SP} and so $G^{SP} = (C \cap G^{SP})$ $\oplus (C \cap G^{SP})'$. Thus

$$(G^{SP})^d = (C \cap G^{SP})^d \oplus ((C \cap G^{SP})')^d = C \oplus C^*.$$

Therefore $(G^{SP})^d$ is an SP-group and so $(G^{SP})^d = (G^d)^{SP}$.

If G = Z then $(G^c)^d = Z^d = Q \subset R = Q^c = (G^d)^c$. If $G = \sum_{i=1}^{\infty} Z_i$ then $(G^d)^L = (G^d)^o = \prod_{i=1}^{\infty} Q_i$ and $G^L = G^o = \prod_{i=1}^{\infty} Z_i$. Thus $a = (1, 1/2, 1/3, \cdots)$ belongs to $(G^d)^L \setminus (G^L)^d$ since no multiple of a belongs to G^L .

From the above computation we have.

3) For an abelian *l*-group G, $(G^X)^d \subseteq (G^d)^X$. For X = P or SP there is equality, but for X = L or O there need not be equality.

For the remainder of this section G will denote an archimedean l group.

4) $(G^{W})^{v} \subseteq (G^{v})^{W}$. For W = d, e or SP we have equality, but for W = c, P, O or L there need not be equality.

PROOF. $(G^{v})^{W}$ is a vector lattice. This is clear except for $(G^{v})^{L}$, but if $\{a_{\lambda} \mid \lambda \in \Lambda\}$ is a disjoint subset of G^{v} and $0 < r \in R$ then $r(\lor a_{\lambda}) = \lor ra_{\lambda}$ since $x \longrightarrow rx$ is a *p* endomorphism of G^{v} and hence has a unique extension to $(G^{v})^{L}$. Thus it follows that $(G^{v})^{L}$ is also a vector lattice. Now since G^{W} is large in the vector lattice $(G^{v})^{W}$ we have $(G^{W})^{v} \subseteq (G^{v})^{W}$.

Now let $G = \prod_{\lambda} Z_{\lambda}$, where Λ is an infinite set. Then

$$G^{v} = \{r_{1}g_{1} + \dots + r_{t}g_{t} | r_{i} \in R, g_{i} \in G \text{ and } t > 0\} = T.$$

For clearly T is a subspace of ΠR_{λ} and hence it suffices to prove that

 $(r_1g_1 + \dots + r_tg_t) \lor 0 \in T.$

Consider the λ -th component

$$(r_1g_1 + \dots + r_tg_t)_{\lambda} = (r_1g_1)_{\lambda} + \dots + (r_tg_t)_{\lambda}$$

If this is negative then replace $(g_i)_{\lambda}$ by 0 in each of the g_i . Do this for each λ and call the new element \bar{g}_i . Then $(r_1g_1 + \dots + r_tg_t) \vee 0 = r_1\bar{g}_1 + \dots + r_t\bar{g}_t \in T$ and hence $(G^c)^v = G^v \subset \prod R_{\lambda} = (G^v)^e$. Now let $H = \sum Z_{\lambda}$. Then $H^L = H^o = \prod Z_{\lambda}$, $H^v = \sum R_{\lambda}$ and $(H^v)^L = (H^v)^o = \prod R_{\lambda}$. Thus

Representable *l*-groups and *f*-rings

$$(H^L)^v = (H^O)^v = T \subset \prod R_\lambda = (H^v)^L = (H^v)^O.$$

Next let G be the subgroup of $\prod_{i=1}^{\infty} R_i$ generated by $\sum R_i$, a = (1, 1, ...)and $b = (\pi + 1/2, \pi - 1/3, \pi + 1/4, \pi - 1/5, ...)$. Then G is the direct sum of $\sum R_i$ and the cyclic groups generated by a and b. It is reasonably easy to check that G is a P-group but G^v is not a P-group.

Finally we show that $(G^{S^P})^v$ is an SP group and hence $(G^{S^P})^v = (G^v)^{S^P}$. For let C be a polar in $(G^{S^P})^v$. Then $C \cap G^{S^P}$ is a polar in G^{S^P} and hence

$$G^{SP} = (C \cap G^{SP}) \oplus (C \cap G^{SP})^{\prime}$$

and so since the operators d and $^{\circ}$ preserve summands we have

$$(G^{SP})^{\nu} = (C \cap G^{SP})^{\nu} \oplus ((C \cap G^{SP})')^{\nu}.$$

But $(C \cap G^{SP})^v = C$ and so $(G^{SP})^v$ is an SP-group. For clearly $(C \cap G^{SP})^v \subseteq C$ and if $0 < c \in C$ then $c = x + y \in (C \cap G^{SP})^v \oplus ((C \cap G^{SP})')^v$. Thus $y \in C$ and so if $y \neq 0$ then ny > g > 0 for some $g \in G^{SP}$. Then $g \in C \cap G^{SP}$ and so $g \land y = 0$ a contradiction.

An element s > 0 in an *l*-group H is called *singular* if for each $a \in H$

 $0 \leq a < s$ implies $a \wedge (s - a) = 0$.

The following proposition is essentially due to Iwasawa, see [12] for a proof.

PROPOSITION. If G is an archimedean l group then G^c is a vector lattice if and only if G contains no singular elements.

COROLLARY. If G is an archimedean l group with no singular elements then $(G^{v})^{c} = (G^{c})^{v} = G^{c}$.

5) $(G^X)^c = (G^c)^X = G^c$ for X = P or SP.

PROOF. This follows from the fact that G^c is an SP-group (see [14] p. 91 for a proof).

6) $(G^{L})^{c} \subseteq (G^{c})^{L} = (G^{c})^{0} = (G^{0})^{c} \subseteq G^{e}$.

PROOF. Since G^c is a P-group it follows from Theorem 2.9 that $(G^c)^L = (G^c)^o$. Now $G^L \subseteq G^o \subseteq (G^o)^c$ and since G^L is dense in G^o we have $(G^L)^c \subseteq (G^o)^c$. So we need to prove $(G^o)^c = (G^c)^o$.

We first show that $(G^{o})^{c}$ is laterally complete and hence $(G^{o})^{c} \supseteq (G^{c})^{o}$. Let $\{a_{\lambda} | \lambda \in \Lambda\}$ be a disjoint subset of $(G^{o})^{c}$. Now for each $\lambda \in \Lambda$, $(G^{o})^{c} = a_{\lambda}^{**} \oplus a_{\lambda}^{*}$, and since G^{o} is a large *P*-subgroup of $(G^{o})^{c}$ we have

$$G^{O} = (a_{\lambda}^{**} \cap G^{O}) \oplus (a_{\lambda}^{*} \cap G^{O}).$$

Now for each $\lambda \in \Lambda$ let b_{λ} be an upper bound for a_{λ} in G^{O} . Then without loss of generality $b_{\lambda} \in a_{\lambda}^{**} \cap G^{O}$ and hence the b_{λ} are disjoint in G^{O} and so $\forall b_{\lambda}$

[29]

exists. Thus $\forall b_{\lambda}$ is an upper bound for the a_{λ} in G^{O} and so since $(G^{O})^{c}$ is complete, $\forall a_{\lambda}$ exists.

We now show that $H = \mathcal{O}(G^c)$ is complete and so $(G^o)^c \subseteq (G^c)^o$. If $C \in P(G^c)$ then $G^c = C \oplus C'$ and so $G/C' \cong C$ is complete. Thus the groups $G^c_{\mathscr{C}}$ used in the construction of $\mathcal{O}(G^c)$ are complete. Also the map $\pi_{\mathscr{C}} x$ of $G^c_{\mathscr{C}}$ into $G^c_{\mathscr{A}}$ is onto a large subgroup of $G^c_{\mathscr{A}}$ and hence preserves all joins and intersections.

Thus without loss of generality, H is the set join of a directed set of complete *l*-groups $G^c_{\mathscr{G}}$ and if $\mathscr{A} \leq \mathscr{C}$ then $G^c_{\mathscr{G}}$ is a complete *l*-subgroup of $G^c_{\mathscr{A}}$. Now let $\{a_{\lambda} \mid \lambda \in \Lambda\}$ be a subset of H that is bounded from above by $a \in H$. Then $a \in G^c_{\mathscr{G}}$ for some partition \mathscr{C} . By Theorem 2.9 each a_{λ} is the join of disjoint elements from G^c and of course each of these elements belongs to the complete l group $G^c_{\mathscr{G}}$ and they are bounded by a in $G^c_{\mathscr{G}}$. It follows that each $a_{\lambda} \in G^c_{\mathscr{G}}$ and so $\forall a_{\lambda} \in G^c_{\mathscr{G}} \subseteq H$.

7) $(G^c)^0 = G^e$ if and only if G contains no singular elements.

PROOF. If G contains no singular elements then G^c is a vector lattice. Thus $(G^c)^L = ((G^d)^c)^L = G^e$ (see [10]). If $G^e = (G^c)^o$ then $(G^c)^o$ is a vector lattice and hence contains no singular element. If $0 < g \in G^c$ is singular in G^c and $C \in P(G^c)$ then C' + g is singular in G^c/C' (see [10]). It follows that \tilde{g} is singular in $\mathcal{O}(G)$. Thus G^c contains no singular elements and hence is a vector lattice. Thus G contains no singular elements.

REMARKS. If G has a basis then in [10] it is shown that $(G^L)^c = (G^c)^L$, whether or not this is always the case is an open question. In Section 2 we showed that $(G^L)^{SP} \subseteq G^O$ and equality need not hold. If G is archimedean then do we have equality? If so then $G^L \subseteq (G^L)^c \to (G^L)^{SP} \subseteq (G^L)^c \to (G^O)^c = ((G^L)^{SP})^c \subseteq (G^L)^c$ and hence $(G^c)^L = (G^L)^c$, since by (6) $(G^L)^c \subseteq (G^c)^L \subseteq (G^O)^c$.

References

- [1] I. Amemiya, 'A general spectral theory in semi-ordered linear spaces', J. Fac. Sci. Hokkaido Univ. 12 (1953), 111-156.
- [2] S. Bernau, 'Unique representations of lattice groups and normal Archimedean lattice rings', *Proc. London Math. Soc.* 15 (1965), 599-631.
- [3] S. Bernau, 'Orthocompletions of lattice groups', ibid. 16 (1966), 107-130.
- [4] A. Bigard, Contribution à la théorie des groups reticules, (Thèse Univ. Paris (1969)).
- [5] G. Birkhoff and T. Pierce, 'Lattice ordered rings', An. Acad. Brasil. Ci 28 (1956), 41-69.
- [6] R. Bleier, Free vector lattices, (Dissertation Tulane University (1971)).
- [7] D. Chambless, The representation and structure of lattice-ordered groups and f-rings, (Dissertation Tulane University (1971)).
- [8] D. Chambless, 'Representation of *l*-groups by almost-finite quotient maps', Proc. Amer. Math. Soc. 28 (1971), 59-62.
- [9] P. Conrad, 'The lateral completion of a lattice-ordered group', Proc. London Math. Soc. 19 (1969), 444-486.
- [10] P. Conrad, 'The essential closure of an archimedean lattice-ordered group', Duke Math. J. 38 (1971) 151-160.

Representable *l*-groyps and *f*-rings

- [11] P. Conrad, 'Minimal vector lattice covers', Bull. Australian Math. Soc. 5 (1971), 35-39.
- [12] P. Conrad and D. McAlister, 'The completion of a lattice ordered group', J. Australian Math. Soc. 9 (1962), 182-208.
- [13] P. Cornad, and J. Diem, 'The ring of polar preserving endomorphisms of an l-group', Illinois J. Math. 15 (1971), 222-240.
- [14] L. Fuchs, Partially ordered algebraic systems, (Pergamon Press, Oxford, London, New York, Paris) (1963).
- [15] M. Henriksen and J. Isbell, 'Lattice-ordered rings and function rings', Pacific J. Math. 12 (1962), 533-565.
- [16] J. Jakubik, 'Representations and extensions of l-groups', Czech. Math. J. 13 (1963), 267-283.
- [17] D. Johnson, 'A structure theory for a class of lattice-ordered rings', Acta Math. 104 (1960), 163-215.
- [18] H. Nakano, Modern spectral theory, Tokyo Math. Book Series II, (Maruzen Tokyo) (1950).
- [19] A. Pinsker, 'Extended semiordered groups and spaces', Uchen. Zapiski Leningrad Gos. Ped. Inst. 86 (1949), 236-265.
- [20] F. Sik, 'Zur Theorie der halbgeordneten Gruppen', Czech. Math. J. 6 (1956), 1-25.
- [21] T. Speed, 'On lattice ordered groups', (preprint).
- [22] S. Steinberg, Lattice-ordered rings and modules, (Thesis University Illinois (1970)).
- [23] A. Vecksler, 'Structural orderability of algebras and rings', Soviet Math. Dokl. 6 (1965), 1201-1204.
- [24] A. Vecksler, 'On the partial orderability of rings and algebras', ibid. 11 (1970), 175-179.
- [25] B. Vulich, Introduction to the theory of partially ordered spaces, (Wolters-Noordhoff, Groningen 1967).

Department of Mathematics University of Kansas Lawrence, Kansas 66044 U. S. A.

https://doi.org/10.1017/S1446788700015391 Published online by Cambridge University Press