THE HULLS OF REPRESENTABLE \boldsymbol{l}-GROUPS AND \boldsymbol{f}-RINGS

Dedicated to the memory of Hanna Neumann

PAUL CONRAD
(Received 11 September 1971)
Communicated by G. B. Preston

1. Introduction and statements of the main results

A lattice-ordered group (" l-group') G will be called
a P-group if $G=g^{\prime \prime} \oplus g^{\prime}$ for each $g \in G$ (projectable) an $S P$-group if $G=C \oplus C^{\prime}$ for each polar C of G (strongly projectable)
an L-group if each disjoint subset has a $1 . \mathrm{u} . \mathrm{b}$. (laterally complete)
an O group if it is both an L-group and a P-group (orthocomplete).
G is representable if it is an l-subgroup of a cardinal product of totally ordered groups. It follows that a P-group must be representable and hence $S P$-groups and O-groups are also representable.
G is a large l-subgroup of an l group H or H is an essential extension of G if G is an l-subgroup of H and for each non-zero convex l-subgroup S of H we have $S \cap G \neq 0$.

We show that if G is a large l-subgroup of an X-group H, where $X=P, S P$, L or O, then the intersection K of all l-subgroups of H that contain G and are X-groups is an X-group. Thus K is a minimal essential extension of G that is an X-group and we shall call such an extension of G an X-hull of G.

Theorem 2.6. There exists a unique X-hull G^{X} of a representable l-group G. Moreover, G is dense in G^{X}, G^{X} is representable and if G is archimedean or abelian, then so is G^{X}.

We then show that if G is a representable l-group then each $0<g \in G^{0}$ is the join of a disjoint subset of G^{P}. Thus

$$
\begin{gathered}
G \subseteq G^{P} \subseteq G^{S P} \subseteq\left(G^{S P}\right)^{L}=\left(G^{P}\right)^{L}=G^{O} \text { and } \\
G \subseteq G^{L} \subseteq\left(G^{L}\right)^{P}=\left(G^{L}\right)^{S P} \subseteq G^{o}
\end{gathered}
$$

but $\left(G^{L}\right)^{S P}$ need not equal G^{O}.

A rather natural direct limit construction provides the existence and uniqueness of G^{X}.

If G is a D_{f}-module, f-ring or f-algebra then there is a unique way of extending the multiplication so that G^{X} is a D_{f}-module, f-ring or f-algebra that contains G as a submodule, subring or subalgebra. Thus the multiplicative structure of G^{X} is completely determined by its additive structure. This phenomenon is due to the fact that each polar preserving endomorphism (" p-endomorphism') of G has a unique extension to a p endomorphism of G^{X}.

If G is a vector lattice then G^{P} is the p extension of G defined by Amemiya [1], but Amemiya's definition of a p extension is fairly complicated and so are his proofs of the existence and uniqueness of G^{P}. However, he does mention that G^{P} is the minimal P-group in which G is dense.

Now suppose that G is a representable l-group. Then G^{P} is the Stone extension $\Sigma(G)$ of G that is defined by Speed [21]. His definition of $\Sigma(G)$ is categorical, but the maps involved are rather special l-homomorphisms. Speed also defines G^{0} categorically and makes a rather thorough investigation of P-groups. G^{L} is the lateral completion of G defined in [9]. There the definition required that G be dense in G^{L}. Finally G^{0} is the orthocompletion of G defined by Bernau [3]. Here again the definition of G^{o} is somewhat complicated being modelled after the defini'ion used by Amemiya for countably laterally complete vector lattice p extensions.

If F is a (real) f-algebra then Amemiya remarks that his p extension is also an f-algebra. Bernau proves that if G is an f-ring or a vector lattice then so is its orthocompletion.

Vecksler [23] outlines a method for constructing the P-hull and the $S P$-hull of an f-ring. In [24] he corrects his definition of an $S P$-hull.

An archimedean l group A is a
d group if it is divisible
v group if it is a vector lattice
c group if it is a (conditionally) complete lattice
e group if it is essentially closed in the class of archimedean l groups.
If A is a large l-subgroup of an archimedian y group H, where $y=d, v, c$ or e, then the intersection K of all l subgroups of H that contain A and are y-subgroups is a y group. Thus K is a minimal essential extension of A that is a y group. We shall call such an extension of A a y hull.

Theorem 5.2. Each archimedean l-group A admits a unigue y-hull A^{y} for $y=d, v, c$ or $e . A^{c}$ is the Dedekind MacNeille completion of A and A is dense in A^{c}. A^{v} is the l subspace of $\left(A^{d}\right)^{c}$ that is generated by $A . A^{e}=\left(\left(A^{d}\right)^{c}\right)^{L}$ is the essential closure of A.

Once again if A is an f-ring then there is a unique extension of the multipli-
cation of A to a multiplication of A^{y} so that A^{y} is an f-ring and A is a subring of A^{y}. Thus the multiplicative structure of A^{y} is completely determined by its additive structure.

In Section 6 we completely characterize the structure of an archimedean essentially closed f-ring and this gives quite a bit of information about the structure of an arbitrary f-ring.

In Section 7 we get a nice representation of the orthocompletion of an f-ring with a basis and this leads to information about the structure of an arbitrary f-ring with a basis.

Notation. Throughout G will denote an l-group and for each $0<g \in G$, $G(g)$ will dencte the convex l-subgroup of G generated by g. G is a dense l-subgroup of an l-group H if for each $0<h \in H$ we have $0<g \leqq h$ for some $g \in G$. ΠA_{λ} will denote the cardinal product of l-groups A_{λ} and ΣA_{λ} will denote the cardinal sum. The cardinal sum of a finite number of l groups will be denotedby $A_{1} \oplus \cdots \oplus A_{n}$. For each subset S of G

$$
S^{\prime}=\{g \in G| | g|\wedge| s \mid=0 \text { for all } s \in S\}
$$

is the polar of S. Sik [20] has shown that the set $P(G)$ of all polars in G is a complete Boolean algebra and that an l-group is representable if and only if each polar is normal.

2. The existence and uniqueness of \boldsymbol{X}-hulls

Lemma 2.1. If G is a P-group and L-group then G is an SP-group.

Proof. If $C \in P(G)$ and $\left\{\left.a_{\lambda}\right|_{\lambda} \in \Lambda\right\}$ is a maximal disjoint subset of C then $a=\vee a_{\lambda}$ is a weak order unit in C and so $a^{\prime \prime}=C$. Thus

$$
G=a^{\prime \prime} \oplus a^{\prime}=C \oplus C^{\prime} .
$$

G is an \mathscr{L}-subgroup of an l-group H if G is an l-subgroup of H and for each disjoint subset $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of G for which $\vee_{G} a_{\lambda}$ exists we have $\vee_{G} a_{\lambda}=$ $\vee_{H} a_{2}$. Note that the intersection of laterally complete \mathscr{L} subgroups of H is a laterally complete \mathscr{L}-subgroup.

Lemma 2.2. If G is a large l-subgroup of an 1 group H then G is an \mathscr{L}_{-} subgroup of H.

Proof. Suppose that $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ is a disjoint subset of G and $a=V_{G} a_{\lambda}$ exists. If h is an upper bound for the a_{λ} in H then $a \geqq a \wedge h=k \geqq a_{\lambda}$ and so it suffices to show that $a=k$. For each $\lambda \in \Lambda, a^{\lambda}=\bigvee_{G} a_{\alpha}(x \neq \lambda)$ exists, $a_{\lambda} \wedge a^{\lambda}=0$ and $a=a_{\lambda}+a^{\lambda}$. Thus

$$
H(a)=H\left(a_{\lambda}\right) \oplus H\left(a^{\lambda}\right) .
$$

Now $k=k_{\lambda}+k_{\lambda}$, where $k_{\lambda} \in H\left(a_{\lambda}\right)$ and $k^{\lambda} \in H\left(a^{\lambda}\right)$ and since $a \geqq k \geqq a_{\lambda}$ we have $a_{\lambda} \geqq k_{\lambda} \geqq a_{\lambda}$. Therefore $a-k=a^{\lambda}-k^{\lambda} \in \bigcap_{\Lambda} H\left(a^{\lambda}\right)=K$. But $K \cap G$ $=\bigcap_{\Lambda} G\left(a^{\lambda}\right) \subseteq G(a)$ and so if $0 \leqq x \in K \cap G$ then $x \wedge a_{\lambda}=0$ for all $\lambda \in \Lambda$. Thus $x \wedge a=x \wedge \vee_{G} a_{\lambda}=\vee_{G} x \wedge a_{\lambda}=0$ and since a is a unit in $G(a), x=0$. Therefore $K \cap G=0$ and since G is large in $H, K=0$.

Let G be an l-subgroup of H and denote the polar operation in $G(H)$ by '(*). For $B \in P(G)$ and $C \in P(H)$ define

$$
B \mu=\left(B^{\prime}\right)^{*} \text { and } C v=C \cap G
$$

1) $B \mu \nu=\left(B^{\prime}\right)^{*} \cap G=B^{* *} \cap G=B^{* *} v=B$.

Proof. Since $B^{\prime} \subseteq B^{*}$ we have $\left(B^{\prime}\right)^{*} \supseteq B^{* *} \supseteq B$ and so $\left(B^{\prime}\right)^{*} \cap G \supseteq B^{* *}$ $\cap G \supseteq B$. If $0<x \in\left(B^{\prime}\right)^{*} \cap G$ then $x \in G$ and $x \wedge B^{\prime}=0$ and so $x \in B^{\prime \prime}=B$.
2) If v is one-to-one then $B \mu=B^{* *}$.
3) ([9] p. 455). If G is large in H then μ is an isomorphism of $P(G)$ onto $P(H)$ and v is the inverse.
4) ([10] p. 156). If H is archimedean then the following are equivalent.
i) $\quad G$ is large in H.
ii) v is an isomorphism of $P(H)$ into $P(G)$ and μ is the inverse.
iii) If $0 \neq C \in P(H)$ then $C \cap G \neq 0$.
iv) If $0<h \in H$ then $h^{\prime \prime} \cap G \neq 0$.
5) If G i, large in H and X is an l subgroup of G or just a non-void subset of G then
i) $\left(X^{\prime \prime}\right)^{* *}=X^{* *}$ and $X^{* *} \cap G=X^{\prime \prime}$
ii) $\left(X^{\prime}\right)^{* *}=X^{*}$ and $X^{*} \cap G=X^{\prime}$.

Proof. Since $X \subseteq X^{\prime \prime}$ we have $X^{* *} \subseteq\left(X^{\prime \prime}\right)^{* *}$. Also $X^{* *} v$ is a polar of G that contains X and so $X^{* * v}=X^{* *} \cap G \supseteq X^{\prime \prime}$. Thus $X^{\prime \prime} \subseteq X^{* *}$ and hence $\left(X^{\prime \prime}\right)^{* *} \subseteq X^{* *}$.

$$
X^{* *} \cap G=\left(X^{\prime \prime}\right)^{* *} \cap G=X^{\prime \prime} \mu \nu=X^{\prime \prime}
$$

From (i) and (2) we have $X^{*}=\left(X^{\prime \prime}\right)^{*}=\left(X^{\prime}\right)^{\prime *}=\left(X^{\prime}\right)^{* *}$. Finally $X^{*} \cap G$ $=\{g \in G| | g \mid \wedge X=0\}=X^{\prime}$ holds for any l-subgroup G of H.
6) If α is an l-automorphism of H that induces the identity on $P(G)$ then α induces the identity on $P(H)$ provided that G is large in H.

Proof. If $C \in P(H)$ then $C v=C \nu \alpha=(G \cap C) \alpha=G \alpha \cap C \alpha=G \cap C \alpha=C \alpha v$, so that $C=C \alpha$ by (3).

Proposition 2.3. Let G be a convex l-subgroup of an l-group H.
i) If H is an SP-group so is G.
ii) If H is a P-group so is G.

Proof. (i) If $A \in P(G)$ then $H=A^{* *} \oplus A^{*}$ and hence $G=\left(A^{* *} \cap G\right)$ $\oplus\left(A^{*} \cap G\right)=A \oplus\left(A^{*} \cap G\right)=A \oplus A^{\prime}$.
(ii) Pick $g \in G$. Then $H=g^{* *} \oplus g^{*}$ and so $G=\left(G \cap g^{* *}\right) \oplus\left(G \cap g^{*}\right)$ $=g^{\prime \prime} \oplus g^{\prime}$. For $g^{\prime} \subseteq g^{*}$ implies $\left(g^{\prime \prime}\right)^{\prime *}=g^{\prime *} \supseteq g^{* *}$ and so $g^{\prime \prime}=\left(G \cap\left(g^{\prime \prime}\right)^{*}\right.$ $\supseteq G \cap g^{* *} \supseteq g^{\prime \prime}$.

Note that a polar in an L-group is an L-group, but an l-ideal C of an L group G need not be an L-group.

Example. $C=\sum_{i=1}^{\infty} R_{i} \subseteq \prod_{i=1}^{\infty} R_{i}=G$.
This also shows that an l-ideal of an O group need not be an O-group.
Theorem 2.4. If H is an X-group and an essential extension of G and $\left\{H_{\lambda} \mid \lambda \in \Lambda\right\}$ is the set of all l-subgroups of H that contain G and are X-groups then $K=\bigcap_{\Lambda} H_{\lambda}$ is an X-hull of G, where $X=P, S P, L$ or O.

Proof. If H is an L-group then by Lemma 2.2 each H_{λ} is a laterally complete \mathscr{L}-subgroup of H and so K is an L-group.

Suppose that H is a P-group, $0<k \in K$ and denote the polar operation in H, K, and H_{λ} by ${ }^{*}$, \# and ${ }^{\lambda}$ respectively. If $0<x \in K \subseteq H_{\lambda}$ then $x=x_{1}+x_{2}$ $\in k^{\lambda} \oplus k^{\lambda \lambda}$ and by (5) $k^{\lambda}=k^{*} \cap H_{\lambda}$ and $k^{\lambda \lambda}=k^{* *} \cap H^{\lambda}$. Thus $x_{1}+x_{2}$ is the unique decomposition of x in $H=k^{*} \oplus k^{* *}$. This holds for all λ so x_{1}, $x_{2} \in \cap H_{\lambda}=K$. Thus $x_{1} \in K \cap k^{*}=k^{*}$ and $x_{2} \in K \cap k^{* *}=k^{\# \#}$. Therefore $x \in k^{\#} \oplus k^{\# \#}$ and hence $K=k^{\#} \oplus k^{\# \#}$.

If H is an $S P$-group then an entirely similar argument shows that K is also an $S P$-group.

Lemma 2.5. An L-hull K of a representable l-group G is representable.
Proof. Theorem 2.8 in [9] asserts that if G is dense in K then K is also representable. The only place in the proof where the hypothesis of denseness is used is to infer that if $\left(-a_{\alpha}+\left(a_{\alpha} \wedge b\right)+a_{\alpha}\right) \wedge\left(a_{\alpha} \wedge b\right)=0$ and $a_{\alpha} \wedge b>0$ then $a_{\alpha} \wedge b \geqq g>0$ for some $g \in G$ and so $\left(-a_{\alpha}+g+a_{\alpha}\right) \wedge g=0$. But since G is large in K we can conclude that $n\left(a_{\alpha} \cap b\right) \geqq g>0$ for some $n>0$ and $g \in G$. Thus $0=n\left(\left(-a_{\alpha}+\left(a_{\alpha} \wedge b\right)+a_{\alpha}\right) \wedge\left(a_{\alpha} \wedge b\right)\right)=\left(-a_{\alpha}+n\left(a_{\alpha} \wedge b\right)+a_{\alpha}\right)$ $\wedge n\left(a_{\alpha} \wedge b\right) \geqq\left(-a_{\alpha}+g+a_{\alpha}\right) \wedge g \geqq 0$ and so $\left(-a_{\alpha}+g+a_{\alpha}\right) \wedge g=O$,

Corollary. An X-hull of a representable l-group is representable, where $X=P, S P, L$ or O.

Theorem 2.6. There exists a unique X-hull G^{X} of a representable l-group G for $X=P, S P, L$ or O. Morover G is dense in G^{X} and G^{X} is representable and if G is abelian or archimedean then so is G^{X}.

Proof. The existence follows from Theorem 2.4 provided that we can embed G as a large l-subgroup in an X-group. In order to do this we make use of the direct limit construction developed in [9].

Let $D(G)$ be the set of all maximal disjoint subsets of the Boolean algebra $P(G)$ of polars of G. If $\mathscr{A}, \mathscr{C} \in D(G)$ then we define $\mathscr{A} \leqq \mathscr{C}$ if each $A \in \mathscr{A}$ is contained in some $C \in \mathscr{C}$. Then $D(G)$ is a lower directed partially ordered set. For each $\mathscr{C} \in D(G)$ let $G_{\mathscr{C}}$ be the l-group

$$
G_{\mathscr{G}}=\prod_{c \in \mathscr{C}} G / C^{\prime}
$$

If $\mathscr{A} \leqq \mathscr{C} \in D(G)$ and $C \in \mathscr{C}$ then $C=\left(\cap A_{\lambda}{ }^{\prime}\right)^{\prime}$ the polar join of the $A_{\lambda} \in \mathscr{A}$ that are contained in C. Thus $C^{\prime}=\cap A_{\lambda}{ }^{\prime}$ and so the natural map

$$
G / C \rightarrow \prod G / A_{\lambda}{ }^{\prime}
$$

is an l-isomorphism. Thus there is a natural l isomorphism $\pi_{\mathscr{C} \mathscr{A}}$ of $G_{\mathscr{C}}$ into $G_{\mathscr{A}}$ obtained by combining the above maps for each G / C^{\prime}, where $C \in \mathscr{C}$. Let $\mathcal{O}(G)$ be the direct limit of the l-groups G with connecting l-isomorphisms $\pi_{\mathscr{C}, \mathscr{A}}$. Define $k \in \mathcal{O}(G)$ to be positive if $k=0$ or $k_{\mathscr{C}}>0$ for some $\mathscr{C} \in D(G)$. For each $g \in G$ let \tilde{g} be the element in $\mathcal{O}(G)$ with $\tilde{g}_{\mathscr{C}}=\left(\cdots, C^{\prime}+g, \cdots\right)$ for each $\mathscr{C} \in D(G)$.

In [9] it is shown that $\mathcal{O}(G)$ is a representable laterally complete l-group and if G is abelian or archimedean then so is $\mathcal{O}(G)$. Also the map $g \rightarrow \tilde{g}$ is an l-isomorphism of G into $\mathcal{O}(G)$ and \widetilde{G} is dense in $\mathcal{O}(G)$. Thus to complete the proof of existence it suffices to show that $\mathcal{O}(G)$ is a P-group. Thus we must show that if $\theta<l \in \mathcal{O}$ then $\mathcal{O}=l^{* *} \oplus l^{*}$.

Consider $\theta<k \in \mathcal{O}(G)$ and pick $\mathscr{C} \in D(G)$ such that $l_{\mathscr{C}} \neq 0 \neq k_{\mathscr{C}}$. Then $l_{\mathscr{C}}=\left(\cdots, C^{\prime}+l(C), \cdots\right)$, where $0 \leqq l(C) \in G$. Let $\overline{l(\bar{C})}$ be the ccnvex l-subgroup of G that is generated by $l(C)$ and pick $\mathscr{C} \geqq \mathscr{A} \in D(G)$ so that each $\left(C \cap \overline{l(C))^{\prime \prime} \neq 0}\right.$ belongs to \mathscr{A}.

$$
\begin{aligned}
G_{\mathscr{A}} & =\prod G /\left(C \cap \overline{l(C))^{\prime}} \oplus \Pi G / A_{\lambda}^{\prime}\right. \\
k_{\mathscr{A}} & =x_{\mathscr{A}}+y_{\mathscr{A}}
\end{aligned}
$$

Let $x(y)$ be the element in $\mathcal{O}(G)$ with \mathscr{A}-th component $x_{\mathscr{A}}$ if $x_{\mathscr{A}} \neq 0\left(y_{\mathscr{A}}\right.$ if $\left.y_{\mathscr{A}} \neq 0\right)$ and θ otherwise. Then $k=x+y$. It is shown in [9] that the only non-zero components of $l_{\mathscr{A}}$ are of the form $(C \cap \overline{l(C)})^{\prime}+l(C)$. Thus $l_{\mathscr{A}} \wedge y_{\mathscr{A}}=0$ and so $y \in l^{*}$. Thus we need only prove that $x \in l^{* *}$. Consider $\theta<t \in \mathcal{O}(G)$ such that $l \wedge t=\theta$. To complete the proof of existence we need to show that $x \wedge t=\theta$.

Pick $\mathscr{D} \in D(G)$ so that $0 \neq t_{\mathscr{T}}=\left(\cdots, D^{\prime}+t(D), \cdots\right)$. Now ([9] p. 456) $(C \cap \overline{l(C)})^{\prime \prime} \cap\left(D \cap \overline{t(D))^{\prime \prime}}=0\right.$ and so we may choose a $\mathscr{B} \in D(G)$ that contains the $\left(C \cap \overline{l(C))^{\prime \prime}} \neq 0\right.$ and the $\left(D \cap \overline{t(D))^{\prime \prime}} \neq 0\right.$. Let

$$
\mathscr{A} \cap \mathscr{B}=\{A \cap B \neq 0 \mid A \in \mathscr{A} \text { and } B \in \mathscr{B}\}
$$

Then $\mathscr{A} \cap \mathscr{B} \in D(G)$ and so we have

Now $x_{\mathscr{A}}$ has nonzero components of the form $(C \cap \overline{l(C)})^{\prime}+z$ and $t_{\mathscr{B}}$ has nonzero components of the form $(D \bar{\cap} \overline{t(D)})^{\prime}+t(D)$. These do not change under the maps into $G_{\mathscr{A} \cap \mathscr{G}}$ and so $x \wedge t=\theta$. Thus there exists an X-hull of G.

Let H be an X-hull of G and let $\alpha(\beta)$ the the natural l-isomorphisms of G (H) into $\mathcal{O}(G)(\mathcal{O}(H))$. We complete the proof by showing that α can be extended to an l-isomorphism ρ of H onto the X-hull K of $G \alpha=\tilde{G}$ in $\mathcal{O}(G)$.

Thus if H_{1} and H_{2} are X-hulls of G then $\rho_{1} \rho_{2}{ }^{-1}$ is an l-isomorphism of H_{1} onto H_{2} that induces the identity on G. It follows from Theorem 2.7 that $\rho_{1} \rho_{2}^{-1}$ is unique.

Since G is large in H for each $C \in P(G)$ we have $C=G \cap C^{* *}$ and $C^{\prime}=G \cap C^{*}$. Thus $C^{\prime}+g---\rightarrow C^{*}+g$ is an l isomorphism of G / C^{\prime} into H / C^{*}. For each $\mathscr{C} \in D(G)$ let $\overline{\mathscr{C}}=\left\{C^{* *} \mid C \in \mathscr{C}\right\}$. Then $\overline{\mathscr{C}} \in D(H)$ and thus there is a natural l-isomorphism $\tau_{\mathscr{G}}$ of $G_{\mathscr{C}}$ onto $H_{\overline{\mathscr{G}}}$. Moreover if $\mathscr{A} \leqq \mathscr{C}$ in $D(G)$

commutes, where $\pi_{\mathscr{G}=}^{-\bar{S}}$ is the l-isomorphism used in the construction of $\mathcal{O}(H)$. Thus (see [9]) the $\tau_{\mathscr{C}}$ determine an l-isomorphism τ of $\mathcal{O}(G)$ into $\mathcal{O}(H)$

If $g \in G$ and $\overline{\mathscr{C}} \in D(H)$ then $(g \alpha \tau)_{\bar{G}}=(g \alpha)_{\mathscr{C}} \tau_{\mathscr{C}}=\left(\cdots, C^{\prime}+g, \cdots\right) \tau_{\mathscr{C}}=\left(\cdots, C^{*}+g, \cdots\right)$ $=(g \beta) \overline{\mathscr{\varphi}}$. Thus $g \alpha \tau=g \beta$ and hence $G \beta=G \alpha \tau \subseteq \mathcal{O}(G) \tau$ which is an X group and $G \beta$ is large in $\mathcal{O}(H)$. Thus $H \beta \cap \mathcal{O}(G) \tau$ is an X-group and contains $G \beta$ and so since H_{β} is an X-hull of $G \beta$ we have

$$
G \alpha \tau=G \beta \subseteq H \beta \subseteq \mathcal{O}(G) \tau \subseteq \mathcal{O}(H)
$$

Thus $H \beta \tau^{-1}$ is an X-group that contains G_{α} and so

$$
G \alpha=G \beta \tau^{-1} \subseteq K \subseteq H \beta \tau^{-1} \subseteq \mathcal{O}(G)
$$

and since $H \beta \tau^{-1}$ is an X-hull of $G \beta \tau^{-1}$ we have $K=H \beta \tau^{-1}$. This completes the proof of Theorem 2.6.

Remark. We can, of course, define countably laterally complete l-groups in the obvious way and then it follows from the above proof that each representable l-group admits a unique $C L$-hull. Also G admits a unique minimal essential extension H that is both a P-group and a $C L$-group. For the vector lattice case H is the "completion" of Amemiya [1]. See also Vulich [25].

Theorem 2.7. If α is an l-isomorphism of G_{1} onto G_{2}, where the G_{i} are representable l-groups, then there exists a unique extension of α to an l-isomorphism of G_{1}^{X} onto G_{2}^{X} for $X=P, S P, L$ or O.

Proof. α induces an isomorphism of $P\left(G_{1}\right)$ onto $P\left(G_{2}\right)$ and hence an isomorphism of $D\left(G_{1}\right)$ onto $D\left(G_{2}\right)$. Also for $C \in P\left(G_{1}\right)$ we have the natural map $C^{\prime}+g--\rightarrow(C \alpha)^{\prime}+g \alpha$ of G_{1} / C^{\prime} onto $G_{2} /(C \alpha)^{\prime}$. Thus there is a natural map α_{6} of $G_{1 \varnothing}$ onto $G_{2 \mathscr{C}}$ such that

commutes. These maps $\alpha_{\mathscr{C}}$ generate an isomorphism $\bar{\alpha}$ of $\mathcal{O}\left(G_{1}\right)$ onto $\mathcal{O}\left(G_{2}\right)$ and the following diagram commutes

Also it is easy to see that $\tilde{G}_{1}^{X} \bar{\alpha}=\tilde{G}_{2}^{X}$. Thus α can be extended to an l-isomomorphism of G_{1}^{X} onto G_{2}^{X}.

For the uniqueness it suffices to show that if α is an l-automorphism of G^{x} that induces the identity on G then α is the identity. Since α induces the identity on $P(G)$ it must also induce the identity on $P\left(G^{X}\right)$. Thus we may assume that α is an l-automorphism of $\mathcal{O}(G)$ that induces the identity on \tilde{G} and $P(O G)$). Consider $l \in \mathcal{O}(G)$ with $l_{\mathscr{G}}=\left(\cdots, C^{\prime}+g, \cdots\right)$ and suppose (by way of contradiction that $(l x)_{G}=\left(\cdots, C^{\prime}+x, \cdots\right)$, where $C^{\prime}+x \neq C^{\prime}+g$. Then

$$
\begin{aligned}
& |g-l|_{\mathscr{B}} \wedge\left(0, \cdots, 0, C^{\prime}+|g-x|, 0, \cdots, 0\right)=0 \text { but } \\
& (|g-l| \alpha)_{\mathscr{C}} \wedge\left(0, \cdots, 0, C^{\prime}+||g-x|, 0, \cdots, 0) \neq 0\right.
\end{aligned}
$$

Thus α does not induce the identity on $P(\mathcal{O}(G))$, a contradiction.
Proposition 2.8. Suppose that G is a representable l-group, α is an l automorphism of G^{0} and $X=P, S P, L$ or 0 .
i) $G^{X} \alpha=(G \alpha)^{X}$ and so if $G \alpha=G$, then $G^{X} \alpha=G^{X}$.
ii) If $G \alpha \subseteq G$ then $G^{x} \alpha \subseteq G^{X}$.

Proof. $G \alpha$ is large in G^{o} and hence in $G^{X} \alpha$. Also $G^{X} \alpha$ is an X-group. If $G \alpha \subseteq K \subset G^{X} \alpha$, where K is an l-subgroup of $G^{x} \alpha$ and an X-group then $G \subseteq K \alpha^{-1}$ $\subset G^{X}$ which contradicts the minimality of G^{X}. Thus $G^{X} \alpha$ is the X-hull of $G \alpha$ and so $G^{x} \alpha=(G \alpha)^{X}$. If $G \alpha \subseteq G$ then $G^{X} \alpha=(G \alpha)^{X} \subseteq G^{X}$. The following example shows that we may or may not have equality.

Example. Let G be the l-ideal in $\prod_{i=1}^{\infty} R_{i}$ generated by $(1,2,3, \cdots)$. Then $G^{o}=\prod R_{i}$. Let α be the multiplication of G^{o} by $(1,1 / 2,1 / 3, \cdots)$. Then $G \alpha$ is the l-ideal of G^{o} generated by $(1,1,1, \cdots)$. Thus $G \alpha \subset G$ and both G and $G \alpha$ are $S P$-groups.

$$
\begin{aligned}
& G^{P} \alpha=G \alpha \subset G=G^{P} \text { and } \\
& G^{L} \alpha=(G \alpha)^{L}=G^{o}=G^{L} .
\end{aligned}
$$

Corollary. If α is an l-endomorphism of G^{X} that induces an automorphism on G then α is an automorphism of G^{X}.

Proof. Since G is large in G^{X} it follows that α is one-to-one on G^{X} and by the minimality of $G^{X} \alpha$ must be an l-automorphism of G^{X}.

Theorem 2.9. If G is a P-group then each $\theta<l \in \mathcal{O}(G)$ is the join of a disjoint subset of \tilde{G}. In particular, $\tilde{G}^{L}=\mathcal{O}(G)$ and hence G^{L} is an SP-group.

Proof. Consider $\theta<l \in \mathscr{O}$ and $l_{\mathscr{G}} \neq 0$. In each $C \in \mathscr{C}$ pick a maximal disjoint set $\left\{a_{\alpha} \mid \alpha \in A\right\}$ of elements of G. Then $C=\left(\cap a_{\alpha}{ }^{\prime}\right)^{\prime}=\left(\cup a_{\alpha}{ }^{\prime \prime}\right)^{\prime \prime}$ and so there is a partition $\mathscr{A} \leqq \mathscr{C}$ that consists of principal polars of G.

$$
\mathscr{A}=\left\{a_{\lambda^{\prime \prime}} \mid \lambda \in \Lambda\right\}
$$

Thus $0 \neq l_{a \lambda}=\left(\cdots, a_{\lambda}{ }^{\prime}+l(\lambda), \cdots\right)$. Now $G=a_{\lambda}{ }^{\prime \prime} \oplus a_{\lambda}{ }^{\prime}$ and so we may assume that $0 \leqq l(\lambda) \in a_{\lambda}{ }^{\prime \prime}$ for each $\lambda \in \Lambda$. In particular, the $l(\lambda)$ are disjoint in G.

$$
\widetilde{l(\lambda)_{a \lambda}}=\left(0, \cdots, 0, a_{\lambda}^{\prime}+l(\lambda), 0, \cdots, 0\right)
$$

Thus $\vee \tilde{l(\lambda})_{\mathscr{A}}=l_{\mathscr{A}}$ and so $\vee \tilde{l(\lambda)}=l$.
Corollary I. If G is an O-group then $\tilde{G}=\mathcal{O}(G)$.
Corollary II. If G is a representable l-group then

$$
\widetilde{G} \subseteq \tilde{G}^{P} \subseteq \tilde{G}^{S P} \subseteq\left(\tilde{G}^{S P}\right)^{L}=\left(\tilde{G}^{P}\right)^{L}=\tilde{G}^{o}=\mathscr{O}(G)
$$

where the indicated X-hulls are all in $\mathcal{O}(G)$. In particular, $G^{O}=\mathcal{O}(G)$ and so G^{o} is the orthocompletion defined by Bernau.

Proof. Clearly $\tilde{G} \subseteq \tilde{G}^{P} \subseteq \tilde{G}^{S P} \subseteq\left(\tilde{G}^{P}\right)^{L} \subseteq\left(\tilde{G}^{S P}\right)^{L} \subseteq \tilde{G}^{O} \subseteq \mathcal{O}(G)$ and so it suffices to show that $\left(\tilde{G}^{P}\right)^{L}=\mathcal{O}(G)$. Let H be the P-hull of G and let α, β, τ be as in the proof of Theorem 2.6.

Then $\tilde{H}=\tilde{G}^{P} \tau \subseteq\left(\tilde{G}^{P}\right)^{L} \tau \subseteq \mathcal{O}(H)$ and $\left(\tilde{G}^{P}\right)^{L} \tau$ is an L-group. Thus $\left(\tilde{G}^{P}\right)^{L} \tau=\mathcal{O}(H)$ and so $\left(\tilde{G}^{P}\right)^{L}=\mathcal{O}(G)$.

Also it follows that

$$
\tilde{G} \subseteq \tilde{G} \subseteq\left(\tilde{G}^{L}\right)^{P} \subseteq\left(\tilde{G}^{L}\right)^{S P} \subseteq \tilde{G}^{O}=\mathcal{O}(G)
$$

but as the next example shows $\left(\tilde{G}^{L}\right)^{S P}$ need not equal \tilde{G}^{o}. Thus the operators $S P$ and L need not commute.

Example. Let Λ be the po-set

Denote the set of maximal (minimal) elements in Λ by $A(B)$. Let V be the set of all functions from Λ into the reals. Then V is a real vector lattice if we define addition pointwise and define $v \in V$ to be positive if each non-zero maximal component is positive. Next let

$$
G=\{v \in V \mid v \text { is constant on } A\}
$$

Note that G is laterally complete but not a P-group. Let

$$
H=\{v \in V \mid v \text { restricted to } A \text { has finite range }\} .
$$

Then H is not laterally complete and $H^{L}=V$. We show that

$$
H=G^{S P}=G^{P}
$$

Clearly G is large in H and H is an $S P$-group. Suppose that $G \subseteq K \subseteq H$, where K is a P-group. Let ${ }^{\prime}\left({ }^{*}\right)$ denote the polars in $K(H)$. Let S be a subset of B and let $s \in G$ be the characteristic function on S. Let $a \in G$ be the characteristic function on A.

$$
K=s^{\prime \prime} \oplus s^{\prime}, H=s^{* *} \oplus s^{*} \text { and } s^{* *} \cap K=s^{\prime \prime} \text { and } s^{*} \cap K=s^{\prime}
$$

Thus $a=a_{1}+a_{2} \in s^{\prime \prime} \oplus s^{\prime}=K$ and this is also the decomposition in $H=s^{* *}$ $\oplus s^{*}$. Thus a_{1} is the characteristic function of the elements in A above S, but such elements generate the group of functions on A with finite range. Therefore $K=H$ and hence $H=G^{P}$.

Proposition 2.10. If G is a representable l-group then $\left(G^{L}\right)^{P}=\left(G^{L}\right)^{S P}$.
Proof. Take $C \in P\left(\left(G^{L}\right)^{P}\right.$; then $C \cap G^{L}=C v \in P\left(G^{L}\right)$: so as in Lemma 2.1, $C v=a^{\prime \prime}$, and thus $C=C \nu \mu=a^{\prime \prime} \mu=\left(a^{\prime \prime}\right)^{* *}=a^{* *}$, by (3) and (5). Thus $\left(G^{L}\right)^{P}$ is an $S P$-group and so $\left(G^{L}\right)^{P}=\left(G^{L}\right)^{S P}$.

Corollary. Let G be a representable l-group.
i) $\left(G^{O}\right)^{X}=\left(G^{X}\right)^{O}$ for $X=P, S P$ or L and $\left(G^{P}\right)^{S P}=\left(G^{S P}\right)^{P}=G^{S P}$.
ii) $\left(G^{L}\right)^{P}=\left(G^{L}\right)^{S P} \subseteq\left(G^{P}\right)^{L}=\left(G^{S P}\right)^{L}$ and equality need not hold.

3. The X-hulls of $\boldsymbol{D}_{\boldsymbol{f}}$-modules and \boldsymbol{f}-rings

A p-endomorphism of an l-group G is an endomorphism α of the group such that

$$
x \wedge y=0 \text { implies } x \alpha \wedge y=0 \text { for all } x, y \in G
$$

It is easy to show that this is equivalent to $G^{+} \alpha \subseteq G^{+}$and $C \alpha \subseteq C$ for each $C \in P(G)$ (see [13]). Thus the p-endomorphisms of G are the l-endomorphisms that preserve polars. In Section 4 we shall show that each p-endomorphism of a representable l-group G has a unique extension to the X-hull G^{X} of G.

Let D be a directed po-ring. G is a D_{f}-module (see [22]) if G is an abelian l-group and a D-module such that for each $d \in D^{+}$the map

$$
g----g d \text { for all } g \in G
$$

is a p-endomorphism of G. Steinberg [22] shows that such a G is isomorphic to a subdirect sum of totally ordered modules. Note that each polar of G is a submodule. Note also that each abelian l-group A is a D_{f}-module with respect
to the ring Z of integers and also with respect to the directed ring D of all polar preserving endomorphisms of A.

Proposition 3.1. If G is a vector lattice over a totally ordered division ring D then G is a D_{f}-module.

Proof. We are given that G is an abelain l-group and $G^{+} D^{+} \subseteq G^{+}$. I^{f} $d \in D^{+}$and $g \in G$ then $(g \vee 0) d=g d \vee 0$. For $(g \vee 0) d \geqq g d$ and 0 and if $z \geqq g d$ and 0 then $z d^{-1} \geqq g$ and 0 and so $z d^{-1} \geqq g \vee 0$. Therefore $z \geqq(g \vee 0) d$.

Now suppose that $x \wedge y=0$, where $x, y \in G$ and $d \in D^{+}$. If $1 \geqq d$ then $x \geqq x d$ and hence $0=x \wedge y \geqq x d \wedge y=0$. If $d>1$ then $1>d^{-1}$ and so $x \wedge y d^{-1}=0$. Thus $0=\left(x \wedge y d^{-1}\right) d=x d \wedge y$.

Suppose that G is a D_{f}-module. Then each $C \in P(G)$ is a submodule and hence G / C^{\prime} is a D_{f}-module. Thus each of the l-groups $G_{\mathscr{G}}=\prod G / C^{\prime}$ used in the construction of $\mathcal{O}(G)$ is an D_{f}-module and each of the connecting l-isomorphisms $\pi_{\mathscr{G} \mathscr{A}}$ also preserves scalar multiplication by elements of D. Consider $\mathscr{L} \in \mathcal{O}(G)$ and $\mathscr{C} \in D(G)$ such that

$$
0 \neq \mathscr{L}_{\mathscr{G}}=\left(\cdots, C^{\prime}+\mathscr{L}(C), \cdots\right) \text { where } \mathscr{L}(C) \in G
$$

Define $\mathscr{L} d$ to be the element in $\mathscr{O}(G)$ with $(\mathscr{L} d)_{\mathscr{C}}=\left(\cdots, C^{\prime}+\mathscr{L}(C) d, \cdots\right)$. It follows that $\mathcal{O}(G)$ is a D_{f}-module and the natural map $g \rightarrow \rightarrow \tilde{g}$ of G into $\mathscr{O}(G)$ also preserves scalar multiplication by elements of D.

Theorem 3.2. There exists a unique minimal essential extension $G^{X_{D}}$ of the D_{f}-module G that is an X-group and also a D_{f}-module. $G^{X_{D}}$ is isomorphic to the intersection of all X-subgroups of $\mathcal{O}(G)$ that contain G and are D_{f}-modules.

The proof is analogous to the proof of Theorem 2.6. We shall show that $G^{X}=G^{X_{D}}$ as l-groups and there exists a unique extension of the scalar multiplication of G to a scalar multiplication of G^{X} by D.

Recall that an f-ring G is a lattice ordered ring such that

$$
x \wedge y=0 \text { implies } x d \wedge y=d x \wedge y=0 \text { for all } x, y, d \in G^{+}
$$

Thus each polar of G is a ring ideal and so it follows that $\mathcal{O}(G)$ is also an f-ring and the natural l-isomorphism of G into $\mathcal{O}(G)$ is a ring isomorphism.

Theorem 3.3. There exists a unique minimal essential extension $G^{X_{f}}$ of the f-ring G that is an X-group and also an f-ring. Moreover, $G^{X_{f}}$ is isomorphic to the intersection of all X-subgroups of $\mathcal{O}(G)$ that contain G and are sub-f-rings of $\mathcal{O}(G)$.

Again the proof is analogous to the proof of Theorem 2.6. We shall show that $G^{X}=G^{X_{f}}$ as l-groups and there exists a unique f-ring structure for G^{X} so that G is a subring.

4. Lifting p-endomophisms from G to G^{X}

Let G be a representable l-group and let \tilde{G}^{X} be the X-hull of G in $\mathcal{O}(G)$.
Theorem A. (Chambless [7]) $\tilde{G}^{s P}=\left\{l \in \mathscr{C}(G) l=0\right.$ or $l_{\mathcal{E}} \neq 0$ for some finite partition of $P(G)\}$. Thus $\tilde{G}^{S P}$ is the direct limit of the groups $G_{\boldsymbol{\varepsilon}}$ for finite $\mathscr{E} \in D(G)$ and hence is the join of the directed set of l-groups $G_{\mathscr{E}} \pi_{\mathscr{E}}$, where $\pi_{\mathscr{E}}$ is the natural map of $G_{\mathcal{E}}$ into $\mathcal{O}(G)$.

Theorem B. (Chambless [7]). Let S be the subalgebra of $P(G)$ generated by elements of the form g^{\prime} and $g^{\prime \prime}$. Then
$\tilde{G}^{P}=\left\{l \in \mathcal{O}(G) \mid l=\theta\right.$ or $l_{\mathscr{E}} \neq 0$ for some finite partition of $P(G)$ such that $\left.\mathscr{E} \subseteq S\right\}$ Thus \tilde{G}^{P} is a direct limit.

Now, as we have seen, if G is an f-ring then so are the $G_{\mathscr{C}}$ and so it follows that \tilde{G}^{P} and $\tilde{G}^{S P}$ are subrings of $\mathscr{O}(G)$. We shall also show that \tilde{G}^{L} is a subring of $\mathcal{O}(G)$.

Amemiya [1] mentions that if G is a vector lattice or an f-ring then under his construction G^{P} is also a vector lattice or an f-ring.

If G is an f-ring then each minimal prime subgroup of $(G,+)$ is a ring ideal and so $T=\prod G / M$, for all minimal prime subgroups M, is an f-ring. is a subring constructs G^{P} in T. Here it is hard to determine whether or not G^{P} Speed [21] since G^{P} is not large in T.

Lemma 4.1. If σ is a polar preserving endomorphism of an l-group G, $\left\{a_{\alpha} \mid \alpha \in A\right\}$ is a disjoint subset of G and $\vee a_{\alpha}$ exists, then $\left\{a_{\alpha} \sigma \mid \alpha \in A\right\}$ is disjoint and $\left(\vee a_{\alpha}\right) \sigma=\vee a_{\alpha} \sigma$.

Proof. Clearly $\left(\vee a_{\alpha}\right) \sigma \geqq a_{\beta} \sigma$ for all $\beta \in A$. Suppose that $d \geqq a_{\beta} \sigma$ for all β. Then $\left(\vee a_{\alpha}\right) \sigma \geqq\left(\vee a_{\alpha}\right) \sigma \wedge d \geqq a_{\beta} \sigma$ for each β and hence

$$
\left(\vee a_{\alpha}\right) \sigma-x=\left(\vee a_{\alpha}\right) \sigma \wedge d \geqq a_{\beta} \sigma
$$

for all β, where $x \geqq 0$. Therefore $\left(\vee a_{\alpha}\right) \sigma \geqq a_{\beta} \sigma+x$ for all β. To complete the proof it suffices to show that $x=0$. Now $\left(\vee a_{\alpha}\right) \sigma \geqq a_{\beta} \sigma+x \wedge a_{\beta}$ for all β; so $\left(\vee_{\alpha \neq \beta} a_{\alpha}\right) \sigma \geqq x \wedge a_{\beta}$ for each β. But $\left(x \wedge a_{\beta}\right) \wedge a_{\gamma}=0$ for all $\gamma \neq \beta$, and so

$$
0=\left(x \wedge a_{\beta}\right) \wedge\left(\vee_{\alpha \neq \beta} a_{\alpha}\right)=\left(x \wedge a_{\beta}\right) \wedge\left(\left(\vee_{\alpha \neq \beta} a_{\alpha}\right) \sigma\right)=x \wedge a_{\beta}
$$

for each β; hence $x \wedge\left(\vee a_{\alpha}\right)=0$, and thus $0=x \wedge\left(\vee a_{\alpha}\right) \sigma=x$.
Corollary I. If $\left\{a_{\alpha} \mid \alpha \in A\right\}$ is a disjoint subset of a D_{f}-module G over a directed po-ring $D, \vee a_{\alpha}$ exists and $0<c \in D$ then $\left(\vee a_{\alpha}\right) c=\vee a_{\alpha} c$.

Corollary II. If $\left\{a_{\alpha} \mid \alpha \in A\right\}$ is a disjoint subset of an f-ring G and $\vee a_{\alpha}$ exists then $\left(\vee a_{\alpha}\right) c=\vee a_{\alpha} c$ and $c\left(\vee a_{\alpha}\right)=\vee c a_{\alpha}$ for each $c \in G^{+}$.

Lemma 4.2. (Henriksen and Isbell [15]). If Y is a multiplicative subsemigroup of an f-ring F then the l-subgroup T of $(F,+)$ that is generated by Y is a subring.

Proof. Let [Y] $=\left\{e_{1} y_{1}+\cdots+e_{n} y_{n} \mid y_{i} \in Y, e_{i}= \pm 1\right.$ and $\left.n \geqq 0\right\}$ be the subgroup of $(F,+)$ generated by Y. Then

$$
T=\left\{\vee_{A} \wedge_{B} s_{\alpha \beta} \mid s_{\alpha \beta} \in[Y] \text { and } A \text { and } B \text { are finite }\right\} .
$$

But [Y] is a subring of F and if $a=\vee \wedge a_{\alpha \beta}$ and $b=\vee \wedge b_{\gamma \delta}$ belong to T then $a^{+}=\vee \wedge\left(a_{\alpha \beta} \vee 0\right)$ and $b^{+}=\vee \wedge\left(b_{\gamma \delta} \vee 0\right)$ and since positive elements distribute multiplicatively over \vee and \wedge it follows that $a^{+} b^{+} \in T$ and hence T is a subring of F.

Proposition 4.3. Suppose that G is an f-ring and also a subring of the f-ring H. If H is laterally complete and an essential extension of G then the lateral completion G^{L} of $(G,+)$ in H is a subring.

Proof. Consider $\left\{a_{a} \mid \alpha \in A\right\}$ and $\left\{b_{\beta} \mid \beta \in B\right\}$ disjoint subsets of G. Then by Corollary II of Lemma 4.1

$$
\left(\vee a_{\alpha}\right)\left(\vee b_{\beta}\right)=\vee a_{\alpha} b_{\beta}
$$

Thus the set of all such $\vee a_{\alpha}$ is a subsemigroup of H. It follows from Lemma 4.2 that the l-subgroup $G(1)$ of H generated by these elements $V a_{\alpha}$ is a subring. Then by transfinite induction it follows that G^{L} is a subring of H, (see [9]).

Theorem 4.4. Let G be a representable l-group and let $X=P, S P, L$ or O.

1) A p-endomorphism σ of G has a unique extension to a p endomorphism σ^{X} of G^{X}.
2) If σ is one to one then so is σ^{X}. If σ is onto then so is σ^{X} for $X=P, S P$ or 0 .
3) If α is a p endomorphism of G^{o} such that $G \propto \subseteq G$ then $G^{X} \alpha \subseteq G^{X}$.

Proof. If $\mathscr{C} \in D(G)$ and $C \in \mathscr{C}$ then $C^{\prime}+g \rightarrow \rightarrow C^{\prime}+g \sigma$ is an l-endomorphism of G / C^{\prime} and hence

$$
\left(\cdots, C^{\prime}+g(C), \cdots\right)-\xrightarrow{\sigma_{\mathscr{E}}} \rightarrow\left(\cdots, C^{\prime}+g(C) \sigma, \cdots\right)
$$

is an l-endomorphism of $G_{\mathscr{C}}$. If $\mathscr{C} \geqq \mathscr{A} \in D(G)$ then

commutes. For $\left(\cdots, C^{\prime}+g(C), \cdots\right) \sigma_{\mathscr{G}} \pi_{\mathscr{G}, \mathscr{A}}=\left(\cdots, C^{\prime}+g(C) \sigma, \cdots\right) \pi_{\mathscr{G}, \mathcal{A}}=\left(\cdots, A^{\prime}\right.$ $+g(C) \sigma, \cdots)=\left(\cdots, A^{\prime}+g(C), \cdots\right) \sigma_{\mathscr{A}}=\left(\cdots, C^{\prime}+g(C), \cdots\right) \pi_{\wp, \alpha} \sigma_{\mathscr{A}}$ where of course $A \subseteq C$.

Thus σ determines an l-endomorphism $\bar{\sigma}$ of $\mathcal{O}(G)$. Let π be the natural map of G onto $\tilde{G} \subseteq \mathcal{O}(G)$. Then $(g \pi)_{\mathscr{G}}=\left(\cdots, C^{\prime}+g, \cdots\right)$ for all $\mathscr{C} \in D(G)$, and $\pi \bar{\sigma}=\sigma \pi$ on G and so $\bar{\sigma}$ is an extension to $\mathcal{O}(G)$ of the p endomorphism $\pi^{-1} \sigma \pi$ of \tilde{G}.

We next show that $\bar{\sigma}$ is a p-endomorphism of $\mathscr{O}(G)$. If $\theta \neq l, k \in \mathscr{O}(G)$ and $\wedge k=\theta$ then there exist $\mathscr{C} \in D(G)$ such that $l_{\mathscr{G}} \neq 0 \neq k_{\mathscr{G}}$ and such that their supports are disjoint. If $l_{\mathscr{\varepsilon}} \sigma_{\mathscr{8}}=0$ then $l \bar{\sigma}=0$ and hence $l \bar{\sigma} \wedge k=\theta$. In any case the support of $l_{\mathscr{\delta}} \sigma_{\mathscr{G}} \subseteq$ support of $l_{\mathscr{8}}$ and hence $l_{\mathscr{G}} \sigma_{\mathscr{G}} \wedge k_{\mathscr{G}}=0$ and so $l \bar{\sigma} \wedge k=\theta$. Therefore $\bar{\sigma}$ is a p endomorphism of $\mathcal{O}(G)$.

We next show that if α is a p endomorphism of $\mathcal{O}(G)$ that induces $\pi^{-1} \sigma \pi$ on \tilde{G} then $\alpha=\bar{\sigma}$. Consider $l_{\mathscr{G}}=\left(\cdots, C^{\prime}+g, \cdots\right)$ and suppose that $(l \alpha)_{\mathscr{G}}$ $=\left(\cdots, C^{\prime}+x, \cdots\right)$ where $C^{\prime}+x \neq C^{\prime}+g \sigma$. Then

$$
\begin{gathered}
|\tilde{g}-l|_{\mathscr{E}} \wedge\left(0, \cdots, 0, C^{\prime}+|g \sigma-x|, 0, \cdots, 0\right)=0 \text { but } \\
(|\tilde{g}-l| \alpha)_{\mathscr{E}} \wedge\left(0, \cdots, 0, C^{\prime}+|g \sigma-x|, 0, \cdots, 0\right) \neq 0
\end{gathered}
$$

and thus α is not a p endomorphism, a contradiction.
Therefore σ has a unique extension to a p-endomorphism of G^{o}. Now if ρ is an extension of σ to say G^{P} then it can be extended to G^{O} and so ρ is unique. Thus to complete the proof of (1) it suffices to verify (3). So suppose that α is a p endomorphism of G^{o} such that $G \alpha \subseteq G$.
a) $G^{L} \alpha \subseteq G^{L}$. For if $\left\{a_{\lambda} \mid \lambda \varepsilon \Lambda\right\}$ is a disjoint subset of G then by Lemma 4.1 $\left(\vee a_{\lambda}\right) \alpha=\vee a_{\lambda} \alpha$ and so $G(1) \alpha \subseteq G(1)$, where $G(1)$ is the l-subgroup of G^{L} that is generated by all the elements $\vee a_{\lambda}$. Thus it follows by transfinite induction that $G^{L} \alpha \subseteq G^{L}$.
b) $G^{S P} \propto \subseteq G^{S P}$. Here we assume that $G=\tilde{G}$ and $G^{o}=\mathscr{O}(G)$. Then we know exactly how α operates on $\mathcal{O}(G)$. Consider $\theta \neq l \in G^{S P}$. Then $l_{\mathscr{G}} \neq 0$ for some finite partition \mathscr{C} of $P(G)$. If $(l \alpha)_{\mathscr{G}}=0$ then $l \alpha=\theta$ and if $(l \alpha)_{\mathscr{E}} \neq 0$ then clearly $l \alpha \in G^{S P}$ by Chambless' Theorem A.
c) $G^{P} \alpha \subseteq G^{P}$. This is a simple application of Chambless' Theorem B. This completes the proof of (1) and (3).
(2) If σ is one to one then σ^{x} is one to one since G is large in G^{X}. Now suppose that σ is onto. Then the map $C^{\prime}+g \rightarrow C^{\prime}+g \sigma$ is an l-homomorphism of G / C^{\prime} onto itself. Thus σ^{o} is clearly onto and using our representations of G^{P} and $G^{S P}$ it follows that σ^{P} and $\sigma^{S P}$ are also onto.

Question. Is σ^{L} onto provided that σ is onto?
Theorem 4.5. If G is a D_{f}-module over the directed po-ring D then there
exists a unique extension of the scalar multiplication by elements of D so that G^{X} is also a D_{f}-module. Moreover G^{X} with this scalar multiplication equals $G^{X_{D}}$ for $X=P, S P, L$ or O.

Proof. The first part follows from the fact that each p-endomorphism of G has a unique extension to a p endomorphism of G^{X}. Now (without loss of generality) $G \subseteq G^{X} \subseteq G^{X_{D}} \subseteq \mathcal{O}(G)$ and G^{X} is a submodule of $G^{X_{D}}$. Therefore $G^{X}=G^{X_{D}}$.

Theorem 4.6. If G is an f-ring then there is a unique multiplication on G^{X} so that G^{X} is an f-ring and G is a subring. Moreover, G^{X} with this ring structure equals $G^{X_{f}}$ for $X=P, S P, L$ or O.

Proof. We first verify the result for $X=O$. Now as we have seen $\mathcal{O}(G)$ is a ring and the natural map $g \rightarrow-\rightarrow \tilde{g}$ is a ring l-isomorphism. So all we need show is that the multiplication of $\mathcal{O}(G)$ is uniquely determined by that of \tilde{G}. Suppose that \cdot is a multiplication on $\mathcal{O}(G)$ so that $\mathcal{O}(G)$ is an f-ring and \cdot induces the given multiplication on \tilde{G}.

If $0<\tilde{g} \in \tilde{G}$ then the right multiplication of \tilde{G} by \tilde{g} is a p-endomorphism of \tilde{G} and so has a unique extension to a p endomorphism of $\mathcal{O}(G)$. Therefore

$$
x \cdot \tilde{g}=x \tilde{g} \text { for all } x \in \mathcal{O}(G)
$$

Suppose that $x_{\mathscr{G}}=\left(0, \cdots, 0, C^{\prime}+t, 0, \cdots, 0\right)$. Now

$$
\begin{aligned}
\tilde{g}_{\mathscr{C}} & =\left(0, \cdots, 0, C^{\prime}+g, 0, \cdots, 0\right)+(\text { the other non-zero components }) \\
& =\quad a+b .
\end{aligned}
$$

Now $x_{\mathscr{C}} \cdot b=0$ since they are disjoint and so ($0, \cdots, 0, C^{\prime}+\operatorname{tg}, 0, \cdots, 0$) $=x_{\mathscr{G}} \tilde{g}_{\mathscr{C}}=x_{\mathscr{C}} \cdot(a+b)=x_{\mathscr{G}} \cdot a=\left(0, \cdots, 0, C^{\prime}+t, 0, \cdots, 0\right) \cdot\left(0, \cdots, 0, C^{\prime}+g\right.$, $0, \cdots, 0$).

Now consider $x, y \in \mathcal{O}(G)$ with $x_{\mathscr{C}} \neq 0 \neq y_{\mathscr{C}}$.

$$
\begin{aligned}
& x_{\mathscr{C}}=\left(\cdots, C^{\prime}+x(C), \cdots\right)=\vee x_{C}, \text { where } x_{C}=\left(0, \cdots, 0, C^{\prime}+x(C), 0, \cdots, 0\right) \\
& y_{\mathscr{C}}=\left(\cdots, C^{\prime}+y(C), \cdots\right)=\vee y_{C}, \text { where } y_{C}=\left(0, \cdots, 0, C^{\prime}+y(C), 0, \cdots, 0\right) .
\end{aligned}
$$

Thus by Lemma 4.1 and the above

$$
x_{\mathscr{C}} \cdot y_{\mathscr{C}}=V x_{C} \cdot \vee y_{C}=V x_{C} \cdot y_{C}=V x_{C} y_{C}=x_{\mathscr{C}} y_{\mathscr{C}} .
$$

Therefore is the natural multiplication on $\mathcal{O}(G)$ and so there is a unique f-ring structure on G^{0} so that G is a subring of the f-ring G^{o}.

Finally we have shown that $\tilde{G}^{P}, \tilde{G}^{S P}$ and \tilde{G}^{L} are all subrings of $\mathcal{O}(G)$. Also any ring structure on G^{X} that induces the given one on G can be extended to a ring structure on G^{O}. Therefore the ring structures of $G^{P}, G^{S P}$ and G^{L} are also determined by their additive structures.

5. The y-hulls of archimedean l-groups and f-rings

An archimedean l-group A is called a
d-group if it is divisible,
v-group if it is a vector lattice,
c-group if it a conditionally complete lattice,
e-group if it is essentially closed in the class of archimedean l-groups.
It is well known that an abelian l-group A is contained in a unique minimal divisible abelian l-group A^{d}. For there is exactly one way of extending the order of A to a lattice-order of its injective hull A^{d} so that $\left(A^{d}\right)^{+} \cap A=A^{+}$. Also if A is archimedean then so is A^{d}.

Theorem 5.1. If A is a large l-subgroup of an archimedean y-group H, where $y=d, v, c$ or e, then the intersection K of all the l-subgroups of H that contain A and are y-groups is a y-group. Thus K is a minimal essential extension of A that is a y-group and we shall call such an extension a y-hull of A.

Theorem 5.2. Each archimedean l group A admits a unique y-hull A^{y} for $y=d, v, c$ or $e . A^{c}$ is the Dedekind MacNeille completion A^{\wedge} of A and A is dense in $A^{c} . A^{v}$ is the l-subspace of $\left(A^{d}\right)^{c}$ that is generated by $A . A^{e}=\left(\left(A^{d}\right)^{c}\right)^{L}$ is the essential closure of A.

Remarks. A minimal essential extension of an archimedean l-group that is a vector lattice is necessarily archimedean [11]. Bleier [6] has shown that a minimal archimedean vector lattice that contains A is necessarily an essential extension of A and hence is A^{v}. Also, of course, any complete l-group is archimedean.

Proof of Theorem 5.1. If $y=d$ or v then clearly the theorem holds. For the intersection of divisible subgroups (subspaces) is again divisible (a subspace). If A is a large l-subgroup of an archimedean e-group H then clearly H is an e-hull of A. To prove the theorem for $y=c$ we make use of the following two lemmas.

Lemma 5.3. (Bernau [3]). If G is a dense l-subgroup of an l-group H then all joins and intersections in G agree with those in H.

Lemma 5.4. If A is a large l-subgroup of an abelian l group B then all joins and intersections in A agree with those in B.

Proof. A is large in B^{d} and so A^{d} is dense in B^{d}. Suppose that $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq A$ and $\vee_{A} a_{\lambda}$ exists. If $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \leqq y \in A^{d}$ then $n y \in A$ for some $n>0$ and so $n y \geqq \vee_{A} n a_{\lambda}=n \vee_{A} a_{\lambda}$. Thus $y \geqq \vee_{A} a_{\lambda}$ and hence $\vee_{A^{d}} a_{\lambda}=\vee_{A} a_{\lambda}$.

Next $V_{A^{d}} a_{\lambda}=\vee_{B^{d}} a_{\lambda}$ since A^{d} is dense in B^{d}. Finally $V_{B^{d}} a_{\lambda}=V_{B} a_{\lambda}$ since $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq B$ and $\vee_{B^{d}} a_{\lambda}=\vee_{A} a_{\lambda} \in A \subseteq B$. Thus $\vee_{A} a_{\lambda}=\vee_{B} a_{\lambda}$.

Corollary. If A is a large l-subgrcup of a complete l-group H, then the intersection of all c subgroups of H that contain A is a c subgroup.

QUestion. Is Lemma 5.4 true for non abelian I groups?
Proof of Theorem 5.2. Clearly the theorem holds for $y=d$. In [11] it is shown that A admits a unique v hull A^{v} and that A^{v} is the l subspace of $\left(A^{d}\right)^{\wedge}$ that is generated by A.

In $[10]$ it is shown that A admits a unique essential closure A^{e} and that $A^{e}=\left(\left(A^{d}\right)^{\wedge}\right)^{L}$.

The existence of A^{e} for a complete vector lattice A was proven by Pinsker [19] and Jakubik [16] showed that \boldsymbol{A}^{e} can be constructed solely from the underlying lattice structure of A.

We now show that there exists a unique c hull A^{c} and that $A^{c}=A^{\wedge}$. Note that A^{\wedge} is the unique minimal complete l group in which A is dense [12]. Also if A is an l-subgroup of a complete l-group H then H need not contain a copy of A^{\wedge} [12].

Lemma 5.5. If A is a large l-subgroup of a completel group H then $A^{\wedge} \subseteq H$.
Proof. We shall show that there exists an l-isomorphism of A^{\wedge} into H that is the identity on A. If $x \in A^{\wedge}$ then

$$
x=\vee\{\underline{x} \in A \mid \underline{x} \leqq x\}=\wedge\{\bar{x} \in A \mid \bar{x} \geqq x\} .
$$

Since $\bar{x} \geqq\{\underline{x} \in A \mid \underline{x} \leqq x\}$ we have that $\vee_{H} \underline{x}$ exists. In particular for $0<x \in A^{\wedge}$, $x=\vee\left\{\underline{x} \in A^{+} \mid \underline{x} \leqq x\right\}$ and $\vee_{H}\left\{\underline{x} \in A^{+} \mid \underline{x} \leqq x\right\}$ exists. Define

$$
x \sigma=\vee_{\boldsymbol{H}}\left\{\underline{x} \in A^{+} \mid \underline{x} \leqq x\right\}
$$

1) If $a \wedge b=0$ in A^{\wedge} then $a \sigma \wedge b \sigma=0$.

For $a=\vee \underline{a}$ and $b=\vee \underline{b}$, where $\underline{a} \wedge \underline{b}=0$ and hence

$$
0 \leqq a \sigma \wedge b \sigma=\vee_{H} \underline{a} \wedge \vee_{H} \underline{b}=\vee_{H}(\underline{a} \wedge \underline{b})=0
$$

2) If $a, b \in\left(A^{\wedge}\right)^{+}$then $a \sigma+b \sigma=(a+b) \sigma$.

For $a \sigma+b \sigma=V_{H} \underline{a}+V_{H} \underline{b}=V_{H}(\underline{a}+\underline{b})=V_{H} X$, where

$$
\begin{gathered}
X=\left\{\underline{a}+\underline{b} \mid \underline{a}, \underline{b} \in A^{+}, \underline{a} \leqq a \text { and } \underline{b} \leqq \underline{b}\right\}, \text { and } \\
(a+b) \sigma=\vee_{H} \underline{a+b}=\vee_{H} Y, \text { where } \\
Y=\left\{y \in A^{+} \mid y \leqq a+b\right\} .
\end{gathered}
$$

Now if $x \in X$ then $x=a+b \leqq a+b$ and so $x \in Y$. Thus $X \subseteq Y$ and hence $\vee_{H} X \leqq \vee_{H} Y$.

If $y \in Y$ then $0 \leqq y \leqq a+b$ and hence $y=u+v$ where $u, v \in A^{\wedge}, 0 \leqq u \leqq a$ and $0 \leqq v \leqq b$. Thus $u=\vee \underline{u}$ and $v=V \underline{v}$ and hence $y=V(\underline{u}+\underline{v})=V_{A^{\wedge}} S$ where $S \subseteq X \subseteq A$ and $y \in A$. Therefore $y=\vee_{A^{\wedge}} S=\vee_{A} S=\vee_{H} S$ since by Lemma 5.4 joins in A agree with those in H. Thus $y \leqq \vee_{H} X$ and so $\vee_{H} Y \leqq V_{H} X$.

Therefore σ is a map of $\left(A^{\wedge}\right)^{+}$into H^{+}that preserves addition and disjointness and induces the identity on A^{+}. For $g=a-b \in A^{\wedge}$, where $a, b \in\left(A^{\wedge}\right)^{+}$ define $g \tau=a \sigma-b \sigma$. Then τ is a group homorphism of A^{\wedge} into H that preserves disjointness and so it is an l-homomorphism. Since τ induces the identity on the large l subgroup A of A^{\wedge} it follows that τ is an l-isomorphism.

Corollary I. $A^{\wedge} \subseteq\left(A^{d}\right)^{\wedge}$.
Corollary II. If A is a large l-subgroup of a complete l-group H and no proper l-subgroup of H contains A and is complete, then $H=A^{\wedge}$. In particular A is dense in H.

Corollary III. $A^{c}=A^{\wedge}$ is unique.
This completes the proof of Theorem 5.2.
If follows at once from Lemma 5.4 that if A is a large l-subgroup of a σ complete l-group H then the intersection K of all the σ complete l-subgroups of H that contain A is σ complete. Thus K is a σ complete hull of A. Since A is large in K^{\wedge} it follows from Lemma 5.5 that $A \subseteq A^{\wedge} \subseteq K^{\wedge}$. Now $A^{\wedge} \cap K$ is σ-complete and contains A and so since K is minimal we have $A \subseteq K \subseteq A^{\wedge}$. Thus K is the intersection of all σ-complete l-subgroups of A^{\wedge} that contain A and hence K is unique. Therefore each archimedean l-group A admits a unique σ-complete hull A^{σ}.

It is well known that A^{σ} is a P-group but need not be an $S P$-group (see for example [25] p. 85).

If each bounded disjoint subset of an archimedean vector lattice A is countable then since A is dense in A^{σ} it follows that each bounded disjoint subset of A^{σ} is also countable. Thus ($[25] \mathrm{p} .156$) A^{σ} is complete and hence $A^{\sigma}=A^{\wedge}$. These spaces A^{s} of "countable type" were introduced by Pinsker and have many nice properties (see [25] pp. 156-160).

Theorem 5.6. If α is a p-endomorphism of an archimedean l-group A then there exists a unique extension of α to a p endomorphism $\bar{\alpha}$ of the y-hull A^{y} of A, where $y=d, v, c$ or e.

Proof. The proof for $y=c$ is contained in [13]. Suppose that $y=d$ and consider $a \in A^{y}$. Then $n a \in A$ for some $n>0$. Define $a \bar{\alpha}=((n a) \alpha) / n$. A straightforward computation shows that $\bar{\alpha}$ is a p endomorphism of A^{y} and an extension
of α. If β is an extension of α to a p-endomorphism of A^{y} then

$$
n(a \beta)=(n a) \beta=(n a) \alpha=(n a) \bar{\alpha}=n(a \bar{\alpha})
$$

and hence $a \beta=a \bar{\alpha}$.
Combining the above we get a unique extension of α to a p-endomorphism γ of $\left(A^{d}\right)^{c}$. Also γ is linear [13] and maps A into A. Thus γ maps the l-subspace A^{v} of $\left(A^{d}\right)^{c}$ that is generated by A into A^{v}.

Finally since $A^{e}=\left(\left(A^{d}\right)^{c}\right)^{L}$ it follows from Theorem 4.4 that α has a unique extension to a p endomorphism of A^{e}.

Corollary. If A is an archimedean D_{f}-module over the directed po-ring D then there exists a unique extension of the scalar multiplication by elements of D so that A^{y} is also a D_{f}-module, where $y=d, v, c$ or e.

Remarks. Since A is large in A^{y} it follows that α is one-to-one if and only if $\bar{\alpha}$ is one-to-one. It can be shown that if $y=d, v$ or c then $\bar{\alpha}$ is onto provided that α is onto. The proof for $y=c$ is given in [13]. Bleier [6] shows that an l-automorphism of A has a unique extension to an l-automorphism of A^{y}.

Theorem 5.7. If A is an archimedean l-group and α is an l-automorphism of A then there exists a unique extension to an l-automorphism $\bar{\alpha}$ of A^{y}, where $y=d, v, c$ or e.

Proof. For $y=d$ the map $\bar{\alpha}$ defined in the proof of the last theorem is an l-automorphism of A^{d}. We have shown that the theorem holds for $y=L$. Thus to complete the proof it suffices to show that α can be extended uniquely to an l-automorphism of A^{c}. For $h \in\left(A^{c}\right)^{+}, h=\vee\left\{\underline{h} \in A^{+} \mid \underline{h} \leqq h\right\}$. Define

$$
h \bar{\alpha}=V \underline{h} \alpha .
$$

A straightforward computation shows that $\bar{\alpha}$ determines an l-automorphism of A^{c} that is the unique extension of α (see the proof of Lemma 5.5).

Lemma 5.8. (Bernau [2]). If F is an archimedian f-ring, $x \in F^{+}$, $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq F$ and $\vee a_{\lambda}$ exists then $\vee\left(x a_{\lambda}\right)$ exists and $\vee\left(x a_{\lambda}\right)=x\left(\vee a_{\lambda}\right)$, and dually.

Theorem 5.9. Suppose that A is an archimedean f-ring, and A^{y} is the y hull of $(A,+)$ for $y=d, v, c$ or e. Then there is a unique multiplication on A^{y} so that A^{y} is an f-ring and A is a subring. Thus the additive structure of A^{y} completely determines the ring structure.

Proof. For $a, b \in A^{d}$ there exists an integer $n>0$ such that $n a$ and $n b$ belong to A. Define

$$
a b=\left((n a)(n b) / n^{2}\right.
$$

A routine check shows that A^{d} is an f-ring and this is the unique extension of the multiplication of A to an f-ring multiplication of A^{d}.

For $a, b \in\left(\left(A^{d}\right)^{c}\right)^{+}$define

$$
a b=\wedge\left\{x y \mid x \geqq a, y \geqq b \text { and } x, y \in A^{d}\right\}
$$

and for $x=x_{1}-x_{2}$ and $y=y_{1}-y_{2}$ in $\left(A^{d}\right)^{c}$ where $x_{i}, y_{i} \in\left(\left(A^{d}\right)^{c}\right)^{+}$define

$$
x y=x_{1} y_{1}+x_{2} y_{2}-\left(x_{1} y_{2}+x_{2} y_{1}\right) .
$$

A rather long messy computation shows that $\left(A^{d}\right)^{c}$ is an f-ring. This construction is "well known".

Now suppose that \cdot and \times are two multiplications of $\left(A^{d}\right)^{c}$ so that it is an f-ring and A^{d} is a subring and consider $a, b \in\left(\left(A^{d}\right)^{c+}\right.$.

$$
a=\wedge\left\{x \in A^{d} \mid x \geqq a\right\} \text { and } b=\wedge\left\{y \in A^{d} \mid y \geqq b\right\}
$$

and hence by Lemma 5.8

$$
a \cdot b=(\wedge x) \cdot(\wedge y)=\wedge(x \cdot y)=\wedge(x \times y)=(\wedge x) \times(\wedge y)=a \times b .
$$

Thus there is only one such multiplication. Of course the same result holds for A^{c}.
Now we have shown that the ring structure of $\left(A^{d}\right)^{c}$ has a unique extension to $\left(\left(A^{d}\right)^{c}\right)^{L}=A^{e}$ (see Theorem 4.6). To complete the proof it suffices to show that A^{v} is a subring of A^{e}. Consider $x, y \in A$ and $r, s \in R$. Then $r x, s y \in A^{v}$ and $x y \in A$. Thus since A^{e} is a real algebra (see Section 6)

$$
(r x)(s y)=r s(x y) \in A^{v} .
$$

It follows that the subspace S of A^{e} that is generated by A is a subring of A^{e}. Now

$$
A^{v}=\left\{\vee_{U} \wedge_{V} a_{\alpha \beta} \mid a_{\alpha \beta} \in S, \alpha \in U, \beta \in V \text { and } U \text { and } V \text { are finite }\right\} .
$$

Thus by Lemma $4.2 A^{v}$ is a subring of A^{e}.
Remarks. If A is an archimedean f-ring and H is a minimal essential extension of A that is an archimedean f-ring and a y-group then $H=A^{y}$. For clearly $A \subseteq A^{y} \subseteq H$ as l-groups by Theorems 5.1 and 5.2. If $y=e$ then A^{e} is essentially closed and large in H and so $A^{e}=H$. If $y=d$ then an easy computation shows that A^{d} is a subring of H and so $A^{d}=H$.

If $y=c$ or v then a rather messy proof shows that A^{y} is a subring of H and so once again $A^{y}=H$.

6. The structure of an archimedean f-ring

Let A be an archimedean f-ring and let X be the Stone space of the complete Boolean algebra $P(A)$ of polars of A. Then X is compact, Hausdorff and extremally disconnected. Let $D(X)$ be the ring of continuous functions from X
into the extended reals $(R, \pm \infty)$ that are finite on a dense open subset of X. Then as l groups A^{e} and $D(X)$ are isomorphic [10]. So let us examine the ways in which $D(X)$ can be made into an f-ring with pointwise addition and order.

Suppose that $D=D(X)$ has a multiplication • so that it is an f-ring. Then for $a \in D^{+}$the map $d--\rightarrow d \cdot a$, for all $d \in D$, is a p-endomorphism of $(D,+)$ and so (see [13]) there is an element $\vec{a} \in D^{+}$such that

$$
d \cdot a=d \bar{a} \text { for all } d \in D
$$

We investigate the map a $\rightarrow \boldsymbol{a}$. Consider $a, b \in D^{+}$.

1) $\overline{a+b}=\bar{a}+\bar{b}$.

For $\overline{d(a+b})=d \cdot(a+b)=d \cdot a+d \cdot b=d \bar{a}+d \bar{b}=d(\bar{a}+\bar{b})$ for all $d \in D$ and so for $d=1, \overline{a+b}=\bar{a}+\bar{b}$.
2) $\bar{a} \bar{b}=\bar{a} \bar{b}$.
$d \overline{(a \bar{b})}=d \overline{(a \cdot b}=d \cdot(a \cdot b)=(d \cdot a) \cdot b=(d \bar{a}) \bar{b}=d(\bar{a} \bar{b})$.
3) $a \tilde{a}=b \tilde{a}$.
$b \bar{a}=b \cdot a=a \cdot b=a \bar{b}$. Here we use the fact that an archimedean f-ring is commutative.
4) Put $\overline{1}=p$; then for $u, v \in D^{+}, u \cdot v=u v p$.

For, for $a \in D^{+}$, we have $\bar{a}=1 \bar{a}=a \overline{1}=a p$. Now, $v=a-b$, where $a, b \in D^{+}$, and so $u \cdot v=u \cdot(a-b)=u \cdot a-u \cdot b=u \bar{a}-u \bar{b}=u a p-u b p$ $=u(a-b) p=u v p$.
5) If - is a multiplication on $D(X)$ such that $D(X)$ is an f-ring with componentwise addition and order then there exists an element $p \in D^{+}$so that $a \cdot b=a b p$ for all $a, b \in D$, and conversely.

Now D is complete and hence a P group. Thus

$$
D=p^{\prime \prime} \oplus p^{\prime}
$$

Clearly $p^{\prime \prime}$ is a subring with respect to the \cdot multiplication and p^{\prime} is a zero subring. Consider $d=u+v \in p^{\prime \prime} \oplus p^{\prime}$ and define

$$
d \tau=p u+v
$$

Then for $d_{1}=u_{1}+v_{1}$ and $d_{2}=u_{2}+v_{2}$ in D we have

$$
\left(d_{1} \cdot d_{2}\right) \tau=\left(p u_{1} u_{2}\right) \tau=p u_{1} p u_{2}=d_{1} \tau d_{2} \tau
$$

and so we have an l-isomorphism of the f-ring ($D,+, \cdot, \leqq$) onto the f-ring $D=p^{\prime \prime} \oplus p^{\prime}$, where $p^{\prime \prime}$ is a ring with respect to the pointwise multiplication of D and p^{\prime} has the zero multiplication.

Theorem 6.1. Let X be a Stone space and suppose that $D(X)$ is an f-ring with componentwise addition and order. Then there exist clopen subsets Y and
Z of X such that $X=Y \cup Z, Y \cap Z=\varnothing$ and $D(X)=D(Y) \oplus D(Z)$, where $D(Y)$ has the pointwise multiplication and $D(Z)$ has the zero multiplication.

Thus we have the structure of an arbitrary essentially closed archimedean f-ring. Recall that the radical of an f-ring A consists of the nilpotent elements.

Corollary I. (Henricksen and Isbell [15]). An archimedian f-ring is a subdirect sum of a ring with zero multiplication and one with radical zero.

Corollary II. If A is an archimedean f-ring then $\operatorname{rad} A=\{a \in A \mid a A=0\}$ the set of annihilators of A. In particular, $\operatorname{rad} A$ is a polar.

Proof. $A \subseteq D(Y) \oplus D(Z)$ and if $a=u+v \in A$ is nilpotent, where $u \in D(Y)$ and $v \in D(Z)$ then $u=0$ and so $a=v$ is an annihilator. Thus $\operatorname{rad} A=A \cap D(Z)$. Now $D(Z)$ is a polar in $D(X)$ and A is large in $D(X)$. Thus $\operatorname{rad} A$ is a polar in A.

Corollary III. If A is an archimedean f-ring and also an SP-group, then $\operatorname{rad} A$ is a cardinal summand. In particular, $\operatorname{rad} A$ is a cardinal summand of a complete f-ring A.

Note that Corollaries II and III follow directly from Corollary I.
Corollary IV. If A is an archimedean f-ring with a weak order unit u and also a P-group, then rad A is a cardinal summand.

Proof. Since A is large in A^{e}, u is also a weak unit of A^{e} and without loss of generality we may assume that as l groups $A^{e}=D(X)$ and $1=u \in A$. Then $1 \cdot 1=p \in A$ and so $A=p^{\prime \prime} \oplus p^{\prime}$, where the polars are taken in A.

Corollary V. For an archimedean f-ring A the following are equivalent.
i) $\operatorname{rad} A=0$.
ii) A^{e} contains an identity.
iii) $\operatorname{rad} A^{e}=0$.

Proof. $\left(\operatorname{rad} A^{e}\right) \cap A=\operatorname{rad} A$ and hence since A is large in A^{e} it follows that i) and iii) are equivalent. From the Theorem iii) and ii) are equivalent.

Let A be an archimedean f-ring with identity u. Then u is a weak unit in $A(u \wedge a=0$ implies $a=u a=0)$ and hence in A^{e}. Let X be the Stone space of $P(A)=P\left(A^{e}\right)$. Then there is a l-group isomorphism of A^{e} onto $D(X)$ so that u maps upon 1 . Thus without loss of generality, $1 \in A \subseteq A^{e}=D(X)$ as l-groups. It follows from the next theorem that A and A^{e} are both subrings of $D(X)$. Thus, once again, the additive structure of A determines the ring structure.

Theorem 6.2. Suppose that A is an l-subgroup of $(D(X),+)$ and $1 \in A$, where X is a Stone space. If A is an f-ring with identity 1 then A is a subring of $D(X)$.

Proof. Let - be the multiplication in A. Then by (6)

$$
1=1 \cdot 1=1 p=p
$$

Thus - agrees with the pointwise multiplication of $D(X)$.
Corollary I. (Birkhoff and Pierce [5]). An archimedean f-ring with identity has radical zero.

Corollary II. If A is an archimedean f-ring with identity u then u is also an identity for the f-ring A^{y}, where $y=d, v, c$ or e.

Corollary III. If A is an archimedean f-ring with identity then each p-endomorphism of A is a multiplication by a positive element.

Proof. We may assume that A is a subring of $D(X)$, where $D(X)$ has the pointwise multiplication, and $1 \in A$. Thus any p-enomorphism of A has a unique extension to a p-endomorphism of $D(X)$, but each p-endomorphism of $D(X)$ is a multiplication by an element $d \in D^{+}$[13]. Thus since $1 \in A$ it follows that $d \in A$.

We give two examples of archimedean f-rings for which the radical is not a cardinal summand.
I. Let $A=C[0,1]$ and let

$$
p(x)=\left\{\begin{array}{c}
-x+\frac{1}{2} \text { if } 0 \leqq x \leqq \frac{1}{2} \\
0 \text { if } \frac{1}{2} \leqq x \leqq 1
\end{array}\right.
$$

Define $g \cdot f=g f h$ for $g, f \in A$. Then A is an f-ring with

$$
\operatorname{rad} A=\left\{f \in A \mid f(x)=0 \text { for } 0 \leqq x \leqq \frac{1}{2}\right\}
$$

but $(A,+)$ is cardinally indecomposable and so $\operatorname{rad} A$ is not a summand.
II. Let $H=\prod_{i=1}^{\infty} Q_{i}$, where Q_{i} is the additive group of rationals. In the even components use zero multiplication and in the odd components use the natural multiplication. Let $a=\left(1 / 2,1 / 4,1 / 8, \cdots, 1 / 2^{n}, \cdots\right)$, and let S be the subring generated by a. Thus S is the ring of polynomials without constant terms in a and with integral coefficients. Let A be the subring of H generated by S and ΣQ_{i}.
$A=\{h \in H \mid h$ is a polynomial in a except at a finite number of places $\}$. Then A is an f-ring with a basis and a strong order unit, a but $\operatorname{rad} A$ is not a cardinal summand. Note that $a^{2}=(1 / 4,0,1 / 64,0, \cdots)$ but a does not split into a "zero part and a radical zero part'".

The next two examples show the well known fact that the class of f-rings with zero radical is not equationally definable.
III. Let S be the semigroup of negative integers. Let A be the semigroup ring of S over the integers and define an element in A to be positive if its largest non-zero component is positive. Then A is a totally ordered integral domain
and so $\operatorname{rad} A=0$. Let J be the set of elements in A with support included in $-2,-3, \cdots$. Then J is a convex ring ideal and A / J is a zero ring. Thus rad A / J $=A / J$.
IV. Let A be the set of all bounded rational sequences with cardinal order. Then $\operatorname{rad} A=0$. Let $a=\left(1,1 / 4,1 / 9, \cdots, 1 / n^{2}, \cdots\right)$ and

$$
\langle a\rangle=\{x \in A| | x \mid<n a \text { for some } n>0\} .
$$

Then $J /\langle a\rangle$ is an f-ring and $0 \neq\langle a\rangle+(1,1 / 2,1 / 3, \cdots) \in \operatorname{rad} J /\langle a\rangle$.
The following example is due to Roger Bleier and shows that if G is an l-subgroup of an essentially closed archimedean l-group H then H need not contain a copy of the essential closure G^{e} of G.
V. Pick a Stone space Y so that $D(Y)$ cannot be represented as a subdirect sum of reals. Let $C(Y)$ be the l-group of all continuous real valued functions on Y. Then $C(Y) \subseteq \prod R_{y}$ and $C(Y)^{e}=D(Y)=C(Y)^{L}$.

7. The structure of an f-ring with a basis

A strictly positive element s in an f-ring A is called basic if $s^{\prime \prime}$ is totally ordered or equivalently if A / s^{\prime} is a totally ordered ring. A basis for A is a maximal disjoint subset $\left\{s_{\lambda} \mid \lambda \in \Lambda\right\}$ where in addition each s_{λ} is basic. Let $S=\left\{s_{\lambda} \mid \lambda \in \Lambda\right\}$ be a basis for A. Then there exists a natural ring l-isomorphism σ of A into $K=\Pi A / s_{\lambda}{ }^{\prime}$

$$
a-\cdots \quad \sigma \quad\left(\cdots, s_{\lambda}{ }^{\prime}+a, \cdots\right) .
$$

Theorem 7.1. $K=(A \sigma)^{o}$ and if S is finite then $K=(A \sigma)^{\text {P }}$. In either case A is dense in A^{0}.

Proof. Consider $0<x=\left(\cdots, s_{\lambda}{ }^{\prime}+x_{\lambda}, \cdots\right) \in K$ with say $s_{\alpha}{ }^{\prime}+x_{\alpha}>s_{\alpha}{ }^{\prime}$. Then we may assume $0<x_{\alpha} \notin s_{\alpha}{ }^{\prime}$ and so $0<a=x_{\alpha} \wedge s_{\alpha} \in\left(\cap_{\lambda \neq \alpha} s_{\lambda}{ }^{\prime}\right) \backslash s_{\alpha}{ }^{\prime}$. Thus $0<a \sigma \leqq x$ and so $A \sigma$ is dense in K. Thus since K is a P-group

$$
A \sigma \subseteq(A \sigma)^{P} \subseteq K
$$

We next show that $\overline{s_{\alpha}{ }^{\prime}+x_{\alpha}}=\left(0, \cdots, 0, s_{\alpha}{ }^{\prime}+x_{\alpha}, 0, \cdots, 0\right) \in(A \sigma)^{P}$ and hence $(A \sigma)^{P} \supseteq \Sigma A / s_{\lambda}{ }^{\prime}$. Let * $(\#)$ be the polar operation in $(A \sigma)^{P}(K)$.

$$
\begin{aligned}
(A \sigma)^{p} & =\overline{s_{\alpha}{ }^{\prime}+s_{\alpha}}{ }^{* *} \oplus \overline{s_{\alpha}{ }^{\prime}+s_{\alpha}}{ }^{*}=s_{\alpha} \sigma^{* *} \oplus s_{\alpha} \sigma^{*} \\
x_{\alpha} \sigma & =c+d
\end{aligned}
$$

but this is also the unique decomposition of $x_{\alpha} \sigma$ in

$$
K=\overline{s_{\alpha}^{\prime}+s_{\alpha}} \# \# \oplus \overline{s_{\alpha}^{\prime}+s_{\alpha}} \#=A / s_{\alpha}{ }^{\prime} \oplus \prod_{\lambda \neq \alpha} A / s_{\lambda} .
$$

Thus $c=\overline{s_{\alpha}{ }^{\prime}+x_{\alpha}} \in(A \sigma)^{P}$.

Clearly K is the lateral completion of $\Sigma A / s_{\lambda}{ }^{\prime}$ and hence of $(A \sigma)^{P}$. Thus K is the orthocompletion of $A \sigma$. If S is finite then $K=\Sigma A / s_{\lambda}{ }^{\prime}$ and so $(A \sigma)^{P}=K$.

Corollary I. Each $s_{\lambda}{ }^{\prime}$ is a prime ring ideal if and only if rad $A=0$.
Proof. (\rightarrow) Each stalk $A / s_{\lambda}{ }^{\prime}$ is an integral domain and so $\operatorname{rad} A=0$.
(\leftarrow) Suppose that $x, y \in A$, and $x y \in s_{\alpha}{ }^{\prime}$, then $|x||y|=|x y| \in s_{\alpha}^{\prime}$ and so without loss of generality $0<x \leqq y$ and $x y \in s_{\alpha}{ }^{\prime}$. Then by convexity $x^{2} \in s_{\alpha}{ }^{\prime}$. Suppose (by way of contradiction) that $x \notin s_{\alpha}{ }^{\prime}$. Then $0<a=x \wedge s_{\alpha} \in\left(\cap_{\lambda \neq \alpha} s_{\lambda}{ }^{\prime}\right)$ $s_{\alpha}{ }^{\prime}$ and hence $a^{2} \in \cap s_{\lambda}{ }^{\prime}=0$, a contradiction.

Remark. Chambless [7] has shown that if A is an f-ring with $\operatorname{rad} A=0$ then each minimal prime subgroup of $(A,+)$ is a prime ring ideal.

Let A be an f-ring and suppose that A satisfies

(F) each bounded disjoint subset of A is finite.

Then A has a basis $S=\left\{s_{\lambda} \mid \lambda \in \Lambda\right\}$ and the mapping of a onto $\left(\cdots, s_{\lambda}{ }^{\prime}+a, \cdots\right)$ is a ring l-isomorphism of A into $\Sigma A / s_{\lambda}{ }^{\prime}$.

Corollary II. $\Sigma A / s_{\lambda}{ }^{\prime}=(A \sigma)^{P}$.
Proof. Since $A \sigma$ is dense in $H=\sum A / s_{\lambda}{ }^{\prime}$ we have $A \sigma \subseteq(A \sigma)^{p} \subseteq H$ and we have shown that $H \subseteq(A \sigma)^{P}$.

Corollary III. For an f-ring A the following are equivalent.

1) $A=\sum A_{\lambda}$, where each A_{λ} is a totally ordered ring.
2) A satisfies (F) and is a P-group.

Proof. Clearly 1) implies 2). If 2) holds then by Corollary II we have $A \cong \Sigma A / s_{\lambda}{ }^{\prime}$.

Corollary IV. For an f-ring A the following are equivalent.

1) $A=\Sigma A_{\lambda}$, where each A_{λ} is a totally ordered integral domain.
2) A satisfies $(F), A$ is a P-group and $\operatorname{rad} A=0$.

Proof. Once again it is clear that 1) implies 2). Suppose that 2) is true. By Corollary III, $A \cong \Sigma A / s_{\lambda}{ }^{\prime}$ and by Corollary I each stalk $A / s_{\lambda}{ }^{\prime}$ is an integral domain.

A convex l-subgroup C of an f-ring A will be called an L-ideal if C is also an ideal of the ring A and a P-ideal if C is a ring ideal and A / C is totally ordered. If $0<s \in A$ is basic, then s^{\prime} is a P-ideal.

Theorem 7.2. For an f-ring the following are equivalent.

1) $A=\Sigma A_{\lambda}$, where each A_{λ} is an o-simple totally ordered integral domain.
2) A satisfies $(F), \operatorname{rad} A=0$ and the P-ideals of A satisfy the $D C C$.

If this is the case then the P-ideals of A are trivially ordered by inclusion.

Proof. $1 \rightarrow 2$. For $\lambda \in \Lambda$ let $M_{\lambda}=\left\{a \in A \mid a_{\lambda}=0\right\}$. We shall show that these are the only P-ideals of A and hence the P-ideals are trivially ordered. For let M be a P-ideal of A. If for each $\lambda \in \Lambda$ there exists $0<a \in M$ with $a_{\lambda}>0$ then it follows that $M=\Sigma A_{\lambda}$ a contradiction. Thus $M \subseteq M_{\lambda}$ for some λ. Pick $0<a_{\lambda} \in A_{\lambda}$. Then $a=\left(0, \cdots, 0, a_{\lambda}, 0, \cdots, 0\right) \notin M$ and since M is a prime subgroup of $(A,+)$ we have $M_{\lambda}=a^{\prime} \subseteq M$. Thus $M=M_{\lambda}$.
$2 \rightarrow 1$. Let $\left\{s_{\lambda} \mid \lambda \in \Lambda\right\}$ be a basis for A. Since A satisfies (F) the mapping σ of a upon $\left(\cdots, s_{\lambda}{ }^{\prime}+a, \cdots\right)$ is an l-isomorphism of A into $\Sigma A / s_{\lambda}{ }^{\prime} . s_{\lambda}{ }^{\prime}$ is a P ideal and hence the P-ideals of $A / s_{\lambda}{ }^{\prime}$ satisfy the $D C C$. Let $\mathscr{I}=I / s_{\lambda}{ }^{\prime}$ be the minimal convex ring ideal of $A / s_{\lambda}{ }^{\prime}$. By Corollary I of Theorem 7.1 we have that $A / s_{\lambda}{ }^{\prime}$ is an integral domain and hence $\mathscr{J}^{2} \neq 0$. Thus by a theorem of Johnson (see [14] p. 132) $A / s_{\lambda}{ }^{\prime}$ is o-simple and so $s_{\lambda}{ }^{\prime}$ is a maximal L-ideal of A. Now $s_{\alpha} \in \cap_{\lambda \neq \alpha} s_{\lambda}{ }^{\prime} \backslash s_{\alpha}$ and hence since $s_{\alpha}{ }^{\prime}$ is a maximal L-ideal we have

$$
A=\bigcap_{\lambda \neq \alpha} s_{\lambda}^{\prime}+s_{\alpha}^{\prime} .
$$

If $0<a \in A$ then $a=x+t$, where $x \in \bigcap_{\lambda \neq \alpha} s_{\lambda}{ }^{\prime}$ and $t \in s_{\alpha}{ }^{\prime}$. Thus $s_{\alpha}{ }^{\prime}+x=s_{\alpha}{ }^{\prime}+a$ and $s_{\lambda}{ }^{\prime}+x=s_{\lambda}{ }^{\prime}$ for all $\lambda \neq \alpha$. Therefore

$$
x \sigma=\left(0, \cdots, 0, s_{\alpha}^{\prime}+a, 0, \cdots, 0\right)
$$

and so $A \sigma=\Sigma A / s_{\lambda}{ }^{\prime}$.
Corollary. (Birkhoff and Pierce [5]). For an f-ring A the following are equivalent.

1) $A=\sum_{i=1}^{n} A_{i}$, where each A_{i} is an o-simple totally ordered integral domain.
2) The L-ideals of A satisfy the $D C C$ and $\operatorname{rad} A=0$.
3) There are only a finite number of L-ideals of A and $\operatorname{rad} A=0$.

Proof. $1 \rightarrow 3$. If T is an L-ideal then $T=\Sigma\left(A_{i} \cap T\right)$ and since each A_{i} is o-simple $A_{i} \cap T=A_{i}$ or 0 . Thus there are only a finite number of L-ideals.
$3 \rightarrow 2$. Trivial.
$2 \rightarrow 1$. Let P_{1}, P_{2}, \cdots be the minimal prime subgroups of $(A,+)$. Then $P_{1} \supset P_{1} \cap P_{2} \supset P_{1} \cap P_{2} \cap P_{3} \supset \cdots$; for if $a_{1} \in P_{1} \backslash P_{3}$ and $a_{2} \in P_{2} \backslash P_{3}$ then $a_{1} \wedge a_{2} \in\left(P_{1} \cap P_{2}\right) \backslash P_{3}$. Thus there are only a finite number of P_{i} and hence A has a finite basis and so satisfies (F).

Commutative laws for the various operators

Throughout this section y will denote d, v, c or e, X will denote $P, S P, L$ or O and W will denote $d, v, c, e, P, S P, L$ or O. We shall investigate when two of these operators commute.

1) For an archimedean l-group $G,\left(G^{W}\right)^{e}=\left(G^{e}\right)^{W}=G^{e}$.
2) For an archimedean l-group $G,\left(G^{W}\right)^{d} \subseteq\left(G^{d}\right)^{W}$. For $W=v, e, P$ or $S P$ we have equality, but for $W=c, L$ or O there need not be equality.

Proof. G is a large l-subgroup of $\left(G^{d}\right)^{W}$ which is divisible. Thus G^{W} is large in $\left(G^{d}\right)^{\boldsymbol{W}}$ and so $\left(G^{\boldsymbol{W}}\right)^{d} \subseteq\left(G^{d}\right)^{\boldsymbol{W}}$. Clearly $\left(G^{v}\right)^{d}=\left(G^{d}\right)^{v}=G^{v}$. If $0<g \in\left(G^{P}\right)^{d}$ then $n g \in G^{P}$ for some $n>0$ and hence $G^{P}=(n g)^{\prime \prime} \oplus(n g)^{\prime}$. Thus $\left(G^{P}\right)^{d}=\left((n g)^{\prime \prime}\right)^{d}$ $\oplus\left((n g)^{\prime}\right)^{d}=(n g)^{* *} \oplus(n g)^{*}$, where ${ }^{*}$ is the polar operation in $\left(G^{P}\right)^{d}$. Thus $\left(G^{P}\right)^{d}$ is a P-group and hence $\left(G^{P}\right)^{d}=\left(G^{d}\right)^{P}$.

If C is a polar in $\left(G^{S P}\right)^{d}$ then $C \cap G^{S P}$ is a polar in $G^{S P}$ and so $G^{S P}=\left(C \cap G^{S P}\right)$ $\oplus\left(C \cap G^{S P}\right)^{\prime}$. Thus

$$
\left(G^{S P}\right)^{d}=\left(C \cap G^{S P}\right)^{d} \oplus\left(\left(C \cap G^{S P}\right)^{\prime}\right)^{d}=C \oplus C^{*}
$$

Therefore $\left(G^{S P}\right)^{d}$ is an $S P$-group and so $\left(G^{S P}\right)^{d}=\left(G^{d}\right)^{S P}$.
If $G=Z$ then $\left(G^{c}\right)^{d}=Z^{d}=Q \subset R=Q^{c}=\left(G^{d}\right)^{c}$. If $G=\sum_{i=1}^{\infty} Z_{i}$ then $\left(G^{d}\right)^{L}=\left(G^{d}\right)^{o}=\prod_{i=1}^{\infty} Q_{i}$ and $G^{L}=G^{o}=\prod_{i=1}^{\infty} Z_{i}$. Thus $a=(1,1 / 2,1 / 3, \cdots)$ belongs to $\left(G^{d}\right)^{L} \backslash\left(G^{L}\right)^{d}$ since no multiple of a belongs to G^{L}.

From the above computation we have.
3) For an abelian l-group $G,\left(G^{X}\right)^{d} \subseteq\left(G^{d}\right)^{X}$. For $X=P$ or $S P$ there is equality, but for $X=L$ or O there need not be equality.

For the remainder of this section G will denote an archimedean lgroup.
4) $\left(G^{W}\right)^{v} \subseteq\left(G^{v}\right)^{W}$. For $W=d, e$ or $S P$ we have equality, but for $W=c, P, O$ or L there need not be equality.

Proof. $\left(G^{v}\right)^{W}$ is a vector lattice. This is clear except for $\left(G^{v}\right)^{L}$, but if $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ is a disjoint subset of G^{v} and $0<r \in R$ then $r\left(\vee a_{\lambda}\right)=\vee r a_{\lambda}$ since $x \longrightarrow--r x$ is a p endomorphism of G^{v} and hence has a unique extension to $\left(G^{v}\right)^{L}$. Thus it follows that $\left(G^{v}\right)^{L}$ is also a vector lattice. Now since G^{W} is large in the vector lattice $\left(G^{v}\right)^{W}$ we have $\left(G^{W}\right)^{v} \subseteq\left(G^{v}\right)^{W}$.

Now let $G=\prod_{\Lambda} Z_{\lambda}$, where Λ is an infinite set. Then

$$
G^{v}=\left\{r_{1} g_{1}+\cdots+r_{t} g_{t} \mid r_{i} \in R, g_{i} \in G \text { and } t>0\right\}=T
$$

For clearly T is a subspace of ΠR_{λ} and hence it suffices to prove that

$$
\left(r_{1} g_{1}+\cdots+r_{t} g_{t}\right) \vee 0 \in T
$$

Consider the λ-th component

$$
\left(r_{1} g_{1}+\cdots+r_{t} g_{t}\right)_{\lambda}=\left(r_{1} g_{1}\right)_{\lambda}+\cdots+\left(r_{t} g_{t}\right)_{\lambda}
$$

If this is negative then replace $\left(g_{i}\right)_{\lambda}$ by 0 in each of the g_{i}. Do this for each λ and call the new element \bar{g}_{i}. Then $\left(r_{1} g_{1}+\cdots+r_{t} g_{t}\right) \vee 0=r_{1} \bar{g}_{1}+\cdots+r_{t} \bar{g}_{t} \in T$ and hence $\left(G^{c}\right)^{v}=G^{v} \subset \prod R_{\lambda}=\left(G^{v}\right)^{e}$. Now let $H=\Sigma Z_{\lambda}$. Then $H^{L}=H^{o}=\prod Z_{\lambda}$, $H^{v}=\Sigma R_{\lambda}$ and $\left(H^{v}\right)^{L}=\left(H^{v}\right)^{o}=\prod R_{\lambda}$. Thus

$$
\left(H^{L}\right)^{v}=\left(H^{o}\right)^{v}=T \subset \prod R_{\lambda}=\left(H^{v}\right)^{L}=\left(H^{v}\right)^{o}
$$

Next let G be the subgroup of $\prod_{i=1}^{\infty} R_{i}$ generated by $\sum R_{i}, a=(1,1, \cdots)$ and $b=(\pi+1 / 2, \pi-1 / 3, \pi+1 / 4, \pi-1 / 5, \cdots)$. Then G is the direct sum of $\sum R_{i}$ and the cyclic groups generated by a and b. It is reasonably easy to check that G is a P-group but G^{v} is not a P-group.

Finally we show that $\left(G^{S P}\right)^{v}$ is an $S P$-group and hence $\left(G^{S P}\right)^{v}=\left(G^{v}\right)^{S P}$. For let C be a polar in $\left(G^{S P}\right)^{v}$. Then $C \cap G^{S P}$ is a polar in $G^{S P}$ and hence

$$
G^{S P}=\left(C \cap G^{S P}\right) \oplus\left(C \cap G^{S P}\right)^{\prime}
$$

and so since the operators ${ }^{d}$ and ${ }^{\wedge}$ preserve summands we have

$$
\left(G^{S P}\right)^{v}=\left(C \cap G^{S P}\right)^{v} \oplus\left(\left(C \cap G^{S P}\right)^{\prime}\right)^{v}
$$

But $\left(C \cap G^{S P}\right)^{v}=C$ and so $\left(G^{S P}\right)^{v}$ is an $S P$-group. For clearly $\left(C \cap G^{S P}\right)^{v} \subseteq C$ and if $0<c \in C$ then $c=x+y \in\left(C \cap G^{S P}\right)^{v} \oplus\left(\left(C \cap G^{S P}\right)^{\prime}\right)^{v}$. Thus $y \in C$ and so if $y \neq 0$ then $n y>g>0$ for some $g \in G^{S P}$. Then $g \in C \cap G^{S P}$ and so $g \wedge y=0$ a contradiction.

An element $s>0$ in an l-group H is called singular if for each $a \in H$

$$
0 \leqq a<s \text { implies } a \wedge(s-a)=0
$$

The following proposition is essentially due to Iwasawa, see [12] for a proof.
Proposition. If G is an archimedean l-group then G^{c} is a vector lattice if and only if G contains no singular elements.

Corollary. If G is an archimedean l group with no singular elements then $\left(G^{v}\right)^{c}=\left(G^{c}\right)^{p}=G^{c}$.
5) $\left(G^{X}\right)^{c}=\left(G^{c}\right)^{X}=G^{c}$ for $X=P$ or $S P$.

Proof. This follows from the fact that G^{c} is an $S P$-group (see [14] p. 91 for a proof).
6) $\left(G^{L}\right)^{c} \subseteq\left(G^{c}\right)^{L}=\left(G^{c}\right)^{o}=\left(G^{o}\right)^{c} \subseteq G^{e}$.

Proof. Since G^{c} is a P-group it follows from Theorem 2.9 that $\left(G^{c}\right)^{L}=\left(G^{c}\right)^{o}$. Now $G^{L} \subseteq G^{o} \subseteq\left(G^{o}\right)^{c}$ and since G^{L} is dense in G^{o} we have $\left(G^{L}\right)^{c} \subseteq\left(G^{o}\right)^{c}$. So we need to prove $\left(G^{o}\right)^{c}=\left(G^{c}\right)^{o}$.

We first show that $\left(G^{o}\right)^{c}$ is laterally complete and hence $\left(G^{o}\right)^{c} \supseteq\left(G^{c}\right)^{o}$. Let $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ be a disjoint subset of $\left(G^{o}\right)^{c}$. Now for each $\lambda \in \Lambda,\left(G^{o}\right)^{c}=a_{\lambda}^{* *} \oplus a_{\lambda}{ }^{*}$, and since G^{O} is a large P-subgroup of $\left(G^{0}\right)^{c}$ we have

$$
G^{o}=\left(a_{\lambda}^{* *} \cap G^{o}\right) \oplus\left(a_{\lambda}^{*} \cap G^{o}\right)
$$

Now for each $\lambda \in \Lambda$ let b_{λ} be an upper bound for a_{λ} in G^{0}. Then without loss of generality $b_{\lambda} \in a_{\lambda}{ }^{* *} \cap G^{o}$ and hence the b_{λ} are disjoint in G^{o} and so $\vee b_{\lambda}$
exists. Thus $V b_{\lambda}$ is an upper bound for the a_{λ} in G^{o} and so since $\left(G^{o}\right)^{c}$ is complete, $\vee a_{\lambda}$ exists.

We now show that $H=\mathscr{O}\left(G^{c}\right)$ is complete and so $\left(G^{o}\right)^{c} \subseteq\left(G^{c}\right)^{o}$. If $C \in P\left(G^{c}\right)$ then $G^{c}=C \oplus C^{\prime}$ and so $G / C^{\prime} \cong C$ is complete. Thus the groups $G_{\mathscr{G}}^{c}$ used in the construction of $\mathcal{O}\left(G^{c}\right)$ are complete. Also the map $\pi_{\mathscr{G}} x$ of $G_{\mathscr{G}}^{c}$ into $G_{\mathscr{G}}^{c}$ is onto a large subgroup of $G_{s d}^{c}$ and hence preserves all joins and intersections.

Thus without loss of generality, H is the set join of a directed set of complete l-groups $G_{\mathscr{\mathscr { C }}}^{c}$ and if $\mathscr{A} \leqq \mathscr{C}$ then $G_{\mathscr{\mathscr { C }}}^{c}$ is a complete l-subgroup of $G_{\mathscr{A}}^{c}$. Now let $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ be a subset of H that is bounded from above by $a \in H$. Then $a \in G^{c}{ }_{G}$ for some partition \mathscr{C}. By Theorem 2.9 each a_{λ} is the join of disjoint elements from G^{c} and of course each of these elements belongs to the complete l group $G^{c}{ }_{\mathscr{G}}$ and they are bounded by a in $G_{\mathscr{G}}^{c}$. It follows that each $a_{\lambda} \in G_{\mathscr{G}}^{c}$ and so $V a_{\lambda} \in G^{c}{ }_{\mathscr{G}} \subseteq H$.
7) $\left(G^{c}\right)^{o}=G^{e}$ if and only if G contains no singular elements.

Proof. If G contains no singular elements then G^{c} is a vector lattice. Thus $\left(G^{c}\right)^{L}=\left(\left(G^{d}\right)^{c}\right)^{L}=G^{e}$ (see [10]). If $G^{e}=\left(G^{c}\right)^{o}$ then $\left(G^{c}\right)^{o}$ is a vector lattice and hence contains no singular element. If $0<g \in G^{c}$ is singular in G^{c} and $C \in P\left(G^{c}\right)$ then $C^{\prime}+g$ is singular in G^{c} / C^{\prime} (see [10]). It follows that \tilde{g} is singular in $\mathcal{O}(G)$. Thus G^{c} contains no singular elements and hence is a vector lattice. Thus G contains no singular elements.

Remarks. If G has a basis then in [10] it is shown that $\left(G^{L}\right)^{c}=\left(G^{c}\right)^{L}$. whether or not this is always the case is an open question. In Section 2 we showed that $\left(G^{L}\right)^{S P} \subseteq G^{O}$ and equality need not hold. If G is archimedean then do we have equality? If so then $G^{L} \subseteq\left(G^{L}\right)^{c} \rightarrow\left(G^{L}\right)^{S P} \subseteq\left(G^{L}\right)^{c} \rightarrow\left(G^{0}\right)^{c}=\left(\left(G^{L}\right)^{S P}\right)^{c} \subseteq\left(G^{L}\right)^{c}$ and hence $\left(G^{c}\right)^{L}=\left(G^{L}\right)^{c}$, since by (6) $\left(G^{L}\right)^{c} \subseteq\left(G^{c}\right)^{L} \subseteq\left(G^{o}\right)^{c}$.

References

[1] I. Amemiya, 'A general spectral theory in semi-ordered linear spaces', J. Fac. Sci. Hokkaido Univ. 12 (1953), 111-156.
[2] S. Bernau, 'Unique representations of lattice groups and normal Archimedean lattice rings', Proc. London Math. Soc. 15 (1965), 599-631.
[3] S. Bernau, 'Orthocompletions of lattice groups', ibid. 16 (1966), 107-130.
[4] A. Bigard, Contribution à la théorie des groups reticules, (Thèse Univ. Paris (1969)).
[5] G. Birkhoff and T. Pierce, 'Lattice ordered rings', An. Acad. Brasil. Ci 28 (1956), 41-69.
[6] R. Bleier, Free vector lattices, (Dissertation Tulane University (1971)).
[7] D. Chambless, The representation and structure of lattice-ordered groups and f-rings, (Dissertation Tulane University (1971)).
[8] D. Chambless, 'Representation of l-groups by almost-finite quotient maps’, Proc. Amer. Math. Soc. 28 (1971), 59-62.
[9] P. Conrad, 'The lateral completion of a lattice-ordered group', Proc. London Math. Soc. 19 (1969), 444-486.
[10] P. Conrad, 'The essential closure of an archimedean lattice-ordered group', Duke Math. J. 38 (1971) 151-160.
[11] P. Conrad, 'Minimal vector lattice covers', Bull. Australian Math. Soc. 5 (1971), 35-39.
[12] P. Conrad and D. McAlister, 'The completion of a lattice ordered group', J. Australian Math. Soc. 9 (1962), 182-208.
[13] P. Cornad, and J. Diem, 'The ring of polar preserving endomorphisms of an l-group', Illinois J. Math. 15 (1971), 222-240.
[14] L. Fuchs, Partially ordered algebraic systems, (Pergamon Press, Oxford, London, New York, Paris) (1963).
[15] M. Henriksen and J. Isbell, 'Lattice-ordered rings and function rings', Pacific J. Math. 12 (1962), 533-565.
[16] J. Jakubik, 'Representations and extensions of l-groups', Czech. Math. J. 13 (1963),267-283.
[17] D. Johnson, 'A structure theory for a class of lattice-ordered rings', Acta Math. 104(1960), 163-215.
[18] H. Nakano, Modern spectral theory, Tokyo Math. Book Series II, (Maruzen Tokyo) (1950).
[19] A. Pinsker, 'Extended semiordered groups and spaces’, Uchen. Zapiski Leningrad Gos. Ped. Inst. 86 (1949), 236-265.
[20] F. Sik, 'Zur Theorie der halbgeordneten Gruppen', Czech. Math. J. 6 (1956), 1-25.
[21] T. Speed, 'On lattice ordered groups', (preprint).
[22] S. Steinberg, Lattice-ordered rings and modules, (Thesis University Illinois (1970)).
[23] A. Vecksler, 'Structural orderability of algebras and rings', Soviet Math. Dokl. 6 (1965), 1201-1204.
[24] A. Vecksler, 'On the partial orderability of rings and algebras', ibid. 11 (1970), 175-179.
[25] B. Vulich, Introduction to the theory of partially ordered spaces, (Wolters-Noordhoff, Groningen 1967).

Department of Mathematics
University of Kansas
Lawrence, Kansas 66044
U. S. A.

