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1. Introduction and statements of the main results

A lattice-ordered group (“‘I-group’’) G will be called

a P-group if G = g” @ g’ for each g € G (projectable)

an SP-group if G = C @ C’ for each polar C of G (strongly projectable)

an L-group if each disjoint subset has a 1. u. b. (laterally complete)

an O group if it is both an L-group and a P-group (orthocomplete).

G is representable if it is an [-subgroup of a cardinal product of totally ordered
groups. It follows that a P-group must be representable and hence SP-groups
and O-groups are also representable.

G is a large I-subgroup of an I.group H or H is an essential extension of G
if G is an l-subgroup of H and for each non-zero convex I-subgroup S of H we
have SN G # 0.

We show that if G is a large [-subgroup of an X-group H, where X = P, SP,
L or O, then the intersection K of all I-subgroups of H that contain G and are
X-groups is an X-group. Thus K is a minimal essential extension of G that is an
X-group and we shall call such an extension of G an X-hull of G.

THEOREM 2.6. There exists a unique X-hull G* of a representable I-group
G. Moreover, G is dense in GX, G¥ is representable and if G is archimedean or
abelian, then so is GX.

We then show that if G is a representable I-group then each 0 < g€ G is
the join of a disjoint subset of G*. Thus

G = G* = G = (G°")F = (GN)F = G2 and
G < G = (GY! = (G = G°.

but (G*)? need not equal G°.
385
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A rather natural direct limit construction provides the existence and
uniqueness of G*.

If G is a D;-module, f-ring or f-algebra then there is a unique way of ex-
tending the multiplication so that G* is a D,-module, f-ring or f-algebra that
contains G as a submodule, subring or subalgebra. Thus the multiplicative
structure of G* is completely determined by its additive structure. This phenom-
enon is due to the fact that each polar preserving endomorphism (*‘p-endo-
morphism’”) of G has a unique extension to a p endomorphism of G¥*.

If G is a vector lattice then G” is the p-extension of G defined by Amemiya [1],
but Amemiya’s definition of a p extension is fairly complicated and so are his
proofs of the existence and uniqueness of G*. However, he does mention that
GF is the minimal P-group in which G is dense.

Now suppose that G is a representable 1-group. Then GF is the Stone ex-
tension Z(G) of G that is defined by Speed [21]. His definition of £(G) is cate-
gorical, but the maps involved are rather special I-homomorphisms. Speed also
defines G categorically and makes a rather thorough investigation of P-groups.
G" is the lateral completion of G defined in [9]. There the definition required
that G be dense in G~. Finally G is the orthocompletion of G defined by
Bernau [3]. Here again the definition of G is somewhat complicated being
modelled after the definilion used by Amemiya for countably laterally complete
vector lattice p extensions.

If F is a (real) f-algebra then Amemiya remarks that his p-extension is also
an f-algebra. Bernau proves that if G is an f-ring or a vector lattice then so is
its orthocompletion.

Vecksler [23] outlines a method for constructing the P-hull and the SP-hull
of an f-ring. In [24] he corrects his definition of an SP-hull.

An archimedean / group 4 is a

d-group if it is divisible

v group if it is a vector lattice

¢ group if it is a (conditionally) complete lattice

e group if it is essentially closed in the class of archimedean [ groups.

If A is a large I-subgroup of an archimedian y group H, where y = d, v, c or e,
then the intersection K of all [ subgroups of H that contain A and are y-sub-
groups is a y group. Thus K is a minimal essential extension of A thatisa y gfoup.
We shall call such an extension of 4 a y hull.

THEOREM 5.2. Each archimedean l-group A admits a unique y-hull 4”
for y =d, v, core. A°is the Dedekind MacNeille completion of A and A is
dense in A°. A° is the 1 subspace of (A*) that is generated by A. A° = ((A*)°)*
is the essential closure of A.

Once again if A is an f-ring then there is a unique extension of the multipli-
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cation of 4 to a multiplication of A” so that A” is an f-ring and 4 is a subring
of A’. Thus the multiplicative structure of A4’ is completely determined by its

additive structure.
In Section 6 we completely characterize the structure of an archimedean

essentially closed f-ring and this gives quite a bit of information about the

structure of an arbitrary f-ring.
In Section 7 we get a nice representation of the orthocompletion of an

f-ring with a basis and this leads to information about the structure of an ar-
bitrary f-ring with a basis.

NotATION. Throughout G will denote an I-group and for each 0 < geG,
G(g) will dencte the convex I-subgroup of G generated by g. G is a dense I-subgroup
of an [-group H if for each 0 < he H we have 0 < g < h for some g € G. IT 4, will
denote the cardinal product of I-groups A; and £ A4, will denote the cardinal sum.
The cardinal sum of a finite number of I groups will be denotedby 4, @ -+ @ A,.
For each subset S of G

S =1{geG||g|A|s| =0 for all seS}

is the polar of S. Sik [20] has shown that the set P(G) of all polars in G is a
complete Boolean algebra and that an I-group is representable if and only if
each polar is normal.

2. The existence and uniqueness of X-hulls
LemMa 2.1. If G is a P-group and L-group then G is an SP-group.

PROOF. If Ce P(G) and {a,|;€ A} is a maximal disjoint subset of C then
a = V a, is a weak order unit in C and so a” = C. Thus

G=a"®a =CaC.

G is an #-subgroup of an I-group H if G is an l-subgroup of H and for
each disjoint subset {a,| 1€ A} of G for which V¢ a, exists we have V4a;, =
Vpa,. Note that the intersection of laterally complete .% subgroups of H is a
laterally complete #-subgroup.

LEMMA 2.2. If G is a large l-subgroup of an | group H then G is an ¥-
subgroup of H.

PROOF. Suppose that {al|le/\} is a disjoint subset of G and a = Vg;a,
exists. If h is an upper bound for the g;in H thena 2 a A h = k = q; and so it
suffices to show that a = k. For each AeA, a* = Vga, (x # 1) exists,
a, \a* =0and a = a; + a* Thus

H(a) = H(a,) ® H(a).

https://doi.org/10.1017/51446788700015391 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015391

388 ’ Paul Conrad [4]

Now k = k; + k;, where k,e H(a;) and k*e H(a") and since a = k = a; we
have a, = k;, = a,. Therefore a —k = a* — k*e(1,H(a*) = K. But KNG
= [1,G(a*) = G(a) and s0 if 0 < xe K NG then x A a; = O for all 1€ A. Thus
xAa=xAVga, = VgxAa, =0 and since a is a unit in G(a), x = 0.
Therefore K NG = 0 and since G is large in H, K = 0.

Let G be an I-subgroup of H and denote the polar operation in G (H) by
’(*). For Be P(G) and C e P(H) define

Bu = (B)* and Cv = C NG.
1) Buv = (BY* NG = B¥* NG = B**y = B,

ProoOF. Since B’ < B*¥ we have (B')* = B** 2 B and so (B)* NG = B**
NG2B. If0<xe(B)* NG then xeG and x A B’ = 0 and so xe B” = B,

2) If v is one-to-one then By = B**,

3) ([9] p. 455). If G is large in H then g is an isomorphism of P(G) onto
P(H) and v is the inverse.

4) ([10] p. 156). If H is archimedean then the following are equivalent.
i) Gislarge in H.
ii) v is an isomorphism of P(H) into P(G) and p is the inverse.
iii) If0 % CeP(H)then CNG # 0.
iv) If0<heHthen h" NG # 0.
5) If G i, large in H and X is an I subgroup of G or just a non-void subset
of G then
i) (X")** = X*¥ and X* NG = X"
i) (X)** = X* and X*NG =X".

ProOF. Since X € X” we have X** < (X")**. Also X**p is a polar of G
that contains X and so X**y = X** "G > X”. Thus X” < X** and hence
(X"y** < X**,

X*NG=X"Y"NG=X"uw=X"

From (i) and (2) we have X* = (X")* = (X')"* = (X')**. Finally X* N G
= {geG| |g[ A X = 0} = X' holds for any I-subgroup G of H.

6) If o is an l-automorphism of H that induces the identity on P(G) then a
induces the identity on P(H) provided that G is large in H.

ProorF. If Ce P(H) then Cv = Cva =(G N C)a =Goe N Cot = G N Ca = Cay,
so that C = Ca by (3).

PROPOSITION 2.3. Let G be a convex I-subgroup of an l-group H.
i) If H is an SP-group so is G.
it} If H is a P-group so is G.
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Proor. (i) If AeP(G) then H = A*¥* @ A* and hence G = (4** N G)
PUAU*NG) =A4ABUA* NG =Ad 4.

(i) Pick geG. Then H = g* @g* and so G = (G Ng**) @ (G Ng*)
=g"®g’. For g’ < g* implies (g")'* = g’* 2 g** and so g" = (GN(g")'*
2GNg**2g".

- Note that a polar in an L-group is an L-group, but an [-ideal C of an L-
group G need not be an L-group.

ExampLE. C = 22 R, c[[2, R, = G.
This also shows that an [-ideal of an O group need not be an O-group.

THEOREM 2.4. If H is an X-group and an essential extension of G and
{HAHGA} is the set of all l-subgroups of H that contain G and are X-groups
then K = (\\H, is an X-hull of G, where X =P, SP,L or O.

Proor. If H is an L-group then by Lemma 2.2 each H, is a laterally com-
plete #-subgroup of H and so K is an L-group.

Suppose that H is a P-group, 0 << ke K and denote the polar operation
in H, K, and H, by *, # and * respectively. If 0 < xe K < H, then x = x; + X,
ek*@®k* and by (5) k* = k* "H, and k* = k** N H* Thus x; + x, is the
unique decomposition of x in H = k* @ k**. This holds for all 1 so x,,
x,€ NH, = K. Thus x;, e KNk* = k* and x,e K Nk** = k** . Therefore
xek® ®k*%and hence K = k* @k**.

If H is an SP-group then an entirely similar argument shows that K is also
an SP-group.

LEMMA 2.5. An L-hull K of a representable I-group G is representable.

ProoF. Theorem 2.8 in [9] asserts that if G is dense in K then K is also
representable. The only place in the proof where the hypothesis of denseness is
used is to infer that if (~a, + (a, Ab)+a)A(a, ANb) =0 and a, Ab>0
then a,A b = g > 0 for some ge G and so (—a,+ g+ a,) A g = 0. But since
G is large in K we can conclude that n(a, " b) = g > 0 for some n>0 and
g€G. Thus 0 = n(( - a, + (a, A b) + a,) A (a, A b)) = (— a, + n(a, A\ b) + a,)
An(a, ANb)yz(~-a,+g9g+a)ANg=z0andso(—a,+g+a)Ag =0,

COROLLARY. An X-hull of a representable l-group is representable, where
X =P, SP,LorQ.

THEOREM 2.6. There exists a unique X-hull GX of a representable l—gfoup
G for X = P, SP, L or O. Morover G is dense in G* and G* is representable and
if G is abelian or archimedean then so is G*,
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ProofF. The existence follows from Theorem 2.4 provided that we can embed
G as a large l-subgroup in an X-group. In order to do this we make use of the
direct limit construction developed in [9].

Let D(G) be the set of all maximal disjoint subsets of the Boolean algebra
P(G) of polars of G. IfZ, % € D(G) then we define &/ < ¥ if each 4 €./ is con-
tained in some Ce¥. Then D(G) is a lower directed partially ordered set. For
each € e D(G) let G4 be the I-group

Ge¢ =HCE?G/C"

If o7 <€ eD(G) and Ce¥ then C = (N A4,’)’ the polar join of the 4, e/ that
are contained in C. Thus C' = N A4,’ and so the natural map

G/C »T] G4y

is an l-isomorphism. Thus there is a natural l-isomorphism 7, of G, into G,
obtained by combining the above maps for each G/C’, where Ce®¥. Let O(G)
be the direct limit of the I-groups G with connecting I-isomorphisms 7. Define
k e O(G) to be positive if k = 0 or ky, >0 for some € e D(G). For each ge G
let & be the element in O(G) with g, = (-+-,C’ + g, :--) for each ¥ € D(G).

In [9] it is shown that @(G) is a representable laterally complete I-group
and if G is abelian or archimedean then so is 0(G). Also the map g —» & is an
l-isomorphism of G into @(G) and G is dense in ¢(G). Thus to complete the
proof of existence it suffices to show that @&(G) is a P-group. Thus we must show
that if 6 < le 0 then O = I** @ I*.

Consider 6 < ke O(G) and pick €€ D(G) such that I, £ 0 # k,. Then
le = (-, C" + K(C), ), where 0 < I(C)eG. Let I(C) be the ccnvex [-subgroup
of G that is generated by /(C) and pick € = «/ € D(G) so that each (C N I(C))” # 0
belongs to /.

Gy = [1GIC NI ® TG4,

kg = X Y Ya
Let x (y) be the element in ¢ (G) with «7-th component x, if x, # 0(y ify, # 0)
and 6 otherwise. Then k = x + y. It is shown in [9] that the only non-zero
components of [, are of the form (C NI(C))’ + I(C). Thus I, A y, = 0 and so
yel* Thus we need only prove that x e **. Consider 0 < te @(G) such that
I At = 0. To complete the proof of existence we need to show that x A t = 6.

Pick 92eD(G) so that 0 # tg5 = (---,D" + (D),---). Now ([9] p. 456)

(CNKC) N(D NKD))" = 0 and so we may choose a # € D(G) that contains
the (C NI(C))” # 0 and the (D N (D))" # 0. Let

A NAB={ANB #0|Aes and Be B}
Then &/ N % € D(G) and so we have
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Now x, has nonzero components of the form (C N I(C))’ + z and ¢, has non-
zero components of the form (D N #(D))’ + #D). These do not change under
the maps into G4 and so x A t = 6. Thus there exists an X-hull of G.

Let H be an X-hull of G and let «(f) the the natural l-isomorphisms of G
(H) into O(G) (O(H)). We complete the proof by showing that o can be extended
to an l-isomorphism p of H onto the X-hull X of Ga = G in 0(G).

H
|2
G2 - GeKecoG)

Thus if H, and H, are X-hulls of G then p,p,~! is an l-isomorphism of
H, onto H, that induces the identity on G. It follows from Theorem 2.7 that
PP, is unique.

Since G is large in H for each Ce P(G) we have C = G N C** and
C'=GNC* Thus C’'+g ————= C*+ g is an | isomorphism of G/C’ into
H/C*. For each € € D(G) let € = {C** | C e®%). Then % € D(H) and thus there is a
natural /-isomorphism 7, of G, onto H;. Moreover if & < € in D(G)

Ge ——-2¢——o H;
”fgdl l”é&
Gd ___T_’d__.__-) H’;

commutes, where n; is the [-isomorphism used in the construction of O(H).
Thus (see [9]) the 74 determine an I-isomorphism t of &(G) into O(H)

G -2 5 Gu=G<KcoG)

If g € Gand % € D(H) then (gat)g = (ga)eTe=(--,C' + g, +-)te = (-+-,C* + g, =)
= (gP)¢. Thus gat = gB and hence GB = Gar = @(G)r which is an X group
and Gp is large in O(H). Thus HB N @&(G)t is an X-group and contains G and
so since Hy is an X-hull of Gf we have
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Gat = GB < Hf < O(G)r = O(H).

Thus HBz~! is an X-group that contains G, and so
Ga = GBi~'c K< HBt~ ! c O(G)

and since HBt~! is an X-hull of GBr~! we have K = HBr~!. This completes the
proof of Theorem 2.6.

REMARK. We can, of course, define countably laterally complete I-groups
in the obvious way and then it follows from the above proof that each repre-
sentable l-group admits a unique CL-hull, Also G admits a unique minimal
essential extension H that is both a P-group and a CL-group. For the vector
lattice case H is the ‘‘completion’’ of Amemiya [1]. See also Vulich [25].

THEOREM 2.7. If « is an l-isomorphism of G, onto G,, where the G, are
representable l-groups, then there exists a unique extension of a to an l-iso-
morphism of G onto GX for X = P, SP, L or O.

PrOOF. « induces an isomorphism of P(G,) onto P(G,) and hence an iso-
morphism of D(G;) onto D(G,). Also for Ce P(G,) we have the natural map
C'+g———(Ca)’ + ga of G,/C’' onto G,/(Ca)’. Thus there is a natural map
oe of G, onto G,e, such that

%g
Gig————=——~ = Gige
”%’dl lmgu/a
Lo
Gyg———"——~ = Gy,

commutes. These maps o, generate an isomorphism & of 0(G,) onto 0(G,) and
the following diagram commutes

»Gf
_—
G, ——— G, = G¥ c 0,
al l&
G, ——-- G, = G} = 0G,)

\\) T
Gy

Also it is easy to see that G¥@=GZX. Thus « can be extended to an I-isomo-
morphism of G onto GJ.
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For the uniqueness it suffices to show that if « is an l-automorphism of G¥
that induces the identity on G then « is the identity. Since & induces the identity
on P(G) it must also induce the identity on P(G*). Thus we may assume that o
is an l-automorphism of ¢(G) that induces the identity on G and P(0G)). Con-
sider 1e O(G) with I, = (---,C' + g,---) and suppose (by way of contradiction
that (lo)e = (+-,C" + x,--+), where C' + x # C’' + g. Then

lg—1sA@©,-,0,C"+|g —x]|,0,---,0) = 0 but
(|g = 10e AO,-,0,C" +||g — x|,0,---,0) # 0.

Thus « does not induce the identity on P(0(G)), a contradiction.

PROPOSITION 2.8. Suppose that G is a representable l-group, a is an I-
automorphism of G° and X = P, SP, L or 0.
i) G*a = (Ga)* and so if Ga = G, then G¥¢ = G*.
ii) If Ga < G then G¥a = G*.

PROOF. Ga is large in G° and hence in G*x. Also G*a is an X-group. If
Go = K c G*a, where K is an I-subgroup of G*a and an X-group then G < Ka ™!
< G* which contradicts the minimality of GX. Thus G*« is the X-hull of Ga and
so G a = (Ga)*. If Ga= G then G*a = (Gx)* = G*. The following example
shows that we may or may not have equality.

ExaMPLE. Let G be the l-ideal in [ [2, R; generated by (1,2,3,---). Then
G°% =[] R;. Let o be the multiplication of G° by (1,1/2,1/3,---). Then G is the
l-ideal of G? generated by (1,1,1,--). Thus Gx = G and both G and Gu« are

SP-groups.
G’ = Ga = G = G* and

Gloy = (Ga)t = G% = GL.
COROLLARY. If a is an l-endomorphism of G* that induces an automorphism

on G then o is an automorphism of G*.

PRrOOF. Since G is large in G it follows that a is one-to-one on G* and by
the minimality of GXa must be an l-automorphism of G*.

THEOREM 2.9. If G is a P-group then each 6 < le O(G) is the join of a
disjoint subset of G. In particular, G* = 0(G) and hence G* is an SP-group.

PrOOF. Consider 8 < e @ and I, # 0.1In each C e ¥ pick a maximal disjoint
set {aalaeA} of elements of G. Then C = (Na,’) = (U a,”)" and so there is
a partition o/ < % that.consists of principal polars of G.

o = {a;|AeA}
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Thus 0 # I, = (--+,a," + I(A),--+). Now G = a;” @a,” and so we may assume
that 0 < (1) e a,” for each 1€ A. In particular, the I(1) are disjoint in G.

{(Da = (0,,0,a," + I(2),0, -+, 0).
Thus Vla)d = [, and so VI&) =1
COROLLARY 1. If G is an O-group then G = O(G).
CoROLLARY Il. If G is a representable l-group then
G = GF = G°F = (G°P)E = (GN)*: = G° = 0(G)

where the indicated X-hulls are all in O(G). In particular, G° = O(G) and so
G is the orthocompletion defined by Bernau.

ProoF. Clearly G = GF = G5F = (GF)* = (G5F)! = G° = ¢(G) and so it suffices
to show that (GP)L = O(G). Let H be the P-hull of G and let «, B, T be as in the
proof of Theorem 2.6.

H-—2Pt L gea=om

lf

G - G GA(GHE<c 0(6)

Then A = G®t = (Gt = O(H) and (G")!1 is an L-group. Thus (G*):r = O(H)
and so (GH)E = O(G).
Also it follows that
GG (GH = (GHP = G = 0G)
but as the next example shows (GY)F need not equal G°. Thus the operators

SP and L need not commute.

ExamPLE. Let A be the po-set
D]
L
Denote the set of maximal (minimal) elements in A by 4 (B). Let V be the set
of all functions from A into the reals. Then V is a real vector lattice if we define

addition pointwise and define ve V' to be positive if each non-zero maximal
component is positive. Next let

G = {ve V|vis constant on 4},

Note that G is laterally complete but not a P-group. Let
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H = {veV l v restricted to A has finite range}.
Then H is not laterally complete and HX = V. We show that
H = G = G*.

Clearly G is large in H and H is an SP-group. Suppose that G € K = H, where
K is a P-group. Let ' (*) denote the polars in K (H). Let S be a subset of B and
let s € G be the characteristic function on S. Let a € G be the characteristic func-
tion on A.

K=s"®s,H=s**®s* and s**N"NK =5" and s* "NK =5,

Thus a = a, + a,es” ®s’ = K and this is also the decomposition in H = s**
@ s*. Thus a, is the characteristic function of the elements in 4 above S, but
such elements generate the group of functions on A with finite range. Therefore
K = H and hence H = G".

PROPOSITION 2.10. If G is a representable I-group then (GX)F = (G")SF.

Proor. Take C € P((G")*; then C N G* = Cve P(G"): so as in Lemma 2.1,
Cv=a", and thus C = Cvyu = a"u = (a")** = a**, by (3) and (5). Thus
(GYF is an SP-group and so (GX)F = (GH*.

CoROLLARY. Let G be a representable I-group.
i) (G%¥ = (G for X = P, SP or L and (G*)* = (G°")F = G*%.
ii) (GH* = (GH’F = (G)* = (G*P)L and equality need not hold.

3. The X-hulls of D --modules and f-rings

A p-endomorphism of an l-group G is an endomorphism « of the group
such that
x Ay =0 implies xa A y = 0 for all x,yeG.

It is easy to show that this is equivalent to Gta < G* and Ca = C for each
C € P(G) (see [13]). Thus the p-endomorphisms of G are the /-endomorphisms
that preserve polars. In Section 4 we shall show that each p-endomorphism of a
representable I-group G has a unique extension to the X-hull G¥ of G.

Let D be a directed po-ring. G is a D,-module (see [22]) if G is an abelian
I-group and a D-module such that for each d e D* the map

g-—-—-—gd for all geG

is a p-endomorphism of G. Steinberg [22] shows that such a G is isomorphic
to a subdirect sum of totally ordered modules. Note that each polar of G is a
submodule. Note also that each abelian I-group A is a D,-module with respect
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to the ring Z of integers and also with respect to the directed ring D of all polar
preserving endomorphisms of A.

PrOPOSITION 3.1. If G is a vector lattice over a totally ordered division
ring D then G is a D;-module.

ProOOF. We are given that G is an abelain I-group and G*D* =G+, If
deD™* and geG then (g V 0)d = gd V0. For (g VO)d = gd and 0 and if
z = gdandOthenzd~! = gand 0and so zd=! = g VV 0. Therefore z = (g V 0)d.

Now suppose that x Ay = 0, where x,ye G and deD*. If 1 = d then
x 2 xd and hence 0 =xAy=xd Ay=0. If d>1 then 1>d~! and so
xAyd r=0.Thus 0 = (x A yd " 1)d = xd A\ y.

Suppose that G is a D-module. Then each Ce P(G) is a submodule and
hence G/C’ is a D,-module. Thus each of the I-groups G, =[] G/C’ used in the
construction of ¢(G) is an D;-module and each of the connecting l-isomorphisms
Te . also preserves scalar multiplication by elements of D. Consider £e ¢(G) and
% € D(G) such that

0#Ly = (-, C" +Z(C),--+) where Z(C)eq.

Define #d to be the element in O(G) with (Ld)y = (---,C’ + L(C)d, -++). It follows
that O(G) is a D,-module and the natural map g———— & of G into ((G) also
preserves scalar multiplication by elements of D.

THEOREM 3.2. There exists a unique minimal essential extension G*P of
the D;-module G that is an X-group and also a D -module. G*P is isomorphic to
the intersection of all X-subgroups of O(G) that contain G and are D ~modules.

The proof is analogous to the proof of Theorem 2.6. We shall show that
G* = G*P as l-groups and there exists a unique extension of the scalar multipli-
cation of G to a scalar multiplication of GX by D.

Recall that an f-ring G is a lattice ordered ring such that

xAy=0implies xd Ay =dx Ay =0 for all x,y,deG™*.

Thus each polar of G is a ring ideal and so it follows that O(G) is also an f-ring
and the natural l-isomorphism of G into @(G) is a ring isomorphism.

THEOREM 3.3. There exists a unique minimal essential extension G*' of
the f-ring G that is an X-group and also an f-ring. Moreover, GX! is iso-
morphic to the intersection of all X-subgroups of O(G) that contain G and are
sub-f-rings of ¢(G). ’

Again the proof is analogous to the proof of Theorem 2.6. We shall show
that G¥ = G* as l-groups and there exists a unique f-ring structure for G* so
that G is a subring.
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4. Lifting p-endomophisms from G to G¥
Let G be a representable I-group and let GX be the X-hull of G in O(G).

THEOREM A. (Chambless [7]) G5 = {le 6(G) | = 0 or I; # 0 for some finite
partition of P(G)}. Thus G is the direct limit of the groups G, for finite
& € D(G) and hence is the join of the directed set of I-groups Gsne, where m, is
the natural map of G, into O(G).

THEOREM B. (Chambless [7]). Let S be the subalgebra of P(G) generated
by elements of the form g’ and g”. Then

GP={le 0(G) I 1=0or I, # 0 for some finite partition of P(G) such that & < S}
Thus G* is a direct limit.

Now, as we have seen, if G is an f-ring then so are the G4 and so it follows
that G* and G°F are subrings of ¢(G). We shall also show that G* is a subring of
“(G).

Amemiya [1] mentions that if G is a vector lattice or an f-ring then under
his construction G is also a vector lattice or an f-ring.

If G is an f-ring then each minimal prime subgroup of (G, +) is a ring
ideal and so T =[] G/M, for all minimal prime subgroups M, is an f-ring.
is a subring constructs G” in T. Here it 1s hard to determine whether or not G*
Speed [21] since G is not large in T. ’

LemMMA 4.1, If o is a polar preserving endomorphism of an l-group G,
{aalaeA} is a disjoint subset of G and \/ a, exists, then {a,0|ae A} is disjoint
and (\Va,o = Va,o.

ProoF. Clearly (Va,)o = ago for all fe A. Suppose that d = a,,a'for all g.
Then (VVae = (Va,)o Ad Z ago for each f and hence

(Vao —x =(Vao Ad = ago

for all B, where x = 0. Therefore (V a,)0 = azo + x for all f. To complete the
proof it suffices to show that x = 0. Now (Va,)o = azo + x A a, for all f;
$0 (Vazp8,)0 = x Aag for each B. But (x A\ ag) A a, = O for all y # B, and so

0=(x /\aﬂ) A (Vazpa) = (x Nag) A\ Vazpgdg)0) = X Aag
for each B; hence x A (Va,) = 0, and thus 0 = x A (Vay)eo = x.

COROLLARY 1. If {a,|a e A} is a disjoint subset of a Dj-module G over a
directed po-ring D, V a, exists and 0 < ce D then (Va,)c = Va,c.

CororLary IL If {aa|aeA} is a disjoint subset - of an f-ring G and V a,
exists then (Va,)c = Va,c and ¢(Va,) = Vca, for each ce G*.
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Lemma 4.2. (Henriksen and Isbell [15]). If Y is a multiplicative sub-
semigroup of an f-ring F then the l-subgroup T of (F,+) that is generated
by Y is a subring.

ProoF. Let [Y] = {e;y; + -+ eyu|yi€Y, es= + 1 and n 2 0} be the
subgroup of (F, + ) generated by Y. Then
T = {V 4 ApSes|5p€[Y] and A and B are finite}.

But [Y] is a subring of F and ifa = V Aa,zand b = \V A b, belong to T then
at =V A(apV0) and b* =V A(b,;Vv0) and since positive elements
distribute multiplicatively over \/ and A it follows that a*b* e T and hence T
is a subring of F.

PROPOSITION 4.3. Suppose that G is an f-ring and also a subring of the
f-ring H. If H is laterally complete and an essential extension of G then the
lateral completion G* of (G, +) in H is a subring.

ProoF. Consider {a,|a€ A} and {bﬁl B B} disjoint subsets of G. Then by
Corollary II of Lemma 4.1

(v aa)(v bﬁ) = v aabﬂ'
Thus the set of all such V a, is a subsemigroup of H. It follows from Lemma 4.2
that the I-subgroup G(1) of H generated by these elements V a, is a subring.
Then by transfinite induction it follows that G” is a subring of H, (see [9]).
THEOREM 4.4. Let G be a representable l-group and let X = P, SP, L or O.

1) A p-endomorphism o of G has a unique extension to a p-endomorphism
o* of GX.

2) If o is one to one then so is 6X. If o is onto then so is 6* for X = P, SP
or O.

3) If o is a p endomorphism of G° such that Ga = G then G*a < G*.

ProoF. If € e D(G)and Ce € then C’ + g -~ — C’ + go is an l-endomorphism
of G/C’ and hence
Og

(-5 C"+ g(C), =" = (+++,C' + g(C)a, +++)
is an l-endomorphism of Gg. If € = o/ € D(G) then

Ge =[] G/C" ——-2%—— -~ G,

Tew J{ 1”«4

Gy =[][G/A" --2% -5 G,
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commutes. For (-++,C' 4+ g(C), - )oghgy = (-, C"+g(C)o, - Yngy = (-, A’
+ g9(C)o,-+) =, A"+ g(C), - )04 = (-, C" + g(C), -+ )¢ 40 o, Where of course
AcC.

Thus ¢ determines an l-endomorphism & of 0(G). Let = be the natural map
of G onto G < O(G). Then (gn)y = (-+,C’ +g,---) for all €eD(G), and
né = o on G and so & is an extension to ¢(G) of the p endomorphism n~'on
of G.

We next show that & is a p-endomorphism of O(G). If 8 # I, ke ¢(G) and

Ak = 0 then there exist ¥ € D(G) such that I, # 0 # k, and such that their
supports are disjoint. If l,o, = 0 then I6 = 0 and hence 16 A k = 0. In any
case the support of l,o, < support of I, and hence ly6, A kg = 0 and so
I A\ k = 0. Therefore & is a p-endomorphism of 0(G).

We next show that if « is a p-endomorphism of @(G) that induces =~ lon
on G then a = . Consider Iy = (-+,C’ + g, --) and suppose that (la),
= (.-, C"+ x,---) where C' + x # C’ + go. Then

|& - 1]¢ A(0,++,0,C" + |go — x|,0,+,0) = 0 but
(|&=1]a)e A 0,,0,C" + [go — x],0,--,0) # 0
and thus « is not a p endomorphism, a contradiction.

Therefore ¢ has a unique extension to a p-endomorphism of G°. Now if p
is an extension of ¢ to say G then it can be extended to G° and so p is unique.
Thus to complete the proof of (1) it suffices to verify (3). So suppose that « is
a p endomorphism of G such that Ga < G.

a) Gta < G*. For if {a, | A € A} is a disjoint subset of G then by Lemma 4.1
(Va)a = V a;o and so G(1)ax = G(1), where G(1) is the I-subgroup of G* that
is generated by all the elements \/ a,. Thus it follows by transfinite induction
that G'a = G~

b) G5Fa = GSF. Here we assume that G = G and G° = ((G). Then we know
exactly how o operates on @(G). Consider 8 # le G*F, Then I, # 0 for some
finite partition ¥ of P(G). If (la)y = O then la = @ and if (la), # O then clearly
la € G5 by Chambless’ Theorem A.

¢) G'a = G”. This is a simple application of Chambless’ Theorem B. This
completes the proof of (1) and (3).

(2) If o is one to one then ¢* is one to one since G is large in G¥. Now suppose
that ¢ is onto. Then the map C’ + g—— — C’ + gois an I-homomorphism of G/C’
onto itself. Thus ¢ is clearly onto and using our representations of G¥ and
G it follows that o¥ and ¢°% are also onto.

QUESTION. Is o* onto provided that o is onto?

THEOREM 4.5. If G is a D;-module over the directed po-ring D then there
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exists a unique extension of the scalar multiplication by elements of D so that
G* is also a Dy-module. Moreover G* with this scalar multiplication equals
G*? for X = P, SP, L or O.

Proor. The first part follows from the fact that each p-endomorphism of G
has a unique extension to a p endomorphism of G*, Now (without loss of gen-
erality) G G¥X<= G** < O(G) and G* is a submodule of G*°. Therefore
G* = G*»,

THEOREM 4.6. If G is an f-ring then there is a unique multiplication on
GX so that G* is an f-ring and G is a subring. Moreover, GX with this ring
structure equals G** for X = P, SP, L or O.

Proor. We first verify the result for X = 0. Now as we have seen O(G) is
a ring and the natural map g ——-— gisaring l-isomorphism. So all we need show
is that the multiplication of @(G) is uniquely determined by that of G. Suppose
that - is a multiplication on @(G) so that ¢(G) is an f-ring and - induces the
given multiplication on G.

If 0 < §eG then the right multiplication of G by & is a p-endomorphism
of G and so has a unique extension to a p-endomorphism of ¢(G). Therefore

x - g =xg for all xe @G).
Suppose that x, = (0,---,0,C" +¢,0,---,0). Now
ge = (0,---,0,C’' + g,0,---,0) + (the other non-zero components)
= a + b.

Now x4 b =0 since they are disjoint and so (0,---,0,C’ + tg,0,---,0)
= Xgfg = Xy (@a+b) = x4+ a = (0,-,0,C"+10,---,0) - (0,--,0,C" + g,
0,:-,0).

Now consider x, y € O(G) with x, # 0 # yg.

X = (-, C"+ x(C),---) = V x¢, where x = (0,---,0,C’' + x((),0,---,0)
ye = (-, C" + Y(C),-+) = V y¢, where yc = (0,---,0,C’ + y(C),0,---,0).
Thus by Lemma 4.1 and the above
Xg* Ve = VXc*Vyc=VXcye= VXcYc = XgVe

Therefore - is the natural multiplication on @(G) and so there is a unique f-ring
structure on G° so that G is a subring of the f-ring G°.

Finally we have shown that G?, G57 and G* are all subrings of 0(G). Also
any ring structure on G* that induces the given one on G can be extended to a
ring structure on G°. Therefore the ring structures of G, G5F and G are also
determined by their additive structures.
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5. The y-hulls of archimedean /-groups and f-rings

An archimedean /-group 4 is called a

d-group if it is divisible,

v-group if it is a vector lattice,

c-group if it a conditionally complete lattice,

e-group if it is essentially closed in the class of archimedean [-groups.

It is well known that an abelian I-group A4 is contained in a unique minimal
divisible abelian I-group A4%. For there is exactly one way of extending the order
of A to a lattice-order of its injective hull 4% so that (4)* N4 = A*. Also if 4
is archimedean then so is A%

THEOREM 5.1. If A is a large l-subgroup of an archimedean y-group H,
where y = d, v, ¢ or e, then the intersection K of all the I-subgroups of H that
contain A and are y-groups is a y-group. Thus K is a minimal essential extension
of A that is a y-group and we shall call such an extension a y-hull of A.

THEOREM 5.2. Each archimedean | group A admits a unique y-hull A’ for
y = d, v, core. A is the Dedekind MacNeille completion A" of A and A is dense
in A°. A" is the l-subspace of (A%)° that is generated by A. A° = ((A%)°)* is the
essential closure of A.

REMARKS. A minimal essential extension of an archimedean I-group that is
a vector lattice is necessarily archimedean [11]. Bleier [6] has shown that a
minimal archimedean vector lattice that contains A4 is necessarily an essential
extension of A and hence is A°. Also, of course, any complete I-group is archi-
medean.

ProoF oF THEOREM 5.1. If y = d or v then clearly the theorem holds. For
the intersection of divisible subgroups (subspaces) is again divisible (a subspace).
If A is a large I-subgroup of an archimedean e-group H then clearly H is an
e-hull of A. To prove the theorem for y = ¢ we make use of the following two
lemmas.

LemMmA 5.3. (Bernau [3]). If G is a dense l-subgroup of an l-group H then
all joins and intersections in G agree with those in H.

Lemma 5.4. If A is a large l-subgroup of an abelian | group B then all
joins and intersections in A agree with.those in B.

PROOF. A is large in B? and so A” is dense in B, Suppose that {a,|1eA} < 4
and V 4a, exists. If {al|leA} < yeA? then nye A for some n>0 and so
ny 2 V na; = nVa; Thus y = V  a; and hence V 4ua; = V 4a,.

Next V a; = Vjgaa, since A% is dense in B Finally Vgia, = Vga,
since {allle,\} S Band Vgia, = V,a,€AS B Thus V a; = Vga,.
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COROLLARY. If A is a large l-subgrcup of a complete I-group H, then the
intersection of all ¢ subgroups of H that contain A is a ¢ subgroup.

QUESTION. Is Lemma 5.4 true for non abelian | groups?

PROOF GF THEOREM 5.2. Clearly the theorem holds for y = d. In [11] it is
shown that 4 admits a unique v hull 4" and that A" is the / subspace of (4)" that
is generated by A.

In [10] it is shown that A admits a unique essential closure A° and that
A€ = ((Ad) /\)L.

The existence of A°for a complete vector lattice 4 was proven by Pinsker [19]
and Jakubik [16] showed that A° can be constructed solely from the underlying
lattice structure of A.

We now show that there exists a unique ¢ hull 4° and that 4° = A*. Note
that A" is the unique minimal complete I group in which A4 is dense [12]. Also
if A is an [-subgroup of a complete I-group H then H need not contain a copy of
A" [12].

LemMa 5.5. If A is a large l-subgroup of a complete | group H then A < H.

ProoF. We shall show that there exists an [-isomorphism of A" into H that
is the identity on 4. If xe A" then

x=V{xed|x <x} = A{xed|x = x}.

Sincex = {xeA Ii‘ < x} we have that Vyx exists. In particular for 0 < xe A",
x=V{xed*|x < x}and Vy{xeA*|x £ x} exists. Define

xo = Vy{xed*|x = x}.
1) Ifa Ab=0in A" then as A ba = 0.
Fora = Vaand b = Vb, where a A b = 0 and hence
0<ascANbo=VygaAVub=Vy(@anb)=0.
2) If a,be(A")" then ac + bo = (a + b)a.
Forac + bo = Vya+ Vyb = Vy(a+b) = VyX, where
X ={a+blabeAd*,a <aand b < b}, and
(a+b)o=Vya+b= \yY, where
Y ={yed*|y £ a+b}

Now if xeX then x =a+ b < a+ b and so xe€Y. Thus X = Y and hence
VeX £ VY.
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IfyeYthen0 < y < a+ bandhence y = u + v whereu,ve A",05u=<a
and0<v<b Thusu = Vuandv= Vvand hence y = V(u+0) =V S
where S X< A and yeA. Therefore y = V ~ S =V, S = V48§ since by
Lemma 5.4 joins in A agree with those in H. Thus y £ VzX and so
VaY = VaX.

Therefore o is a map of (4" )" into H* that preserves addition and dis-
jointness and induces the identity on A*. Forg = a —be A", where a,be(4")*
define gt = ao — bo. Then 1 is a group homorphism of A" into H that preserves
disjointness and so it is an l-homomorphism. Since 7 induces the identity on the
large ! subgroup 4 of A" it follows that 7 is an l-isomorphism.

COROLLARY I. A" = (4H)".

COROLLARY IL. If A is a large I-subgroup of a complete l-group H and no
proper l-subgroup of H contains A and is complete, then H = A" . In particular
A is dense in H.

COROLLARY III. A° = A" is unique.

This completes the proof of Theorem 5.2.

If follows at once from Lemma 5.4 that if A is a large [-subgroup of a o-
complete I-group H then the intersection K of all the o-complete /-subgroups
of H that contain A is o complete. Thus K is a ¢ complete hull of A. Since A
is large in K" it follows from Lemma 5.5 that A€ 4" = K. Now 4" NK is
g-complete and contains 4 and so since K is minimal we have 4 € K < A" . Thus
K is the intersection of all g-complete [-subgroups of A" that contain 4 and
hence K is unique. Therefore each archimedean l-group A admits a unique
o-complete hull A” .

It is well known that A% is a P-group but need not be an SP-group (see
for example [25] p. 85).

If each bounded disjoint subset of an archimedean vector laftice A is
countable then since A is dense in A7 it follows that each bounded disjoint subset
of A’ is also countable. Thus ([25] p. 156) A is complete and hence A° = A*.
These spaces A7 of *‘countable type’” were introduced by Pinsker and have many

nice properties (see [25] pp. 156-160).

THEOREM 5.6. If a is a p-endomorphism of an archimedean l-group A then
there exists a unique extension of a to a p endomorphism & of the y-hull A’ of
A, where y =d, v, core.

ProoF. The proof for y = cis contained in [13]. Suppose that y = d and
consider a € 4”. Then na € A for some n > Q. Define a& = ((na)x)/n. A straight-
forward computation shows that & is a p endomorphism of 4” and an extension
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of o. If B is an extension of « to a p-endomorphism of A” then
n(af) = (na)p = (na)a = (na)a = n(ax)

and hence aff = ad.

Combining the above we get a unique extension of « to a p-endomorphism
y of (4%)°. Also y is linear [13] and maps A4 into A. Thus y maps the I-subspace
A® of (A% that is generated by 4 into 4°.

Finally since 4° = ((4%)°)" it follows from Theorem 4.4 that o has a unique
extension to a p-endomorphism of A°.

COROLLARY. If A is an archimedean D;-module over the directed po-ring D
then there exists a unique extension of the scalar multiplication by elements
of D so that A’ is also a D-module, where y = d, v, c or e.

REMARKS. Since A4 is large in A4” it follows that « is one-to-one if and only if
@ is one-to-one. It can be shown that if y = d, v or ¢ then & is onto provided
that « is onto. The proof for y = ¢ is given in [13]. Bleier [6] shows that an
I-automorphism of 4 has a unique extension to an /-automorphism of A4”.

THEOREM 5.7. If A is an archimedean l-group and a is an l-automorphism
of A then there exists a unique extension to an l-automorphism a of A, where
y=4d,v,core.

Proor. For y = d the map & defined in the proof of the last theorem is
an l-automorphism of 4%, We have shown that the theorem holds for y = L.
Thus to complete the proof it suffices to show that « can be extended uniquely to
an [-automorphism of A°. For he(4)*, h = V {he A* | h < h}. Define

ha =V ha.

A straightforward computation shows that & determines an l-automorphism of
A° that is the unique extension of « (see the proof of Lemma 5.5).

LemMMA 5.8. (Bernau [2]). If F is an archimedian f-ring, xeF*,
{a,ll/leA} S F and V a; exists then V (xa;) exists and V(xa;) = x(V ay),
and dually.

THEOREM 5.9. Suppose that A is an archimedean f-ring, and A’ is the
y-hull of (A, +) for y = d, v, c or e. Then there is a unique multiplication on
A? so that AY is an f-ring and A is a subring. Thus the additive structure of A’
completely determines the ring structure.

ProoF¥. For a, b e A there exists an integer n > 0 such that na and nb belong

to A. Define
ab = ((na)(nb)/n?.
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A routine check shows that A% is an f-ring and this is the unique extension of
the multiplication of 4 to an f-ring multiplication of 4°.
For a,b e ((4%)°)* define

ab = A {xylx >a,y=band x,yeAd’}
and for x = x; — x, and y = y, — y, in (4%)° where x,, y; € (4%)°) + define
Xy = x1¥1 + X2y — (X192 + X2¥9)-

A rather long messy computation shows that (4%)° is an f-ring. This construction
is “‘well known”’.

Now suppose that - and x are two multiplications of (4%)° so that it is
an f-ring and A“is a subring and consider a, b e ((4%)°*.

a=A{xed|xZa} and b= A{yed’|y = b}
and hence by Lemma 5.8
ab=(Ax) - (AN=AE-N=AGxy)=(Ax)x(Ay) =axb

Thus there is only one such multiplication. Of course the same result holds for A°.

Now we have shown that the ring structure of (4%)° has a unique extension
to ((A°)°)r = A° (see Theorem 4.6). To complete the proof it suffices to show
that A” is a subring of A°. Consider x,ye 4 and r,seR. Then rx,sye A" and
xy € A. Thus since A€ is a real algebra (see Section 6)

(rx)(sy) = rs(xy)e A"
It follows that the subspace S of A° that is generated by A is a subring of A°. Now
A= {Vy /\Vaa,,[aaﬂeS, aeU, feV and U and V are finite}.
Thus by Lemma 4.2 A" is a subring of A°.

REMARKS. If A4 is an archimedean f-ring and H is a minimal essential ex-
tension of A that is an archimedean f-ring and a y-group then H = A”. For
clearly A < A” < H as Il-groups by Theorems 5.1 and 5.2. If y = e then A° is
essentially closed and large in H and so A° = H. If y = d then an easy computa-
tion shows that A* is a subring of H and so 4° = H.

If y = c or v then a rather messy proof shows that A” is a subring of H and
50 once again A” = H,

6. The structure of an archimedean f-ring

Let A be an archimedean f-ring and let X be the Stone space of the complete
Boolean algebra P(A) of polars of A. Then X is compact, Hausdorff and ex-
tremally disconnected. Let D(X) be the ring of continuous functions from X
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into the extended reals (R, + oo) that are finite on a dense open subset of X.
Then as [ groups A° and D(X) are isomorphic [10]. So let us examine the ways
in which D(X) can be made into an f-ring with pointwise addition and order.

Suppose that D = D(X) has a multiplication - so that it is an f-ring. Then
for ae D* the map d——-——d - a, for all de D, is a p-endomorphism of (D, + )
and so (see [13]) there is an element d€ D* such that

d-a

da for all deD.

We investigate the map a ———— 4. Consider a,beD*.

Da+b=d+b.

For da+b)=d-(a+b)=d-a+d-b=da+db=dd+b) for all
deDandsoford=1,a+b = d+b.

2) ab = a4b.
dab)y=d(a-b)y=d-(a-b)=(d-a) b = (da)b = d(ab).
3) ad = ba.

. ba=b-a=a-b=ab. Here we use the fact that an archimedean f-ring
is commutative.

4) Put I = p; thenforu,veD*, u-v = uvp.

For, for aeD*, we have d = 1d = al = ap. Now, v = a — b, where
a,beD*, and so u*v=u-(a—b)=u-a—u-b=ud—ub = uap— ubp
= u(a — b)p = uvp.

5) If - is a multiplication on D(X) such that D(X) is an f-ring with com-
ponentwise addition and order then there exists an element peD* so that
a - b = abp for all a,be D, and conversely.

Now D is complete and hence a P group. Thus

D — pﬂ®pl'

Clearly p” is a subring with respect to the - multiplication and p’ is a zero subring.
Consider d = u + ve p” ® p’ and define

dt = pu + v.
Then for d;, = u, + v; and d, = u, + v, in D we have
(dy - da)r = (pu,uy)t = pu,pu, = dtd,t

and so we have an Il-isomorphism of the f-ring (D, +, -, <) onto the f-ring
D = p" @ p’, where p” is a ring with respect to the pointwise multiplication of D
and p’ has the zero multiplication.

THEOREM 6.1, Let X be a Stone space and suppose that D(X) is an f-ring
with componentwise addition and order. Then there exist clopen subsets Y and
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Z of X such that X =Y VUZ, YNZ = & and D(X) = D(Y) @ D(Z), where
D(Y) has the pointwise multiplication and D(Z) has the zero multiplication.

Thus we have the structure of an arbitrary essentially closed archimedean
f-ring. Recall that the radical of an f-ring A consists of the nilpotent elements.

COROLLARY 1. (Henricksen and Isbell [15]). An archimedian f-ring is a
subdirect sum of a ring with zero multiplication and one with radical zero.

COROLLARY I1. If A is an archimedean f-ring then rad A= {ac A|aA = 0}
the set of annihilators of A. In particular, rad A is a polar.

PROOF. A < D(Y) @ D(Z) and if a = u + ve A is nilpotent, where u e D(Y)
and veD(Z) then u = 0 and so a = vis an annihilator. Thus rad 4 = 4 N D(Z).
Now D(Z) is a polar in D(X) and 4 is large in D(X). Thus rad 4 is a polar in A.

CoROLLARY II1. If A is an archimedean f-ring and also an SP-group, then
rad A is a cardinal summand. In particular, rad A is a cardinal summand of a
complete f-ring A.

Note that Corollaries 1T and III follow directly from Corollary 1.

COROLLARY V. If A is an archimedean f-ring with a weak order unit u
and also a P-group, then rad A is a cardinal summand.

PrOOF. Since A is large in A%, u is also a weak unit of 4° and without loss of
generality we may assume that as l-groups A° = D(X) and 1 = ue A. Then
11 =pedandsod=p"®p’, where the polars are taken in A.

COROLLARY V. For an archimedean f-ring A the following are equivalent.
i) rad A =0.

ii) A° contains an identity.

iii) rad A° = 0.

PrOOF. (rad A°) " A = rad 4 and hence since A4 is large in A° it follows
that i) and iii) are equivalent. From the Theorem iii) and ii) are equivalent.

Let A be an archimedean f-ring with identity u. Then u is a weak unit in
A (u A a =0 implies a = ua = 0) and hence in A°. Let X be the Stone space
of P(A) = P(A°). Then there is a I-group isomorphism of 4¢ onto D(X) so that
u maps upon 1. Thus without loss of generality, 1€ 4 € A° = D(X) as l-groups.
It follows from the next theorem that A and A° are both subrings of D(X). Thus,
once again, the additive structure of 4 determines the ring structure.

THEOREM 6.2. Suppose that A is an l-subgroup of (D(X), +) and 1€ A,
where X is a Stone space. If A is an f-ring with identity 1 then A is a subring
of D(X).

https://doi.org/10.1017/51446788700015391 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015391

408 Paul Conrad [24]

PRrROOF. Let - be the multiplication in 4. Then by (6)
1=1-1=1p=p.
Thus - agrees with the pointwise multiplication of D(X).

CoROLLARY 1. (Birkhoff and Pierce [5]). An archimedean f-ring with
identity has radical zero.

CoROLLARY II. If A is an archimedean f-ring with identity u then u is also
an identity for the f-ring A’, where y = d, v, c or e.

CoroLLARY III. If A is an archimedean f-ring with identity then each
p-endomorphism of A is a multiplication by a positive element.

PrROOF. We may assume that A is a subring of D(X), where D(X) has the
pointwise multiplication, and 1€ 4. Thus any p-enomorphism of 4 has a unique
extension to a p-endomorphism of D(X), but each p-endomorphism of D(X) is a
multiplication by an element d e D+ [13]. Thus since 1€ A4 it follows that d € A.

We give two examples of archimedean f-rings for which the radical is not
a cardinal summand.

I. Let A = C[0,1] and let

{-x+1if0=x<d
”(")‘{ 0if}<x<1.

Define g - f = gfh for g, fe A. Then A4 is an f-ring with
radA = {feA|f(x) =0 for 0 < x <1}

but (4, + ) is cardinally indecomposable and so rad A4 is not a summand.

II. Let H=][2 Q;, where Q, is the additive group of rationals. In the
even components use zero multiplication and in the odd components use the
natural multiplication. Let a = (1/2, 1/4, 1/8,---, 1/2",-.-), and let S be the sub-
ring generated by a. Thus S is the ring of polynomials without constant terms
in a and with integral coefficients. Let 4 be the subring of H generated by S and
20,

A=1{heH I h is a polynomial in a except at a finite number of places}.
Then 4 is an f-ring with a basis and a strong order unit, a but rad 4 is not a
cardinal summand. Note that a? = (1/4, 0, 1/64, 0,---) but a does not split into
a “‘zero part and a radical zero part”’.

The next two examples show the well known fact that the class of f-rings
with zero radical is not equationally definable.

II1. Let S be the semigroup of negative integers. Let A be the semigroup
ring of S over the integers and define an element in 4 to be positive if its largest
non-zero component is positive. Then A is a totally ordered integral domain
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and so rad A = 0. Let J be the set of elements in 4 with support included in
—2, —3,.--. Then J is a convex ring ideal and A4/J is a zero ring. Thus rad A}J
= AlJ.

1V. Let A be the set of all bounded rational sequences with cardinal order.
Thenrad A = 0. Let a = (1,1/4,1/9,---,1/n%,---) and

¢ay = {xeA||x| < na for some n > 0}.

Then J/{a) is an f-ring and 0 # {a)+ (1,1/2,1/3,:--)erad J[{a).

The following example is due to Roger Bleier and shows that if G is an
I-subgroup of an essentially closed archimedean I-group H then H need not
contain a copy of the essential closure G° of G.

V. Pick a Stone space Y so that D(Y) cannot be represented as a subdirect
sum of reals. Let C(Y) be the I-group of all continuous real valued functions
on Y. Then C(Y) =[] R, and C(Y)* = D(Y) = C(Y)-.

7. The structure of an f-ring with a basis

A strictly positive element s in an f-ring A is called basic if s” is totally
ordered or equivalently if A/s’ is a totally ordered ring. A basis for 4 is a maximal
disjoint subset {s;| 1€ A} where in addition each s, is basic. Let § = {s,|1¢€ A}
be a basis for 4. Then there exists a natural ring l-isomorphism ¢ of A into
K =T]A/sy

/A — = (8 +a,-).

THEOREM 7.1. K = (406)° and if S is finite then K = (Ao)F. In either case
A is dense in A°.

Proor. Consider 0 < x = (--+,s;," + x;,---)€ K with say s,” + x, > s,/. Then
we may assume 0<x,¢s, and so 0<a =x, A\s,e(M;4,5)\s, . Thus
0 < ao £ x and so Ao is dense in K. Thus since K is a P-group

Ao < (Ado)F < K.

We next show that s,’ + x, = (0,---,0,5,” + x,,0,---,0) e (46)® and hence
(Ao)* = L A/s,’. Let * (#) be the polar operation in (40)" (K).

(Aol =5, + s,** @5, + 5,* = 5,0 Ds,0*
X,0 = c + d
but this is also the unique decomposition of x,o in
K=s +s,##®s +s,# = Als; ®[[12.4/5: .

Thus ¢ = 5, + x, € (40)".
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Clearly K is the lateral completion of X A/s,” and hence of (40)". Thus K
is the orthocompletion of Ag. If S is finite then K = X A/s,” and so (4o)? = K.

COROLLARY L. Each s,’ is a prime ring ideal if and only if rad A = 0.

ProorF. (—) Each stalk Afs;’ is an integral domain and sorad 4 = 0.

(<) Suppose that x,ye A4, and xyes,’, then !x”yl = Ixylesa’ and so
without loss of generality 0 <x £ y and xyes,’. Then by convexity xZes,’.
Suppose (by way of contradiction) that x¢s,’. Then 0 <a = x A 5,€(Ny4,5;")

s, and hence a’e Ns,;’ = 0, a contradiction.

REMARK. Chambless [7] has shown that if A is an f-ring with rad4 = 0
then each minimal prime subgroup of (4, + ) is a prime ring ideal.
Let 4 be an f-ring and suppose that A satisfies

(F) each bounded disjoint subset of A is finite.

Then A has a basis § = {sllle/\} and the mapping of a onto (---,s," + a,---) is
a ring l-isomorphism of 4 into X 4/s,’.

~ CorOLLARY II. X A/s," = (Ao)".

PROOF. Since Ao is dense in H = X A/s;,’ we have Ao < (A40)" < H and we
have shown that H < (4o)F.

CoROLLARY II1. For an f-ring A the following are equivalent,
1) A = X A,, where each A, is a totally ordered ring.
2) A satisfies (F) and is a P-group.

ProOOF. Clearly 1) implies 2). If 2) holds then by Corollary II we have
A= XAls).

COROLLARY 1V. For an f-ring A the following are equivalent.
1) A = X A,, where each 4, is a totally ordered integral domain.
2) A satisfies (F), A is a P-group and rad 4 = 0.

PrOOF. Once again it is clear that 1) implies 2). Suppose that 2) is true.
By Corollary 111, A = X A/s,” and by Corollary I each stalk A/s;"’is an integral
domain,

A convex [-subgroup C of an f-ring A will be called an L-ideal if C is also
an ideal of the ring 4 and a P-ideal if C is a ring ideal and A/C is totally ordered.
If 0 < se A is basic, then s’ is a P-ideal.

THEOREM 7.2. For an f-ring the following are equivalent.
1) A= XA, where each A; is an o-simple totally ordered integral domain.
2) A satisfies (F), rad A = 0 and the P-ideals of A satisfy the DCC.

If this is the case then the P-ideals of A are trivially ordered by inclusion.
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PrOOF. 1 — 2. For AeA let M, = {aeA|a, =0}. We shall show that
these are the only P-ideals of A and hence the P-ideals are trivially ordered.
For let M be a P-ideal of A. If for each A€ A there exists 0 <ae M with a;> 0
then it follows that M = X A4, a contradiction. Thus M < M, for some 1. Pick
0<a,eAd; Then a = (0,---,0,q;,0,---,00¢ M and since M is a prime sub-
group of (4, +) we have M, = a’< M. Thus M = M,.

2 1. Let {s;| A€ A} be a basis for 4. Since 4 satisfies (F) the mapping ¢
of a upon (--+,s;' + a,-+-) is an l-isomorphism of 4 into X A/s,’. s, is a P ideal
and hence the P-ideals of A/s,’ satisfy the DCC. Let £ = I/s;,” be the minimal
convex ring ideal of A/s,’. By Corollary I of Theorem 7.1 we have that A/s,’ is
an integral domain and hence 2 # 0. Thus by a theorem of Johnson (see [14]
p. 132) A/s;’ is o-simple and so s,” is a maximal L-ideal of 4. Now s,€ M, .,5;"\ s,
and hence since s, is a maximal L-ideal we have

A= 008 +5, .

If0<aeAthena = x + ¢, where xe [,4,5;,"and tes,’. Thuss,’ +x = s,/ + a
and s;," + x = 5;” for all A # «. Therefore

xe = (0,---,0,s,” + a,0,---,0)
and so Ao = XAs,’.

COROLLARY. (Birkhoff and Pierce [5]). For an f-ring A the following are
equivalent.

1) A4 = Xi_{ A, where each A; is an o-simple totally ordered integral
domain.

2) The L-ideals of A satisfy the DCC and rad A = 0.

3) There are only a finite number of L-ideals of A and rad A = 0.

Proor. 1 — 3. If T is an L-ideal then T = X(4; N T) and since each 4; is
o-simple A4, N T = A; or 0. Thus there are only a finite number of L-ideals.

3 = 2. Trivial.

2—1. Let P,,P,,--- be the minimal prime subgroups of (4, +). Then
PP, NP, oP, NP, NPy> -+ for if a,eP,\P; and a,eP,\P; then
a; A a,e(Py NP,)\ P;. Thus there are only a finite number of P; and hence
A has a finite basis and so satisfies (F).

Commutative laws for the various operators

Throughout this section y will denote d, v, ¢ or e, X will denote P, SP, L
or O and W will denote d, v, ¢, e, P, SP, L or O. We shall investigate when two
of these operators commute.

1) For an archimedean I-group G, (G*)° = (G9)" = G*.
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2) For an archimedean Il-group G,(G")! < (GY)". For W = v, e, P or SP
we have equality, but for W = ¢, L or O there need not be equality.

PROOF. G is a large I-subgroup of (G%)" which is divisible. Thus G" is large
in (GHY and so (G™)! < (GHY. Clearly (G°)! = (GY)" = G®. If 0 < ge(G")* then
ng e G? for some n>0 and hence G® = (ng)” ®(ng)’. Thus (G°)* = ((ng)")*
@ ((ng)")? = (ng)** ® (ng)*, where * is the polar operation in (G*)°. Thus
(GP)? is a P-group and hence (G")? = (G%*.

If Cis a polar in (G57)? then C N G° is a polar in G and so G°* = (C N G*F)
@ (C N G°?)'. Thus

(G5 = (C NGB (CNGT)) = COC.
Therefore (GS7)? is an SP-group and so (G5F)¢ = (G9)’*.

If G=2Z then (G =Z°= QcR=Q=(GH. If G= X2,Z; then
(GHE = (GH° =[] Q: and G* = G° = [[7-1Z;. Thus a = (1,1/2,1/3,--+)
belongs to (G%" \ (GY)? since no multiple of a belongs to G*.

From the above computation we have.

3) For an abelian l-group G, (G¥)* =(G%)*. For X = P or SP there is
equality, but for X = L or O there need not be equality.

For the remainder of this section G will denote an archimedean [ group.

4) (G")’ = (G*)¥. For W = d, e or SP we have equality, but for W = ¢, P,0
or L there need not be equality.

PROOF.(G")" is a vector lattice. This is clear except for (G*), but if {a, [ 1€ A}
is a disjoint subset of G” and 0 <reR thenr(V a;) =V ra;since x ——— rx is
a p-endomorphism of G® and hence has a unique extension to (G°)~. Thus it
follows that (G")* is also a vector lattice. Now since G” is large in the vector
lattice (G*)* we have (G%)" = (G*)".

Now let G =][],Z;, where A is an infinite set. Then

G’ = {ryg,+ -+ r,g,]r,.eR, g;€G and t>0} =
For clearly T is a subspace of IT1 R, and hence it suffices to prove that
(rig,+ - +rg)VOoeT.
Consider the A-th component

(rigy+ - +rg) =g+ + (g

If this is negative then replace (g;); by 0 in each of the g,. Do this for each 1 and

call the new element g;. Then (r;g, + - +rg)VO0=rg, +--+rgeT and

hence (G°)° = G° < []R, = (G")*. Now let H = XZ,. Then H* = H° = []Z,
= XR; and (H)* = (H")? = []R,. Thus
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(HY? = (HOY = T<[[R, = (H)" = (HY".

Next let G be the subgroup of []/2, R; generated by XR;, a = (1,1,
and b = (m +1/2,n — 1/3,n + 1/4,% — 1/5,---). Then G is the direct sum of IR,
and the cyclic groups generated by a and b. It is reasonably easy to check that
G is a P-group but G* is not a P-group.

Finally we show that (GS%)” is an SP-group and hence (G%%)° = (G*)P. For
let C be a polar in (G°%)*. Then C N G*F is a polar in G*F and hence

G = (C NGy (C NGy
and so since the operators ¢ and * preserve summands we have
(GSP)U — (C N GSP)u @ ((C a) GSP)’)”.
But (C NGS%)* = C and so (G°")” is an SP-group. For clearly (C NG5Fy’ <= C
and if 0 <ceC then ¢ = x + ye(C NGy’ ®(C N G%)’)". Thus yeC and so
if y # 0 then ny > g > 0 for some ge G**. Then geC NG* andsog Ay =0

a contradiction.
An element s > 0 in an I-group H is called singular if for each ae H

0<a<simplies aA(s~a)=0.
The following proposition is essentially due to Iwasawa, see [12] for a proof.

PROPOSITION. If G is an archimedean I-group then G°is a vector lattice if
and only if G contains no singular elements.

COROLLARY. If G is an archimedean | group with no singular elements then
(Gv)c = (Gc)v = GC.

5) (G*)° = (G = G° for X = P or SP.

ProoF. This follows from the fact that G° is an SP-group (see [14] p. 91
for a proof).

6) (G < (69" = (G° = (G°F < G°,

PrOOF. Since G¢is a P-group it follows from Theorem 2.9 that (G)F = (G°)°.
Now G* = G° < (G?)° and since G~ is dense in G° we have (G4)° < (G%). So we
need to prove (G°)° = (G°)°.

We first show that (G°)° is laterally complete and hence (G%)° 2(G°)°. Let
{a,] 1€ A} be a disjoint subset of (G°)°. Now for each 1€ A, (G = a;** @ a,*,
and since G/ is a large P-subgroup of (G°)° we have

G% = (a,* NG ®(a,;* NGO

Now for each A€ A let b, be an upper bound for g, in G°. Then without loss
of generality b,ea,** N G° and hence the b, are disjoint in G° and so V b,
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exists. Thus V b, is an upper bound for the a, in G° and so since (G°)° is com-
plete, V a, exists.

We now show that H = @(G°) is complete and so (G°)° < (G°)°. If C e P(G°)
then G° = C @ C’ and so G/C’ = C is complete. Thus the groups G°, used in the
construction of O(G°) are complete. Also the map n,x of G into G is onto
a large subgroup of G°, and hence preserves all joins and intersections.

Thus without loss of generality, H is the set join of a directed set of complete
I-groups G°, and if & < € then G°¢ is a complete [-subgroup of G°,. Now let
{a, ] A€ A} be a subset of H that is bounded from above by ae H. Then a e G
for some partition €. By Theorem 2.9 each g, is the join of disjoint elements from
G° and of course each of these elements belongs to the complete  group G°, and
they are bounded by a in G°,. It follows that each a, € G°, and so \ a,€ G, = H.

7) (G°)° = G¢ if and only if G contains no singular elements.

Proor. If G contains no singular elements then G¢is a vector lattice. Thus
(GIY* = (GY)F = G° (see [10]). If G° = (G°)° then (G°)? is a vector lattice and
hence contains no singular element. If 0 < g € G¢ is singular in G° and C € P(G°)
then C’ + g is singular in G°/C’ (see [10]). It follows that g is singular in ¢(G).
Thus G° contains no singular elements and hence is a vector lattice. Thus G
contains no singular elements.

REMARKS. If G has a basis then in [10] it is shown that (G*)¢ = (G¢)L. whether
or not this is always the case is an open question. In Section 2 we showed that
(G"? = G? and equality need not hold. If G is archimedean then do we have
equality? If so then G* < (GY°—(GY = (GH* - (G°)F = ((GH®F)* = (GY)*
and hence (Gt = (GY)%, since by (6) (G*)° = (G°)* = (GO)-.
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