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1. Introduction and statements of the main results

A lattice-ordered group ("/-group") G will be called
a P-group if G = g" ®g' for each geG (projectable)
an SP-group if G = C © C for each polar C of G (strongly projectable)
an L-group if each disjoint subset has a 1. u. b. (laterally complete)
an O group if it is both an L-group and a P-group (orthocomplete).

G is representable if it is an /-subgroup of a cardinal product of totally ordered
groups. It follows that a P-group must be representable and hence SP-groups
and 0-groups are also representable.

G is a large l-subgroup of an /group H or H is an essential extension of G
if G is an /-subgroup of H and for each non-zero convex /-subgroup S of H we
have S n G ^ O .

We show that if G is a large /-subgroup of an X-group H, where X = P, SP,

L or O, then the intersection K of all /-subgroups of H that contain G and are
X-groups is an X-group. Thus K is a minimal essential extension of G that is an
X-group and we shall call such an extension of G an X-hull of G.

THEOREM 2.6. There exists a unique X-hull G
x
 of a representable l-group

G. Moreover, G is dense in G
x
, G

x
 is representable and if G is archimedean or

abelian, then so is G
x
.

We then show that if G is a representable /-group then each 0 < g e G° is
the join of a disjoint subset of Gp

. Thus

G^G
P
<=G

SP
<= (G

SP
)

L = (GP)L = G° and

GzG
L
£ (G

L
)

P = (GL)SP £ G°.

but (Gt)sp need not equal G°.
385
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386 Paul Conrad [2]

A rather natural direct limit construction provides the existence and

uniqueness of G
x
.

If G is a Dy-module, /-ring or /-algebra then there is a unique way of ex-

tending the multiplication so that G
x is a Dy-module, /-ring or /-algebra that

contains G as a submodule, subring or subalgebra. Thus the multiplicative

structure of G
x is completely determined by its additive structure. This phenom-

enon is due to the fact that each polar preserving endomorphism ("p-endo-

morphism") of G has a unique extension to a p endomorphism of G
x
.

If G is a vector lattice then G
p is the p extension of G denned by Amemiya [1],

but Amemiya's definition of a p extension is fairly complicated and so are his

proofs of the existence and uniqueness of G
p
. However, he does mention that

G
p is the minimal P- group in which G is dense.

Now suppose that G is a representable l-group. Then G
p is the Stone ex-

tension E(G) of G that is defined by Speed [21]. His definition of £(G) is cate-

gorical, but the maps involved are rather special /-homomorphisms. Speed also

defines G° categorically and makes a rather thorough investigation of P-groups.

G
L is the lateral completion of G defined in [9]. There the definition required

that G be dense in G
L
. Finally G° is the orthocompletion of G defined by

Bernau [3]. Here again the definition of G° is somewhat complicated being

modelled after the defini:ion used by Amemiya for countably laterally complete

vector lattice p extensions.

If F is a (real) /-algebra then Amemiya remarks that his p extension is also

an /-algebra. Bernau proves that if G is an /-ring or a vector lattice then so is

its orthocompletion.

Vecksler [23] outlines a method for constructing the P-hull and the SP-hull

of an /-ring. In [24] he corrects his definition of an SP-hull.

An archimedean / group A is a

d-group if it is divisible

v group if it is a vector lattice

c group if it is a (conditionally) complete lattice

e group if it is essentially closed in the class of archimedean I groups.

If A is a large /-subgroup of an archimedian y group H, where y = d, v, c or e,

then the intersection K of all / subgroups of H that contain A and are y-sub-

groups is a y group. Thus K is a minimal essential extension of A that is a y group.

We shall call such an extension of A a y hull.

THEOREM 5.2. Each archimedean l-group A admits a unique y-hull A
y

for y = d, v, c or e. A
c
 is the Dedekind MacNeille completion of A and A is

dense in A
c
. A" is the I subspace of (A

d
)

c
 that is generated by A. A

e
 = {{A*)

C
)

L

is the essential closure of A.

Once again if A is an /-ring then there is a unique extension of the multipli-
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[3] Representable /-groups and /-rings 387

cation of A to a multiplication of A
y so that A

y is an /-ring and A is a subring

of A
y
. Thus the multiplicative structure of A" is completely determined by its

additive structure.

In Section 6 we completely characterize the structure of an archimedean

essentially closed /-ring and this gives quite a bit of information about the

structure of an arbitrary /-ring.

In Section 7 we get a nice representation of the orthocompletion of an

/-ring with a basis and this leads to information about the structure of an ar-

bitrary /-ring with a basis.

NOTATION. Throughout G will denote an /group and for each 0 < geG,

G(g) will dencte the convex /-subgroup of G generated by g. G is a dense /-subgroup

of an /-group H if for each 0 < h e H we have 0 < g g h for some geG. T1AX will

denote the cardinal product of /-groups Ax and £ Ax will denote the cardinal sum.

The cardinal sum of a finite number of / groups will be denotedby Ax © ••• <§> An.

For each subset S of G

S' = { 0 e G | | 0 | A \s\ = 0 for all seS}

is the polar of S. Sik [20] has shown that the set P(G) of all polars in G is a

complete Boolean algebra and that an /-group is representable if and only if

each polar is normal.

2. The existence and uniqueness of X-hulls

LEMMA 2.1. If G is a P-group and L-group then G is an SP-group.

PROOF. If C e P(G) and {ax \ x e A} is a maximal disjoint subset of C then

a = V <*x is a weak order unit in C and so a" — C. Thus

G = a" © a ' = C@C.

G is an ^-subgroup of an /-group H if G is an /-subgroup of H and for

each disjoint subset { a A | l e A } of G for which VG ^exists we have V G ^ =

\fHax. Note that the intersection of laterally complete £C subgroups of H is a

laterally complete ^-subgroup.

LEMMA 2.2. / / G is a large I subgroup of an I group H then G is an -Sf-

subgroup of H.

PROOF. Suppose that { a ^ A e A } is a disjoint subset of G and a = \JGax

exists. If h is an upper bound for the ax in H then a^.a/\h = k^ax and so it

suffices to show that a = k. For each A e A , a
x = V c a « (* ^ -*) exists,

aA / \ a
x = 0 and a = ax + a

x
. Thus
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Now k = kx + kx, where kx e H(ax) and /cA e H(aA) and since a ^ k ^. ax we

have ax^ kx^t ax. Therefore a - k = a* - k
x
e(~)A H(a

x
) = K. But X O G

= D A G(aA) s G(a) and so if 0 ^ x e K n G then x A ^ = 0 for all X e A. Thus

x A « = * A Vcfli = V G X A « A = 0
 a n d since a is a unit in G(a), x = 0.

Therefore X n G = 0 and since G is large in H, K = 0.

Let G be an /-subgroup of H and denote the polar operation in G (#) by

' (*). For B e P(G) and C e P(H) define

B/i = (B')* a nd Cv = C nG.

1) B/tv = (B')* r\G = B** C\G = B**v = B.

PROOF. Since B ' £ B* we have (B')* 2 B** 2 B and so (B')* n G 2 B**

O G 2 B . I f O < x e (B')* n G then x e G and x A 5 ' = 0 and so x G B" = B.

2) If v is one-to-one then Bfi = B**.

3) ([9] p. 455). If G is large in H then /i is an isomorphism of P(G) onto

and v is the inverse.

4) ([10] p. 156). If H is archimedean then the following are equivalent,

i) G is large in H.

ii) v is an isomorphism of P(H) into P(G) and n is the inverse,

iii) If 0 ^ C e P(H) then C n G # 0.

iv) If 0 < /i e H then ft" O G ^ 0.

5) If G L large in H and X is an / subgroup of G or just a non-void subset

of G then

i) (X")** = X** and I * * n G = X"

ii) (X
1
)** = X* and X*nG = X'.

PROOF. Since X £ X" we have X** £ (X")**. Also X**v is a polar of G

that contains X and so X**v = X** n G 2 X". Thus X" £ X** and hence

(X")** £ X**.

X** nG = (X")** nG = X'> = X".

From (i) and (2) we have X* = (X")* = (X')'* = (X')**. Finally X* n G

= {g e G11 g \ A X = 0} = X' holds for any /-subgroup G of # .

6) If a is an /-automorphism of H that induces the identity on P(G) then a

induces the identity on P(H) provided that G is large in H.

PROOF. If C e P(H) then Cv = Cva = (G n C)a = Ga n Ca = G n Ca = Cav,

so that C = Ca by (3).

PROPOSITION 2.3. Let G be a convex l-subgroup of an l-group H.

i) / / H is an SP-group so is G.

ii) / / H is a P-group so is G.
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PROOF, (i) If A e P(G) then H = A** © A* and hence G = (A** n G)
©04* OG) = ^ © ( ^ * O G ) = ,4®4 ' .

(ii) Pick geG. Then if = 0**-©0* and so G = (G Pi0**) ©(G n#*)
= g"®g'. For J ' C J * implies (#")'* = «?'* 2 0** and so g" = (Gn(g")'*

2 G * * "

Note that a polar in an L-group is an L-group, but an Z-ideal C of an L-
group G need not be an L-group.

EXAMPLE. C = IlfLlRt ^H>
a
=i

R
> = G-

This also shows that an /-ideal of an O group need not be an O -group.

THEOREM 2.4. If H is an X-group and an essential extension of G and

{Hx\le A} is the set of all l-subgroups of H that contain G and are X-groups

thenK = C\SHX is an X-hull of G, where X = P,SP,L or O.

PROOF. If H is an L-group then by Lemma 2.2 each HA is a laterally com-
plete =S?-subgroup of H and so K is an L-group.

Suppose that H is a P-group, 0 < keK and denote the polar operation
in H, K, and Hx by *, # and k respectively. If 0 < x e K s Hx then x = x1 + x2

ek
x
® k

xx and by (5) k
x = k* O i ^ and kA/l = fc** n if1. Thus xt + x2 is the

unique decomposition of x in if = k*®k**. This holds for all 1 so xly

x2e r\Hk = K. Thus x^eKnk* = k* and x2 e iC O fc** = fc# * . Therefore
xek* © fc * # and hence K = k* © k* *.

If H is an SP-group then an entirely similar argument shows that K is also
an SP-group.

LEMMA 2.5. An L-hull K of a representable l-group G is representable.

PROOF. Theorem 2.8 in [9] asserts that if G is dense in K then K is also
representable. The only place in the proof where the hypothesis of denseness is
used is to infer that if ( - ax + (aa A b) + ax) A (ax A b) = 0 and ax A b > 0
then aa A b ^ g > 0 for some g e G and so ( — ax + g + aj A g = 0. But since
G is large in K we can conclude that n(aa O b) ^ # > 0 for some n > 0 and
geG. Thus 0 = n(( - aa + (a. A i) + fl«) A (a, A &)) = ( - « « + »(««A b) + a.)
A n(a, A &) ^ ( - a. + 0 + aa) A 0 ^ 0 and so ( - ax + g + aj A 0 = 0,

COROLLARY. An X-hull of a representable l-group is representable, where

X •= P,SP,LorO.

THEOREM 2.6. T/iere exists a unique X-hull G
x
 of a representable l-group

Gfor X — P, SP, L or O. Morover G is dense in G
x
 and G

x
 is representable and

if G is abelian or archimedean then so is G
x
,
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PROOF. The existence follows from Theorem 2.4 provided that we can embed
G as a large /-subgroup in an X-group. In order to do this we make use of the
direct limit construction developed in [9].

Let D(G) be the set of all maximal disjoint subsets of the Boolean algebra
P(G) of polars of G. If j / ,# e D(G) then we define st ^ # if each A e&? is con-
tained in some Cetf. Then £>(G) is a lower directed partially ordered set. For
each % e D(G) let G« be the /-group

If s4 <; ^eD(G) and Ce^1 then C = ( n 4 / ) ' the polar join of the Ake&? that
are contained in C. Thus C = n Ax' and so the natural map

is an /-isomorphism. Thus there is a natural /isomorphism n^^ of G^ into G^

obtained by combining the above maps for each G/C, where Cetf. Let 0(G)

be the direct limit of the /-groups G with connecting /-isomorphisms n^. Define
k6 0(G) to be positive if k = 0 or k<g > 0 for some #eD(G). For each j e G
let g be the element in €{G) with & = (—, C" + g, •••) for each «"eD(G).

In [9] it is shown that 0(G) is a representable laterally complete /-group
and if G is abelian or archimedean then so is <5(G). Also the map g -* g is an
/-isomorphism of G into 0(G) and G is dense in 0(G). Thus to complete the
proof of existence it suffices to show that <9{G) is a P-group. Thus we must show
that if 9 < le 0 then 0 = 1** ® I*.

Consider 6 < k e 0{G) and pick <£ e D(G) such that /^ # 0 ^ fc^. Then
/^ = (...,C 4- /(C),-"), where 0 ^ !(C)6G. Let 7(C) be the ccnvex /-subgroup
of G that is generated by /(C) and pick V ^ J* e D(G) so that each (C n /(C))" ̂  0
belongs to.*/.

Let x (j) be the element in 0 (G) with^-th component x^ if x^ # 0 (y.̂  ify^ # 0)
and 0 otherwise. Then k = x + y. It is shown in [9] that the only non-zero
components of l^ are of the form (C n Z(C))' + /(C). Thus (rf A ̂  = 0 and so
ye/*. Thus we need only prove that xe /**. Consider 6 < te 0(G) such that
/ A * = 0- To complete the proof of existence we need to show that x /\t = 9.

Pick_^eD(G)_so_ that 0 # t3 = (••-,£)' + ((£>),-)• Now ([9] p. 456)
(C n /(C))" n ( I ) n ((£)))" = 0 and so we may choose a J* eD(G) that contains
the (C n /(Q)" # 0 and the (£> O t(D))" ^ 0. Let

i n J = {^nB # 0|y4ej^ and

Then stfng&e £>(G) and so we have
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Now Xjj has nonzero components of the form (C n /(C))' + z and fa has non-

zero components of the form (D n *(£>))' + f(Z)). These do not change under

the maps into G^ngf and so x A t = 6. Thus there exists an A'-hull of G.

Let H be an X-hull of G and let a(/?) the the natural /-isomorphisms of G

(H) into ®{G) (<9(H)). We complete the proof by showing that a can be extended

to an /-isomorphism p of H onto the Z-hull K of G<x = G in

Thus if H^ and H2 are Z-hulls of G then p1p2~
1 is an /-isomorphism of

Hx onto H2 that induces the identity on G. It follows from Theorem 2.7 that

PiP2~
l is unique.

Since G is large in H for each C 6 P(G) we have C = G n C** and

C = G n C * . Thus C + g > C* + g is an / isomorphism of G/C into

H/C*. For each ^ e D(G) let ^ = {C** \Ce^}. Then ^ 6 D(H) and thus there is a

natural /-isomorphism x% of G¥ onto H%. Moreover if stf ^ ^ in D(G)

commutes, where n^^ is the /-isomorphism used in the construction of 0(H).

Thus (see [9]) the xv determine an /-isomorphism T of 6{G) into @{H)

H ^ > &(H)

/
 x

„ a _ «c

If g e Gand«"e D(W) then (grar); = (ffa),t* = ( •••, C + 0, - ) T « = (•••, C* + g, •••)

= (0j%. Thus gar = gf)? and hence Gfi = Gar s C(G)T which is an X group

and G^ is large in <9(H). Thus H)S O ®(G)T is an X-group and contains Gp and

so since Hf is an X-hull of G/J we have
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Gar = Gj? £ tf J? £ O(fi)x £ §{H).

Thus Hfi%~
1 is an X-group that contains Ga and so

Got. = GPz-
1 £ K £ ffjST-1 s

and since ff/fr"1 is an .Y-hull of G/fr"1 we have iC = ///far"1. This completes the

proof of Theorem 2.6.

REMARK. We can, of course, define countably laterally complete /-groups

in the obvious way and then it follows from the above proof that each repre-

sentable Z-group admits a unique CL-hull. Also G admits a unique minimal

essential extension H that is both a P-group and a CL-group. For the vector

lattice case H is the "completion" of Amemiya [1]. See also Vulich [25].

THEOREM 2.7. / / a is an l-isomorphism of G t onto G2, where the Gf are

representable l-groups, then there exists a unique extension of a to an l-iso-

morphism of G* onto G%for X = P, SP, L or O.

PROOF, a induces an isomorphism of P ^ ) onto P(G2) and hence an iso-

morphism of DCGj) onto D(G2). Also for C e PiG^) we have the natural map

C" + 9 >(&*)' + ga. of G1/C onto G2/(Ca)'. Thus there is a natural map

a.^ of G ^ onto G2^.a such that

commutes. These maps a» generate an isomorphism a of ^(GJ onto < (̂G2) and

the following diagram commutes

Also it is easy to see that G?a=G2
x
. Thus a can be extended to an /-isomo-

morphism of G* onto G2.
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For the uniqueness it suffices to show that if a is an /-automorphism of G
x

that induces the identity on G then a is the identity. Since a induces the identity

on P(G) it must also induce the identity on P(G
X
). Thus we may assume that a

is an /-automorphism of G(G) that induces the identity on G and P{GG)). Con-

sider le(S{G) with 1% = (•••,£?' + g, •••) and suppose (by way of contradiction

that (Za)¥ = (-',C' + x,--)> where C + x ¥= C + g. Then

| f f - / | « A ( 0 , - , O,C' + | 0 - x | , O , - , O ) = 0 but

( | 0 - Z | a ) « A ( O , - , O , C ' + | | f f - x | , O , - , O ) ± 0.

Thus a does not induce the identity on P((9{G)), a contradiction.

PROPOSITION 2.8. Suppose that G is a representable l-group, a is an l-

automorphism of G° and X = P, SP, L or 0.

i) G
x
oc = (Ga)

x
 and so if Go. = G, then G

x
a = G

x
.

ii) IfGa^G then G
x
a s G

x
.

PROOF. Ga is large in G° and hence in G
x
a. Also G

x
a is an X-group. If

G a s X c G
x
cc, where K is an /-subgroup of G

x
a and an A"-group then G £ Ka" 1

c Gx which contradicts the minimality of G
x
. Thus G

x
cc is the Z-hulI of Ga and

so G
x
a. = (Ga)x. If G a c G then G

x
a = (Ga)x S G

x
. The following example

shows that we may or may not have equality.

EXAMPLE. Let G be the /-ideal in\\f=lRi generated by (1,2,3, •••)• Then

G° =Y[Rt. Let a be the multiplication of G° by (1,1/2,1/3, •••)• Then Ga is the

Z-ideal of G° generated by (1,1,1, •--)• Thus G a c G and both G and Ga are

SP-groups.

G
p
a = Ga c G = G

p and

GLa = (Ga)L = G° = G
L
.

COROLLARY. If a is an l-endomorphism of G
x
 that induces an automorphism

on G then a is an automorphism of G
x
.

PROOF. Since G is large in G
x it follows that a is one-to-one on G

x and by

the minimality of G*a must be an /-automorphism of G
x
.

THEOREM 2.9. / / G is a P-group then each 0 < le 6(G) is the join of a

disjoint subset of G. In particular, G
L = 6{G) and hence G

L
 is an SP-group.

PROOF. Consider 6 < le 0 and lv # 0. In each Ce& pick a maximal disjoint

set {aa |ae^4} of elements of G. Then C = ( n a , ' ) ' = ( u aa")" and so there is

a partition s/ ^ ^ that.consists of principal polars of G.
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Thus 0 # Irf = (••• ,0/ + 1{X), •••)• Now G = a / ®ax' and so we may assume

that 0 ^ Z(2)eaA" for each AeA. In particular, the l(A) are disjoint in G.

Thus V/(A)rf = /^ and so V/(A) = /.

COROLLARY I. / / G is an O-group then G = &(G).

COROLLARY II. / / G is a representable l-group then

G £ G
p £ G

sp £ ((?SP)L = (<?P)L = 5 ° = 0(G)

where the indicated X-hulls are all in &(G). In particular, G° = @{G) and so

G° is the orthocompletion defined by Bernau.

PROOF. Clearly G £ <?p <= G
sp s ( ^O 1 s (GSP)L e G ° c <P(G) and so it suffices

to show that (G
P
)

L = ^(G). Let H be the P-hull of G and let a, j5, T be as in the

proof of Theorem 2.6.

0. „ fic:fi
L
= ®{H)

Then ft = G
p
x s (Gp)lT c <P(H) and (GP)LT is an L-group. Thus (G

p
fx = 0(H)

and so (GP)L = &{G).

Also it follows that

G £ G = (GL)P £ ((7L)S1> £ G° = 0(G)

but as the next example shows (GL)SP need not equal G°. Thus the operators

SP and L need not commute.

EXAMPLE. Let A be the po-set

Denote the set of maximal (minimal) elements in A by A (B). Let V be the set

of all functions from A into the reals. Then V is a real vector lattice if we define

addition pointwise and define veV to be positive if each non-zero maximal

component is positive. Next let

G = {v e VI v is constant on A}.

Note that G is laterally complete but not a P-group. Let
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H = {v e V | v restricted to A has finite range}.

Then H is not laterally complete and H
L = V. We show that

H = G
sr

 = G
p
.

Clearly G is large in H and H is an SP-group. Suppose that G £ K £ H, where

K is a P-group. Let ' (*) denote the polars in K (H). Let S be a subset of B and

let s e G be the characteristic function on S. Let a e G be the characteristic func-

tion on A.

K = s"Qis', H = s** ®s* and s** nK = s" and s* nK = s'.

Thus a = ax + a2es" ®s' = K and this is also the decomposition in if = s**

©s*. Thus at is the characteristic function of the elements in A above S, but

such elements generate the group of functions on A with finite range. Therefore

K = H and hence if = G
p
.

PROPOSITION 2.10. If G is a representable l-group then (G
L
)

P = (G
L
)

SP
.

PROOF. Take CeP{{G
L
)

p
; then C r\G

L
 = CveP(G

L
): so as in Lemma 2.1,

Cv = a", and thus C = Cv// = a'> = (a")** = a**, by (3) and (5). Thus

(GL)P is an SP-group and so (G
L
)

P = (GL)SP.

COROLLARY. Let G be a representable /-group,

i) (G°)
x
 = (G

x
)° for X = P, SP or L and (GP)SP = ( G S T = G

sp
.

ii) (GL)P = (GL)SP <= ( G ^ = (GSP)L and equality need not hold.

3. The A"-hulIs of D/-modules and/-rings

A p-endomorphism of an /-group G is an endomorphism a of the group

such that

x /\ y = 0 implies xct A y = 0 for all x j e G .

It is easy to show that this is equivalent to G+a s G+ and Ccc £ C for each

CeP(G) (see [13]). Thus the p-endomorphisms of G are the Z-endomorphisms

that preserve polars. In Section 4 we shall show that each p-endomorphism of a

representable /-group G has a unique extension to the X-hull G
x of G.

Let D be a directed po-ring. G is a Df-module (see [22]) if G is an abelian

/-group and a D-module such that for each de D
+ the map

g ygd for all geG

is a p-endomorphism of G. Steinberg [22] shows that such a G is isomorphic

to a subdirect sum of totally ordered modules. Note that each polar of G is a

submodule. Note also that each abelian /-group A is a Dy-module with respect
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to the ring Z of integers and also with respect to the directed ring D of all polar
preserving endomorphisms of A.

PROPOSITION 3.1. / / G is a vector lattice over a totally ordered division

ring D then G is a Dj-module.

PROOF. We are given that G is an abelain /-group and G
+
D

+ s G + . 1̂
deD

+ and g e G then (g V 0)d = gd V 0. For (g V 0)d ^ gd and 0 and if
z ^ gd and 0 then zd~

l ^ g and 0 and so zd~
l ^ g V 0. Therefore z ^ (gf V 0)d.

Now suppose that x A J = 0, where x, y e G and deD
 +

 . If 1 ̂ d then
x ^ xd and hence 0 = x A y ^ x d A > ' = 0- If d > 1 then 1 > d~

i and so
x Ayd'

1 = 0. Thus 0 = (x A W 1 ) ^ = xd A y.
Suppose that G is a Dj-module. Then each CeP(G) is a submodule and

hence GjC is a Dy-module. Thus each of the /-groups G^ = JJ GjC used in the
construction of 0{G) is an Dy-module and each of the connecting /-isomorphisms
n^^ also preserves scalar multiplication by elements of D. Considerate 0(G)and
<& £ D(G) such that

0 # ^ = (-,C'+SC(C),-) where SC(C)eG.

Define SCd to be the element in &{G) with ( ^ / ) ¥ = (•••, C" + i f (C)d, •••). It follows

that (P(G) is a Dy-module and the natural map g • § of G into ff(G) also

preserves scalar multiplication by elements of D.

THEOREM 3.2. There exists a unique minimal essential extension G
x
" of

the Dj-module G that is an X-group and also a Dj-module. G
XD

 is isomorphic to

the intersection of all X-subgroups of &{G) that contain G and are Dj-modules.

The proof is analogous to the proof of Theorem 2.6. We shall show that
G

x = G
XD as /-groups and there exists a unique extension of the scalar multipli-

cation of G to a scalar multiplication of Gx by D.

Recall that an /-ring G is a lattice ordered ring such that

x A y = 0 implies xd /\y = dx /\y = 0 for all x,y,deG
 +

 .

Thus each polar of G is a ring ideal and so it follows that 0(G) is also an /-ring
and the natural /-isomorphism of G into &(G) is a ring isomorphism.

THEOREM 3.3. There exists a unique minimal essential extension G
Xf

 of

the f-ring G that is an X-group and also an f-ring. Moreover, G
Xf

 is iso-

morphic to the intersection of all X-subgroups of &(G) that contain G and are

sub-f -rings of 0(G).

Again the proof is analogous to the proof of Theorem 2.6. We shall show
that G

x = G
Xf as /-groups and there exists a unique /-ring structure for Gx so

that G is a subring.
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4. Lifting /;-endomophisms from G to G
x

Let G be a representable /-group and let G
x be the Z-hull of G in (P(G).

THEOREM A. (Chambless [7]) G
SP

 = {/e 0(G) l = Qorls^ Ofor some finite

partition of P(G)}. Thus G
sp

 is the direct limit of the groups Gg for finite

S e£>(G) and hence is the join of the directed set of l-groups Gens, where ns is

the natural map of Gs into &{G).

THEOREM B. {Chambless [7]). Let S be the subalgebra of P(G) generated

by elements of the form g' and g". Then

G
p
 = {/ e &{G) \l = 9 or lg # 0 for some finite partition of P(G) such that S £ S}

Thus G
p
 is a direct limit.

Now, as we have seen, if G is an /-ring then so are the G% and so it follows

that G
p and G

SP are subrings of @(G). We shall also show that G
L is a subring of

(KG)-
Amemiya [1] mentions that if G is a vector lattice or an /-ring then under

his construction Gp is also a vector lattice or an /-ring.

If G is an /-ring then each minimal prime subgroup of (G, + ) is a ring

ideal and so T = f | G/M, for all minimal prime subgroups M, is an /-ring,

is a subring constructs G
p in T. Here it is hard to determine whether or not G

p

Speed [21] since G
p is not large in T.

LEMMA 4.1. / / a is a polar preserving endomorphism of an l-group G,

{a^oieA} is a disjoint subset of G and V«a exists, then {aaa\aeA} is disjoint

and ( V«Jff = V«aCT-

PROOF. Clearly (\J ajo 2: afia for all fie A. Suppose that d ^ a^o for all p.

Then (\/aa)a 2: (\fax)a f\d 5: afa for each /? and hence

for all P, where x 2: 0. Therefore (V ajo ^ afi(r + x for all /?. To complete the

proof it suffices to show that x = 0. Now (\ZaJa ^ a^a + x A a^ for all /?;

so ( \ Ja^a^a 2: x /\ap for each p. But (x A a^) A ay = 0 for all y ¥= P, and so

0 = ( x A ^ ) A ( Va#/i a j = (* A a/,) A (( Va*,s a » = x Aae

for each /?; hence x A ( V a J = 0, and thus 0 = x A (VaJcr = x.

COROLLARY I. / / {ax as A) is a disjoint subset of a Df-module G over a

directed po-ring D, \Jax exists and 0 < ceD then ( V a J c = Vaxc.

COROLLARY II. / / {ax aeA} is a disjoint subset of an f-ring G and \J ax

exists then (\fajc = W and c(\/ax) = \fcaafor each ceG
 +

 .
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LEMMA 4.2. (Henriksen and Isbell [15]). If Y is a multiplicative sub-

semigroup of an f-ring F then the l-subgroup T of (F, +) that is generated

by Y is a subring.

PROOF. Let [Y] = {e1yl + ••• + enyn\yte Y, et = ± 1 and n ^ 0} be the
subgroup of {F, + ) generated by Y. Then

T = { V A ABs*p IsxP£ [Y] and A and B are finite}.

But [Y] is a subring of F and if a = V A " , , and b = V A byd belong to T then
a

+ = V A (a*/i V 0) and i + = V A (byi v 0) and since positive elements
distribute multiplicatively over V and A it follows that a

+
b

+ e T and hence T

is a subring of F.

PROPOSITION 4.3. Suppose that G is an f-ring and also a subring of the

f-ring H. If H is laterally complete and an essential extension of G then the

lateral completion G
L
 of{G, + ) in H is a subring.

PROOF. Consider {aa|ae A} and {bp\f}eB} disjoint subsets of G. Then by
Corollary II of Lemma 4.1

Thus the set of all such V aa is a subsemigroup of H. It follows from Lemma 4.2
that the /-subgroup G(l) of H generated by these elements V ax is a subring.
Then by transfinite induction it follows that G

L is a subring of H, (see [9]).

THEOREM 4.4. Let G be a representable l-group and let X = P, SP, L or O.

1) A p-endomorphism a of G has a unique extension to a p endomorphism

o
x
ofG

x
.

2) If a is one to one then so is a
x
. If a is onto then so is a

x
 for X = P, SP

or O.

3) / / a is a p endomorphism of G° such that Ga £ G then G
x
a £ G

x
.

PROOF. Wife D(G) and C e ? then C + g • C + go is an /-endomorphism
of GjC and hence

is an /-endomorphism of G .̂ If # ^ srf e D(G) then

G* = Y\ G/C

•ir
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c o m m u t e s . F o r ( • • • , € " + g(C), • • • ) a v i t V j i = (••• , C + g(C)a, •

+ g(C)a,-~) = (•••, A' + g(C), •••)G^ = (•••, C + g(C), •••)n^^a^ w h e r e of c o u r s e

Ace.

Thus a determines an Z-endomorphism a of <P(G). Let n be the natural map

of G onto <?c0(G). Then {gn\ = (•••,C + g, •••) for all VeD(G), and

7T(7 = <77T on G and so <r is an extension to 0{G) of the p endomorphism n~
1
an

of G.

We next show that a is a pendomorphism of &{G). If 0 # l,ke&(G) and

Ak = 0 then there exist f efl(G) such that /̂ . # 0 # fc^ and such that their

supports are disjoint. If /̂ CT^ = 0 then Z<7 = 0 and hence Id /\k = 9. In any

case the support of \<ea<€ ^ support of 1% and hence \^av /\k^ = 0 and so

la /\k = 0. Therefore a is a p-endomorphism of ®{G).

We next show that if a is a p endomorphism of &{G) that induces n~
i
an

on G then a ~ a. Consider /^ = (•••, C + g, •••) and suppose that (/a)^

= (—,C' + x, — ) where C + x ^ C + srff. Then

|^-/ |« A(0,-,0,C + \ga-x\,0,-,0) = 0 but

(11 - /1«)« A (0, - , 0 , C + | flfff - x |,0, - , 0 ) # 0

and thus a is not a p endomorphism, a contradiction.

Therefore a has a unique extension to a p-endomorphism of G°. Now if p

is an extension of a to say G
p then it can be extended to G° and so p is unique.

Thus to complete the proof of (1) it suffices to verify (3). So suppose that a is

a p endomorphism of G° such that Ga s G.

a) GLoc c GL. For if {ax | A e A} is a disjoint subset of G then by Lemma 4.1

(V a J a = V axa and so G(l)a s G(l), where G(l) is the /-subgroup of GL that

is generated by all the elements V ax. Thus it follows by transfinite induction

that G
L
a s G

L
.

b) Gspa s Gsp. Here we assume that G = G and G° = <P(G). Then we know

exactly how a operates on ®{G). Consider 8 # / e G
SP

. Then Ẑ  # 0 for some

finite partition # of P(G). If (Za)» = 0 then la = 6 and if (Za)^ # 0 then clearly

la. e G
sp by Chambless' Theorem A.

c) G
p
<x c G

p
. This is a simple application of Chambless' Theorem B. This

completes the proof of (1) and (3).

(2) If a is one to one then a
x is one to one since G is large in G

x
. Now suppose

that a is onto. Then the map C + g *• C + ga is an Z-homomorphism of G/C

onto itself. Thus a
0 is clearly onto and using our representations of G

p and

G
sp it follows that ap and o ^ are also onto.

QUESTION. IS a
L
 onto provided that a is onto'!

THEOREM 4.5. / / G is a Df-module over the directed po-ring D then there
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exists a unique extension of the scalar multiplication by elements of D so that

G
x
 is also a Df-module. Moreover G

x
 with this scalar multiplication equals

G
XD

forX = P, SP,LorO.

PROOF. The first part follows from the fact that each p-endomorphism of G

has a unique extension to a p endomorphism of Gx
. Now (without loss of gen-

erality) GzG
x £ G

XD £ Q(G) and G
x is a submodule of G

XD
. Therefore

G
x = G

x
°.

THEOREM 4.6. / / G is an f-ring then there is a unique multiplication on

G
x
 so that G

x
 is an f-ring and G is a subring. Moreover, G

x
 with this ring

structure equals G
Xf

 for X = P, SP, L or O.

PROOF. We first verify the result for X = O. Now as we have seen &(G) is

a ring and the natural map g • g is a ring/-isomorphism. So all we need show

is that the multiplication of &{G) is uniquely determined by that of G. Suppose

that • is a multiplication on &{G) so that (P(G) is an /-ring and • induces the

given multiplication on G.

If 0 < g e G then the right multiplication of G by g is a p-endomorphism

of G and so has a unique extension to a p endomorphism of &(G). Therefore

x • g = xg for all x e €{G).

Suppose that xv = (0, •••,0,C + t,0,---,0). Now

g<g = (0» • • •, 0, C + g, 0, • • •, 0) + (the other non-zero components)

= a + b.

Now x<g • b = 0 since they are disjoint and so (0, •••,0, C + tg,O, - " ,0)

= xvgv = x<g • (a + b) = Xv • a = (0, -,0,C + t,0, - , 0 ) • (0, •••,0, C + g,

0.- .0) .

Now consider x, y e (P(G) with xv ¥= 0 # yv.

x<e = (-,C + x(C),-) = Vxc, where xc = (0 , - ,0 ,C + x(C),0, -.O)

y^ = ( - , C ' + 3<C),-) = V yc, where yc = (0, - , 0 , C + y(C),0, - ,0) .

Thus by Lemma 4.1 and the above

% • JV = V xc • V yc = V xc • yc = V

Therefore • is the natural multiplication on 6{G) and so there is a unique /-ring

structure on G° so that G is a subring of the /-ring G°.

Finally we have shown that G
p
, G

sp and G
L are all subrings of 0(G). Also

any ring structure on G
x that induces the given one on G can be extended to a

ring structure on G°. Therefore the ring structures of G
F
, G

sp and G
L are also

determined by their additive structures.
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5. The y-hulls of archimedean /-groups and /-rings

An archimedean /-group A is called a

d-group if it is divisible,

v-group if it is a vector lattice,

c-group if it a conditionally complete lattice,

e-group if it is essentially closed in the class of archimedean /-groups.

It is well known that an abelian /-group A is contained in a unique minimal

divisible abelian /-group A
d
. For there is exactly one way of extending the order

of A to a lattice-order of its injective hull A
d so that (A

d
)

+
 r\A = A

 +
. Also if A

is archimedean then so is A*.

THEOREM 5.1. / / A is a large l-subgroup of an archimedean y-group H,

where y — d, v, c or e, then the intersection K of all the l-subgroups of H that

contain A and are y-groups is a y-group. Thus K is a minimal essential extension

of A that is a y-group and we shall call such an extension a y-hull of A.

THEOREM 5.2. Each archimedean I group A admits a unique yhull A
y
 for

y — d,v,c or e. A
c
 is the Dedekind MacNeille completion A

 A
 of A and A is dense

in A
c
. A" is the l-subspace of {A

d
)

c
 that is generated by A. A" = ((A

d
)

c
)

L
 is the

essential closure of A.

REMARKS. A minimal essential extension of an archimedean /-group that is

a vector lattice is necessarily archimedean [11]. Bleier [6] has shown that a

minimal archimedean vector lattice that contains A is necessarily an essential

extension of A and hence is A". Also, of course, any complete /-group is archi-

medean.

PROOF OF THEOREM 5.1. If y = d or v then clearly the theorem holds. For

the intersection of divisible subgroups (subspaces) is again divisible (a subspace).

If A is a large /-subgroup of an archimedean c-group H then clearly H is an

c-hull of A. To prove the theorem for y = c we make use of the following two

lemmas.

LEMMA 5.3. (Bernau [3]). / / G is a dense l-subgroup of an l-group H then

all joins and intersections in G agree with those in H.

LEMMA 5.4. / / A is a large l-subgroup of an abelian I group B then all

joins and intersections in A agree with those in B.

PROOF. A is large in B* and so A
d is dense in B

d
. Suppose that [ax | X e A} £ A

and VA
a
x exists. If { a A | ^ e A } ^ yeA

d then nyeA for some n>0 and so

ny ^ VA
na

x =
 n VA

a
x- Thus y ^ VA

a
x and hence VA<>

a
x = VA°X-

Next VA<>
a
x — Vfld̂ A since A

d is dense in Bd. Finally \f B«
a
x = Ve

a
x

since {a A | l eA} £ B and VBdax = \fAaxeA £ B. Thus VA
a
x = VB

a
x-
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COROLLARY. / / A is a large l-subgrcup of a complete l-group H, then the

intersection of all c subgroups of H that contain A is a c subgroup.

QUESTION. IS Lemma 5.4 true for non abelian I groups']

PROOF OF THEOREM 5.2. Clearly the theorem holds for y = d. In [11] it is

shown that A admits a unique v hull A" and that A" is the / subspace of (A*)* that

is generated by A.

In [10] it is shown that A admits a unique essential closure A
e and that

A
e
=((A

d
)*)

L
.

The existence of A ''for a complete vector lattice A was proven by Pinsker [19]

and Jakubik [16] showed that A
e can be constructed solely from the underlying

lattice structure of A.

We now show that there exists a unique c hull Ac and that A
c
 = A" . Note

that A" is the unique minimal complete / group in which A is dense [12]. Also

if A is an /-subgroup of a complete /-group H then H need not contain a copy of

A* [12].

LEMMA 5.5. If A is a lay-gel-subgroup ofa complete I group H then A" s H.

PROOF. We shall show that there exists an /isomorphism of A" into H that

is the identity on A. If x e 4A then

x = V {xeA\x ^ x} = A {xeA\x ^ x}.

Sincex 3: {xey4|x ^ x} we have that V#x exists. In particular for 0 < x e ^ 4 A ,

x = \f {xeA
+
 \x fS: x} and V# {x 6 A

 + j x 5j x} exists. Define

xa = \fH{xeA
+ jx g x}.

1) If a A b = 0 in /T then aa /\ba = 0.

For a = V £ and b = \J b, where a A b = 0 and hence

0 ^ aa Aba = yHa A VH& = VH(aAb) = 0.

2) If a,be(,4A)+ then aa + bo = (a + b)a.

For aa + bo = V«« + VHb = V«(a + &) = V H ^ , where

X = {a + b_\ a, b_e A
+
, a_ ^ a and fo ^ b}, and

(a + b)<7 = VHH+JL
 = Vtf 7 ' w h e r e

Y = {^eX+ly ^ a + b}.

Now if x G X then x = a + fo:ga + fr and so xeY. Thus X £ y and hence
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If ye Y then 0 ^ y ^ a + b and hence y = u + v where u,

and 0 ^ v ^ b. Thus u = V « and v — V v and hence y = V (w + j ^ = V^* S

where S £ X £ 4̂ and ye A. Therefore y = V^A
 S = V X S = V H S since by

Lemma 5.4 joins in A agree with those in H. Thus y ^ V« A" and so

Therefore a is a map of (A* )
 + into H + that preserves addition and dis-

jointness and induces the identity on A
 +

 . For g = a — be A*, where a,be(A*)
 +

define gx = aa — fee. Then T is a group homorphism of A* into // that preserves

disjointness and so it is an /-homomorphism. Since x induces the identity on the

large / subgroup A of A
 A it follows that x is an /-isomorphism.

COROLLARY I. A" ^(A
d
)\

COROLLARY II. / / A is a large l-subgroup of a complete l-group H and no

proper l-subgroup of H contains A and is complete, then H = A" . In particular

A is dense in H.

COROLLARY III. A
c
 = A" is unique.

This completes the proof of Theorem 5.2.

If follows at once from Lemma 5.4 that if A is a large /-subgroup of a cr-

complete /-group H then the intersection K of all the cr complete /-subgroups

of H that contain A is a complete. Thus K is a a complete hull of A. Since A

is large in XA it follows from Lemma 5.5 that A £ A" £ JCA . Now A" n K is

cr-complete and contains A and so since K is minimal we have A £ K £ A" . Thus

iC is the intersection of all a-complete /-subgroups of A" that contain A and

hence K is unique. Therefore each archimedean l-group A admits a unique

a-complete hull A" .

It is well known that A" is a P group but need not be an SP-group (see

for example [25] p. 85).

If each bounded disjoint subset of an archimedean vector lattice A is

countable then since A is dense in A" it follows that each bounded disjoint subset

of A" is also countable. Thus ([25] p. 156) A" is complete and hence A" = A
A
.

These spaces A" of "countable type" were introduced by Pinsker and have many

nice properties (see [25] pp. 156-160).

THEOREM 5.6. If a is a p-endomorphism of an archimedean l-group A then

there exists a unique extension of ex. to a p endomorphism a. of the y-hull A" of

A, where y = d, v, c or e.

PROOF. The proof for y = c is contained in [13]. Suppose that y = d and

consider aeA
y
. Then na eA for some n > 0. Define aa = {(na)a)jn. A straight-

forward computation shows that a is a p endomorphism of A
y and an extension
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of a. If J? is an extension of a to a p-endomorphism of Ay then

n{aft) = (na)P = (na)cc = (na)a = n(aa)

and hence afi = aa..

Combining the above we get a unique extension of a to a ^-endomorphism
y of (Ad

y. Also y is linear [13] and maps A into A. Thus 7 maps the /-subspace
A" of {A

d
)

c that is generated by A into 4".

Finally since A
e = ((A

d
)

c
)

L it follows from Theorem 4.4 that a has a unique
extension to a /> endomorphism of ^4e.

COROLLARY. / / A is an archimedean Dj-module over the directed po-ring D

then there exists a unique extension of the scalar multiplication by elements

of D so that A
y
 is also a Dj-module, where y = d, v, c or e.

REMARKS. Since A is large in A
y it follows that a is one-to-one if and only if

a is one-to-one. It can be shown that if y = d, v or c then a is onto provided
that a is onto. The proof for y = c is given in [13]. Bleier [6] shows that an
I-automorphism of A has a unique extension to an /-automorphism of A".

THEOREM 5.7. If A is an archimedean l-group and a. is an l-automorphism

of A then there exists a unique extension to an l-automorphism a. of A
y
, where

y = d, v, c or e.

PROOF. For y = d the map a defined in the proof of the last theorem is
an /-automorphism of A

d
. We have shown that the theorem holds for y = L.

Thus to complete the proof it suffices to show that a can be extended uniquely to
an /-automorphism of Ac

. For he(A
c
)

 +
 , h = V {heA

 +
 \h ^ h). Define

hoi = V ha.

A straightforward computation shows that a determines an /-automorphism of
A

c that is the unique extension of a (see the proof of Lemma 5.5).

LEMMA 5.8. {Bernau [2]). / / F is an archimedian f-ring, xeF
+
,

{ax\XeA}S:F and V aA exists then V (xaj exists and V(xax) = x(V ax),

and dually.

THEOREM 5.9. Suppose that A is an archimedean f-ring, and A
y
 is the

y hull of (A, +)for y = d, v, c or e. Then there is a unique multiplication on

A
y
 so that A

y
 is an f-ring and A is a subring. Thus the additive structure of A

y

completely determines the ring structure.

PROOF. For a, be A ''there exists an integer n > 0 such that na and nb belong
to A. Define

ab = {{na){nb)jn
z
.

https://doi.org/10.1017/S1446788700015391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015391


[21] Representable /-groups and /-rings 405

A routine check shows that A
d is an /-ring and this is the unique extension of

the multiplication of A to an /-ring multiplication of Ad
.

Fora,be((A
d
)

c
)

+ define

ab = A {*.y|x ^ a> y §: b and

and for x = xx — x2 and .y = yt — y2 in (^4li)e where xi,yie((A
d
)

c
)

+ define

xy = XiJi + ^2^2 - (̂ 1^2 + ^.Vi)-

A rather long messy computation shows that (Ad
)

c is an /-ring. This construction
is "well known".

Now suppose that • and x are two multiplications of (Ad
)

c so that it is
an /-ring and A

 d is a subring and consider a, be {{A
d
)

c +.

a = A { x e ^ ' l * ^ a} and 6 = ^ l

and hence by Lemma 5.8

a • b = (Ax) • (Ay) = A 0 • JO = A ( « j

Thus there is only one such multiplication. Of course the same result holds for Ac
.

Now we have shown that the ring structure of (Ad
)

c has a unique extension

to {(A
d
)

c
)

L
 = A

e (see Theorem 4.6). To complete the proof it suffices to show

that A" is a subring of Ae
. Consider x,yeA and r,seR. Then rx,sy eA

v and

xy eA. Thus since A
e is a real algebra (see Section 6)

(rx)(sy) = rs(xy)eA".

It follows that the subspace S of Ae that is generated by A is a subring of Ae
. Now

^ 0 = {V</ A v ^ l ^ e S , aeU, PeV and t/ and F are finite}.

Thus by Lemma 4.2 A" is a subring of Ae
.

REMARKS. If A is an archimedean /-ring and if is a minimal essential ex-
tension of A that is an archimedean /-ring and a j>-group then H = A

y
. For

clearly A^A
y
^H as Z-groups by Theorems 5.1 and 5.2. If y = e then A

e is
essentially closed and large in H and so A

e = H. If .y = d then an easy computa-
tion shows that Ad is a subring of H and so A

d = H.
If y = c or j; then a rather messy proof shows that Ay is a subring of H and

so once again A" = if.

6. The structure of an archimedean /-ring

Let yl be an archimedean/-ring and let X be the Stone space of the complete
Boolean algebra P(A) of polars of A. Then X is compact, Hausdorff and ex-
tremally disconnected. Let D(X) be the ring of continuous functions from X
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into the extended reals (R, ± oo) that are finite on a dense open subset of X.

Then as /groups A
e and D(X) are isomorphic [10]. So let us examine the ways

in which D(X) can be made into an /-ring with pointwise addition and order.

Suppose that D = D(X) has a multiplication • so that it is an /-ring. Then

for a e D
 + the map d > d • a, for all d e D, is a p-endomorphism of (D, + )

and so (see [13]) there is an element deD
 + such that

d • a = da for all d e D.

We investigate the map a > a. Consider a,beD
 +

 .

1) a + b = d+ b.

For d(a + b) = d • (a + b) = d • a + d • b = dd + d'b = d(d + b) for all

deD and so for d = 1, a + b = a + 5.

2)~ab = db.

d(a b) = d(a- b) = d- (a • b) = (d • a) • ft = (rfa)5 = J ( a 5 ) .

3) a a = bd.

bd=b-a = a-b = ab. Here we use the fact that an archimedean / - r ing

is commutative.

4) Put T = p; then for M, veD
 +

 , u • v = uvp.

For, for aeD
 +

 , we have a = Id = a\ = ap. Now, v = a — b, where

a,beD
+
, and so u • v = u • (a — b) = u • a — u • b = ud — ub = uap — ubp

= u(a — b)p = uvp.

5) If • is a multiplication on D(X) such that D(X) is an /-ring with com-

ponentwise addition and order then there exists an element peD
+ so that

a • b = abp for all a,beD, and conversely.

Now D is complete and hence a P group. Thus

Clearly p" is a subring with respect to the • multiplication and p' is a zero subring.

Consider d = u + vep"®p' and define

dx = pu + v.

Then for dt = ut + vt and d2 = u2 + v2 in D we have

(dt • d2)t = (pMi"2)'r =
 P

u
iP

u
2

 =

and so we have an /-isomorphism of the /-ring (D, +, •, g ) onto the /-ring

f) = p" © p' , where p" is a ring with respect to the pointwise multiplication of D

and p' has the zero multiplication.

THEOREM 6.1. Let X be a Stone space and suppose that D(X) is an f-ring

with componentwise addition and order. Then there exist clopen subsets Y and
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Z of X such that X = Y U Z, Y DZ = 0 and D(X) = D(Y)®D(Z), where

D(Y) has the pointwise multiplication and D(Z) has the zero multiplication.

Thus we have the structure of an arbitrary essentially closed archimedean
/-ring. Recall that the radical of an /-ring A consists of the nilpotent elements.

COROLLARY I. (Henricksen and Isbell [15]). An archimedian f-ring is a

subdirect sum of a ring with zero multiplication and one with radical zero.

COROLLARY II. If A is an archimedean f-ring then radA = {a eA | a A = 0}
the set of annihilators of A. In particular, radA is a polar.

PROOF. A s D(Y)@D(Z) and i fa = « + !;e,4is nilpotent, where ueD(Y)

and v e D(Z) then u = 0 and so a = v is an annihilator. Thus rad A — A n D(Z).

Now D(Z) is a polar in D(X) and A is large in D(X). Thus rad A is a polar in A.

COROLLARY III. If A is an archimedean f-ring and also an SP group, then

radA is a cardinal summand. In particular, radA is a cardinal summand of a

complete f-ring A.

Note that Corollaries II and III follow directly from Corollary I.

COROLLARY IV. If A is an archimedean f-ring with a weak order unit u

and also a P-group, then rad A is a cardinal summand.

PROOF. Since A is large in A
e
, u is also a weak unit of Ae and without loss of

generality we may assume that as /-groups A
e
 — D(X) and 1 = ueA. Then

1 • 1 = p G A and so A = p" © p', where the polars are taken in A.

COROLLARY V. For an archimedean f-ring A the following are equivalent.

i) rad A = 0.
ii) A

e
 contains an identity.

iii) radA
e = 0.

PROOF, (rad A
e
) n A = rad A and hence since A is large in A

e it follows
that i) and iii) are equivalent. From the Theorem iii) and ii) are equivalent.

Let A be an archimedean /-ring with identity u. Then u is a weak unit in
A (M A a = 0 implies a = ua = 0) and hence in A

e
. Let X be the Stone space

of P{A) = P(A
e
). Then there is a /-group isomorphism of Ae onto D(X) so that

u maps upon 1. Thus without loss of generality, \eA^A
e
 = D(X) as /-groups.

It follows from the next theorem that A and A
e are both subrings of D(X). Thus,

once again, the additive structure of A determines the ring structure.

THEOREM 6.2. Suppose that A is an l-subgroup of (D(X), +) and leA,

where X is a Stone space. If A is an f-ring with identity 1 then A is a subring

ofD(X).
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PROOF. Let • be the multiplication in A. Then by (6)

1 = l • 1 = \p = p.

Thus • agrees with the pointwise multiplication of D(X).

COROLLARY I. (Birkhoff and Pierce [5]). An archimedean f-ring with

identity has radical zero.

COROLLARY II. If A is an archimedean f-ring with identity u then u is also

an identity for the f-ring A
y
, where y = d, v, c or e.

COROLLARY III. / / A is an archimedean f-ring with identity then each

p-endomorphism of A is a multiplication by a positive element.

PROOF. We may assume that A is a subring of D(X), where D(X) has the
pointwise multiplication, and leA. Thus any penomorphism of A has a unique
extension to a p-endomorphism of D(X), but each p-endomorphism of D(X) is a
multiplication by an element deD

+ [13]. Thus since 1 eA it follows that deA.

We give two examples of archimedean /-rings for which the radical is not
a cardinal summand.

I. Let A = C[0,1] and let

Define g • f = gfh for g,feA. Then A is an /-ring with

tad A = {feA\f{x) = 0 for 0 ^ x ^ i}

but {A, + ) is cardinally indecomposable and so rad A is not a summand.

II. Let H=Y[Zi Qh where Q, is the additive group of rationals. In the
even components use zero multiplication and in the odd components use the
natural multiplication. Let a = (1/2, 1/4, 1/8, ••-, 1/2",---), and let S be the sub-
ring generated by a. Thus S is the ring of polynomials without constant terms
in a and with integral coefficients. Let A be the subring of H generated by S and

A = {h e H | h is a polynomial in a except at a finite number of places}.
Then A is an /-ring with a basis and a strong order unit, a but rad A is not a
cardinal summand. Note that a

2 = (1/4, 0, 1/64, 0, •••) but a does not split into
a "zero part and a radical zero part".

The next two examples show the well known fact that the class of /-rings
with zero radical is not equationally definable.

III. Let S be the semigroup of negative integers. Let A be the semigroup
ring of S over the integers and define an element in A to be positive if its largest
non-zero component is positive. Then A is a totally ordered integral domain
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and so rad A = 0. Let J be the set of elements in A with support included in

— 2, — 3, •••. Then J is a convex ring ideal and AjJ is a zero ring. Thus rad AjJ

= AjJ.

IV. Let A be the set of all bounded rational sequences with cardinal order.

ThenradA = 0. Let a = (1,1/4,1/9, •••, 1/n2, •••) and

<a> = {x e A | | x | < na for some n > 0}.

Then J/<a> is an /-r ing and 0 # <a> + (1,1/2,1/3, • • •) e rad J/<a>.

The following example is due to Roger Bleier and shows that if G is an

/-subgroup of an essentially closed archimedean Z-group H then H need not

contain a copy of the essential closure G
e of G.

V. Pick a Stone space Y so that D(Y) cannot be represented as a subdirect

sum of reals. Let C(Y) be the /-group of all continuous real valued functions

on Y. Then C(Y) ^Yl
R
y

 a n d C
(

Y
T =

 D ( y ) = C{Y)
L
.

7. The structure of an/-ring with a basis

A strictly positive element s in an /-ring A is called basic if s" is totally

ordered or equivalently if Ajs' is a totally ordered ring. A basis for 4̂ is a maximal

disjoint subset {sx | 2 e A} where in addition each sx is basic. Let S = {sx 11 e A}

be a basis for A. Then there exists a natural ring /-isomorphism <r of A into

THEOREM 7.1. K = {A&)° and if S is finite then K = (Ao)
p
. In either case

A is dense in A
0
.

PROOF. Consider 0 < x = ( • • - . s / + xx,---)eK with say sa ' + xx> sa ' . Then

we may assume 0<xx£sx' and so 0 < a = xa/\ sae(nx^xsx')\ sx'. Thus
0 < da | x and so Atr is dense in K. Thus since K is a P-group

Aa <= 04<7)p S K.

We next show that sx' + xx = (0,---,0,sa ' + xa,0,•••,())eC4<7)p and hence

(Aa)
p 2 S A/s/ . Let * ( # ) be the polar operation in (4(T)P

(^a)p = sx' + sx**®sx' + sx* = sxa**

xaa = c + d

but this is also the unique decomposition of xxa in

K = sx' + sa##@sx' + sx# =

Thus c = sx' + xxe(Aa)
p
.
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Clearly K is the lateral completion of S/l/s/ and hence of (A<r)
p
. Thus K

is the orthocompletion of Aa. If S is finite then K = ~LA/sx' and so {Aaf = K.

COROLLARY I. Each sx is a prime ring ideal if and only if radA = 0.

PROOF. (-») Each stalk A/sx' is an integral domain and so radA = 0.

(<-) Suppose that x,yeA, and xyesx', then |x| | .y| = |xy |es a ' and so
without loss of generality 0 < x ^ y and xyesx'. Then by convexity x

2
esx'.

Suppose (by way of contradiction) that x£st'. Then 0 < a = x A Sae( O^^s/)
s/ and hence a

2
 e n sx' = 0, a contradiction.

REMARK. Chambless [7] has shown that if A is an /-ring with radA = 0
then each minimal prime subgroup of (A, + ) is a prime ring ideal.

Let A be an /-ring and suppose that A satisfies

(F) each bounded disjoint subset of A is finite.

Then A has a basis S = {sx | A e A} and the mapping of a onto (• • •, s / + a, • • •) is
a ring /-isomorphism of 4̂ into

COROLLARY II. I>A/s/ = 04<r)p.

PROOF. Since Aa is dense in H = E^4/sA' we have Aa £ 04<T)'> £ if and we
have shown that H £ {Aa)

p
.

COROLLARY III. For an f-ring A the following are equivalent.

1) A = S/1A, where each Ax is a totally ordered ring.

2) A satisfies (F) and is a P-group.

PROOF. Clearly 1) implies 2). If 2) holds then by Corollary II we have
A & ZA/s/.

COROLLARY IV. For an f-ring A the following are equivalent.

1) A = HAX, where each Ak is a totally ordered integral domain.
2) A satisfies (F), A is a P-group and rad A = 0.

PROOF. Once again it is clear that 1) implies 2). Suppose that 2) is true.
By Corollary III, A ^ %A/s/ and by Corollary I each stalk A/s/'is an integral
domain.

A convex /-subgroup C of an /-ring A will be called an L-ideal if C is also
an ideal of the ring A and a P-ideal if C is a ring ideal and A/C is totally ordered.
If 0 < s e A is basic, then s' is a P-ideal.

THEOREM 7.2. For an f-ring the following are equivalent.

1) A= %AX. where each Ax is an o-simple totally ordered integral domain.

2) A satisfies (F), radA = 0 and the P-ideals of A satisfy the DCC.

If this is the case then the P-ideals of A are trivially ordered by inclusion.
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PROOF. 1 -+ 2. For XeA let Mx = {aeA\ax = 0}. We shall show that

these are the only P-ideals of A and hence the P-ideals are trivially ordered.

For let M be a P-ideal of A. If for each X e A there exists 0 < a e M with ax> 0

then it follows that M = T.AX a contradiction. Thus M c Mx for some A. Pick

0<axeAx. Then a = (0, ••-, 0,ax,0, •••,0)$M and since M is a prime sub-

group of (A, + ) we have MA = a' ^ M. Thus M = Mx.

2-> 1. Let {sA|Ae A} be a basis for A. Since 4̂ satisfies (F) the mapping cr

of a upon (-" jS/ + a, •••) is an /-isomorphism of A into T,A/sx'. s / is a P ideal

and hence the P-ideals of Ajsx' satisfy the DCC. Let J = I/sx' be the minimal

convex ring ideal of Ajsx'. By Corollary I of Theorem 7.1 we have that A/sx' is

an integral domain and hence J
1 =£ 0. Thus by a theorem of Johnson (see [14]

p. 132) A\sx is o simple and so sx' is a maximal L-ideal of A. Now sxe (^x?xsx' \ sx

and hence since sa' is a maximal L-ideal we have

A = n x^sx
r
 + s.'.

If 0 < ae/4 then a = x + t, where xe D ^ . s / and f es, ' . Thus sx' + x = sa' + a
and s/ + x = s/ for all X / a. Therefore

xff = (0 , - ,0 ,s a ' + a ,0 , - ,0)

and so 4̂<r = IU/sA'.

COROLLARY. (Birkhoff and Pierce [5]). For an f-ring A the following are

equivalent.

1) A = Z"=1j4 i ; w/iere eacft ^ ; is an o-simple totally ordered integral

domain.

2) T/re L-ideals of A satisfy the DCC and radA = 0.

3) There are only a finite number of L-ideals of A and radA = 0.

PROOF. 1 -> 3. If T is an L-ideal then T = Z(^ f n T) and since each /I; is

o-simple At C\ T = At or 0. Thus there are only a finite number of L-ideals.

3->2. Trivial.

2->l . Let P1,P2," be the minimal prime subgroups of (A, + ) . Then

Pj =. Pj n ^ D ? ! riP2 n P 3 3 ••• ; for if a ^ P ^ P j and a 2 e P 2 \ P 3 then

aj A ^eCP i r>^>2)\ ^3- Thus there are only a finite number of Pt and hence

4̂ has a finite basis and so satisfies (F).

Commutative laws for the various operators

Throughout this section y will denote d, v, c or e, X will denote P, SP, L

or O and W will denote d, v, c, e, P, SP, L or O. We shall investigate when two

of these operators commute.

1) For an archimedean /-group G, {G
w
)

e
 = {G

e
)

w
 = G

e
.
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2) For an archimedean /-group G,{G
w
)

d £ (G
d
)". For W = v, e, P or SP

we have equality, but for W = c, L or O there need not be equality.

PROOF. G is a large /-subgroup of {G
d
)

w which is divisible. Thus G
w is large

in (G*)
w and so (G

w
)

d £ (G
d
)

w
. Clearly (G")"1 = (G")B = G". If 0 < g- eCGO"1 then

n # e G p for some « > 0 and hence Gp = (ng)"®(ng)'. Thus (GO' = ((«^)"/

®((ng)')
d
 — (ng)** ®{ng)*, where * is the polar operation in {G

p
)

d
. Thus

(G
p
)

d is a P-group and hence (GO" = (G
d
)

p
.

If C is a polar in (G
SF

)
d then C n Gsp is a polar in GSP and so G

sp
 = (C n G

sp
)

®(CnG
sp

)'. Thus

(Gsp)d = (C n G47")11 0 ((C n G5'')')'' = C © C*.

Therefore (GS iy is an SP-group and so (G
sp

)
d
 = (G

d
)

sp
.

If G = Z then (G
c
)

d
 = Z

d
 = Q<=LR = Gf= (G

d
)

c
. If G = E," tZ, then

(G")1 = (G-)0 = n r = i 6.- and GL = G° = n ? - i Z « - T h u s « = (1 ,1/2 ,1/3 , - )

belongs to (G
d
)

L
 \ (G

L
)

d since no multiple of a belongs to G
L
.

From the above computation we have.

3) For an abelian /-group G, (Gx
)

d s (G*)
x
. For X = P or SP there is

equality, but for X — L or 0 there need not be equality.

For the remainder of this section G will denote an archimedean I group.

4) (G
w
)

v s (G")
w
. For JT = d, e or SP we have equality, but for W = c,P,0

or L there need not be equality.

PROOF. (G0)"' is a vector lattice. This is clear except for (G")
L
, but if {ax | X e A}

is a disjoint subset of G" and 0 < r e R then r( V a*) = V ^ since x * rx is

a p endomorphism of G" and hence has a unique extension to (G")L. Thus it

follows that (G")
L is also a vector lattice. Now since G

w is large in the vector

lattice (Gv
)

w we have (Gw
)

v £ (G")
w
-

Now let G = P I A ^ , where A is an infinite set. Then

- + rtgt\rieR,gieG and t > 0} = T.

For clearly T is a subspace of n Rx and hence it suffices to prove that

Consider the A-th component

O i 0 i + ••• + rtg,)x = {rlgi)x + •••

If this is negative then replace (g,)x by 0 in each of the gt. Do this for each X and

call the new element gt. Then ( r ^ + ••• + r,gt) V 0 = rtg^ + ••• + rtg,eT and

hence (Gc)" = G" c [ 7 ^ = (GT. Now let H = ZZA. Then H
L
 = H° =

H" = 2i?A and (H")L = (//")° = f l ^ - Thus
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(H
L
)

V
 = (H°)

D
 = T

Next let G be the subgroup o f f ^ i ^ ; generated by ER ; , a = (1,1,--)

and b = (n+ 1/2, jt - 1/3,?r + 1/4,7t - 1/5, •••). Then G is the direct sum of £/?,

and the cyclic groups generated by a and £>. It is reasonably easy to check that

G is a P-group but G" is not a P-group.

Finally we show that (G
SP

)
V is an SP group and hence (GSP)" = (G")sp. For

let C be a polar in (G
SP

)
B
. Then C n Gsp is a polar in Gsp and hence

Gsp
 = (Cn G

SP
) ®(Cn G

SP
)'

and so since the operators d and A preserve summands we have

(G
SP

y = (cn G
sp

y e ((c n G
sp

)y.

But (C O Gsp)v = C and so (G
sp

)
v is an SP-group. For clearly (C n GSP)U £ C

and if 0 < c e C then c = x + ye(Cn G
sr

)
v © ((C n G

sp
)')

v
. Thus j e C and so

if y ¥= 0 then n>» > g > 0 for some g e Gsp. Then g e C n Gsp and so # A Ĵ  = 0

a contradiction.

An element s > 0 in an /-group H is called singular if for each a e H

0 ^ a < s implies a A (s — a) = 0.

The following proposition is essentially due to Iwasawa, see [12] for a proof.

PROPOSITION. / / G is an archimedean Igroup then G
c
 is a vector lattice if

and only if G contains no singular elements.

COROLLARY. / / G is an archimedean I group with no singular elements then

(G")
c = (Gc)" = G

c
.

5) (G
x
)

c = (G
c
)

x = G
c
 for X = P or SP.

PROOF. This follows from the fact that Gc is an SP-group (see [14] p. 91

for a proof).

6) (G
L
)

C £ (G
C
)

L = (Gc)° = (G°)
c s Ge.

PROOF. Since Gc is a P-group it follows from Theorem 2.9 that (GC)L = (Gc)°.

Now G l c G ° c (G°)c and since GL is dense in G° we have (G
L
)

C s (G°)c. So we

need to prove (G°)c = (Ge)°.

We first show that (G°)
c is laterally complete and hence (G°)C2(GC)°. Let

{a^|/leA} be a disjoint subset of (G°f. Now for each A e A, (G°)c = a / * ®ax*,

and since G° is a large P-subgroup of (G°)c we have

G° = (aA** n G°) 0 (aA * n G°).

Now for each X e A let fe^ be an upper bound for ax in G°. Then without loss

of generality bxea^** r\ G° and hence the bx are disjoint in G° and so V bx
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exists. Thus V bx is an upper bound for the ax in G° and so since (G°)c is com-

plete, V «A exists.

We now show that H = 6{G
C
) is complete and so (G°)c s (Gc)°. If C e P(G

C
)

then G
c
 = C © C" and so G/C ^ C is complete. Thus the groups G

c
<g used in the

construction of 6{G
C
) are complete. Also the map 7%x of G

c
v into Gc^ is onto

a large subgroup of Gc^ and hence preserves all joins and intersections.

Thus without loss of generality, H is the set join of a directed set of complete

/-groups G
c
% and if s? ^ ^ then G

c
v is a complete /-subgroup of G

c
^. Now let

{ax | A e A} be a subset of / / that is bounded from above by a e H. Then a e Gc^

for some partition ^ . By Theorem 2.9 each ax is the join of disjoint elements from

Gc and of course each of these elements belongs to the complete / group G
c
v and

they are bounded by a in G%. It follows that each ax e G
c
^ and so V ^ e Gc^ c // .

7) (Gc)° = Ge if and only if G contains no singular elements.

PROOF. If G contains no singular elements then G
c is a vector lattice. Thus

(G
C
)

L
 = ((G

d
)

c
)

L
 = G

e (see [10]). If G
e
 = (G

c
)° then (Gc)° is a vector lattice and

hence contains no singular element. If 0 < g e Gc is singular in Gc and C e P(G
C
)

then C + g is singular in Gc /C (see [10]). It follows that g is singular in 0{G).

Thus Gc contains no singular elements and hence is a vector lattice. Thus G

contains no singular elements.

REMARKS. If G has a basis then in [10] it is shown that (GL
)

C
 - (G

C
)

L
. whether

or not this is always the case is an open question. In Section 2 we showed that

(G
L
)

SP £ G° and equality need not hold. If G is archimedean then do we have

equality? If so then G
L <= (GL)C - • (G

L
)

SP <= (G
L
)

C -> (G°)
c
 = ((G

L
)

SF
)

C c (G
L
)

C

and hence (G
C
)

L = (GL)C, since by (6) (GL)C c (G
C
)

L c (G°)c.
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