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1. INTRODUCTION

Let G be a semiprime ring and for a, b € G define a = b if agh = bgb for all g € G.
This is equivalent to the fact that a agrees with b on the support of b in each represen-
tation of G as a subdirect product of prime rings. Thus = is a partial order for G
with smallest element O and for a, b,xe G

az=zb implies ax = bx, xa=xb and ab = ba.

We say that a is disjoint from b or that a is orthogonal to b if aGb = 0 (notation L).
This is equivalent to the fact that a and b have disjoint support in each representation
of G as a subdirect product of prime rings. Thus a L b iff b La and in this case
0 =ab = ba. Alsonotethat a =2 biffa —b Lb,anda+b=biff a Lb. If X
is a subset of G then

X ={geG|g Lx foreach xe X}

is the annihilator ideal of X. LAMBECK [11] has shown that these ideals form a com-
plete Boolean algebra which we shall denote by P(G). G will be called

a P-ring if G = ¢g” @ g’ for each g € G (projectable)

an SP-ring if G = X" @ X’ for each subset X of G (strongly projectable)

an L-ring if each pairwise disjoint subset of G has a L.u.b. (laterally complete)
an O-ring if G is both an L-ring and an SP-ring (orthocomplete).

An overring H is a left essential extension of G if this is the case when H is considered
as a left G-module. We prove the following theorems for X = P, SP, L or 0.

Theorem A. Let G be a semiprime ring and let H be a left essential extension of G
that is an X-ring. Then the intersection K of all the subrings of H that contain G

1) These results were announced in: The hulls of semiprime rings, Bull. Australian Math. Soc.
12 (1975) 311—314.

59




and are X-rings is a minimal left essential extension of G that is an X-ring; called
an X-hull of G.

Theorem B. Each semiprime ring admits a unique X-hull G*. G* is semiprime
and G* is reduced (commutative) iff G is reduced (commutative). If G has an
identity 1, then 1 is also the identity for GX. Finally GX is the minimal right
essential extension of G that is an X-ring.

If G is reduced then the proofs of these theorems are almost identical with the
proofs of the corresponding theorems for lattice-ordered groups in [5]; one simply
replace @ A b by ab. For semiprime rings the proofs in [5] can be adapted. We
show that

G c GP c GSP < (GSP)L — (GP)L — GO

and (G")" = (G")** = G°, but here we need not have equality.

In order to prove Theorems A and B we show that if H is a left essential extension
of the semiprime ring G then H is semiprime and there is a natural isomorphism of
P(H) onto P(G).If H is lateraily complete then G is an £-subring of H (i.e., for each
disjoint subset {g, | 4 € A} of G for which Vg g, exists, it follows that Vi g, = Vg 9)-

If G is a Boolean ring then so is G* and G* = G°. Also G° is the Dedekind-
MacNeille completion of G iff G has an identity. If G is regular then so is GF, G
and G% We show that the ring G* is determined by the addition and the partial
order.

Theorem. Suppose that G is a semiprime ring and consider the system (GX, +, =)
for X = P, SP or 0. Then there is a unique multiplication on G* so that

a) G* is a semiprime ring,
b) G is a subring of G*, and
c) the multiplication on G* induces the given partial order .

Almost all of the theory for the X-hulls of latticeordered groups in [5] has a coun-
terpart for semiprime rings. In particular, this is true for the annihilator preserving
endomorphisms of G and for the theory of semiprime rings with a basis.

P(G) is atomic iff G° is a product of prime rings. From this it is easy to derive
necessary and sufficient conditions for a reduced ring to be a product of integral
domains; in particular, those in the literature for commutative rings (see for example
[7] Theorem 4.3).

ABIAN [1] proved that a commutative semiprime ring G is a product of fields iff G
is hyperatomic and laterally complete. A student of mine OT1s KENNY has shown that
a reduced ring H is a product of division rings iff H is hyperatomic and laterally
complete. Thus H* is a product of division rings if H is hyperatomic.

If G is a commutative semiprime ring with 1, then G is the Baer extension of G
that was introduced by Kist [9] and G is the Baer extension of G that was intro-
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duced by MEwBoORN[12]. Thus for an arbitrary semiprime ring G with 1 we have
the unique Baer hulls G* and G%.

In [14] Speed using the technique developed in [4] (which is somewhat cruder
than that used in [5]) constructed G* and G* and some hulls in between for com-
mutative semiprime rings with 1. His description of these hulls is categorical, but
somewhat complicated.

If G is a semiprime ring then the complete ring of left (right) quotients of G is an
0-ring that contains G°.

2. THE BOOLEAN ALGEBRA P(R) OF ALL ANNIHILATOR IDEALS
OF A SEMIPRIME RING R

We shall assume throughout this section that R is a subdirect product of prime
rings T;; R < TI;T;. Note that R is prime iff it contains no disjoint elements. Also an
ideal A of R is a semiprime ring. For if 0 & a € 4 then ara =+ 0 for some re R
and hence arasara # 0 for some s € R. Thus aAda + 0. If R is reduced then a L b
iff ab = 0 and in this case we shall assume that the T; are integral domains (see [2]).

Proposition 2.1. If {4, I A e A} is a set of subrings of R such that a L b for each
aeAgand be Agwitho = B then the subring [UA,] of R that is generated by the A,
is the direct sum LA, of the ideals A;.

Proof. Suppose that 0 = a; + a, + ... + a,, where the a; belong to distinct 4,,.
Then 0 = (a; + ... + a,)ga; = a,ga; for all ge R so a;, = 0 and similarly a, =
=ay = ...=a, = 0.Thus [U4,] = =4, as an additive group, but clearly the 4,
are ideals in [UA4,].

Corollary. If {4, | 2 € A} is a set of ideals of R such that A, ~ Ay = 0 for o« + B
then [UA;] = Z4,.

Proposition 2.2. If R = 2K, and K is an ideal of R such that R|K is semiprime,
then K = X(K; n K).

Proof. Suppose that k = k; + ... + k, € K, where the k; belong to distinct K.
Then kRk, = k Rk, € K and hence (K + k,) R/K(K + k) = K. Thus K + k, =
= K and hence k; e K n K;,. Similarly k;e K n K, for i = 2,...,n and hence
K = X(K; nK).

Recall that for a subset 4 of R

A = {reR[r.La forall aeA}.
If A is an ideal or if R is reduced then

A" ={reR|rd =0} =‘{reRlAr=0}.
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1) For subsets A and B of R; A < B implies A’ 2 B. A< A" and A" = A"".
In particular, each annihilator in the annihilator of an ideal.

2) For aeR, a' = {a)', where {a) is the ideal generated by a.
Proof. Since a e {(a), a’ 2 {a)’ and if x € a’ then xRa = aRx = 0 so xe<a)’.
3) If A is a subset of R then R|A’ is semiprime and if R is reduced then so is R[A’.

Proof. Here we use the representation of R as a subdirect sum of the prime ringsT;.
Suppose that A" = (A" + a) RJA'(A’ + a). Then aRa = A’ so arasx = 0 for all
r,seR and xe A. If x; + 0 and (ara); + 0 for some reR then (ara);sx; + 0
for some s € R since T} is a prime ring. Thus x; % 0 implies (ara); = 0 for all re R
and hence since T is prime a; = 0. Thus a 1 x and hence a € A". Therefore R/A’
is semiprime.

If R is reduced and (4" + a)* = A’ then a® € A’ and hence a’x = 0 for all x € 4.
But aZx; = 0 implies that @; = 0 or x; = 0 since T} is an integral domain. Thus
ax = 0 and hence a € A". Therefore R[A’ is reduced.

4) If A and B are ideals then (A " B)" = A" " B". Thus if A B =0 then
A"~ B" = 0 and if A, Be P(G) then A n B = (A n B)" € P(G).

Proof. Note thatif ne A’ n A" then nRn =0andson =0. AnB < A and B
so (4N B)" = A" n B". Now consider xe A" n B” and ye(4 n B) and show
x1ly Ifaedand be Bthen aRb < A n B so yRaRb = 0. Thus xRyRaRb = 0
so XRyRa € B n B" = 0 and hence xRy € 4’ n 4" = (.

5)If a,be R then a” A b" = (aRb)" so if a L b then a" n b" = 0. Also if R is
reduced then (aRb)" = ab".

Proof. aRb S a"nb" so (aRb)' = a” nb". Now suppose xea” nb” and
v €(aRb) and show x L y. Since yRaRb = 0, xRyRaRb = 0. Thus xRyRa S b" n
N b =0hence xRy = a”"na =0.

Now we assume that R is reduced and show (aRb)’ = (ab)'. If x € (ab)’ the xab =
= 0 and hence xagh = 0 for all ge R. Thus (ab)’ < (aRb). If x € (aRb) then
xa’h = 0 and so xab = 0. Thus (aRb)’ < (ab)'.

6) Each annihilator ideal B is the intersection of all the minimal prime ideals
that do not contain B'.
This is well known (see [ 11]).

7) If Ais an ideal in R and o is an automorphism of R then A'a = (Aoz)' and so
A'a = (A'a) = (Ax)". Thus if A = A"€P(R) then Ax = (Aa)" and if A = Ao
then A'a = A'.

Proposition 2.3. The set P(R) of all annihilator ideals of a semiprime ring R
form a complete Boolean algebra with respect to < and with complement map
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A — A". Moreover
HB;_ = (UB;,)’ = nB;. ) L_IB;‘ = (ﬂB})' = (UBA)U b

A |"]( LIB;) = LI(4 M Bl) and dually where A and the B, are elements from
P(R) and [ and || are the join and meet operators in P(R). In particular if R =
= A @ B then B = A’ is uniquely determined by A.

This is well known (see [11]).
There is a converse to the last Proposition. Let S be an arbitrary ring and for each
ideal A of S let
A* = {xeS|x4 = Ax = 0}
and let
K(S) = {A*| 4 is an ideal of S} .

Proposition 2.4. The following are equivalent for a ring S.

1) S is semiprime

2) K(S) is a Boolean algebra with respect to = and with complement map
X — X* and zero element 0.

Proof. (Otis Kenny). If S is semiprime then for each ideal A of S, 4* = A4’ and
hence K(S) = P(S). Then by the last Proposition (1) implies (2).

In (2) holds and A? = 0 for some ideal 4 of S then 4 = A* N A** = 00 S is
semiprime.

Note also that if for each a e S

§ = <ay* @ {ap**

then S is a semiprime ring. Thus P-rings are necessarily semiprime. For if aSa = 0
then g e {(a) < {a)>** and hence if a> = 0 then ae {ad** n (ad* =0 and so S
is semiprime. But we know that a®> = 0 and a®Sa = aSa® = 0 so a® e {a)** N
N {ay* = 0.

\

3. PROOF OF THEOREM A.
Throughout this section let G be a subring of H.

Lemma 3.1. If G is semiprime and left large in H then H is semiprime, and if,
in addition, a, be G and aGb = 0 then aHb = 0. Thus a and b are disjoint in G
iff they are disjoint in H.

Proof. (PHIL MONTGOMERY). If 0 & herad H then 0 % ghe G for some g€ G
and since gh € rad H it is strongly nilpotent in H and hence in G. But G is semiprime
and thus gh = 0, a contradiction. Therefore H is semiprime.
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Now if aGb = 0 and aHb =+ 0 then ahb + 0 for some he H and so 0 &+ xahbe G
for some x € G. Since bGa = 0, xahbGxahb = 0, but this contradicts the fact that G
is semiprime.

A similar argument shows that if a, b € 4 an ideal of G, then a and b are disjoint
in A iff they are disjoint in G.

Corollary. If G is semiprime and left large in H then a < bin G iffa < b in H.

Proof.a=binGifa—bl binGiffa - b Lbin Hiffa < bin H.
Note that H is a subdirect product of prime rings { T; l ie I} and so we have shown
thata = bin Gif a; = b, for all b, + 0.
Denote the annihilator operation in the semiprime ring G(H) by '(*). For Be P(G)
and Ce P(H) define
Bu=(B)* and Cy=CnG.

Propesition 3.2. If G is semiprime and left large in H then p is an isomorphism
of P(G) onto P(H) and y is the inverse of u. Moreover, Bu = B**.

Proof. If a € B' then aGb = 0 for all b € B and so by the last Lemma aHb = 0.
Thus B’ < B* and (B')* = B** 2 B. Therefore (B)*nG2B*nG2B. If
x€(B)* n G then x e G and xB' = 0 s0o x € B” = B. Thus

Buy = (B)* 0 G = B** n G = B**) = B.

We next prove that C n G = (C* n G) € P(G). If xe Cn G and y € C* n G then
xy =0 and so 0 = x(C* N G). Thus since C* N G is an ideal in G, Cn G &
< (C* n G)'. Now suppose (by way of contradiction) that 0 # x e (C* n G)\ C.
Then xa # 0 for some a € C*; otherwise x € C** = C. Thus 0 % yxa € G for some
y€ G and hence 0 + yxae C* n G and yx € (C* n G)'. Therefore yxaGyxa = 0,
but this contradicts the fact that G is semiprime.

Cp=(CnG)p=(C*nG\u=(C*nG)*=(C*nG*=2C.

Here we use the fact that C* n G € P(G) by the above.

Now suppose (by way of contradiction) that 0 # z € (C* A G)*\ C. Then 0 = za
for some a € C* and so 0 =+ yza € G for some y € G. Therefore 0 & yzae C* n G
and z € (C* n G)*. Thus yza € (C* n G)* and hence yzaHyza = 0, but this con-
tradicts the fact that H is semiprime.

Corollary. If G is semiprime and left large in H and X is a subset of G then
(i) (X")** = X** and X** ~n G = X", and
(ii) (X)** = X* and X*n G = X".

Proof. Since X = X” we have X** < (X")**. Also X** NG = X**y 2 X"
since X**y € P(G) and contains X. Thus X" < X** and hence (X")** < X**

X G =(X")*nG=Xp=X". .
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From (i) and the Proposition we have
X* = (X = (X)* = ().
Finally from Lemma 3.1 we have
X*n G ={geG|gHx =0 for all xeX}
={geG|gGx =0 forall xeX} = X'.

G is an Z-subring of a semiprime ring H if for each disjoint subset {gl I Ae A}
of G for which Vg, exists it follows that Vg, exists an dequals V¢g;-

Proposition 3.3. If G is semiprime, left large in H and H is laterally complete,
then G is an L-subring of H. In particular, the intersection of all the laterally
complete subrings of H that contain G is laterally complete.

Proof. We may assume that H is a subdirect product of prime rings {T;|ieI}.
Suppose that {a, | Ae A} is a disjoint subset of G and g = Vg, exists. Then by
Lemma 3.1 {a,1 ] i€ A} is also a disjoint subset of H. Let h = Vyg,. Then we must
show show that h = g. For each i such that (a,); #+ 0 for some A we have h; = (a;); =
= g;°)- Suppose that g; & 0 and (a,); = 0 for all A. To complete the proof we must
show that h; = g,. If not then h — g =% 0 and is disjoint from all the a,. Now
0 + t(h — g)€ G for some teG. Pick j so that ({(h — g)); + 0. Then g, + 0 or
h; 0. '

If g; &+ 0 then g + t(h — g) is an upper bound for the a; in G that does not
exceed g, a contradiction. If A; % 0 than & + #(h — g) is an upper bound for the a;
in H which does not exceed h, a contradiction.

Let K be the intersection of the set {H; | § € A} of all the laterally complete sub-
rings of H that contain G and let {k, l A € A} be a disjoint subset of K. Then for each &
Vu,a, = Vya, since Hy is left large in H. Thus Vya; is the least upper bound of
the a; in K and hence K is laterally complete.

If H is not laterally complete then can we conclude that G is an #-subring of H?

We are now ready to prove Theorem A. The last Proposition takes care of the
case when X = L. Suppose that H is an SP-ring and consider Y < K where K
is the intersection of all the SP-subrings H, of H that contain G. Let the annihilator
operations in H, K and H, be *, # and 1. We wish to prove K = Y# @ Y# #.
If 0+ xeK< H, =Y ® Y" then x = x;, + x,, where x, € Y* and x,e Y*,
Since H, is left large in H we have by the Corollary to Proposition 3.2.

Y*=Y*nH;, and Y* =Y**~H,.

Thus x = x; + x, is the decomposition of x in H = Y* @ Y** and this holds for
all 2. Therefore x;, x, e YH, = Kandsox; e K nY*¥ = Y# and x, e K N Y** =
= Y##. Thus xe Y# @ Y## and hence K = Y% @ Y# #.

2) Here we use the corollary to Lemma 3.1.
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A similar proof works for X = P and if K is both an SP-ring and an L-ring then
it is an O-ring.

Lemma 3.4. If G is reduced and large in H then H is reduced.

Proof. Suppose (by way of contradiction) that 0 + he H and h® = 0. There
exist elements @, be G so that 0 #+ ah, hbe G. Now 0 = ah’b = (ah)(hb) =
= (ah) G(hb). Thus 0 = (ahb) (ahb) and hence ahb = 0. But M = {x € G| xh € G}
is a large left ideal of G and we have shown that Mhb = 0. Now G is a subdirect
sum of integral domains and it follows that (the support of M) n (the support
of hb) is the null set. Therefore M N Ghb = 0 but this contradicts the fact that M
is left large in G.

Another proof. Since G is reduced the singular ideals of G are zero. Thus [6] H
is a quotient ring of G and so H is reduced [15].

4. PROOF OF THEOREM B.

Throughout let G be a semiprime ring. A partition of P(G) is a maximal pairwise
disjoint set of non-zero annihilator ideals of G. Let D(G) be the set of all partitions
of P(G) and for &, € € D(G) define o < % if cach A€ o is contained in some
C e %. This is a lower directed partial order for D(G). In fact, if ¢, Z € D(G) then

$n9={CnD|Cec% DeP and C D * 0}

is the greatest lower bound of € and Z in D(G).
If {4,|ie4} < P(G) and C = |14, = (N4}) then C' = NA} and so there is
a natural isomorphism —
C' +g—(—4, +g—)
of G/C’ into TIG/A}. Now if &/ < % in D(G) then for each C € % we have C = | [4,.
where the 4; € &, so there is a natural isomorphism
Gy =T G[C' »Tes 11, G|A' = G, .

Let ¢(G) be the direct limit of these rings G,. Then ¢(G) consists of all vectors | =
= (—I4—) such that for & = # in D(G) we have

l,#0 or lz=0 implies I JI,,; =15, and

ly,=0 and Il;+ 0 implies lz¢ G, II,,.

Note that each non-zero component I, of I completely determines /. Also if G is
commutative so is 0(G).

The map oy of x € G, onto the element I € ¢(G) with I, = x is an [-isomorphism
of Gy into ¢(G). O(G) is the join of the directed w.r.t. inclusion set of subgroups G4o,.
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1) The map g — § is an isomorphism of G into O(C), where
Je=(—C + g—) forall Ce%.

If G has an identity 1 then 1 is the identity for 6(C).

2) If 0 % I, ke O(G) then 0 + &le G and Tk e G for some ce G. Thus 0(G) is
a ring of left quotients of G and also a ring of right quotients. In particular,
G is large in 0(G).

Proof. Pick e D(G) so that Iy + 0 =% ke. Then I, = (—C’ + x—) with say
C' + x # C’" and hence ¢x % 0 for some ce C. Now ¢D = Oforall De¥, D + C,
so D’ + ex = D’ for all such D. Thus C' + cx is the only non-zero component of
&Xg. For if ex e C’ then ¢xe C' n C = 0, a contradiction. Thus 0 % &, I, = &%,
and hence 0 # &l = ¢XeG.

Now kg = (—C' + y—) # 0. If ¢y # 0 then as above 0 + &k = &j e G and if
¢y = 0 then &, + 0 + ky and &k, = 0, but then ¢k = 0 e G.

Corollary. 0(G) is semiprime and if G is reduced then os is 0(G).

Proof. This follows from (2) and Lemmas 3.1 and 3.4. One can, of course, prove
this directly from the construction of ¢(G) since ¢(G) is the set theoretical join of
a directed set of copies of the G,.

3) 0(G) is laterally complete.

Proof. Let S be a disjoint subset of 0(G). It suffices to find a partition & of P(G)
so that the elements ! € S have non-zero disjoint support in G, For then VI, exists
in G, and hence V1 exists in @(G). Suppose that I, k € S and have non-zero com-
ponents I, and kg. Then Iy = (..., C' + I(C), ...), where [(C) e G, and C' + I(C) *
4+ C'Hff I(C) C # 0 iff J(C)y C + 0 iff {C)> n C + 0. Let o be a partition of
P(G) so that o < % and ./ contains all the (({(C)> n C)” % 0. Then (<I(C)) n C') +
+ I(C) are the only non-zero components of I,. For suppose that Ae o/, 4 € Ce €
and A (<J(C)y A C) = 0. Then

ACPASUACH nAs U ACNnAS KON CY nAd=0
so A"+ I(C) = A'.
We next show that (D n <k(D)>)" 0 (C ~ <I(C)>)" = 0. First
lgng = (.- (C DY + C),--.) and kgng = (... (Cn DY + k(D), ...)

and since [ L k it follows that </(C)> <k(D)> < (C n D). Now G/D n C)' is semi-
prime and since the product (k(D)> <I(C) is zero modulo (D n C)' so is the inter-
section. Thus <k(D)> n <I(C)y < (P n €)' and so

(D ~ <K(DP) O (C A C)y) =
= (D n C n k(D)) N AECP) s(DnCn (DACYy =0"=0.
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Now choose a partition & of P(G) that contains all of the (C n {/(C)>)" + 0 for
all the I € S. Note that & need not be <%. For a fixed I € S choose ¥ and & as above

Gy

Gy
Gyne<—Gg

Pick the element t € 6(G) will non-zero & compinents ((/(C)> n C)’ + I(C) for this
fixed I € S where, of course, (l(C)> N C # 0. Then

lagns = Loy yrs = tells yns -

Thus O # t, = I, and so each / € S has non-zero support in G, and these supports
are disjoint.

4) 0(G) is a P-ring.
Proof. We need to show that for 0 + I € 0(G)
0(G) = I** @ I* .

Consider 0 # ke 0(G) and pick % e D(G) such that Iy # O # kg Then I, =
= (—C' + I(C)—). Pick ¥ = o € D(G) so that each (C n {I(C)>)" + 0 belongs
to &Z. Then

il

G, = NG|(C ~ U(c)))y @ 1 G/4),

ky, = X o + Y

Let x(y) be the element in 0(G) with s/-th component X, if X, # 0 (y if y, + 0)
and zero otherwise. Then k = x 4+ y. Now we have shown that the only non-zero
components of I are of the form (C n {I(C)>)" + I(C). Thus I, Ly and soyeI*
and hence it suffices to show that x € [**. Consider 0 + t ¢ (O(G) such that [ L ¢.
To complete the proof we must show that x Lt = 0.

Pick 2 € D(C) so that 0 = 15 = (—D’ + {(D)—). We know that (C n </(C)>)" n
A (D n(D)y)” =0 so we may choose @ = #e D(C) that contains the
(C n (C)))" + 0 and the (D ~ (D))" * 0.

Ga

|

dew B Gﬂ ke
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Now x, has non-zero components of the form (C n {I(C)>)' + z and these are also
the non-zero component of X ~g Also ¢t has non-zero components of the form
(D n <t(D)>) + 1(D). It follows that X.s,s L f4,s and hence x L t = 0.

Lemma 4.1. If G is a semiprime ring and also a P-ring and an L-ring then G
is an O-ring.

Proof. Consider C e P(G) and let {a; | 2 € A} be a maximal disjoint subset of C.
Then a = Va, exists and it suffices to show that C = a’, for then G = a" @ a’ =
= C @ a’. Now G is a subdirect sum of prime rings {T; | i€ I}. If a ¢ C then 0 + ax
for some x € C' and since x La,; we have that ax is disjoint from the support of
each of the a,. Then ax + a is an upper bound for the a; that is not comparable
with a, a contradiction. Thus ae C andso a” < C" = C.

Now it suffices to show that a’ = C". If0 & y € a’ then yGa = 0 and so yGa, = 0
for all 2. Now if y ¢ C’ then 0 = cy for some c € C. Thus {cy} U {a, | A€ 4} is a dis-
joint subset of C, but this contradicts the maximality of {a, l A€ A}.

For an arbitrary semiprime ring G we have the following corollaries.

Corollary L. ¢(G) is an O-ring.

Corollary IL If Ce P(G), {a,| i€ A} is a disjoint subset of C and a = Va,
exists then a e C.

Thus we have proven the existence of an X-hull for a semiprime ring G, where
X = P, SP, L or 0. We next prove the uniqueness.

First suppose only that G is semiprime and left large in H.

Lemma 4.2. There is a natural isomorphism t of O(G) into O(H) and G is left
large in O(H).

Proof. Since G is left large in H for each C e P(G) we have C = G n C** and
C' = G n C* Thus C' + g - C* + g is an isomorphism of G/C’ into H|C*. For
cach € € D(G) let

¢ ={C*|Ce%}.

Then ¥~ € D(H) and there is a natural isomorphism 7, of G, into H,-. Moreover
if o« <% in D(G) then

T,
Gy . . H,-
Uy o Mg-o-
T
Gy H,-

commutes. Then the 7, determines an isomorphism 7 of ¢(G) into O(H).
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Let o (B) be the natural isomorphism of G (H) into 6(G) (O(H))
H S O(H)
T
G — Ga = G < 0(G)

If geG and %~ e D(H) then (gut)s- = (92)g 1 = (—C' + g—) 14 = (—C* +

Consider 0 = | € O(H) with I,- = (—C* + x—) where say
C* +x+ C*={yeH|yHC =0} = {ye H|CHy = 0} .

We first show that Cx =# 0. For suppose that Cx = 0 and hence CGx = 0. We
know xHC # 0 and so 0 # xhc for some he H and x € C. Thus there exists an
element g € G such that 0 # gxhe = ke G n C** = C. Thus kGx = 0 and hence
kGgx = 0. But then kGk = 0 and hence k = 0, a contradiction.

Thus 0 # ¢x for some ce C = G n C*¥*, Now find D & C** in ¥, then ¢D =
= D¢ = 0 so D¥ + c¢x = D*. Therefore C* + cx is the only non-zero component
of (¢x) Bg-. Therefore (cx) By~ = (cB)s- l4- and hence (¢x) p = ¢fl in HP.

Now GB is left large in Hp so there exists g € G such that 0 + gB(cx) e GB. But

9B(ex) B = gB cpl = (gc) B! -

Thus Gf = Gr is left large in O(H).
Now suppose that H is an X-hull of G. We show that H is unique by showing that «
can be extended to an isomorphism ¢ of H onto the X-hull K of Ga in 0(G).

G < H
|e
o
Ga = K < 0(G)

Now Gf = Gar < 0(G) T which is an X-group. By Lemma 4.2 Gf is left large in O(H).
Thus HB n 0(G) 7 is an X-group that contains Gf and since Hf is an X-hull of GB

we have
Gat = Gf < HB < 0(G)t < O(H).

Thus HBr~ ! is an X-group that contains Go and so
Gu =GBt ' c K< Hpr !l ¢ (Q(G)

and since HBr~ ' is an X-hull of GBr~' we have K = HBt ™.
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Thus if H, and H, are X-hulls of G then there is an isomorphism of H, onto H,
that induce the identity on G. Actually it follows from Theorem 5.4 that the iso-
morphism is unique. This completes the proof of Theorem B.

5. PROPERTIES OF X-HULLS

Throughout this section let G be a semiprime ring. If % e D(G) then there exists
a partition &/ < € that consists of principal annihilators of G. For in each Ce %
pick a maximal disjoint subset {a, l a€ Ac}. Then C = (Nay) = (Uay)’ = Llaj.
For a, e C and so a, 2 C’ and hence Na, 2 C'. Suppose that x € a, then xGa, = 0
for all a. If x ¢ C’' then 0 + xc e C for some ¢ € C and hence a,Gxc = 0 for all «,
but this contradicts the fact that {a, | a € Ac} is a maximal disjoint subset of C.

Theorem 5.1. If G is a P-ring then each 0 = l e O(G) is the join of a disjoint subset
of G. In particular G- = 0(G) and hence G" is an SP-group.

Proof. Consider 0 # I € ¢(G) and suppose that I, # 0. Then their exists a parti-
tion &/ < ¥ that consists of principal annihilators of G.

oA ={aj|re A},

Now 0 = I, = (—a} + I(A)—) and since G = aj @ a} we may assume that each
I(7) belong to aj. In particular the /(1) are disjoint in G and

(1) = (0 = 0. a} + 1(2), 0 — 0).
Thus I, = VI(4),, and hence | = VI(J).
Corollary L If G is an O-ring then G =~ G = 0(G).
Corollary IL. G = G* = G < (G*)- = (G")' = G° = 0(G) when the indicated
X-hulls are in O(G). In particular 0(G) is the orthocompletion of G.

Proof. It is clear that G = G* < G* and (G°)" = (C*)' = G° = 6(G) so it
suffices to show that (GF)* = 0(G).

Let H be the P-hull of G and o, #, 7 be as in the proof of Theorem B. Then by
Theorem 5.1 (HB)* = O(H) and

H N H < (HB)" =0(H)

T

625G < (37 < 0(6)

Thus HB = G*t = (G*)“ = < O(H) and (G*)" 7 is an L-ring that contains HB. Thus
(G") © = O(H) and so (G")" = 0(G).
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Proposition 5.2. (G")* = (G*)* < G°, but we need not have equality. Thus the
operators SP and L need not commute.

Proof. If Ce P((GYF then C n G* = Cye P(G*) so as in Lemma 4.1 Cy = a
for some a € Cy. Thus
C=Cypu=a"p=(a")** = a**

and hence (G')" = a** @ a* = C @ a* and so (G*)" is an SP-ring.

We now give an example to show that (G)*F need not equal G° Let D = Z[x]
be the ring of polynomials with integral coefficients and let V = IT2; D;. Then V
is a ring with identity e = (1,1, ...). Let

G = {ve V| the constant term in each v, is the same} ,
H = {ve V|the v; have only a finite number of distinct constant turns} .

It is reasonably clear that:

1) G is laterally complete but not a P-ring,

and

2) H is an SP-ring that is not laterally complete and since H 2 £°, D,, H* =
=V =HC

Thus it suffices to show that

3) H=G" =G".

Now G is large in the SP-ring H and e € G. Suppose that G = K < H, where K
is a P-ring and let '(*) be the annihilator operator in K(H). Let Y be a subset of
{1,2, ...} and define s€ G by

o {x if iey,

0 otherwise .

Then K=5s5"@®s, H=s*@®s* s*NnK=35" and s* nK =5s". Now ¢ =
=a + bins” @ s and this is also the decomposition of e in H. Thus a e K and «
is the characteristic function of Y. But these characteristic functions together with G
clearly generate H and hence K = H. Therefore H = G*.

Proposition 5.3. The complete ring Q(G) of left (or right) quotients of G is an
0-ring and G = G° = Q(G).
Proof. G is left large in Q(G) and hence Q(G) is semiprime. Now as we have seen

Q(G)° is a ring of left quotients of Q(G) so Q(G) = Q(G)°.

Theorem 5.4. If o is an isomorphism of G, onto G,, where the G; are semiprime
rings, then there exists a unique extension of « to an isomorphism of G¥ onto GX,
where X = P, SP, L or 0.

Proof. The proof of Theorem 2.7 in [5] establishes that « can be extended to an
isomorphism of G¥ onto G%.
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For the uniqueness is suffice to show that an automorphism « of G that induces
the identity on G is the identity, where G is a semiprime ring. Now o induces the
identity of P(G) and hence on P(G*) and by the above we may assume that X = 0.
Thus we may assume that o is an automorphism of ¢(G) that induces the identity on G.
Consider 1€ 0(C) with I, = (—C' + y—) and suppose that (la)y = (—C’ + x—)
where C' + x + C' + y. Then

(-0 and (0—0, C'+ y — x, 0 — 0) are disjoint in G,
and
((g —1)a)y and (0 —~ 0, C' +y — x, 0 — 0) are not .

Thus it follows that o does not induce the identity on P(0(G)), a contradiction.

Proposition 5.5. If G is a semiprime ring, o is an automorphism of G° and X =
= P, SP, L or O then

(i) G*« = (G)* and so if Gu = G then G*x = G, and
(i) if Gu = G then G*a < G*.

Corollary. If o is an endomorphism of GX that induces an automorphism on G
then o is an automorphism of GX.

The proof is entirely similar to the proof of Proposition 2.8 in [5] and so we
omit it.

Proposition 5.6. If G is a regular ring then so are G*, G and G°.

Proof. Since homomorphic images and products of regular rings are regular,
each Gy used in the construction of @(G) is regular and hence G° n 0(G) is regular.
Now CHAMBLESS [3] has shown that G* and G are (isomorphic to) direct limits of
certain of the G, and hence they too are regular.

Question. If G is regular then is G* regular?

Huusmans [7] shows that many of the theorems about commutative regular rings
hold for hyperarchimedean lattice-ordered groups and conversely. In particular,
each principal ideal of such a ring R is a summand. Therefore R = R® and so
R* = R°. Now the principal l-ideals of a hyperarchimedean I-group A are summands
and so A is a P-group. However A° need not be hyperarchimedean. For if 4 is the
cardinal sum of a countable number of copies of the group of reals then A* = A°
1s the cardinal product which is not hyperarchimedean. So the analogy between
commutative regular rings and hyperarchimedean I-groups is far from complete.

Suppose that G is a Boolean ring. Then the partial order that we have introduced
is the natural lattice ordering of G. For x Z y if xp =x A y = y = . Also

73



x 2 xy, and x = z and y = z imply xy = z. Since G is regular G = G* and so
G" = G°. Clearly G° = 0(G) is Boolean and hence so is G**.

1) The map a ->" a" is an isomorphism G into P(G).
This is well known and easy to prove.
2) P(G) = (Gy)" = (Gv)"-

Proof. Consider C € P(G) and pick 0 # g e C. Thengy = g = C" = C and hence
gyC = gy n C = gy e Gy. Then Gy is large in P(G) and Gy is a P-ring. Therefore
since P(G) is an L-ring P(G) 2 (Gy)* = (Gy)°. But if {a,| 2 A} is a maximal dis-
joint subset of C then C = | la}. Therefore P(G) is the L-hull of Gy.

3) P(G) is the Dedekind-MacNeille completion of Gy iff G has an identity.

Proof. We have shown that each element in P(G) is the join of disjoint elements
from Gy. Thus if Ce P(G) then C' = Lla} = (Na}) and so C = Naj. But G =
= a} @ aj; and so since e = (e + a;) + a; we have a} = (e + a;)". Therefore
C=N(e+a,).

4) P(G) = O(G) and this is also the complete ring of quotient of G.

Proof. We know P(G) =~ G* = 0(G) and (see [11]) P(G) is its own ring of quo-
tients. Thus ¢(G) is the complete ring of quotient of G.

Remark. The fact that P(G) is the ring of quotients of G is established in [11].
Now let « be the natural isomorphism of G into 0(G).

b
G —— P(G)
o
0(G)
It follows from Theorem 5.4 that there is a unique extension ¢ of y~!a to an iso-
morphism of P(G) onto 0(G).
For K € P(G) let {u; | A€ A} be a maximal disjoint subset of K and pick a parti-

tion % of P(G) that contains the a}. Now K = | |a and so ¢ must map take this
onto Va,o. Therefore Ko is the element in (9(G) with é-th component

(oo
where I(C) = a, if C = a} and I(C) = 0 if C is not one of the a;

5) Thus we have factored the natural embedding « of G into 6(G) through P(G)
%

g—"9" g0 =49 .
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Suppose that G is a commutative semiprime ring Abian [1] calls an element
0 % a e G a hyperatom if for each element x e G

x < a implies x=0 or a,
and
x + 0 implies axs =a forsome seG.

G is hyperatomic if for each 0 & g € G there is a hyperatom a < g. Abian shows
that G is (isomorphic to) a direct product of fields iff G is hyperatomic and laterally
complete. ‘

Proposition 5.8. Let G be a commutative semiprime ring. Then G is a product
of fields iff G is hyperatomic.

Proof. («) Using Abian’s results we may assume that XF; © G < IIF,;, where
the F; are fields. Now clearly X(F,)" = IIF; and hence G* = IIF,.

(—). We are given that G = G" = IIF,. Since G is large in G, for each i there is
an element of the form (0-—-—0, a;,0—0) € G, where 0 = a; € F,. Let P; be the projec-
tion of G onto the i-th coordinate. Then

G < IP, < IIF,

and since ITP; is an L-ring it follows that ITP; = ITF;. Thus there is an element of
the form (—a;'—) in G and hence (0 — 0,1,0 — 0) e G. In particular F; = G
and so XF; < G. Thus G is hyperatomic.

Remark. Otis Kenny has shown this Abian’s results can be extended to non-
commutation reduced rings. Thus if R is a reduced ring then R* is a product of divi-
sion rings iff R is hyperatomic.

6. SEMIPRIME RINGS R FOR WHICH P(R) 1S ATOMIC

In the next few proofs we will use the fact that if a, b € A an ideal of Rthen a L b
iff a and b are disjoint in A. Thusa < bin Aiff a £ b in R. For if arb #+ 0 for some
r € R then arbsarb + 0 for some s € R and since rbsar € A we have adb =+ 0.

Theorem 6.1. For an ideal A + 0 in a semiprime ring R the following are
equivalent.

a) A is a prime ring. f) A" is an ideal that is maximal
b) a = A’ for each 0 + a € A. w. r. t. being a prime ring.

c) A’ is a prime ideal. g) A" is a prime ring.

d) A’ is a minimal prime ideal. h) A" is an atom in P(R).

e) A" is the largest ideal containing i) A’ is maximal in P(K).

A that is a prime ring.



" Remarks. (a) If R is reduced then “prime ring” becomes “integral domain”
and a minimal prime ring is completely prime [2]). Thus 4’ is completely prime.

(b) If A = (s is principal then A’ = s’ and A” = s". We shall call s basic provided
the above conditions are satisfied. In particular, if s and ¢ are basic then by (h),
s"nt"=0o0rs" =1

Corollary L If R is reduced, then 0 & s R is basic iff Rs is an integral domain.

Proof. (=) Rs < (s> which is an integral domain.

(<) Suppose (by way of contradiction) that 0 + x, yes” and xy = 0. Then
Then xsys = 0. Now xs =0 implies xes'ns" =0 and so xs & 0 == ys and
xsys = 0. Then Rs is not an integral domain, a contradiction.

Corollary IL If CEP(R) and A is an ideal in R and a prime ring then C 2 A
or CnA=0.

Proof. f 0 FaeCnAthend =a 2C sodc A" = C" = C.

Proof of the theorem. (a — b). Consider a, be 4 with a % 0. If xea’ then
xRa = 0 so xsbRa = 0 for all se R. Thus since A is a prime ring and xsb, ae A
we have xsb = O forallse Randso xe A’. Thusa’ < A" and sinceae 4,a" 2 A4'.

(b - c). If (c) is false then there exists x, y € R\ A’ such that xRy < A’. Thus
for 0 &= ae A we have xtaRysa = 0 for all s,te R. If xta = 0 for some ¢ then
ysae(xta) = A'soysae A’ n A =0forall se Randso yea’ = A’,a contradic-
tion. If xta = Oforallte Rthenxea' = A4', a contradiction.

(c - d). We know that A4’ is the intersection of minimal prime ideals.

(d-—>e). If0 = a,be A" then a, b e R\ A" and since R/A’ is a prime ring axb ¢ A’
for some x € R. Then aRb + 0 and so aA"b + 0 and hence A" is a prime ring. Sup-
pose that B is an ideal of R and a prime ring that contains 4”. We use the fact that (a)
implies (b). If 0 # a€ A the A" = A" = a’ = B’ and hence A” = B" 2 B.

(e > b — g). Clear.

(g = h). Suppose that 0 + B < A” and B € P(G). Then since B is an ideal in the
prime ring A", B is also a prime ring. Then for 0 = be Bwehave B =b" = 4" =
= A’ and hence B = B" = A".

(h —1). The map X — X’ is an antiautomorphism of P(G).

(i » a). Suppose (by way of contradiction) 0 #+ a,be Aand a L b. Thena' 2 A’
and since be a’\ A" we have a’ > A’ which contradicts the maximality of A".

A subset S of a semiprime ring R is a basis if

(a) S is a maximal disjoint set,
and

(b) each s e S is basic.

The following properties of a basis S = {s; [ L e A} are clear.

1. If 7 is an automorphism of G the St is a basis. -
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1L {s; ‘ Ae A} is the set of all ideals of R that all maximal with respect to being
prime rings.

1. B = Xs} is the basic ideal. B is independent of the choice of S and invariant
under all automorphism of R.

IV. A basis for R contains one and only one (non-zero) element from each s.

Theorem 6.2. For a semiprime ring R the following are equivalent:
1) R has a basis.
2) If 0 &= ge R then gRs + 0 for some basic element s.
3) P(R) is atomic.
4) 0 = N all annihilator ideals that are also prime ideals.
5) X' = 0 where X is the set join of all the ideals of R that are also prime rings.

Proof. (1 - 2). This follows from the fact that a basis for R is a maximal disjoint
set.

(2 - 3) If 0 # g € Be P(G) then 0" grs for some basic element s and some r € R.
In particular grs € {s) and so it is basic. Therefore B = (grs)” an atom.

(35 4) If 0 # g e R then g” 2 4 an atom in P(R). Thus A’ is a prime ideal and
ifge A then 4 < g" < A" = A’, a contradiction.

(4 > 5) Let {C; | A€ A} be a set of annihilator ideals that are also prime ideals
and such that NC; = 0. By Theorem 6.1 each C; is a prime ring and so X =2 C".
Then

X' c(UCY=nC=0.

(5 — 1) Let {4, | 2 € A} be the set of all ideals of G that are maximal with respect
to being prime rings. Then

X = U4, < 34,.

For each 2 € A pick 0 # a, € 4;. Then {a; | A€ A} is a disjoint set of basic elements.
If x € R and xRa; = 0 for all A then x € a; = A so xe(UA;) = X' = 0. Therefore
{a;| 4 € A} is a maximal disjoint set and hence a basis.

Remark. Since P(G) is a Boolean algebra it is atomic iff each proper annihilator
ideal is contained in a maximal annihilator ideal. Also, of course, R has a finite
basis iff P(G) is finite.

Lemma 6.3. If R is a semiprime ring and 0 %= s € C an ideal of R then s is basic
in C iff s is basic in R.

Proof (——») If s is not basic in R then there exists 0 * x, y € {s) < C such that
xRy = 0. Since C is semiprime xc,x + 0 =% yc,y for ¢, ¢, € C. Now xcx, yc,y €
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€ {s),, the ideal of C generated by s, and xc;xRyc,y = 0. Then xc,x{s>; yc,y = 0
but this contradicts the fact that (s}, is a prime ring.

(<—). If s is not basic in C then there exist 0 % x, y € {(s). such that x{s>,y = 0
and since {s), is an ideal in the semiprime ring C, xCy = 0 and similarly xRy = 0
but the means that {s) is not a prime ring, a contradiction.

Corollary. For a semiprime ring R following are equivalent:

a) R has a basis.
b) <a) has a basis for each 0 * a e R.
¢) Each proper ideal of R has a basis.

Proof. (¢ — b &<c) Consider 0 # ¢ e C an ideal. Then ¢Rs =+ 0 for some basic
element s of R. 0 % crs is basic in R and belongs to C so it is basic in C.

crsCers == 0 since C is semiprime .

Therefore ¢Ccrs = 0 so C has a basis.

(b —>a) If 0% aeR then ala) s * 0 for some basic element s in {(a). Thus
aRs # 0 and s is basic in R.

(c— a) Consider 0 & g € R. If {g) is a prime ring then g is basic and gRg =% 0.
If {g) is not a prime ring the there exist 0 & a, b € {g) such that aRb = 0. Thus
0%+a"n<g>C{g). Pick 0FceC =a"n {g) then gRc =+ 0; otherwise ¢ €
€g' ng” = 0. Thus yRs # 0 where s is basic in C and hence in R.

Propesition 6.4. Suppose that R is a semiprime ring and a large left subring of S.
a) If K = {k,| A€ A} is a basis for R then it is also a basis for S.
b) If S has a basis then so does R.

Proof. (a) If 0 + se S and s L k, for all A then pick x € R such that 0 & xs € R.
Then xs L k; for all A but this contradicts the fact that K is a maximal disjoint subset
of R. Thus K is also a maximal disjoint subset of S. Now k7 is an atom in P(R) and
so (kzy** = k3™ is an atom in P(S). Thus each k; is basic in S and so K is a basic
for S.

(b) Suppose that K = {k; | A€ A} is a basis for S. For each 4 pick an element
a; € R such that 0 % a,k; € R. Now {(a,k;)** = k;* so a,k; is basic in S and since
(azk;)" = (a;k;)** n R we have that (a;k;)” an atom in P(R) and so ak; is basic
in R. Since {a;k;, | A€ A} is a basis for S it is a maximal disjoint subset of S hence
of R. Then {a;k; ‘ A€ A} is a basis for R.

Let S = {s; | 1 € A} be a basis for the semiprime ring R. Then each R/s} is a prime
ring and (s; = 0. Thus

g = (—si +9—)

is an isomorphism of R into K = HR/S,{. -
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Theorem 6.5. K = (Ro)° and if S is finite K = (Ro)". In particular P(R) is atomic
iff R® is a product of prime rings.

Proof. Consider 0 # x = (—-s} + x,—)e K with say s, + x, # s,. Then 0 *
+ a = s5,9x, for some g € R and since a € (N4, 53) \ 5, We have

ac =(0— 0,5, + a,0 — 0) = ((s.9) o) x .
Thus Ro is left large in K and so Re < (Ro)® = K. We next show that S+ X, =

= (0 — 0,5, +x,0— 0) € (Ro)” and hence (R(T)P 2 IR[s;.
Let *(#) be the annihilator operators in (Ro)” (K).

(Ro)" = 5. + 5, %@ 5, + 55 = (5,0) **® (s,0)* ,

X0 =c¢+d

but this is also the decomposition of x,o in

Therefore C = s, + x, (Ro)’.

Now clearly K is the lateral completion R/s; and hence of (Ro)". Therefore
K = (Ro)°. If S is finite then K = ZR/s} and so (40)* = K.

Finally if R € R® = I1T; where the T are prime rings then R° has a basis and
so by Proposition 6.4 R has a basis. Thus P(R) is atomic.

Remark. If R is reduced then each s} is completely prime [2:[ and so the R/s; are
integral domains.

Corollary. If R is a semiprime P-ring with a basis {s, I'/l €A} then R =55 @ s),
for each Ae A and hence there is a natural isomorphism t such that s) < Rt <
< IIs] = K. In particular TIs is the O-hull of Rt and hence R is a O-ring iff
Rt = Ils].

We say that a disjoint subset {s, | A€ A} is bounded by x € R if xRs; + 0 for
each A € A.

Theorem 6.6. If R is a semiprime ring that satisfies (F) each bounded disjoint
subset of R is finite, then R has a basis.

Proof. It suffices to show that if 0 & g € R then gRs = 0 for some basic element s.
If g is basic then let s = g. Suppose that g is not basic and hence {g) is not a prime
ring. Then there exist (non-zero) disjoint elements g, and g, in {g)>. Now gRg; + 0;
otherwise g; € g’ N {g) = 0. Thus if g, is basic we are done. If not there exist disjoint
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elements g1 and ¢, in {g,>- Note that 912 € 97 and _6]/1' Nng;=0s09g12Lg,
We proceed in the way

9

g 11 9112

Fig. 1
Since g bounds the disjoint set g5, 912, g;12, - .- this process must halt.

Corollary I. R has a basis of n-elements iff R contains n disjoint element but not
n + 1 such elements.

Proof. (—») If ay,a,,...,a,., are disjoint then we can find basic elements
Sis -+ Sya+y and elements gy, ..., g,+1 € R such that a,g,S;, ..., dy+y Gus1 Sa+1 are
disjoint and basic, a contradiction.

(«). R satisfies (F) and so has a basis that contains at most n-elements. Also we
are given a disjoint set a4, ..., a, so for a suitable choice of basic elements s; we have

191515 <+ Apd 1S,

are basic and disjoint. So R has a basis of n-elements.

Corollary IL R has a finite basis iff each disjoint subset of R is finite.

Proof. (=) If ay, a,, ... is a disjoint subset of R then for suitable choices of s,
and g;.
1915y, Q29285 - .-

is a set of disjoint basic elements. Thus a,, a,, ... must be finite.

(«). Since R satisfies (F) it has a basis which must be finite.

Corollary IIL. The following are equivalent.

1) R satisfies (F).
2) Each {g) has a finite basis.

Proof. (I = 2) Let ay, a,, ... be a disjoint subset of {g). Then gRa; =+ 0 for all i
and hence the set is finite. Thus by the last Corollary {g> has a finite basis.
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(2 — 1) Suppose sy, 55, ... is a disjoint subset of R and gRs; # 0for all i and a fixed
g € R. Then gr,s,, gr,s,, ... is a disjoint subset in {g) and so must be finite. Thus
the set sy, S5, ..., is finite

Corollary IV. For a ring R the following are equivalent.
1) R is semiprime and satisfies (F).
2) R is a subdirect sum of prime rings.

Proof. (1 - 2) Let {sl] A€ A} be a basis for R and consider 0 + g € R. Then
gRs; = 0 for all but a finite number of the s; and so g € s for all but a finite number
of 4. Now each s is a prime ideal and

g - (—si+g—)

is an isomorphism of R onto a subdirect sum of ZR/s}.

(2 > 1) Consider 4 = XA, where A4, are prime rings. Then clearly A satisfies (F).
If R is a subdirect sum of 4, then R is semiprime and each bounded disjoint subset
is finite.

Remark. If R is reduced then each R[s} is an integral domain so R is a subdirect
sum of integral domains.

Theorem 6.7. A semiprime ring R satisfies (F) iff R® is a direct sum of prime rings.

Proof. (—») By the last Corollary R © XA, when the A; are prime rings and since
A; N R = 0 for each i it follows that R is left large in £A4,. Therefore R = RF < T4,
but as in the proof of Theorem 6.5 it follows that R® 2 XA,

(«) Clearly R" satisfies (F) and hence so does R.

Corollary. A semiprime ring is a direct sum of prime rings iff it is a P-ring that
satisfies (F).

Proposition 6.8. Suppose that R is a semiprime ring and let
X ={xeR | x bounds at most a finite number of disjoint elements}.

Then X is an ideal that satisfies (F) and if T is an ideal that satisfies (F) then
T< X. Let {4, | A€ A} be the set of all ideals of R that are maximal w.r.t being
prime rings. Then A, = X < (LA,)" and X4, is the basic ideal of X.

Proof. Consider x, ye X and suppose that (x & y) Ra; % 0 for some infinite
disjoint set a;, a,,.... Then an infinite number of the xRa; + 0 or an infinite
number of the yRa; + 0 a contradiction. Thus (X, +) is a group.

If ryRa; + 0 then yRa; % 0 so ry e X are similarly yr € X. Thus X is an ideal
that satisfies (F).
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Now suppose (by way of contradiction) that x € X = (X£4,)". Thus y = xz + 0
for some z € (£4,) and since R 2 (£4,)" @ (£A;)’ it follows that yA4, = 0 for all 4.
Then {y> is not prime and hence there exist y;, ¥, € {¥> such that y, L v,. Thus

we have
X

y/y\yz
RN
/N

And hence x bounds the disjoint elements y,, y,, ..
has a basis then £4; € X < (2£4,)” = R and A, is the basis ideal of R.

Y1z

Fig. 2

., a contradiction. Note that if R

.

7. THE RING #(G) OF ALL p-ENDOMORPHISMS OF A SEMIPRIME RING G

Throughout let G be a semiprime ring.
If G is reduced then @ = b iff ab = b? so each ring endomorphism of G preserves.

order. In general a = b iff agh = bgb for all g € G, so if « is a ring endomorphism
of G and Ga is semiprime then ax = bf in Ga but perhaps not in G. Now

a+bz=b iff alb.
Thus if « is an endomorphism of the group (G, + ) then « preserves order iff « preserves
disjointness.

Definition. A p-endomorphism of G is an endomorphism « of (G, +) such that

for a,be G
a L b implies ax Lb

or equivalently
Ce P(G) implies Ca < C. .
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Proposition 7.1. The set .5’?(0) of all p-endomorphisms of G is a ring of order
preserving endomorphism of (G, +).

Proof. Consider o, f € 2#(G), a. be G and Ce P(G). If a L b then ax L 8 and
hence aa L bx. Thus « preserves order. Next Ca < C and so Cofp € Cf < C and
hence aff € Z(G). If aGb = 0 then a(x + f) Gb = (ax + aB) Gb < aaGb + apGb =
= 0. Thus « + b e P(G). .

Note that each right multiplication of G is a p-endomorphism

x —>xg forall xeG andafixed geC.

Now we may assume that G < ITT; where the T; are prime rings. If x € #(G), a Z b
and b; + 0 then (ax); = (ba);. Fora — b | b and hence aa — bo L b. Thusif b; + 0
the (ax — ba); = 0.

Lemma 7.2. If G is an L-ring, {a, l ae A} is a disjoint subset of G and o € Z(G)
then

(Va,) o = V(a.0)

Proof. Since o preserve order (Va,) 6 = a,0 for each o and hence (Va,) o =
= V(a,0). Also by the above

(@.); + 0 implies ((Va) 0); = (as0); = (V(a,0)); .

Now (Va,) o + x = V(a,0) for x € G and we shall show that x = 0. If (a,); + 0
the x; = 0so x L g, for all «. Thus Aa, + x = a, for all « and so Va, + x = Va,.
But this means that Va, 1 x and hence (Vaa) o 1 x. Thus it follows that x = 0.

Remarks. The proof only uses the existence of Va, and V(a,0). Note that we have
shown that if x L a, for all « the x L Va,. Thus if {a, | xe A} = Ce P(G) and Va,
exists then Va, € C. Therefore C is closed with respect to joins of disjoint elements.

Corollary. If {a, [ ae A} is a disjoint subset of an L-ring G then for each ge G
(Va,) g = V(a.9) -

Proof. This follows from the fact that x — xg is a p-endomorphism of G.

Actually one can prove a stronger result. If {a, I o€ A} is a subset of a semiprime
ring G and Va, exists then V(a,g) exists and equals (Va,) g. Whether or not the cor-
1'esponding_~resu]t holds for any p-endomorphism of G is an open questions.

Theorem 7.3. Let G be a semiprime ring and let X = P, SP, L or 0.

1) A p-endomorphism ¢ of G has a unique extension to a p-endomorphism o
of G*.

2) If o is 1 — 1 sois 6*. If o is onto then so is 6™ for X = P, SP or 0.

3) If x is a p-endomorphism of G° such that Ga < G then G*o < G*.

X
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The proof is almost identical with the proof of Theorem 4.4 in [5] and so we
omit it.

Theorem 7.4. Suppose that G is a semiprime ring and consider the system
(Gx, +, Z) for X =P, SP or 0. Then there exists a unique multiplication on G¥
so that

a) G* is a semiprime ring.
b) G is a subring of G*, and

¢) this multiplication on GX induces the given partial order <.

Proof. Note that a L b iff @ + b = b so we have the concept of disjointness
in (Gx, +, §). We first verify the result for X = 0. Suppose that . is a multiplication
of 0(G) that satisfies a), b) and ¢). We wish to show that this is the natural multi-
plication in @(G). The right multiplication of the elements in G by a fixed je G
is a p-endomorphism of G and hence it has a unique extension to a p-endomorphism
of O(G). Therefore

xof =x§ forall xe®(G).
Thus (—{(x o §)s —) = (~{(xg)¢—). In particular if x, =+ 0 =% gy then
(xo)e = (<d)e = %
Suppose that x, = (0 — 0, C" + £, 0 — 0) where C" + 1 + C" + C’ + g. Then
do = (0 -0, C" + g, 0 — 0) + (the other G-components of g) = ay + by .

Now let @ and b be the element in 0(G) with -th component a, and b,. In particular,
if by = 0 then let b = 0. Now b and x are disjoint so xo b = 0. Thus xoa =
= x o (a + b)and hence

(xoa)e =(xs(a + b))y =(x08) = (x§) =
=(0=0,C + 19,0 —0) = xa, -
Now counsider x, y € ¢(G) with x4 % 0 * y,. Then
xg = (—C' + x(C)—) = Vxc, where xc=(0~0,C" + x(C),0 - 0),
e =(—C + y(C)—) = Vye. where ye=(0—0,C + y(C),0 - 0).

Let Xc(Jc) be the element in ¢(G) with %-th coordinate xc(yc) and, in particular,
e =0if x¢ = 0 (Jc = 0if yo = 0). Then x = VXc and y = V¢ so

Xo)y = (Vfc) ° (VJ—’C) = V(yfc 0}7c) = VXcpc = (ch) (VyC) =Xy

Therefore o is the natural multiplication in @(G).
An entirely similar proof works for G® and G since they are both direct limits.
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8. BAER RINGS

There are various definitions of Baer rings in the literature. Kist [9] defines a com-
mutative ring R to be a Baer ring if for each a € R
a* = {xeR|xa =0} = Re

for some idempotent e. In particular R = 0¥ = Re so the ring has an identity. Also
Kist shows that R is semiprime. For if a*> = 0 then ¢ € a* = Re and hence a =

7

= ae = 0. In particular a* = a'.
(1) If R is a commutative semiprime ring with 1 then R is a Baer ring iff R

is a P-ring.

MEWBORN [ 12] defines a commutative ring R to be a Baer ring if for each subset 4
of R i
A* = {xeRle =0} = Re

for some idempotent e.

(2) If R is a commutative semiprime ring with 1 then R is a Baer ring in the
sense of Mewborn iff R is an SP-ring.

KAPLANSKY [8] defines a ring R to be a Baer ring if it satisfies two and hence all
three of the following conditions.
(a) If Ais a subset of R then r(4) = {se€ R | As = 0} = eR for some idempotent e.
(b) If Ais a subset of R then [(4) = {se R|sA = 0} = Re for some idempotent e.
(c) R has an identity 1.
Note that Mewborn’s definition is the commutative version of Kaplansky’s.
(3) If R is a reduced ring with 1 then R is a Baer ring in the sence of Kaplansky
iff R is an SP-ring.
Proof. Since R is reduced r(4) = I(A) = A’ and each idempotent is central.

(4) Let R be a commutative semiprime ring with 1. Then RY is the Baer extension
of R constructed by Kist and RS is the Baer extension of R constructed
by Mewborn.

Finally we note that SPEED [14] has used the direct limit construction of [4] to
construct R® and RS for a commutative semiprime ring with 1 and also various
Baer hulls of R that lie between RF and R,
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