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Abstract

Background: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax,
lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for
possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria
remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune
evasion.

Methodology: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between
human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we
identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions
including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized.
Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and
bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved
amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different
pathogens interact with crucial host pathways involved in inflammation and immunity.

Significance: These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and
their human hosts. This study provides novel insights into host-pathogen interactions.

Citation: Dyer MD, Neff C, Dufford M, Rivera CG, Shattuck D, et al. (2010) The Human-Bacterial Pathogen Protein Interaction Networks of Bacillus anthracis,
Francisella tularensis, and Yersinia pestis. PLoS ONE 5(8): e12089. doi:10.1371/journal.pone.0012089

Editor: Laurent Rénia, BMSI-A*STAR, Singapore

Received April 13, 2010; Accepted July 17, 2010; Published August 9, 2010

Copyright: � 2010 Dyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Department of Health and Human Services, under Contract No. HHSN272200900040C to Bruno Sobral and contract DHHSN266200400057C to Myriad.
Facilities and equipment for doing the experiments was provided by Myriad, INC. Time for CN, MD, and DS was partially funded by Myriad, INC. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CN, MD, and DS are employed by and own stock in Myriad, INC. MDD is employed by and owns stock in Life Technologies. This does not
alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: murali@cs.vt.edu (TMM); sobral@vbi.vt.edu (BWS)

¤a Current address: Life Technologies, Foster City, California, United States of America
¤b Current address: Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America

Introduction

Bacillus anthracis, Francisella tularensis and Yersinia pestis are known

to cause pathogenesis, in part, by evading or suppressing immune

responses. For instance, it is well recognized that anthrax lethal

toxin (LT) is a key player in the B. anthracis pathogenic mechanism

that induces macrophage apoptosis [1] and cleavage of MAPK at

specific recognition sites [2]. Y. pestis suppresses local inflammation

and impairs macrophage phagocytic activity through a complex

type III secretion system (T3SS) and its associated protein LcrV

[3]. F. tularensis either fails to induce an immune response or causes

immune suppression by inducing transforming growth factor

(TGF-b) [4]. Both Y. pestis and F. tularensis are Gram-negative

bacteria that synthesize lipopolysaccharide (LPS) with poor Toll-

like receptor 4 (TLR4)-stimulating activity, although F. tularensis

can signal via TLR2 [5]. Thus, all three pathogens share similar

mechanisms of pathogenesis that involve modulation of immune

responses. Traditional microbiology and immunology approaches

have characterized only a few pathogenic proteins for each

microbe, resulting in a limited understanding of pathogenicity and

evasion mechanisms.

In contrast to investigating either the host or the pathogen,

focusing on interactions between host and pathogen proteins may

uncover hidden associations that have not been detected by

traditional methods. To uncover host-pathogen protein interac-

tions on a genome-wide scale for these three immune-evading

systems and to define a target set of proteins for understanding

mechanisms of pathogenicity, we designed a high-throughput

yeast two-hybrid assay aimed at characterizing protein-protein

interactions (PPIs) between human and bacterial proteins. We
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generated DNA-binding domain libraries for each pathogen and

activation domain libraries containing human proteins in a

haploid Mata strain of Saccharomyces cerevisiae. We tested for

activation of the two-hybrid reporter genes using a similar protocol

that was previously used for identifying interactions between

proteins in Plasmodium falciparum [6]. We then sequenced positive

colonies to identify interacting partners (see Figure 1A). In total,

we performed more than 250,000 screens across the three

pathogens. We obtained 3,073 PPIs between 1,748 human

proteins and 943 B. anthracis proteins, 1,383 PPIs between 999

human proteins and 349 F. tularensis proteins, and 4,059 PPIs

between 2,108 human proteins and 1,218 Y. pestis proteins. We

used an independent computational analysis to study the network

properties (degree and centrality) of the human proteins that

interact with pathogen proteins in our dataset. Additionally, we

used a graph-alignment algorithm to identify conserved subsets of

human-pathogen PPIs found across multiple networks.

These data constitute the first extensive protein interaction

networks constructed for bacterial pathogens and their human

hosts. Typically, data detailing host-pathogen interactions is

ascertained from small-scaled experiments that are designed to

target specific proteins, complexes, or pathways of interest. This is

evident from the number of interactions between host and

bacterial pathogens currently available in seven public resources

[7,8,9,10,11,12,13]. For example, these databases only contain

one human-B. anthracis interaction, no human-F. tularensis interac-

tions, and seven human-Y. pestis interactions.

Results and Discussion

In total we identified 3,911, 1,942, and 5,157 PPIs for the

human-B. anthracis, human-F. tularensis, and human-Y. pestis

networks respectively. We filtered this set of PPIs by removing

human proteins that interact with large number of pathogen

proteins identified by multiple screens with other pathogens

(unpublished data), reasoning that such interactions are likely to be

false positives. This step yielded a final set of 3,073, 1,383, and

4,059 PPIs for the human-B. anthracis, human-F. tularensis, and

human-Y. pestis networks respectively (see Table 1). We found that

888 human-B. anthracis, 167 human-F. tularensis, and 2,205 human-

Y. pestis PPIs contain pathogen proteins that are labeled as

‘‘putative’’, ‘‘hypothetical’’, or ‘‘uncharacterized’’. See Figure 1B

for a comparison of the sets of human proteins found to interact

with each of these pathogens.

Bacterial pathogens have evolved to interact with human
hubs and bottlenecks
Several recent studies [14,15] have suggested that viral proteins

have evolved to preferentially interact with protein hubs (proteins

with many interacting partners) and bottlenecks (proteins that lie

in shortest paths between many pairs of proteins) in the human

PPI network. We hypothesized that bacterial proteins interact with

human proteins with high degree and centrality, since pathogens

may have evolved to control and disrupt essential complexes and

pathways governing the host response. Our analysis supports this

hypothesis. More specifically, Figure 2(a) displays a log-log plot of

the degree distributions of six sets of proteins in a human PPI

network collated from multiple databases [7,8,9,10,11,12,13].

These plots show that across almost the entire range of degrees,

human proteins interacting with bacterial pathogens tend to have

higher degree than proteins that do not interact with any

bacterium. The betweenness centrality results display the same

trend (see Figure 2(b)). We used Gene Set Enrichment Analysis

(GSEA) [16] to test whether the gaps we observe in Figure 2

between the curve for all non-pathogen interactors and the other

curves are statistically significant. GSEA yields p-values less than
1026 for both degree and centrality for all sets, supporting the

conclusions we draw from Figure 2. To address the possibility that

the observed patterns may be artifacts of experimental biases or

errors in the human PPI network, we followed an earlier approach

for viral-human PPIs [15]: we repeated the GSEA analyses using

two subsets of the human PPI network: (i) interactions detected by

small-scale experiments and (ii) interactions observed by large-

scale studies. We obtained statistically-significant results in both

cases (see Table 2).

Bacterial pathogens target host defense pathways
Since conserved interaction networks between bacterial proteins

and the host may be indicative of putative novel targets for broad-

based immunotherapeutic development, we asked if human

proteins interacting with multiple pathogens may be involved in

functions related to host response. Since manipulation of immune

responses in the host has been linked to infection by all three

pathogens [17,18,19], we identified 60 human immune modula-

tion proteins using annotations from the Gene Ontology [20] and

their bacterial interactors (see Figure 3). While many of the

proteins in the human-respiratory pathogen interaction map play

a role in apoptosis, they are also important effectors of immune

response signaling. Thus, the double role in apoptosis and immune

response regulation should be considered when interpreting these

results. This network includes interactions among sets of bacterial

and human proteins involved in innate immunity (i.e., TLR4 and

TLR7), inflammation (IL-8RB, NF-kB and Bcl-6), recruitment of

inflammatory cells, regulatory function, maturation and activation

of T cells (i.e., CXCR4, STAT3, NOTCH2, and LCK). For

example, LCK is a tyrosine kinase expressed in T cells associated

with the cytoplasmic tail of CD4 and CD8 co-receptors.

Functionally, LCK is a crucial regulator of T cell activation

[21]. Of note, LCK interacts with proteins from all three

pathogens, suggesting that these bacteria may have developed

conserved mechanisms of impairing effector T cell responses by

targeting and possibly disrupting LCK signaling, which is required

for inducing acquired immune responses and immune-mediated

protection against infectious diseases.

CXC-chemokine receptor 4 (CXCR4) is the major coreceptor

for human immunodeficiency virus in CD4+ T cells and a

promising new target for developing anti-HIV drugs [22]. We find

that CXCR4 interacts with the yscP protein, a known virulence

factor from Y. pestis and a secreted component of the Yop secretion

system [23]. The natural ligand for CXCR4 is CXCL12 or SDF1

(stromal cell-derived factor-1) – a chemokine involved in the

recruitment of down-modulatory FOXP3+ regulatory T cells

(Treg) into inflamed tissues [24]. In addition, STAT3 is required

for expression of FOXP3 in Treg [25]. Our data demonstrate that

STAT3 interacts with the Y1119 protein of Y. pestis. In turn, we

show that TGF-b1, a down-modulatory cytokine produced by

Treg, interacts both with Y. pestis and F. tularensis proteins. The
Schu4 strain of F. tularensis has been shown to suppress

inflammation in infected mice, and this inhibition has been

attributed to induction of TGF-b, another member of the

apoptosis PPI network [4]. Similar patterns have been observed

in B. anthracis and Y. pestis [26,27]. The existence of a putative

mechanism of down-regulating immune responses by targeting

regulatory pathways merits closer attention.

Comparative analysis of human-pathogen networks
Encouraged by the evidence in our data suggesting that all three

pathogens target proteins involved in host response to infection,

Human-Bacterial PPI Networks
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Figure 1. Overview of experimental workflow. A) Overview of analysis pipeline used in this study. B) Venn diagram displaying the number of
human proteins interacting with each of the three pathogens in this study.
doi:10.1371/journal.pone.0012089.g001

Human-Bacterial PPI Networks
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we sought to perform a more systematic comparative analysis of

the three host-pathogen PPI networks. In preparation for

computing conserved modules of host-pathogen PPIs, we used

Inparanoid [28] to identify orthologous proteins and OrthoMCL

[29] to identify paralogous proteins. From the Inparanoid

algorithm we identify a total of 686, 1,179, and 834 pairs of

orthologous clusters for the B. anthracis-F. tularensis, B. anthracis-Y.

pestis, and F. tularensis-Y. pestis comparisons respectively. We find

that 181,505, and 184 of these clusters from the respective

comparisons contain more than one protein from either organism.

Of these, 93,210, and 129 clusters contain at least one pathogen

protein from both organisms that was observed to interact with a

human protein in our dataset (see Table 3). We find 1,900 clusters

of human proteins from the OrthoMCL analysis.

First, we performed simple intersections of the detected host-

pathogen PPIs. We looked for interologs [30] i.e., a pair of human-

bacterial PPIs where the bacterial proteins are orthologous and the

human proteins are related. More specifically, we searched for

three types of configurations:

i. a triple of proteins a, b, and c, where a is a human protein that

interacts with a protein b in one of the three bacteria and with

a protein c in another bacterium in our data and b and c are
orthologs of each other,

ii. a quadruple of proteins a, b, c, and d, where a, b, and c are as

defined before, d is a human protein, a and d interact with

each other physically in the human PPI network, a interacts

with b in our data and d interacts with c in our data, and

iii. a quadruple of proteins a, b, c, and d, where a, b, and c are as

defined before, d is a human protein, a and d are paralogs, a

interacts with b in our data and d interacts with c in our data.

As can be seen from Table 4, our interaction data contains a

very small number of interologs.

Since, simple intersections of host-pathogen PPIs did not yield

substantial information on conserved PPI networks, we applied

four published algorithms for identifying conserved protein

interaction modules (CPIMs) amongst the three human-pathogen

networks and homology relationships previously identified:

Graemlin [31], Match-and-Split [32], NetworkBLAST [33], and

GraphHopper [34]. These methods were originally designed to

identify conserved modules between intra-species PPI networks.

Graemlin requires the user to provide the topology of expected

conserved modules as positive examples. Thus, Graemlin was not

directly applicable to our scenario since there are no such

examples available for these systems. Using the Match-and-Split

algorithm we were not able to identify any CPIMs in any of the

comparisons. In the case of NetworkBLAST, where there are a

number of user parameters that can be adjusted, e.g., complex

density and false negative rates, we tried different combinations of

values. For the parameter complex density, we varied the input

value from 0.50 to 0.95, adjusting values by 0.05 for each test. We

performed the same procedure for testing the range of 0 to 0.80 for

the FN ratios. Varying the parameters for the NetworkBLAST

algorithm had no effect on the identified CPIMs in our case,

yielding three CPIMs for the B. anthracis-F. tularensis comparison,

ten CPIMs for the B. anthracis-Y. pestis comparison, and two CPIMs

for the F. tularensis-Y. pestis comparison. Using the GraphHopper

[34] algorithm we were able to identify many more significant

CPIMs. In total we identified 39 CPIMs for the B. anthracis-F.

tularensis comparison, 64 for the B. anthracis-Y. pestis comparison,

and 41 for the F. tularensis-Y. pestis comparison. Table 5 displays the

number of identified CPIMs for each of the algorithms. We discuss

two sets of CPIMs computed by GraphHooper below related

antigen presentation and immune modulation.

Table 1. Summary of human-pathogen interactions.

Organsim # PPIs # PPIs* # H. sapiens # pathogen # pathogen

proteins proteins proteins*

B. anthracis 3,073 888 1,748 943 285

F. tularensis 1,383 167 999 349 66

Y. pestis 4,059 2,025 2,108 1,218 630

Counts in columns marked with an ‘‘*’’ correspond to pathogen proteins
labeled as ‘‘putative’’, ‘‘uncharacterized’’, or ‘‘hypothetical’’.
doi:10.1371/journal.pone.0012089.t001

A B

Figure 2. Network properties of interacting proteins. Cumulative log-log plots of (A) node centralities and (B) degrees for six subsets of nodes
in the whole human protein-protein interaction network: the red curve is for the set of proteins in the human PPI network that do not interact with
any pathogen in our dataset; the green line is for the set interacting with B. anthracis; the dark blue line is the for set interacting with F. tularensis; the
purple line is for the set interacting with Y. pestis; the light blue line is for the set interacting with at least two pathogens; and the orange line is for
the set interacting with all three pathogens. The fraction of proteins at a particular value of degree or centrality is the number of proteins having that
value or greater divided by the number of proteins in the set. (Counts in parentheses represent the number of proteins in each set.)
doi:10.1371/journal.pone.0012089.g002

Human-Bacterial PPI Networks
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The major histocompatibility complex (MHC) proteins are

responsible for presenting antigens to T cells. Antigen processing

and presentation is crucial for activating T cells and mounting

protective immune responses. Our analysis captures CPIMs

containing human proteins enriched in both antigen processing

and presentation functions (Figure 4(a) shows the network for the

B. anthracis – Y. pestis system). We find an interaction between the

human HLA-B protein and the B. anthracis pagA protein. HLA-B is

an MHC class I protein responsible for presenting antigen

fragments to CD8+ T-cells. The pathogen pagA protein, along

with the lethal factor and oedema factor, is one of three proteins

composing the anthrax toxin. Functionally, the pagA protein

facilitates the translocation of enzymatic toxins across the cell

membrane. Also interacting with HLA-B is the Y. pestis yscP

protein, which is part of the Yersinia outer-membrane protein

(YOP) secretion system. Members of the YOP family have been

shown to interact with MHC I proteins in the closely related

pathogen, Yersinia enterocolitica [35]. Other members of the MHC

class I family in these CPIMs include HLA-A, HLA-C, and HLA-

E. We also identify a number of interactions for human proteins

belonging to MHC class II (e.g., HLA-DRA, HLA-DPB1, HLA-

DQB1, and HLA-DMB), which are responsible for presenting

antigens to CD4+ T cells. These MHC class II proteins interact

with various pathogen proteins including pathogen membrane

proteins and yet uncharacterized proteins.

The CPIMs in Figure 4(b) represent pathogen interactions with

human proteins involved in immune response pathways for the B.

anthracis – Y. pestis system. Each CPIM includes NF-kB, which is a

transcription factor found at the crossroads of numerous immune

and inflammatory pathways leading to the induction of innate and

acquired immune responses. NF-kB is found downstream of the

Toll family of receptors, which participate in signaling in response

to infection. Pathogens have evolved to disrupt this critical process

and thereby evade the host response. Inhibition of the NF-kB

pathway impairs both the activation and differentiation of T cells

and antigen-presenting cells. In the case of Y. pestis, the inhibition

of the NF-kB pathway is necessary for rapid apoptosis in infected

macrophages [36]. We find several members of the Y. pestis YOP

family, including yscI, yscK, and yopD along with virulence

factors such as the toxin tccC1 and the protein kinase ypkA

interacting with NF-kB. Many of the other pathogen interactors of

NF-kB are labeled as ‘‘uncharacterized’’ proteins. We also observe

interactions between the Y. pestis proteins usg (an aspartate-

semialdehyde dehydro-genase) and tar1 (a methyl-accepting

chemotaxis transmembrane protein) and the human IKK-A

protein. IKK-A phosphorylates inhibitors of NF-kB, leading to

their degradation and resulting in NF-kB activation. We report an

interaction between human NFkB-IA, a NF-kB inhibitor that

binds to NF-kB and traps it in the cytoplasm, and the Y. pestis

protein y3760, a putative multi-drug resistance protein. Upstream

of NF-kB we demonstrate alr1-TLR4 and Y1119-TLR7 interac-

tions. TLR4 and TLR7 are receptors for LPS and viral single-

stranded RNA, respectively. It is well recognized that both Y. pestis

and F. tularensis synthesize LPS with poor TLR4-stimulating

activity. However, these further interactions may render NF-kB

non-functional. Our findings suggest a strong interaction between

bacterial proteins and proteins of the human immune system that

are both crucial for effector activity and conserved.

Materials and Methods

Experimental Methods
We used a random yeast two-hybrid approach to identify

physical interactions between human proteins and pathogen

proteins. See Figure 1 for an overview of the experimental

analytical processes used in this study.

Table 2. GSEA results.

Degree Centrality

Network Group # proteins ES # proteins p-value ES # proteins p-value

in group contributing contributing

B. anthracis 1,269 0.28 834 ,1026 0.46 1,269 ,1026

F. tularensis 729 0.28 574 ,1026 0.45 729 ,1026

W Y. pestis 1,514 0.28 1,325 ,1026 0.47 1,514 ,1026

Multiple 828 0.31 579 ,1026 0.46 828 ,1026

All 241 0.32 187 ,1026 0.45 241 ,1026

B. anthracis 608 0.39 608 ,1026 0.60 608 ,1026

F. tularensis 373 0.38 373 1026 0.59 373 ,1026

HT Y. pestis 723 0.39 723 1026 0.60 723 261026

Multiple 421 0.39 421 ,1026 0.60 421 ,1026

All 127 0.38 127 ,1026 0.59 127 2.961025

B. anthracis 1,109 0.24 853 ,1026 0.41 1,109 ,1026

F. tularensis 637 0.24 500 ,1026 0.41 637 ,1026

MC Y. pestis 1,331 0.24 1,153 ,1026 0.42 1,331 ,1026

Multiple 733 0.28 596 ,1026 0.41 733 ,1026

All 214 0.30 165 ,1026 0.40 214 ,1026

Summary of GSEA results for protein degree and betweenness centrality of human proteins for three networks: (W) whole human PPI network, (HT) the human PPI
network generated by only considering high-throughput experiments, and (C) the human PPI network generated by only considering manually curated PPIs. The ‘‘#
proteins in group’’ displays the total number of human proteins with at least one interaction. The ‘‘ES’’ columns display the enrichment score calculated by the GSEA for
degree and for centrality. The column titled ‘‘# proteins contributing’’ displays the number of proteins contributing to the ES score.
doi:10.1371/journal.pone.0012089.t002

Human-Bacterial PPI Networks
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Vectors and strains. The two-hybrid vectors that we used for

the random two-hybrid process are based on the Saccharomyces

cerevisiae Gal4p DNA-binding domain (amino acids 1 to 147 for

DBD constructs) and transcriptional activation domain (amino acids

768 to 881 for activation domain libraries). Both vectors have

elements suitable for growth in both bacterial and yeast cells. Two

Figure 3. Interactions with host innate immune response. Interactions of human proteins involved in the innate immune response. We
divided the human protein into subsets based on whether they induce or prevent apoptosis, or whether they regulate apoptosis. Proteins in the
group labeled ‘‘Non-specific’’ do not have an annotation more specific than ‘‘Apoptosis’’ in the Gene Ontology [20]. For clarity this image shows only
interactions involving virulence factors and uncharacterized pathogen proteins. As a result, some human proteins in the figure may appear to have
no interacting partners.
doi:10.1371/journal.pone.0012089.g003

Table 3. Inparanoid ortholog groups.

System # clusters # clusters # clusters

(.2 proteins) (pathogen

interactors)

B. anthracis-F. tularensis 686 181 834

B. anthracis-Y. pestis 1,179 505 184

F. tularensis-Y. pestis 834 210 129

Summary of ortholog groups identified by Inparanoid [28]. The column marked
‘‘# clusters (.2 proteins)’’ is the number of orthologous clusters that contain
more than a single protein from each organism. The column marked ‘‘# clusters
(pathogen interactors)’’ is the number of orthologous clusters which contain a
pathogen protein from each organism that is known to interact with a human
protein in our dataset.
doi:10.1371/journal.pone.0012089.t003

Table 4. Conserved interactions.

System #ortholog #same #direct #paralogous

pairs protein interaction interactor

pairs pairs pairs

B. anthracis –F. tularensis 60 3 0 2

B. anthracis –Y. pestis 97 5 0 3

F. tularensis –Y. pestis 98 1 0 3

Summary of bacterial interologs. each row is a pair of bacteria, column 1 is the
number orthologous pairs of proteins that both interact with a human protein,
column 2 is number of these pairs that interact with the same protein, column 3
is number of these pairs that interact with human proteins that interact
themselves, column 4 is number of these pairs that interact with paralogous
human proteins.
doi:10.1371/journal.pone.0012089.t004

Human-Bacterial PPI Networks
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DNA binding domain (DBD) cloning strategies were used that differ

in the open reading frame (ORF) selection strategy. The DBD

fusion vector pOBD.109 has a marker for selection of tryptophan

prototrophy (TRP1) and kanamycin resistance. The second DBD is

first cloned into the vector pOBD.111 where ORFs are selected

using MET2. We then PCR amplified all ORFs and clone them

into the fusion vector Super B DBD. The Activation Domain (AD)

fusion vector pGAD.PN2 has selection for leucine prototrophy

(LEU2) and ampicillin resistance (ampR). In both vectors,

expression of the fusion proteins is constitutively driven by the

ADH1 promoter. Both vectors also contain centromeric sequences

that serve to stably maintain the plasmids and keep the copy

number to one or two per cell. For the random two-hybrid

experiments, we used a proprietary DNA-binding domain vector

that permits the selection of inserts containing open reading frames

(pOBD.111). This selection was achieved by inserting a MET2

selectable marker in-frame and downstream of Gal4p DNA-binding

domain and the cloning site. In the absence of selection for an in-

frame open reading frame (ORF), the majority of inserts will be

from non-coding regions or will be out of frame, and therefore of no

utility in a two-hybrid assay. Using this ORF selection strategy,

greater than 80% of the cloned inserts in these vectors contain open

reading frames after nutritional selection. The DNA-binding

domain vectors we used, pOBD.111 and pOBD.109, are slightly

modified to facilitate the cloning of bacterial genomic DNA

fragments that have had linkers added to their ends. The haploid

yeast strain used to express the DNA-binding domain fusions,

PNY200, has the following genotype: MATa trp1-901 leu2-3,112

ura3-52 his3-200 ade2 gal4 gal80. The haploid yeast strain used to

express the activation domain fusions, PJ69-4A1, has the following

genotype: MATa trp1-901 leu2-3,112 ura3-52 his3-200 ade2 gal4

gal80 GAL2-ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ. The

two yeast strains are derived from the same parent cell line and

display high mating efficiencies. Both allow for the introduction and

selection of vectors carrying the yeast selectable markers TRP1,

LEU2, and URA3. The activation domain strain contains three

different Gal4p-responsive reporter genes: GAL2-ADE2 and

GAL1-HIS3, which are assayed by selection on yeast synthetic

media lacking either adenine or histidine, respectively, and GAL7-

lacZ, which can be monitored using colorimetric or luminescent

assays for beta-galactosidase activity. The HIS3 reporter exhibits a

low level of background His3p expression that can be counteracted

by use of 3mM 3-amino-1,2,4-triazole, a competitive inhibitor of the

His3p protein. These markers are unrelated except for the small

GAL4 binding sites in their promoters. Since it is very unlikely that

all three genes would be spuriously activated if their promoters are

so distinct, the likelihood of false-positives is reduced.

Generation of DNA-binding domain libraries. We cloned

fragments of B. anthracis, F. tularensis, and Y. pestis genomic DNA

into DNA-binding domain vectors pOBD.111 and pOBD.109 to

create libraries for two-hybrid analysis. We obtained the genomic

DNA from the laboratories of Dr. Kenneth Bradley (University of

California, Los Angeles), Dr. Martha Furie (Stony Brook

University), and Dr. James Bliska (Stony Brook University)

respectively. Bacterial genomic DNA insert preparation involves

the mechanical (sonication) and enzymatic (cviJI**) shearing to

produce random fragments of an average size of 500 bp. We

blunted single-stranded overhangs to recover fragments of desired

size. We then ligated purified fragments to linkers and co-

transform them into bacterial cells with an equimolar amount of

linearized vector. We then transformed the entire ligation and

plate onto selection plates for amplification. We pooled colonies

and isolated plasmid DNA for transformation into yeast.

Preparation of DNA-binding domain fusions. In order to

randomly screen each DBD library we plated an aliquot of the

DNA-binding domain library on yeast synthetic media lacking

tryptophan at a density that allows the selection of individual yeast

colonies. After a three to four day incubation, we picked individual

yeast clones into a 96 well plate containing yeast rich media (YPD).

We then incubated the plate at 30u for one to two days to permit

the growth of a sufficient quantity of DNA-binding domain yeast.

Random yeast two-hybrid screens. Our strategy is similar

to one used by LaCount et al. [6] used to identify interactions

between proteins in Plasmodium falciparum.

We generated DNA-binding domain libraries in a haploid

MATa strain and the human spleen activation domain library in a

MATa strain. We mated each haploid yeast culture containing a

single DNA-binding domain fusion to generate diploid yeast cells

that express both the DNA-binding and activation domain fusions.

In contrast to LaCount et al., we used a liquid-format mating

strategy in a 96-well plate (as opposed to mating on filters or agar),

thus allowing for the generation of greater than 500,000 diploids

(and, therefore, protein combinations). We selected two-hybrid

positives on yeast minimal media lacking tryptophan and leucine

(to select for mating events), and lacking histidine and adenine (to

select for activation of the two-hybrid reporter genes).

The goal was to analyze the vast majority of B. anthracis, F.

tularensis, and Y. pestis proteins as DNA-binding domain fusions. The

DNA-binding domain libraries contain fragments sizes selected to

be larger than 300 bp and with the average insert size of 500 bp

(167 amino acids). We chose the 300 bp minimum because many

recognizable protein domains are in this size range; in addition, this

size of fragment works well in yeast two-hybrid assays.

We generated comprehensive protein interaction maps by

performing a ten-fold coverage of the coding capacity of each of

the pathogen genomes. We calculated the number of screens by

dividing the total genomic sequence of the pathogen by the

average fragment size in the DNA-binding domain library

(500 bp) and multiplying by ten (fold coverage).

Analysis of positive screens. We incubated the yeast

selection plates for ten days. We experienced three different

outcomes: 1) Some plates exhibited no growth of yeast colonies

and are discarded without further analysis; 2) Some plates exhibited

growth of a very large number of colonies (from hundreds of yeast

colonies to a lawn of yeast); 3) The remaining plates contained a

modest number of colonies, from one to a few hundred. In the first

scenario where there are no colonies returned, we assumed that

there are no detectable interactors for those protein fragments. In

the second case where a very large number of colonies are found, it

is likely that the DNA-binding domain fusions possess inherent self-

activation ability and were not worthy of further investigation, as

they did not represent protein interaction pairs. After analyzing

many thousands of searches, it is our experience that DNA-binding

Table 5. CPIM results.

Alorithm B. anthracis- B. anthracis- F. tularensis-

F. tularensis Y. pestis Y. pestis

Graemlin N/A N/A N/A

Match-and-Split 0 0 0

NetworkBLAST 3 10 2

GraphHopper 39 64 41

Summary of the number of identified CPIMs for each of the algorithms used in
this study.
doi:10.1371/journal.pone.0012089.t005
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domain fusions yielding in excess of 100 colonies per search are

likely self-activators. Typically, our ORF-selected DNA-binding

domain libraries contain two to five percent self-activating baits, in

agreement with the frequencies observed for random fragments of

Escherichia coli and bacteriophage T7.5 [37,38].

We selected colonies for further analysis and transfered them to

fresh media. We amplified both the DNA-binding and activation

domain inserts by PCR and sequenced the resulting products using

dye-primer chemistry on capillary instruments. We used the resulting

sequence information to identify the interacting protein fragments.

Filtering positive interactions. We retained interactions for

positive colonies in which the insert is in the correct orientation,

contains one but no more than two annotated genes, and does not

contain multiple genomic fragments that had been ligated together.

Figure 4. Conserved protein interaction modules. Conserved modules of human-pathogen PPIs involved in (A) antigen binding and processing
and (B) immune response pathways. For clarity these images show only the conserved modules from the comparison of B. anthracis and Y. pestis, and
interactions involving virulence factors and uncharacterized pathogen proteins. As a result, the human proteins in the figure may appear to be
disconnected.
doi:10.1371/journal.pone.0012089.g004
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Computational methods
Notation. We represented each experimentally derived

human-bacterium protein-protein interaction (PPI) network as a

bipartite graph B= (H, P, I), where H is the set of human proteins,

P is the set of proteins in the bacterium, and I is a set of edges

(interactions), each of which connects one protein in H to a protein

in P. Further, we represented the set of known intra-species

(human) protein-protein interactions as an undirected graph

G= (V, E), where V is the set of nodes (human proteins) and E is

the set of edges (interactions). We now describe in detail the tests

we used to analyze each of the human-pathogen networks.

Analysis of degree in the human PPI network. The degree

of a protein in a graph is the number of interactions in which it

participates. We plotted the degree distributions for six sets of

human proteins: (i) the set of all human proteins not interacting

with a pathogen protein in our dataset, (ii)–(iv) three sets of human

proteins contained within each of the human-bacteria networks, (v)

the set of human proteins found to interact with at least two

pathogens, and (vi) the set of human proteins found to interact

with all human pathogens (B. anthracis, F. tularensis, and Y. pestis). A

bias towards high-degree proteins in the last five distributions

would suggest that B. anthracis, F. tularensis, Y. pestis have evolved to

interact with higher degree proteins in the human PPI network.

Analysis of betweenness centrality in the human PPI

network. The degree of a protein captures only its local

connectivity. Betweenness centrality (BC) measures capture both

global and local features of a protein’s importance in a network

[39]. A protein with high betweenness centrality is characteristic of

a bottleneck in an interaction network (i.e., there are many paths

which pass through this protein) [40]. The betweenness centrality for a

protein v MV is defined as the fraction of shortest paths in G

between all protein pairs (u, w) that pass through the protein v.

Given u, v, w MV, let Suw denote the number of shortest paths

between proteins u and w. There may be multiple equally long

paths between u and w that are shorter than any other path

between u and w. Let Suw(v) denote the number of these that pass

through v. Then the betweenness centrality of v is

bc(v)~
X

u,w[V
u,w=v

suw(v)

suw

To compute the betweenness centrality for each protein in G, we

used the algorithm devised by Brandes [41]. This algorithm runs in

time proportional to the product of the number of nodes in G and

the number of edges in G. We plotted distributions for the same six

sets as in the degree analysis. Again, if the distribution for the last

five sets is biased toward higher values of centrality than the

distribution for the first set, we could hypothesize that B. anthracis, F.

tularensis, and Y. pestis have evolved to interact with proteins with

high betweenness centrality in the human PPI network.

Gene set enrichment analysis. We used Gene Set

Enrichment Analysis (GSEA) to determine if the human proteins

interacting with B. anthracis, F. tularensis, and/or Y. pestis have

significantly higher degree or betweenness centrality than

randomly picked proteins in G [16]. Let L be the ranked list of

the proteins in V, where we rank the proteins either by degree or

by betweenness centrality. Given L and a predefined set S of

proteins of interest (e.g., those interacting with B. anthracis), we used

GSEA to determine whether the proteins contained in S are

randomly distributed throughout L or concentrated at the top. In

the ranked list L, let li be the value (of degree or centrality) at index

i; 1#i#|L|. We abuse notation and say that an index i is an

element of S if the protein whose rank is i belongs to S. First, we

computed m=Si M Lli, the sum of all the values in L. Next, for each

index i in L, we computed two values:

Phit(S,i)~
X

j[S, jƒi

lj

m

Pmiss(S,i)~
X

j =[S, jƒi

1

DLD{DSD

Thus, Phit(S, i) measures the weighted fraction of proteins with

index at most i that are in S and Pmiss(S, i) measures the fraction of

proteins with index at most i that are not in S. We handled

multiple ranks with identical values by computing Phit and Pmiss
only at the largest rank for each unique value in L. Finally, we

defined the enrichment score as the largest positive value of Phit(S,

i)2Pmiss(S, i), i.e.,

es(S,L)~ max
1ƒiƒDLD

max Phit(S,i){Pmiss(S,i),0ð Þð Þ

A large positive value of es(S, L) indicates that the proteins in S

have high degree or high betweenness centrality. Note that our

modification of the original definition of the enrichment score [33]

ensures that if S mainly contains proteins with low degree or

betweenness centrality, then the score will be close to 0, since

Phit(S, i)2Pmiss(S, i) will be negative for most indices. To compute p-

values for an observed enrichment scores, we generated a null

distribution of scores by repeatedly selecting |S| random nodes in

L and computing the enrichment score for each random subset of

nodes. We repeated this process 1,000,000 times and estimated the

p-value for s as the fraction of random sets whose enrichment score

is at least as large as s.

Identifying paralogous and orthologous protein

pairs. In preparation for computing conserved protein

interaction modules, we computed orthologous pairs of proteins

in every pair of pathogens. We used Inparanoid [28] with default

parameters to define orthologous pairs of proteins. The

Inparanoid algorithm outputs pairs of clusters. Each cluster in a

pair contains proteins from the same organism. The protein at the

center of a cluster has a weight of one and the other proteins in the

cluster have a weight between zero and one, depending on their

similarity to the protein at the center. In a given pair of clusters, for

every pair of proteins (one from each cluster), we use the products

of the weights of the two proteins as an estimate of the degree of

orthology of the protein pair. In addition, we used OrthoMCL

[29] with default parameters and a BLAST e-value cutoff of 10210

to identify paralogous pairs of human proteins. We assigned a

weight of one to all paralogous pairs. For the sake of convenience,

we considered a human protein appearing in one human-

pathogen PPI network to be paralogous to a copy of the same

protein appearing in another human-pathogen network.

Conserved human-pathogen PPI modules. Given a pair

of human-pathogen PPI networks B1 and B2, let Z be the bipartite

graph whose edges are the orthologous and paralogous pairs of

proteins between B1 and B2, as computed above. We used a weight

of one for all edges (the PPIs) in B1 and B2. For edges in Z, we used

the weights defined in the previous sections. Let we denote the

weight of edges e in Z. Following the GrapHopper algorithm [34],

we defined a Conserved Protein Interaction Module (CPIM) to be a triple

(T1, T2, O) where T1 and T2 are connected subgraphs of B1 and

B2, respectively, and O#Z such that (a, b) MO if and only if a is a

node in B1 and b is a node in B2. Thus, O is the subgraph of Z
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induced by the nodes in T1 and T2. We used two measures of

quality for a CPIM: interaction score and conservation score.

We defined the interaction score of a CPIM (T1, T2, O) to be simply

the total number of host-pathogen PPIs in B1 or in B2 and denoted

this score by q(T1, T2, O). Given T1 and T2, a small value of the

score indicates that we could connect the proteins in T1 and in T2

using a small number of PPIs. The conservation score of a CPIM

(T1, T2, O) measures the amount of evolutionary similarity (at the

amino acid level) between the human-pathogen interaction

networks T1 and T2. Let P1 (respectively, P2) be the sets of nodes

(both human and pathogen) in T1 (respectively, T2). We defined

the conservation score of the CPIM (T1, T2, O) as

w(B1,B2,O)~

P

e[O we

DP1DDP2D

i.e., the total weight of the orthologous or paralogous pairs of

nodes in the CPIM divided by the total number of nodes in the

CPIM. The larger this score, the more evolutionary conserved we

consider T1 and T2 to be, since there are fewer proteins without

orthologs or paralogs in the CPIM. Note that if we are given T1

and T2, we can maximize this score by making O the subgraph of

Z induced by P1 and P2.

The GraphHopper Algorithm. We used the GraphHopper

algorithm [34] to compute CPIMs. For the sake of completeness,

we describe the algorithm here. Given two human-pathogen PPI

networks B1 and B2, GraphHopper finds CPIMs by ‘‘hopping’’

from one network to another using orthology and paralogy

relationships. We did not provide PPIs between human proteins

as input to GraphHopper. GraphHopper attempts to find CPIMs

with high conservation and low interaction score. At a high level,

the algorithm starts with a connected basis CPIM that contains

four nodes and edges. Iteratively, the algorithm ‘‘hops’’ from one

PPI network to another. In each iteration, GraphHopper expands

the CPIM to increase the conservation score, while attempting to

keep the interaction score as low as possible. We now provide

details about the algorithm. Although the GraphHopper

algorithm has been described earlier [34], we include these

details here in order to make this work self-contained. Our inputs

are two human pathogen protein interaction networks B1= (V1,

E1) and B2= (V2, E2) and a set Z of orthologous or paralogous

protein pairs.

Computing basis CPIMs. We start by constructing a basis

set of CPIMs in which each CPIM (T1, T2, O) has the following

properties:

i. O contains two edges (a, a9) M Z and (b, b9) M Z;

ii. a and b are connected by at most one intermediate protein in

B1; and

iii. a9 and b9 are connected by an intermediate protein in B2.

Thus, each basis CPIM consists of two or four host-pathogen

PPIs (one or two each in T1 and in T2) and two orthology or

paralogy edges. The basis set consists of all such CPIMs.

Expanding a basis CPIM. GraphHopper processes each

CPIM in the basis set using the following iterative algorithm (see

Figure 5). Let (T1, T2, O) be a basis CPIM. In iteration k.1, we

construct a CPIM (T1
k, T2

k, Ok) such that

i. (T1
k21, T2

k21, Ok21) is a subgraph of (T1
k, T2

k, Ok),

ii. w(T1
k, T2

k, Ok). w(T1
k21, T2

k21, Ok21), i.e., the new CPIM

has a higher conservation score, and

iii. q(T1
k, T2

k, Ok). q(T1
k21, T2

k21, Ok21) is as small as possible,

i.e., the new CPIM has as few PPIs added to it as possible.

We keep either T1
k21 or T2

k21 fixed and ‘‘expand’’ the other

graph. Without loss of generality, we assume that T1
k=T1

k21 and

T2
k21 is a subgraph of T2

k in the following discussion. We

construct (T1
k, T2

k, Ok) using the following steps:

i. We identify a set P#V2 of nodes such that each node vMP is

not a node in T2
k21 and is connected by an edge in Z to at

least one node in T1
k.

ii. For each node v M P, we use breadth-first search to compute

the shortest path pv in B2 that connects v to T2
k21, i.e., for

each node u M T2
k21, we compute the shortest path between u

and v in B2, and set pv to be the shortest of these paths.

iii. We find the node v9 in P such that pv9 is the shortest among

all paths computed in the previous step.

iv. We set T2
k to be the union of T2

k21 and pv9.

v. We set Ok to be the union of Ok21 and the set of edges in Z
incident on v9and a node in T1

k.

vi. We compute w(T1
k, T2

k, Ok). If w(T1
k, T2

k, Ok). w(T1
k21,

T2
k21, Ok21), we go to Step (i) and expand w(T1

k, T2
k, Ok)

Figure 5. GraphHopper extension of basis CPIM. An illustration of how GraphHopper expands a CPIM in iteration k. Each image shown two
host pathogen PPI networks, one on the left (blue proteins) and one of the right (red proteins). In these images, we do not distinguish between host
and pathogen proteins since GraphHopper treats these equally. Solid edges denote PPIs and dashed edges denote orthologs or paralogs. (A) A CPIM
at the end of iteration k21. (B) In iteration k, GraphHopper keeps the network in left side of the CPIM fixed and expands the network in the right side
of the CPIM. The two nodes marked by arrows belong to the set P. The node v9 is the lower of these two nodes. GraphHopper adds the thick red
interactions and orthology edges to the red network in the CPIM. (C) The CPIM at the end of iteration k.
doi:10.1371/journal.pone.0012089.g005

iv.

vi.

v.
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while keeping T2
k fixed. Otherwise, we stop expanding this

CPIM and proceed to the next basis CPIM.

The rationale for these steps is as follows. To expand the CPIM

(T1
k21, T2

k21, Ok21) after setting T1
k=T1

k21, we first identify the

set P of nodes in B2 that do not belong to T2
k21 but are orthologs

of nodes in T1
k. Each node in P is a candidate that we can add to

T2
k21 in order to construct T2

k. However, such a node v M P may

not be adjacent to any node in T2
k21. Since our goal is to keep

q(T1
k, T2

k, Ok)2q(T1
k21, T2

k21, Ok21) as small as possible, we

would like to connect v to T2
k21 using the fewest edges in B2. A

natural candidate for this set of edges is the shortest path pv
connecting v to T2

k21, where this minimum is taken over the set of

shortest paths connecting v to each node in T2
k21. Therefore, for

each node v in P, we compute the shortest path pv by which we can

connect pv to T2
k21 using only edges in B2. We add that path pv to

T2
k21that is shortest among all the paths computed i.e., v9= arg

minv M P |pv|. After computing T2
k, we set Ok to be the subgraph of

Z induced by the nodes in T1
k and T2

k by adding the edges in Z

that are incident on v9and any node in T1
k; by construction, no

node in pv9 other than v9 is connected by an edge in Z to a node in

T1
k. This step completes the construction of (T1

k, T2
k, Ok). Finally,

we continue expanding (T1
k, T2

k, Ok) if its conservation score is

greater than w(T1
k21, T2

k21, Ok21). Otherwise, we stop the

iteration and move on to the next basis CPIM. By induction, the

graphs T1
k, T2

k, and T1
k
< T2

k
< Ok are connected. Note that

q(T1
k, T2

k, Ok) implicitly plays a role in the expansion: by choosing

to add the shortest pv to T2
k, we are attempting to minimize q(T1

k,

T2
k, Ok)2q(T1

k21, T2
k21, Ok21).

Assessing the statistical significance of a CPIM. We

computed the statistical significance of a CPIM using standard

methods [33]. We computed two random PPI networks with the

same degree distribution as B1 and B2 and a random network

connecting nodes in B1 to nodes in B2 with the same degree

distribution as Z. We computed a histogram of the conservation

scores of all CPIMs that GraphHopper finds in these networks. We

amalgamated histograms over 10,000 random inputs and estimated

the p-value of a CPIM (T1, T2, O) as the fraction of CPIMs in

random networks whose conservation score is at least as large as

w(T1, T2, O). We retained CPIMs that have p-value at most 0.05.

CPIM Functional Enrichment. For each CPIM we compute

enriched Gene Ontology (GO) [20] functions for five sets of

proteins: the set of human proteins interacting with the first

pathogen, the set of human proteins interacting with the second

pathogen, all human proteins in the CPIM, and each of the two sets

of pathogen proteins in the CPIM. For a set of proteins S, e.g., those

interacting with the first pathogen, we compute enriched functions

as follows. For every function f in GO, let sf be the number of

proteins in H annotated with f. Let uf be the number of proteins in

the universeU annotated with f. As the universe for human proteins,

we used the set of all human proteins we have identified in the

human activation library (including experiments not described

here). For pathogen proteins, we used the set of pathogen proteins

found to interact with at least one human protein as the universe.

With these counts, we computed the p-value of f as

pf (S,V )~
X

min (sf ,uf )

k~sf

uf

k

� �

DU D{uf

DSD{k

� �

DU D

DSD

� �

We retained functions only for which pf#0.05 after accounting for

multiple hypothesis testing using the method of Benjamini and

Hochberg [42]. Since functions in GO are specified at multiple

levels of detail, the set of enriched function pairs may contain closely

related pairs of functions. We used the following criteria to collapse

the enriched functions to the most specific and the most enriched.

From the set of all enriched functions, we removed a function f if

there is another function g such that

i. pg,pf i.e., g is more statistically significant than f, and

ii. g is either an ancestor or a descendant of f.

Thus, we retained a function g precisely when g is more

significant than all its ancestors and all its descendants in GO.

Merging CPIMs. The steps described above convert each

basis CPIM into an expanded CPIM with high conservation and

low interaction score. However, the expanded CPIMs may have

considerable overlap. We modified the procedure used by Sharan

et al. [33] to merge CPIMs. For each CPIM C, we computed all the

biological functions it is enriched in and record the function fC that

is most enriched (has smallest p-value) in C. Let F be the set of all

such most-enriched functions. Finally, for each function lMF, we

computed a CPIM Cl as the union of all CPIMs C for which l= fC,

i.e., Cl=<l =Cl C. We report results for these CPIMs. Note that

this method (i) does not require us to provide a cutoff on the

overlap of two CPIMs that should be merged, (ii) allows merged

CPIMs to share both proteins and interactions, and (iii) may yield

disconnected CPIMs. For each such CPIM, we recomputed the

most enriched function. We added other proteins annotated with

the function to the CPIM, as long as they participate in a host-

pathogen PPI and the pathogen protein is a known virulence

factor. Note that the images in the main text only display

interactions involving virulence factors and uncharacterized

pathogen proteins, for the sake of clarity.

Datasets used. We gathered 78,804 PPIs between human

proteins from seven databases: the Biomolecular Interaction Network

Database [7], the Database of Interacting Proteins [12], the Human

Protein Reference Database [11], IntAct [9], the Molecular

INTeraction database [13], the Munich Information Center for

Protein Sequences [8], and Reactome [10]. For some analyses, we

considered a human PPI network assembled from unbiased high-

throughput experiments [43,44,45] and a network constructed from

only manually curated human PPIs [10,11]. These networks

contained 13,172 and 64,427 interactions respectively. We also

obtained functional annotations from the Gene Ontology (GO) [20].

We gathered information on virulence factors from MVirDB [46].

These data were downloaded in February 2008.

Conclusions
In summary, we have provided the first large-scale PPI map for

three respiratory bacterial pathogens and their human host.

Systematic screening of human-pathogen PPIs also allows us to

uncover novel interactions of relevance for understanding patho-

genesis, host response, all of which can be applied the development

of novel vaccines and immunotherapeutics. In line with recent

trends in drug discovery favoring polypharmacology (i.e., drugs

acting upon multiple targets), over single target drugs [47], there is a

renewed emphasis for developing broadly protective immunother-

apeutics against infectious diseases. Accordingly, discovering novel

putative targets through the comprehensive lens of protein networks

may provide valuable novel insights for developing novel drugs and

vaccines against respiratory pathogens.

Supplementary Information
Information about reagents and the data generated from the

yeast two-hybrid screens for B. anthracis, F. tularensis, and Y. pestis
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are available from the Bioinformatics Resource Center Portal at

http://www.pathogenportal.net/prc/. The interactions have also

been submitted to the IMEx (http:/www.imexconsortium.org)

consortium through IntAct [9] and assigned the identifier IM-

13779.
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