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Abstract

The Human Gene Mutation Database  (HGMD®) constitutes a comprehensive collection of published germline mutations 
in nuclear genes that are thought to underlie, or are closely associated with human inherited disease. At the time of writ-
ing (June 2020), the database contains in excess of 289,000 different gene lesions identified in over 11,100 genes manually 
curated from 72,987 articles published in over 3100 peer-reviewed journals. There are primarily two main groups of users 
who utilise HGMD on a regular basis; research scientists and clinical diagnosticians. This review aims to highlight how to 
make the most out of HGMD data in each setting.

Introduction

The Human Gene Mutation Database  (HGMD®) available 
via http://www.hgmd.org represents an attempt to systemati-
cally collate all known gene lesions underlying human inher-
ited disease that have been published in the peer-reviewed 
literature. Mutation data catalogued by HGMD (summarized 
by mutation type) are listed in Table 1.

HGMD was originally established in 1996 with the goal 
of facilitating the scientific study of mutational mechanisms 
in human genes underlying inherited disease (Cooper et al. 
2010; Stenson et al. 2017). However, over the last 20 years, 
it has acquired a much broader utility as it has become the 
central unified repository for disease-related genetic varia-
tion in the germ-line.

Brief history of the resource

The first Public version of HGMD containing ~ 10,000 vari-
ants in around 600 genes was made freely available from 
Cardiff via http://www.hgmd.org in April 1996. From that 

point, the database expanded swiftly to become the de facto 
central database for mutations causing human inherited dis-
ease. HGMD has been supported over the years by com-
mercial partnerships with various industry leading biomedi-
cal research companies. Through a partnership with Celera 
Genomics from 2000 to 2005, HGMD data were made 
available as part of the Celera Discovery System. The years 
2006–2015 saw the creation and continued development of 
HGMD Professional, a stand-alone web application, made 
available under license from BIOBASE GmbH. In 2015, 
QIAGEN Bioinformatics acquired BIOBASE, and our com-
mercial partnership continued with HGMD data being made 
available via HGMD Professional (including data download) 
plus integration into Ingenuity Variant Analysis and Qiagen 
Clinical Insight. The latest version of HGMD (2020.2) con-
tains 289,346 different mutations in 11,076 genes (Fig. 1).

Sources of mutation data

HGMD screens the peer-reviewed biomedical literature on 
an ongoing basis, and currently contains data derived from 
over 72,000 manuscripts published in more than 3100 dif-
ferent journals. Relevant articles are identified via manual 
inspection of a core selection of journals, supplemented by 
the use of online computerised procedures utilising Google 
Scholar, publishers’ websites and PubMed, to survey the 
wider literature. Articles identified as potential sources 
of mutation data are assessed by a team of experienced 
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curators (with an average of more than 12 years experience 
in curation). Discrepancies in variant reporting that require 
additional scrutiny are identified in approximately 20% of 
articles. Some 25% of these can be resolved by utilising 
other information reported in the manuscript or by refer-
ring to supplementary material (chromosomal coordinate, 
sequence chromatogram etc.). However, approximately 
75% of these ambiguities necessitate direct contact with 
the authors. Author responses that are sufficient to allow 
us to include the mutation data in question are received 
for ~ 55% of queries; however, the reported variants from 
the other 45% (comprising ~ 7% of all papers screened) 
remain unresolved.

One other challenge we have encountered is that an 
increasing number of journals do not appear to be system-
atically indexed by Medline, at least not immediately upon 
publication (i.e. the NLM catalogue states that the journal is 
not currently indexed for MEDLINE, although individually 
submitted abstracts may still be present in PubMed); with 
729 mutation entries, the journal Front Genet is the most 
highly represented of these, followed by Neurol Genet (488 
entries) and Mol Syndromol (333 entries). There are a total 
of 172 journals listed in HGMD that the NLM catalogue lists 
as not currently indexed by Medline/PubMed. This number 
represents approximately 5% of all the journals currently 
cited by HGMD. A summary of the top 20 journals cited 

Table 1  Numbers and types of different variants and genes present in HGMD Professional release 2020.2 and the publicly available version of 
the database (as of June 7th 2020)

DM disease-causing mutation, DM? Likely disease-causing, but with questionable pathogenicity, DP disease-associated polymorphism, DFP 
disease-associated polymorphism with supporting functional evidence, FP in vitro/laboratory or in vivo functional polymorphism
a Mutations available via the HGMD Public Website (http://www.hgmd.org)
b As described in den Dunnen et al. (2016)
c As described by Danecek et al. (2011)
d The Ensembl HGMD_PUBLIC release (https ://www.ensem bl.org/) contains hg19/hg38 genomic coordinates and HGMD accession numbers 
only
e Total excludes mitochondrial genes (searchable but no variant data) and retired records

Mutation type Number of Mutations in HGMD Professional 2020.2 
(disease-associated/functional polymorphism sub-
total)

Number of Mutations (publicly 
available via http://www.hgmd.
org)

Missense substitutions 136,383 (6435) 85,225

Nonsense substitutions 31,407 (392) 20,779

Splicing substitutions (intronic and exonic) 24,976 (735) 17,183

Regulatory (5′ and 3′ and intergenic) 4723 (3006) 3544

Small deletions (≤ 20 bp) 41,749 (369) 28,155

Small insertions/duplications (≤ 20 bp) 17,760 (212) 11,745

Small indels (≤ 20 bp) 3813 (70) 2679

Gross deletions (> 20 bp) 20,448 (170) 14,186

Gross insertions/duplications (> 20 bp) 5219 (98) 3445

Complex rearrangements 2299 (138) 1747

Repeat variations 569 (331) 498

All HGMD data 289,346 (11,954) 189,186a

HGVS nomenclature  providedb 263,452 (10,923) 0

Genomic coordinates/Variant Call Format (VCF) 
 providedc

263,160 (10,845) 168,473d

Genes (subdivided by variant class) Number of Genes in HGMD Professional 2020.2 Number of Genes (publicly 
available via http://www.hgmd.
org)

Number of genes (with DM and/or DM? entries only) 7141 4218

Number of genes (with either DP, FP or DFP only) 1198 904

Number of genes (with a mixture of DM and/or DM? 
plus DP, FP and/or DFP)

2737 2522

Number of disease genes (containing at least one DM 
or DM? entry)

9878 6740

Total number of genes in  HGMDe 11,076 7644

http://www.hgmd.org
https://www.ensembl.org/
http://www.hgmd.org
http://www.hgmd.org
http://www.hgmd.org
http://www.hgmd.org
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in HGMD (by number of mutation entries listed) is shown 
in Fig. 2.

Utilisation

There are many different ways in which HGMD data may 
be utilised in both a research and a clinical setting, all of 
which are dependent upon on the version of HGMD avail-
able to the user. For checking known genotype–phenotype 
relationships (i.e. relatively small numbers of variants found 
in specific genes involved in a known disease), the Profes-
sional (https ://www.qiage nbioi nform atics .com/produ cts/
human -gene-mutat ion-datab ase/) online-only interface 
will most likely suffice. Users may search using the gene 
symbol, disease name utilising the Universal Medical Lan-
guage System or UMLS (https ://www.nlm.nih.gov/resea rch/

umls/), literature reference, HGVS description or genomic 
coordinate. More recently, nucleotide-level annotations for 
multiple non-canonical mRNA transcripts have been added 
to HGMD Professional, in recognition of the fact that clini-
cally relevant variants are more likely to impact those exons 
that are present in multiple transcripts (Subramanian 2018).

Academic or non-profit users without a subscription may 
utilise the public version of HGMD (http://www.hgmd.org). 
However, this version is provided in a basic form that is 
searchable only by gene symbol or disease name, is only 
updated twice annually, is maintained permanently at least 
3 years out of date, and does not contain any of the additional 
annotations or extra features present in HGMD Professional 
(e.g. dbSNP ID, chromosomal coordinates, HGVS nomen-
clature, Variant Call Format (VCF), population frequency 
data, additional literature reports, advanced search features, 
evolutionary conservation data and functional predictions).

Fig. 1  Mutation totals by year 
of publication subdivided by 
variant class. *Figures for 2019 
and 2020 not yet complete. DM 
disease-causing mutation, DM? 
Likely disease-causing, but with 
questionable pathogenicity

Fig. 2  Top 20 journals by num-
ber of mutation entries (HGMD 
Professional release 2020.2 June 
7th 2020) in relation to both 
primary and additional (second-
ary) references

https://www.qiagenbioinformatics.com/products/human-gene-mutation-database/
https://www.qiagenbioinformatics.com/products/human-gene-mutation-database/
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
http://www.hgmd.org


1200 Human Genetics (2020) 139:1197–1207

1 3

Increasingly in clinical practice (as has happened in 
research), the use of next-generation sequencing (NGS) 
technology has greatly expanded in recent years. HGMD 
has adapted to these changes by providing mutation data in 
standardized formats for ease of computational analysis. The 
most useful of these in a high-throughput context is Variant 
Call Format or VCF (Danecek et al. 2011), which mimics 
the format of the data that will typically be produced by a 
bioinformatician after processing the output from NGS. This 
format is available as part of the licensed HGMD Profes-
sional download version. There is also a publicly available 
dataset containing coordinates (but not precise nucleotide 
changes) released via Ensembl (https ://www.ensem bl.org). 
Users looking for a potential clinical diagnosis may wish 
to utilise the HGMD online batch search mode (utilising 
dbSNP identifier, hg19/hg38 coordinate, hg19/hg38 VCF, 
HGMD accession number, PubMed ID, HUGO gene sym-
bol, HUGO gene ID, Entrez gene ID or OMIM ID). Results 
are limited to the first 500 found; however, these may be 
prioritised based on likely causation or population frequency 
based on gnomAD (http://gnoma d.broad insti tute.org/) data. 
Results may also be restricted to a particular UMLS disease 
concept (see Fig. 3). In this way, Next Generation Sequenc-
ing results may be directly compared to HGMD data, and 
any relevant variants that have been previously implicated 
in disease causation are returned. Filtering a typical exome 
will generally yield a list of approximately 400 damaging 
variants, comprising up to 8 highly damaging DMs (Xue 
et al. 2012) and up to 15 potential risk alleles (Tabor et al. 

2014). To make sense of these data, the user must prioritize 
their results in line with their own particular needs and pri-
orities (Table 2). 

An exome screen will most likely return a combination of 
the different HGMD variant classes listed in Table 2. Results 
may be further prioritized within a variant class by (i) utiliz-
ing the population frequency data from dbNSFP3, a database 
of functional predictions and annotations based on genomic 
location (Liu et al. 2016), present in the HGMD download 
and (ii) making use of the HGMD computed ranking score. 
This ranking score is a single relative probability score 
between 0 and 1, with 1 being most likely disease-causing; 
it is currently available only for coding region nucleotide 
substitutions (both missense and nonsense). The score is 
computed by HGMD using a supervised machine learning 
approach known as Random Forest (Breiman 2001), and is 
based upon multiple lines of evidence, including HGMD lit-
erature support for pathogenicity (placed on a scale of 1–10, 
with 1 being the lowest score and 10 being the highest), 
evolutionary conservation (100-way vertebrate alignment), 
variant allele frequency and in silico pathogenicity predic-
tion including CADD (Rentzsch et al. 2019), PolyPhen2 
(Adzhubei et al. 2010) and MutPred (Li et al. 2009). HGMD 
data are used to train the model with disease-causing muta-
tions (DM) forming the positive class and possible/probable 
disease-causing mutations (DM?) making up the negative 
class. Individually, ranking scores may be interpreted as 
relative probabilities of pathogenicity (i.e. the higher the 
score, the more likely the variant is to be disease-causing). 

Fig. 3  Example, online batch result set from HGMD Professional 2020.2

https://www.ensembl.org
http://gnomad.broadinstitute.org/
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Ranking scores may also be utilised in aggregate to pri-
oritize and rank multiple HGMD variants that have been 
found in the same sample. A representative example result 
set (utilizing VCF search terms) from the HGMD Profes-
sional batch search showing the first five results from each 
mutation class present in a normal exome from an apparently 
healthy individual and sub-ranked by the HGMD ranking 
score, is provided in Fig. 3.

The top five results shown in Fig. 3 are all DM entries 
present in HGMD. The five DMs on the list are known to 
cause autosomal recessive disorders (USH2A, PKHD1, 

LOXHD1, HADHA and ABCA4), and the healthy individual 
concerned is, therefore, an asymptomatic carrier of these 
variants. However, USH2A and ABCA4 have also been 
implicated in late-onset dominant phenotypes, and so may 
be of long-term clinical interest. The next five results in our 
illustrative list are from the DM? class and should therefore 
be treated with an additional degree of caution. However, 
upon closer inspection, some of these entries could prove 
to be of clinical relevance in the longer term. The MYH7 
variant is an autosomal dominantly inherited potential car-
diomyopathy risk factor, whereas the PNPO variant may 
also be clinically relevant in relation to the phenotype of 
Pyridoxamine 5′-phosphate oxidase deficiency (although 
this phenotype can be highly variable). The remaining DM? 
entries listed in Fig. 3 display either recessive or more com-
plex inheritance, or else give rise to biochemical phenotypes 
that are of relatively minor clinical concern, which is often 
the case for this class of variant.

The next three classes of variant (DFP, DP, FP) all 
occur at polymorphic frequencies, and therefore may con-
fer increased disease risk, and/or may give rise to an alter-
ation in the function of the gene/gene products involved. 
They are not, however, generally expected to be of imme-
diate clinical concern. That said, HGMD would neverthe-
less recommend that DFPs, in particular the alleles with 
a low population frequency for the minor allele (Kido 
et al. 2018), should be treated as “honorary DMs” for 
the purposes of returning results, particularly in light of 
the problems that are often encountered when attempt-
ing to classify low-penetrance/hypomorphic alleles, or 
those with combinatory effects (Wang and Chiang 2019). 
Notable examples of clinically significant DFPs present 
in HGMD include the DPYD allele p.Cys29Arg (global 
MAF 0.28) which may be relevant for 5-fluorouracil 
toxicity and F5 p.Arg534Gln (F5 Leiden – global MAF 
0.02), both of which are listed in Fig. 3. Other selected 
examples of clinically important DFPs include PROS1 
p.Ser501Pro (Protein S Heerlen polymorphism – global 
MAF 0.002), CD36 p.Tyr325* (global MAF 0.03), 
AMPD1 p.Gln45* (global MAF 0.10), CES1 p.Gly143Glu 
(global MAF 0.01), FCN3 c.349delC (global MAF 0.02), 
ABCA4 p.Asn1868Ile (global MAF 0.04). Some of the Ta
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returned alleles in the DFP, DP and FP classes may also 
be relevant to drug metabolism or as potential modifi-
ers of the clinical phenotype [for example the SCN5A 
p.His558Arg (global MAF 0.25) or CYP2C19 c.681G > A 
*2 allele (global MAF 0.17)].

Population frequency data are often employed to 
screen out potentially benign alleles (Whiffin et al. 2017). 
Indeed, the HGMD curators have periodically utilised this 
method to re-annotate or remove questionable variants 
from HGMD. This practice should, however, in the opin-
ion of the HGMD curators, be utilised with great caution, 
as it may reduce or even prevent the return of potentially 
clinically relevant alleles for certain later-onset diseases 
(Zernant et al. 2017; Wang and Chiang 2019). Despite 
these concerns, filtering by population frequency remains 
the best first method to de-prioritize low risk alleles 
from result sets. HGMD has therefore included popula-
tion frequency data from 1000 Genomes (1000 Genomes 
Project Consortium et al. 2015), ExAC (Lek et al. 2016) 
and gnomAD (http://gnoma d.broad insti tute.org/) to facili-
tate this process. FINDbase may also be used for spe-
cific populations (Kounelis et al. 2020). As a precaution, 
and owing to the fact that some disease-causing alleles 
occur at relatively high frequencies in certain popula-
tions, users may wish to consider “positive filtering”, and 
add HGMD-flagged alleles back into their result set if it 
is felt that they have been inadvertently excluded [e.g. 
HFE p.Cys282Tyr (MAF 0.038), LPA c.4289 + 1G > A 
(MAF 0.029), HBB p.Glu7Val (MAF 0.012) or G6PD 
p.Val68Met (MAF 0.033)].

Further �ltering

The simplest way to filter variants (apart from by population 
frequency) is using in silico pathogenicity prediction meth-
ods. HGMD contains many of the predictions provided by 
dbNSFP3 (Liu et al. 2016), which may be utilised for this 
purpose. HGMD also contains terms present in the Gene 
Ontology database (The Gene Ontology Consortium 2017). 
This information (e.g. “mismatch repair”, “ATP binding” 
etc.) may be utilised if the user is aware of which ontol-
ogy terms may be linked to their phenotype(s) or gene(s) of 
interest. Mapped UMLS disease concepts may be utilised 
to stratify results according to a broad set of disease-related 
terms (such as “Blood Disorder”, “Cancer” etc.). Where the 
phenotype is known, this approach is very efficient at iden-
tifying and returning HGMD alleles most relevant to the 
phenotype of interest, a method that is increasingly being 
recognized as important (Amin and Wilde 2018). An exam-
ple of an exome prioritization/filtering workflow is given 
in Fig. 4.

De novo mutations

Human germline de novo mutations are both a driver of evo-
lution and an important cause of genetic disease (Goldmann 
et al. 2019; Veltman and Brunner 2012; Acuna-Hidalgo et al. 
2016). Indeed, whole-genome studies have suggested that 
de novo mutations may be responsible for a considerable 
proportion of congenital or early-onset neurodevelopmen-
tal disorders, including autism spectrum disorder, epilepsy 
and intellectual disability/developmental delay (Neale et al. 

Fig. 4  Example of an NGS/diagnostic workflow

http://gnomad.broadinstitute.org/
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2012; Iossifov et al. 2014; Hamdan et al. 2017). Although 
such disorders often display a complex multifactorial aeti-
ology (Guo et al. 2018), it is thought that autism spectrum 
disorder in particular has a large risk of recurrence in fami-
lies (Breuss et al. 2020). Although these studies are still at 
an early stage, they generally show a measurable effect on 
disease risk, especially for exonic loss-of-function (LOF) 
de novo variation (Takata 2019). HGMD has, therefore, 
taken the decision to include these mutations, owing to the 
increased likelihood of their being involved in de novo (non-
familial) phenotypes.

De novo mutations identified as part of large-scale muta-
tion screening programs in patients with developmental 
disorders are entered into HGMD under the DM? variant 
class unless there is convincing additional evidence to sup-
port their inclusion as DMs. All likely disruptive sequence 
changes identified in cases (but not controls, or unaffected 
siblings in parent–offspring groups) are entered. Such vari-
ants include single base substitutions causing missense, 
nonsense or canonical splice site changes as well as both 
small and large exonic frameshift deletions/insertions or 
other complex rearrangements. Other variant types (e.g. 
synonymous substitutions) may be considered for inclusion 
if additional evidence supportive of pathogenicity has been 
presented. This collection of de novo variants should prove 
useful to those undertaking large-scale screening programs 
in terms of checking for the known or suspected involvement 
of a particular gene or specific mutation (or mutation type) 
in a given neurodevelopmental disorder. Additional refer-
ences will be added in the case of those mutations found 
recurrently in the literature, thereby adding to the weight of 
evidence supporting the involvement of a specific mutation 
or gene in a given disorder. There are now approximately 
15,000 de novo mutations logged in HGMD; 2500 of these 
have at least one additional reference and 33 of them have 
been reclassified as DMs.

Other resources

There are a relatively small number of other sources (both 
publicly funded and commercial) of mutation data analogous 
to HGMD that are available to the scientific community. 
These include ClinVar (Landrum et al. 2020) (public), Cen-
toGene (https ://www.cento gene.com) (commercial), LOVD 
(Fokkema et al. 2011) (software is public), COSMIC (Tate 
et al. 2019) (public and commercial license), DECIPHER 
(Bragin et al. 2014) (public), dbSNP (https ://www.ncbi.nlm.
nih.gov/snp) (public) and OMIM (Amberger et al. 2019) 
(public and commercial license). Like-for-like compari-
sons between these resources are very difficult, as obtaining 
the data can be problematic due to licensing requirements 
(CentoGene), or being distributed over many installations 

with potentially different usage/permission terms (LOVD). 
Although HGMD links to COSMIC, the data present in 
the latter resource are somatic in nature, and therefore, not 
directly comparable to HGMD. DECIPHER records data 
that are complementary to HGMD (i.e. large chromosomal 
rearrangements involving multiple genes which HGMD does 
not systematically catalogue). A basic comparison between 
the number of variants annotated by HGMD, ClinVar and 
OMIM is presented in Fig. 5.

Data for this comparison were limited to HGMD DM or 
DM? entries with genomic coordinates (March 2020 release 
2020.1 VCF file) versus those ClinVar variants labelled with 
Pathogenic, Likely_pathogenic or Pathogenic/Likely_path-
ogenic assertions from the ClinVar VCF file (downloaded 
2020-02-03). OMIM data were identified via the OMIM 
allelic variant identifier present in the ClinVar download. 
It can be seen that HGMD captures all OMIM pathogenic 
allelic variants, plus almost 60% of those present in ClinVar. 
In contrast, ClinVar captures only 23% of HGMD variants, 
with the majority (77%) remaining specific to HGMD. The 
remaining 43,342 ClinVar-only entries appear to comprise 
unpublished variants submitted by diagnostic laboratories 
(which complement HGMD’s attempts to provide compre-
hensive cover of the peer-reviewed literature). There is in 
addition a small overlap of ClinVar variants of uncertain 
significance/VUS (17,166 variants—not shown in Fig. 5) 
between HGMD and ClinVar. The bulk of ClinVar VUS 
(204,337 entries) are however not present in HGMD. The 
reason for this lies with HGMD editorial policy. Our cura-
tors will include a published VUS (as a DM?) if it is deemed 
plausible that the variant is the cause of the patient’s pheno-
type (e.g. VUS present in a known disease gene where it is 
rare in the general population, labelled VUS by the authors 
and is considered to be a reasonable potentially causative 
finding). ClinVar, however, appears to include practically all 
submitted VUS, even when the affected status of the indi-
vidual or family is unknown, leading to much larger numbers 
of this type of variant being present in their dataset.

Variant reclassi�cation

HGMD will reclassify or retire a variant if published evidence 
comes to light (e.g. via functional, case-level or mass exome 
variant frequency studies) that supports reclassification. Vari-
ants may be reclassified from DM? to DM if the new evidence 
increases support for the potential pathogenicity of the variant 
in question. The reclassification can of course go the other 
way (DM to DM?) where new data emerge that argue against 
variant pathogenicity. Disease-associated polymorphisms 
(DP) may be reclassified to DFP if new evidence supporting 
a functional effect is published. A variant may also be retired 
(R) if found to have been included erroneously ab initio, or 

https://www.centogene.com
https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/snp
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has subsequently been shown beyond reasonable doubt to be 
benign (either by virtue of its apparent population frequency, 
or literature reclassification or retraction). ClinVar variant 
reclassification rates (where a submitting laboratory updates 
a variant classification) are broadly similar to those of HGMD. 
The ClinVar reclassification rate has been reported to be 0.79% 
(Harrison and Rehm 2019), whereas the equivalent rate for 
HGMD data was 1.12% over the same time period (all data 
entered into HGMD between January 2016 and July 2019). 
However, if all HGMD entries are included (irrespective of 
the date when they were first entered), then the HGMD reclas-
sification rate rises to 2.06%. This is to be expected, as HGMD 
has pursued a policy of continuous curation, re-annotating 
older data wherever necessary, whereas ClinVar appears to 
rely almost exclusively on the original submitter updating their 
submission (hence the lower rate of reclassification). Recent 
literature suggests that if ClinVar alleles are independently re-
interpreted, then a large number of reclassifications become 
necessary (Xiang et al. 2020). Our view is that reclassification 
is to be expected with any well maintained mutation database, 
which should always be considered to be “work in progress”.

Automated mutation retrieval

Researchers at HGMD have been involved for several years 
in attempts to automatically extract mutation data from the 
literature. We recently contributed towards the Automatic 

Variant Evidence Database (AVADA), a novel machine 
learning tool that uses natural language processing to auto-
matically identify pathogenic genetic variant evidence in 
full-text primary literature (Birgmeier et al. 2020). AVADA 
automatically retrieved 58% of the likely disease-causing 
variants deposited in HGMD. Automatic retrieval and veri-
fication of novel likely disease-causing variants involved in 
inherited disease (i.e. those not already verified via manual 
curation) is, however, much more challenging. Our own 
internal assessment has demonstrated that > 90% of novel 
(i.e. unknown to HGMD) computationally derived auto-
mated literature mutation “hits” are in fact (from HGMD’s 
point of view) false positives comprising a mixture of sev-
eral different types; (i) somatic mutations (e.g. cancer driver 
mutations or mutations conferring cancer therapy resist-
ance), i(i) non-human mutations (i.e. from mouse, or another 
model organism), iii) artificially engineered mutations (e.g. 
mutagenesis experiments looking at catalytic or other active 
sites of a protein), (iv) so-called “A.I. artifacts” (i.e. sup-
posed variant matches a specified text mining pattern, but 
is not a genuine mutation), (v) incorrectly or inadequately 
described human mutations (e.g. protein description not 
matching nucleotide description, requiring manual verifica-
tion, but entered verbatim by the algorithm), (vi) secondary 
mRNA or other post-transcriptional sequelae (e.g. skipped 
exons or intron inclusions), (vii) coincidentally co-located 
mutations matching positions in two or more different genes, 
but only being genuine for one of them, and finally (viii) 

Fig. 5  HGMD vs ClinVar 
vs OMIM comparison (as of 
March 2020)
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benign variants (polymorphisms or rare variants only found 
in healthy controls). The tracking down of such false leads 
involved a great deal of HGMD editorial/curation time, but 
did not lead to a corresponding increase in identified novel 
disease-relevant mutations. Owing to these limitations, we 
have opted to implement a strictly controlled form of auto-
mated additional reference retrieval, using pre-existing and 
well-described human-curated HGMD variants.

Automated additional reference retrieval

To minimise the possibility of accruing the aforementioned 
false positives, HGMD has taken the decision to strictly limit 
the application of automated mutation retrieval/identification 
methods to our previously catalogued human mutation data 
set, identifying only the additional literature mentions of 
these already verified mutations. The computerised method 
employed will examine the full-text of identified articles 
(HTML or PDF including any supplementary material). 
Any literature reference in which a mention of a previously 
described mutation is found will be recorded and entered 
into HGMD as an additional reference for that mutation. 
These additional auto-curated references will be clearly 
marked as non-human curated when presented to HGMD 
users.

Future plans

HGMD plans to include the data from the GTEx project 
(GTEx Consortium 2013) to allow filtering on tissue expres-
sion of particular genes. This, in combination with the Gene 
Ontology and UMLS, should allow even more efficient fil-
tering (e.g. combining “central nervous system disorder” 
from the UMLS with “brain expressed” genes from GTEx). 
We also have plans to expand our provision of in silico vari-
ant predictions and to include computed ACMG classifi-
cations, based on the ACMG 2.0 rules recently published 
(Kalia et al. 2017). Roll-out of our automated additional 
reference retrieval system is also a priority.

Conclusion

In conclusion, HGMD contains an expansive set of tools that 
may be utilised by users in the fields of clinical diagnostics, 
personalised genomics and NGS/bioinformatics research to 
search and prioritise results derived from its comprehensive 
mutation data set. The onus is, however, on the clinician or 
researcher to use these tools and data sensibly and appro-
priately to obtain results that are suitable for their own use 
cases.
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