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The human gut bacteria Christensenellaceae
are widespread, heritable, and associated
with health
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Abstract

The Christensenellaceae, a recently described family in

the phylum Firmicutes, is emerging as an important

player in human health. The relative abundance of

Christensenellaceae in the human gut is inversely

related to host body mass index (BMI) in different

populations and multiple studies, making its

relationship with BMI the most robust and

reproducible link between the microbial ecology of

the human gut and metabolic disease reported to

date. The family is also related to a healthy status in a

number of other different disease contexts, including

obesity and inflammatory bowel disease. In addition,

Christensenellaceae is highly heritable across multiple

populations, although specific human genes

underlying its heritability have so far been elusive.

Further research into the microbial ecology and

metabolism of these bacteria should reveal

mechanistic underpinnings of their host-health

associations and enable their development as

therapeutics.

Introduction

The composition of the human gut microbiome is now

well established as a factor important to human health

conditions, including metabolic, pathogen, and immune-

related diseases [1]. Its composition varies substantially be-

tween individuals and populations due to local, personal,

and stochastic factors. The high inter-individual variability

of the gut microbiome has challenged efforts to define

what constitutes a healthy versus an unhealthy micro-

biome. Indeed, community composition alone is generally

not a good predictor of disease state [2]. The contribution

of specific taxa, their metabolic pathways, and their inter-

actions to human health is a new priority for microbiome

research [3], and this deeper understanding of the micro-

biome will be necessary for the development of evidence-

based microbial therapeutics [4–6]. Given that thousands

of microbial species and strains live in the gut, one chal-

lenge is to identify targets for further investigation and

development.

Here, we focus on the family Christensenellaceae,

within the Firmicutes phylum of Bacteria, due to its

emergence as a health-related group. First encountered

from 16S rRNA gene sequences alone, the family was

named in 2012 after an isolate named Christensenella

minuta (pictured in Fig. 1), cultivated from the feces of a

healthy Japanese male [7]. Members of this family of Fir-

micutes are, with a few exceptions, increasingly revealing

themselves as associated with a healthy phenotype in

humans. Because of the relatively recent naming and

phylogenetic placement of the Christensenellaceae family

(Box 1), it was not discussed in the literature prior to a

few years ago. And since representatives of this family

were only recently isolated (Box 2), little is known about

its ecology outside of what can be inferred from its asso-

ciations with host factors and other microbiota (Box 3).

Here, we review the literature to date, focusing on con-

sistent trends that associate Christensenellaceae with pa-

rameters of human health. Taken together, these various

observations strongly argue for further investigation into

the Christensenellaceae.

Christensenellaceae is ubiquitous among humans

and other animals

Most of what is known about the family Christensenella-

ceae comes from 16S rRNA gene surveys of the micro-

biome obtained from feces of humans and other

animals. Given that Christensenellaceae 16S rRNA gene

sequences were relatively recently included in reference

databases, only microbiome studies published since 2013
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report this taxon. Two cultured isolates, Christensenella

minuta and Catabacter hongkongensis, have published

genomes [14, 18], and genomes constructed during

metagenomic assemblies are increasingly available. At

the time of writing this review, there are 11 Christense-

nellaceae genomes in the Genome Taxonomy Database

and 89 genomes for the order Christensenellales (Box 1)

[11]. A phylogeny of 9 members of the Christensenella-

ceae, based on full length 16S rRNA gene sequences

available in NCBI, is shown in Fig. 2. Surveying the post-

2013 literature, it is evident that members of the Chris-

tensenellaceae are cosmopolitan inhabitants of the ani-

mal gut (Table 1), with a likely preference for the distal

colon [44], which is consistent with its fermentative ac-

tivities (detailed in Box 3) [7].

In humans, the family comprises on average 0.01% of

the fecal microbiota [21]. Its fine-scale distribution along

Fig. 1 Cell morphology of Christensenella minuta. C. minuta

(DSM22607) was grown in supplemented brain heart infusion to

reach full turbidity, approximately 72 h. Cells were washed twice and

subsequently resuspended in phosphate buffered saline prior to

submission to the electron microscopy facility at the Max Planck

Institute for Developmental Biology

Box 1 Discovery and phylogenetic classification of the

Christensenellaceae

The family Christensenellaceae belongs to the bacterial phylum Firmicutes,
the phylogenetically diverse and predominant phylum of the human gut
microbiome. The name Christensenellaceae is derived from the isolate
named Christensenella minuta (pictured in Fig. 1), which was first cultivated
from the feces of a healthy Japanese male by Morotomi and colleagues
and published in 2012 [7]. This isolate was named to honor the Danish
microbiologist Henrik Christensen, and the species designated “minuta”,
due to the small size of the cell (0.8–1.9 μM) and the colonies it forms on
agar plates (only 0.1 mm in diameter). In their species description,
Morotomi et al. compared C. minuta’s full length 16S rRNA against publicly
available databases and identified Caldicoprobacter oshimai, a bacterium in
the family Caldicoprobactereaceae (Clostridiales), as the closest relative, with
86.9% pairwise ID. Other related taxa included Tindallia californiensis (86.3%
ID) and Clostridium ganghwense (86.1% ID), both of which are in the family
Clostridiaceae in the phylum Firmicutes. They did note that other
sequences were identified with matches greater than 98% ID; however,
these were unclassified taxa from other 16S rRNA gene diversity surveys. C.
minuta was designated to represent a novel family, Christensenellaceae, in
the order Clostridiales in the phylum Firmicutes [7].
A closely related bacterium, Catabacter hongkongensis, was described in
2007 [8]. The 16S rRNA genes of C. minuta and Catabacter
hongkongensis share 96.5% sequence identity, suggesting the two
should be in the same family, and possibly the same genus [9] (Fig. 2).
As a result, some databases use the family name Catabacteriaceae, some
use Christensenellaceae, and some studies include both as two distinct
families. The family name Christensenellaceae, however, is now
considered with standing in nomenclature [10]. The Genome Taxonomy
Database, a recent taxonomy developed by Phil Hugenholtz and
colleagues that is based on whole genome comparisons rather than 16S
rRNA gene sequences for reconstructing phylogeny, supports that
Christensenella and Catabacter are separate genera in the family
Christensenellaceae, within a new order Christensenellales [11].

Box 2 Cultured isolates of the family Christensenellaceae (2019)

The first isolate, Christensenella minuta (DSM 22607), was isolated from
the feces of a healthy Japanese male. It is strictly anaerobic, non-
sporulating, non-motile, and described as Gram-negative [7]. Intriguingly,
others have described it as Gram-positive [12], which is also consistent
with our unpublished observations. A Gram-positive cell wall is
consistent with its classification as belonging to the phylum Firmicutes,
which includes predominantly Gram-positive bacteria. However, C.
minuta is able to produce small amounts of lipopolysaccharide, an
attribute that is more typical of, but not exclusive to, Gram-negative
bacteria [13]. Morotomi and colleagues demonstrated that C. minuta
produces the short chain fatty acids acetate and butyrate, and is
saccharolytic, with the ability to utilize arabinose, glucose, mannose,
rhamnose, salicin, and xylose. C. minuta was negative for many of the
standard biochemical assays used for characterization, which included
catalase, oxidase, esculin and gelatin hydrolysis, indole production, and
nitrate reduction [7]. The genome was published in 2017 [14], and is
estimated as 2.94 Mb with 51.5% G + C content.
Catabacter hongkongensis (DSM 18959), first described in 2007, was
isolated from the blood of patients who developed bacteremia in
Canada and Hong Kong. Catabacter hongkongensis is described as
strictly anaerobic, non-sporulating, and Gram-positive [8]. In contrast to
the other Christensenella isolates, Catabacter hongkongensis is in fact
motile. Catabacter has been associated with bacteremia in at least 12
additional instances, and there may be more due to the difficulty in
many chemical-based methods of accurately identifying Catabacter
hongkongensis [15–17]. Catabacter hongkongensis has a similar
saccharolytic profile to C. minuta, with the exception of glycerol and
rhamnose utilization depending on the isolate, and it was not able to
utilize salicin. Catabacter hongkongensis differs from C. minuta in that it is
catalase positive. Like C. minuta, it was negative for oxidase, esculin and
gelatin hydrolysis, indole production, and nitrate reduction [8]. No short chain
fatty acid production has been reported for Catabacter. The genome for this
bacterium was published in 2015, and is 3.2Mb with 48.5% G+C content.
Annotation of the genome supported that Catabacter hongkongensis is
motile, and the authors identified a number of antibiotic resistance genes,
which may contribute to its pathogenicity [18].
Christensenella massiliensis (DSM 102344) and Christensenella timonensis (DSM
102800), both isolated from the feces of a diabetic patient in Marseilles,
France, are described as strictly anaerobic, non-motile, non-sporulating, and
Gram-negative, similar to C. minuta [19, 20]. Although 16S rRNA gene
sequence comparisons place C. timonensis within the Christensenella genus
(> 97% identity to C. minuta), whole genome taxonomy indicates it belongs
to a genus distinct from both Christensenella and Catabacter [11]. No
characterization of these isolates has been reported.
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the human gastrointestinal tract remains to be clarified;

but in addition to feces, Christensenellaceae has been de-

tected in human colonic mucosa, ileum, and appendix, and

there is also suggestive evidence of airway colonization [21,

56–59]. The family Christensenellaceae is widespread across

human populations, and is reported from subjects inhabit-

ing North America [60–62], South America [63, 64], Europe

[21, 65], Asia [66, 67], Africa [68–70], and Australia [71].

Within human populations, traits associated with differ-

ent relative abundances of Christensenellaceae include eth-

nicity and sex. For instance, a recent study of > 2000

individuals with various ethnicities residing in Amsterdam,

Deschasaux et al. reported that Dutch subjects harbored

the greatest relative abundances of Christensenellaceae [72].

Similarly, Brooks et al. compared microbiome variation

between ethnicities in 1673 people residing in the USA and

reported that Christensenellaceae was overall less repre-

sented in fecal samples of Asian-Pacific Islanders relative to

other ethnicities [60]. A greater relative abundance of

Christensenellaceae in women compared to men was also

observed [60], and similar observations have been reported

in animals [26, 73, 74]. The underlying causes of these eth-

nic and sex differences are unclear.

Christensenellaceae has been associated with human

longevity, based on the observation that the relative abun-

dance of Christensenellaceae is greater in centenarians

and supercentenarians in comparison to younger individ-

uals in populations in China [75, 76], Italy [77], and Korea

[78]. Positive associations of Christensenellaceae with age

have also emerged from studies with relatively young indi-

viduals across multiple geographic locations [60, 68, 79–

82] (Table 2). Given that none of these studies followed

the same individuals over time, the association with age

could reflect a cohort effect rather than an age effect. For

Box 3 Ecological role of the Christensenellaceae in the human gut

Based on Morotomi’s observations, C. minuta ferments glucose to acetate
and butyrate under anaerobic conditions [7], which indicates it ferments
sugars in the gut to short chain fatty acids and other fermentation products
such as H2 and CO2. Goodrich et al. reported that the Christensenellaceae
form the hub of a co-occurrence network with other microbiota,
including methanogens (archaea of the family Methanobacteriaceae) [21].
Co-occurrence of Christensenellaceae and Methanobacteriaceae across
individuals has been reported elsewhere [22, 23]. The Methanobacteriaceae
include Methanobrevibacter smithii, the predominant methanogen in the
human gut. Given that M. smithii uses fermentation products (e.g., H2 and
CO2) to produce methane, the co-occurrence with Christensenellaceae may
represent a H2-based syntrophy.

Fig. 2 Phylogenetic relatedness of Christensenellaceae. Full length 16S rRNA gene sequences were obtained from NCBI and aligned using MAFFT.

Accession numbers for each sequence are provided in parentheses. Bootstrap values (> 50%) are expressed as a percentage for 100 iterations. A

maximum likelihood tree was built using RaxML with a general time reversible evolutionary model, and B. thetaiotaomicron was selected as the

outgroup for rooting the tree. The scale bar represents substitutions per site
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example, dietary patterns that vary by age may influence

this association (see below), or individuals born earlier

may have always harbored greater levels of Christensenel-

laceae compared to those born later.

The Christensenellaceae are linked to host genetic

variation

Host genotype is estimated to influence 30–60% of the

variation in the relative abundance of Christensenellaceae

Table 1 Christensenellaceae has a wide range of hosts in the animal kingdom

Phylum Class Order Family Genus Species Common name Reference(s)

Chordata Aves Casuariiformes Casuariidae Dromaius novaehollandiae Emu [24]

Galliformes Phasianidae Gallus gallus Chicken [25]

Coturnix japonica Japanese quail [26]

Struthioniformes Struthionidae Struthio camelus Ostrich [27]

Mammalia Artiodactyla Bovidae Bos frontalis Gayal [28]

taurus Cow [28, 29]

Capra aegagrus hircus Goat [30]

Syncerus caffer African Buffalo [28]

Ovis aries Sheep [31]

Camelidae Camelus bactrianus Bactrian camel [32]

dromedarius Dromedary camel [33]

Cervidae Cervus nippon Sika Deer [34]

elaphus Red deer [28]

Giraffidae Giraffa camelopardalis Giraffe [28]

Suidae Sus scrofa Pig [35, 36]

Carnivora Canidae Canis lupus Dog [37]

Felidae Felis catus Cat [38]

Diprotodontia Vombatidae Lasiorhinus latifrons Southern hairy-nosed wombat [39]

Lagomorpha Leporidae Oryctolagus cuniculus Rex rabbit [40]

Perissodactyla Equida Equus caballus Horse [28, 41]

Equus quagga Zebra [28]

Primates Cercopithecidae Cercopithecus ascaniusa Red-tailed monkey [42]

wolfia Wolf’s mona monkey [42]

neglectusa De Brazza’s monkey [42]

Macaca mulatta Rhesus Macaque [43]

papio anubis Baboon [44]

Rodentia Cricetidae Cricetus cricetus European hamster [28]

Microtus californicus scirpensis Amargosa vole [45]

Muridae Mus musculus Mouse [46]

Rattus norvegicus Rat [47]

Sirenia Dugongidae Dugong dugon Dugong [48]

Trichechidae Trichechus Manatus manatus Antillean manatee [49]

Reptilia Squamata Lacertidae Podarcis lilfordi Lilford’s wall lizard [50]

Liolaemidae Liolaemus parvus Lesser smooth-throated lizard [51]

ruibali Ruibal’s tree iguana [51]

Testudines Testudinidae Gopherus polyphemus Gopher tortoise [52]

Anthropoda Insecta Coleoptera Scarabaeidae Holotrichia parallela Large black chafer [53]

Blattodea Blaberidae Diploptera punctata Pacific beetle cockroach [54]

Pycnoscelus surinamensis Surinam cockroach [55]

aChristensenellaceae is listed as detected in the Cercopithecus genus, without further species detail. The three species listed were studied in McKenzie et al. [42]
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across individuals [21, 62, 66, 83]. Of the hundreds of taxa

in the gut, the family Christensenellaceae is consistently

identified as among the most highly heritable. This means

that a significant proportion of the variance in the relative

abundance of the family across a population can be attrib-

uted to genetic factors. Heritability refers to the genetic

predisposition of a quantitative trait: for example, height is

heritable, because this trait is largely genetically deter-

mined. Heritability calculations take into account quanti-

tative measures of the trait (such as relative abundance)

and should not be confused with whether the Christense-

nellaceae are inherited (i.e., vertically transmitted) from

family members, which is not known.

Goodrich et al. first identified the Christensenellaceae

as heritable in a well-powered (n = 977) study of mono-

zygotic and dizygotic twins from the UK [21]. A remark-

able 40% of the variation between individuals in the

relative abundance of the family Christensenellaceae

could be attributed to host genetic factors. A more fine-

grained analysis of species-level operational taxonomic

units (OTUs) showed that just a few Christensenellaceae

OTUs were driving the heritability of the family [21].

Other studies of heritability employing the same

population have observed similar results, whether the ana-

lysis was specific to species-level OTUs or when analyzing

modules of co-occurring microbes [81, 84]. So far, the

Christensenellaceae have not been included in the analysis

of heritability based on shotgun metagenome data, due to

the absence of genomes for this family in the reference da-

tabases used [85].

The high heritability of the Christensenellaceae has

been corroborated in other human populations. Good-

rich et al. had confirmed its heritability in two previous

studies involving twin pairs from the USA [21, 61, 86].

Additionally, Lim et al. evaluated microbiome heritability

in a Korean cohort of 655 individuals and identified

Christensenellaceae as heritable. In a Canadian cohort

(n = 270), it was again identified as among the most

highly heritable taxa [62]. Together, these observations

across multiple populations indicate that the heritability

of the Christensenellaceae is a widely shared trait. That

individuals are genetically predisposed to harbor a high

or low relative abundance of these bacteria may be a

generalizable human trait.

So far, attempts to identify the genetic factors that

account for the high heritability of Christensenellaceae by

Table 2 The relative abundance of Christensenellaceae increases with age

Country Sample size
of cohort

Age Sex Reference

(mean ± std. dev.) *, # (% male/% female)

China 168 93.3 (90-102) Long-living people# 37/63 [75]

61.6 (24-83) Young# 52/48

China 24 104 (100-108) Centenarians* 38/62 [76]

92 (85-89) Bama elderly* 38/62

83 (80-92) Nanning elderly* 50/50

Italy 69 106.2 (105-109) Semi-supercentenarians# 25/75 [77]

100.4 (99-104) Centenarians# 7/93

72.5 (65-75) Elderly# 47/53

30.5 (22-48) Adults# 47/53

Korea 47 98.9 ± 3.4 Centenarians 33,147 [78]

73.6 ± 3.6 Elderly 59/41

34.3 ± 6.5 Adults 67/33

Korea 57 25-65 (no other participant info or table) 54/46 [82]

USA 1673 40.2 ± 9.7a 52/48a [60]

USA 28 49.5 (20-82)* 54/46 [79]

Nigeria 30b Infant-85c NA [68]

United Kingdom 2764d 59.5 ± 12.3 32,813 [81]

Canada 41 24.3 ± 3.7e 54/46 [80]

* In these studies age is reported as median (age range)
# In these studies age is reported as average (age range)
a Metadata were only reported for the American Gut Participants (n = 1375) as participant data for the Human Microbiome Project is restricted access
b These findings only pertain to the urban dwelling Nigerians from this study
c A median or average for age groups was not provided. Infants were defined as < 3 years of age (n = 12) and adults were 5-85 (n = 18)
d These values only pertain to the analysis in the TwinsUK cohort in this paper
e These values are reported for the AVG cohort with regard to cardiorespiratory fitness, but is reflective of all study participants. Total age range for all participants

is between 18 and 35 years
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genome-wide association (GWA) have not succeeded [83].

These studies are generally underpowered, given the

millions of tests conducted simultaneously (i.e., testing all

genetic variants against all microbiome traits), and the

necessity to correct for false positives [87]. An alternative

to GWA is to take a candidate gene approach, restricting

the analysis to genes with interesting functions. For in-

stance, Zakrzewski et al. examined the relationship be-

tween a SNP in the interleukin 23 receptor (ILR23) gene

and the microbiome of mucosal biopsies from the ileum

and rectum. The A allele of this variant has been associ-

ated with a reduced risk of ileal Crohn’s disease (CD).

Within a population of individuals with no signs of CD or

other gastrointestinal disorders, a significantly greater

relative abundance of Christensenellaceae was detected in

the feces of individuals harboring the protective allele (AG

genotype) compared to the population with the GG geno-

type [56]. How the IL23R genotype may affect members

of the gut microbiota remains to be clarified.

Christensenellaceae has also been associated with the

fucosyltransferase 2 (FUT2) gene, which encodes an en-

zyme responsible for ABO blood group antigens that are

expressed on the intestinal surface as well as secreted. Non-

secretors (AA genotype) have an elevated risk for CD, while

secretors (AG or GG) are less likely to develop CD [88]. A

re-analysis of healthy individuals studied in [88] showed

that secretors harbored relatively more of this family com-

pared to non-secretors (n = 24) [21]. It is important to note

that in this case a targeted approach was used, and subse-

quent studies associating the microbiome with FUT2 do

not reach this same conclusion. When Davenport et al. also

did this analysis in UK twins (n = 1503), where heritability

of Christensenellaceae was first reported, no link between

Christensenellaceae and secretor status was found [89],

which is consistent with the results of Turpin et al. in a co-

hort of 1190 healthy individuals [90].

The Christensenellaceae may interact with host genetic

status to affect risk of colorectal cancer (CRC). Le Gall

et al. reported elevated Christensenellaceae in healthy

controls relative to individuals with CRC (n = 50 age-

and sex-matched individuals per group) [91], yet Yazici

et al. observed that the relative abundance of Christense-

nellaceae in stool was higher on average in African-

American CRC patients compared to controls [92]. Fur-

thermore, using tumor and healthy mucosal tissue biop-

sies from 44 patients with five different loss-of-function

mutations in CRC, Burns et al. observed that the associ-

ation of Christensenellaceae with CRC was dependent

on the type of mutation present [58]. These findings

may offer an explanation for the inconsistent patterns of

Christensenellaceae abundance with respect to CRC sta-

tus. However, whether the Christensenellaceae partici-

pate in CRC pathology remains to be ascertained. While

associations between Christensenellaceae and host

genotypes remain to be reproduced, they suggest that

health/disease promotion by these genotypes may be

mediated in part through promotion of the

Christensenellaceae.

The Christensenellaceae are linked to metabolic

health

Body composition and metabolic health

Body mass index (BMI) was the first host phenotype as-

sociated with the relative abundance of Christensenella-

ceae in the gut. Goodrich et al. observed that

Christensenellaceae was significantly enriched in individ-

uals with a normal BMI (18.5–24.9) compared to obese

individuals (BMI ≥ 30) [21]. Since this initial observation,

the association of Christensenellaceae with a normal

BMI has been corroborated repeatedly in populations

from a number of countries that included adult men and

women of various ages (Table 3). Consistent with its as-

sociation with leanness, Christensenellaceae have been

shown to increase after diet-induced weight loss [100].

Although obese and lean subjects can often be differenti-

ated using aspects of microbial ecology of the gut, these

aspects (e.g., alpha-diversity, or abundances of phyla)

have differed between studies [101]: the link between

Christensenellaceae and BMI therefore stands as the

strongest corroborated association between the gut

microbiome and BMI.

BMI is a proxy for adiposity, and consistent with reports

linking levels of Christensenellaceae with BMI, studies in

which adiposity is more directly measured have also noted

strong associations with the abundance of Christensenella-

ceae in the gut. For instance, Beaumont et al. correlated adi-

posity measures, determined using dual x-ray absorptiometry

(DEXA), with the microbiome in a study of 1313 UK twins.

At the family level, the most significant association was with

Christensenellaceae, which negatively correlated with visceral

fat mass [84], a type of fat that is considered a cardiometa-

bolic risk factor. A similar observation was made by Hibberd

et al., who reported significant negative correlations of Chris-

tensenellaceae with trunk fat and android fat [102]. Addition-

ally, Christensenellaceae has been negatively correlated with

waist circumference and waist to hip ratio, which are direct

markers of central adiposity [66, 102–104].

In addition to its association with body fat measures,

Christensenellaceae is negatively correlated with serum

lipids in several studies. In the Dutch LifeLines DEEP

cohort (n = 893), Fu et al. reported a negative correlation

of Christensenellaceae with BMI, together with a strong

association with low triglyceride levels and elevated

levels of high density lipoprotein (HDL, or “good choles-

terol”) [96]. Other groups have also reported that Chris-

tensenellaceae is associated with reduced serum

triglycerides [66, 102, 104]. Similarly, this family is also

negatively associated with total cholesterol, low density
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lipoprotein (LDL; or “bad cholesterol”), and apolipopro-

tein B, a component of LDL particles [94, 102].

Christensenellaceae is reported as depleted in individ-

uals with metabolic syndrome (MetS) compared to

healthy controls [66, 104]. In addition to excess visceral

fat, MetS includes other risk factors such as dyslipidemia

and impaired glucose metabolism, and is a risk factor

for type 2 diabetes and cardiovascular disease.

Christensenellaceae was identified in a cohort of 441

Colombians as positively associated with a lower car-

diometabolic risk score [103], and others report it is

negatively correlated with blood pressure [66, 104, 105],

which is often elevated in MetS [106]. Christensenella-

ceae has also been associated with healthy glucose me-

tabolism [66, 107] and Christensenellaceae OTUs are

reduced in individuals with pre-type 2 diabetes [65].

Given that a high BMI, impaired glucose metabolism,

dyslipidemia, and other aspects of MetS are comorbidi-

ties, it is not surprising that Christensenellaceae in-

versely tracks with many of these conditions. The

mechanism underlying its negative association with

MetS remains to be elucidated.

Metabolic disorders are often linked to dietary patterns.

The Christensenellaceae appear to be responsive to diet,

and evidence points to a role in protein and fiber fermen-

tation. On a coarse level, large-scale diet studies have asso-

ciated Christensenellaceae with healthy dietary habits low

in refined sugar and high in consumption of fruit and veg-

etables [108–110]. Christensenellaceae is reported higher

in relative abundance in humans with an omnivorous diet,

relative to vegetarians [71, 111], and has also been associ-

ated with dairy consumption [112]. In a more direct link,

Christensenellaceae has been shown to respond rapidly to

an increase in animal products in the diet [113]. Further-

more, Christensenellaceae has been positively associated

with gut metabolites typical of protein catabolism and

dietary animal protein [114–116]. Christensenellaceae has

also been reported to increase in human dietary interven-

tions involving prebiotic fibers such as resistant starch 4,

galacto-oligosaccharide, and polydextrose [22, 102, 112].

Similar observations have also been made in rodent

models [117–119]. Taken together, these studies indicate

that the association of Christensenellaceae with health

parameters may in part be due to its association with a

diet high in protein and fiber.

To test for a causal role for Christensenellaceae in

metabolic disease while controlling for diet, Goodrich

et al. selected an obese human donor based on almost

undetectable levels of Christensenellaceae in the micro-

biome, and performed fecal transfers to germfree mice

that were fed the same fiber-rich chow, but otherwise

only differed by whether or not the obese human micro-

biome inoculum was amended with C. minuta. These

experiments showed that amendment with C. minuta re-

duced the adiposity gains of mice compared to those

that received unamended stool (or stool amended with

heat-killed C. minuta) [21]. The mechanism underlying

the protective effect of C. minuta against excess adipos-

ity gain remains to be elucidated, but may involve re-

modeling the microbial community, as a shift in diversity

was observed when C. minuta was added. These experi-

ments demonstrated that the activity of C. minuta in the

gut microbiome can affect host body composition even

when diet is controlled for, possibly via interactions with

Table 3 Global associations of Christensenellaceae with a healthy body mass index

Country Sample size of cohort Age (mean ± std. dev.)* Sex (% male/% female) Reference

USA 154 15 (21-32)*,a 0/100 [61]

USA 599 62.7 ± 7.7b 54/46 [93]

USA 1673 40.2 ± 9.7c 52/48 c [60]

Mexico 138 9.9 ± 1.72b 58/42 [94]

United Kingdom 977 60.6 ± 0.3 2/98 [21]

United Kingdom 2764d 59.5 ± 12.3 11/89 [81]

Spain 39 14.8 (13-16)* 49/51 [95]

Netherlands 893 44.7 ± 12.9 43/57 [96]

Norway 384 48 (23-82)* 42/58 [97]

Norway 169 30 (27-34)* 0/100 [98]

Korea 655 47.0 ± 12.2 42/58 [66]

Korea 1274 45.7 ± 9.0 64/36 [99]

Japan 516 52.4 ± 13.4 37/63 [67]

* In these studies age is reported as median (range)
a 49 participants are mothers of the twins, for which no age is reported
b These values are reported for the healthy weight cohort, but is reflective of all study participants
c Metadata were only reported for the American Gut Participants (n = 1375) as participant data for the Human Microbiome Project is restricted access
d These values only pertain to the analysis in the TwinsUK cohort in this paper. Other studies were included, but Christensenellaceae was not reported
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other members of the microbiota. Indeed, the ecological

role of members of the Christensenellaceae and their

function in the gut in general remains to be better

understood (Box 3).

Inflammation and transit time

In a meta-analysis of inflammatory bowel disease (IBD)

that included over 3000 individuals, Mancabelli et al. re-

ported Christensenellaceae as one of five taxa considered

a signature of a healthy gut [120]. Indeed, Christensenel-

laceae were consistently depleted in individuals with

Crohn’s disease [121–129] and ulcerative colitis [97, 122,

125, 129, 130], the two major sub-types of IBD. In irrit-

able bowel syndrome (IBS), a gastrointestinal disorder

characterized by abdominal pain and abnormal bowel

movements, a higher relative abundance of Christense-

nellaceae in healthy controls relative to individuals with

IBS has been reported in several studies [131–134]. Sev-

eral studies have also noted a positive correlation of

Christensenellaceae and longer transit time or even con-

stipation [67, 114, 133, 135, 136]. Thus, the Christense-

nellaceae appear to be depleted in conditions associated

with inflammation and fast transit time.

Given Christensenellaceae’s link with transit time, it is

perhaps not surprising that the family has been linked to

affective disorders that impact gut motility. For instance,

gastric dysfunction, particularly constipation, affects ap-

proximately two-thirds of patients with Parkinson’s dis-

ease (PD) and multiple sclerosis (MS) [137, 138]. Studies

have noted a greater relative abundance of Christensenel-

laceae in PD and MS patients relative to healthy controls

[139–142]. Since diet is also related to gut transit time,

the effects of diet, host status, and host genetics remain

to be carefully disentangled to better understand how

levels of the Christensenellaceae are controlled.

Prospectus

The family Christensenellaceae is a relatively recently de-

scribed bacterial family that is highly heritable and shows

compelling associations with host health. Its strong ties to

host health have warranted the suggestion that cultured

representatives of the Christensenellaceae, such as C. min-

uta, should be considered for use as a therapeutic probiotic

for the improvement of human health [143]. However, the

functional role of Christensenellaceae in the gut remains to

be understood. While the collection of associations between

Christensenellaceae and host health parameters continues

to grow, allowing inferences about the role of these

bacteria, they remain to be studied experimentally.

Genomes offer a powerful platform for generating hypoth-

eses regarding the metabolic capacity of the Christensenel-

laceae, but further functional characterization in vitro and

in vivo will be necessary to fully characterize the role of

Christensenellaceae in the gut. The ecological role of

members of the Christensenellaceae, their interactions with

other members of the microbiome and with the host and

host diet, all remain to be better understood if these

intriguing microbes are to be harnessed fully to improve

human health.
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